人教版七年级数学第10章数据的收集、整理与描述导学案(全章)[1]
人教版七年级数学(下册)第十章-数据的收集、整理与总结教案
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
七年级数学下册 第十章 数据的收集、整理与描述复习导学案(新版)新人教版
第10章复习
反思
问题后,给学生交流的时间。同时深入各组倾听学生的 交流,
再次点拨统计的思想以及统计的过程
.学生先独立思考再组内交流后分组报告,其他同学补充
.
依案自学,针对不会的问题用双色笔做好标记,在组内交流时向其他同学请教。
对于组内交流无法解决的问题提交老师或组间交流解决 疑问。
学生回答的不完整及时补充纠正
Hale Waihona Puke 时习P 158复习巩固1、2、3、4、5、6。
第十章数据的收集、整理与描述
导学目标
1、巩固数据的统 计
2、培养节约用水的意识
3、梳理本章所学知识,弄清本章知识的框架结构,巩固所学概念,明确统计的基本思想,会对 数据进行整 理、描述。
重点
认识框架建立和知识梳理
难点
对数据的整理和描述
教学过程
教学环节
教学内容
教学任务
教师活动
学生活动
预见性问题及对策
复
习
1.调查分为哪几种形式?各有什么优、缺点?
2.几个名词概念
总体:
个体:
样本:
样本容量:
频数:
3.抽样调查要注意的问题
①要有随机性,广泛性和代表性。
②在数据较大,情况较复杂时,应采取分类、分层抽 样进行调查(常采取比例的抽样方法)。
4.数据的整 理和描述主 要采取什么方法?
整理数据:
描述数据:
条形图能够显示数据:扇形图能够显示数据: 折线图能够显示数据: 直方图能够显示数据:
人教版七年级数学下册第十章 数据的收集 整理与描述 直方图(版教案)
第十章数据的收集、整理与描述10。
2直方图教学目标【知识与技能】1、了解频数及频数分布的概念。
2、能依照情况,选择合适的组距进行分组,会列频数分布表、3。
会画简单的频数分布直方图或频数折线图,并利用它获取相关信息,用以估计总体相关情况,即所有数据的分布情况、【过程与方法】由问题引入,通过问题的解决了解画频数分布直方图的全过程,在此基础上要求学生自己画一个频数分布直方图、【情感态度】增强对统计的兴趣,养成调查研究的良好习惯和科学态度。
【教学重点】画频数分布直方图【教学难点】组距和组数的确定及对频数分布的意义的理解。
教学过程一、情境导入,初步认识问题下列数据是截止到2019年费尔兹奖得主获奖时的年龄:293935 33392833 353131 373238 36 31 39 3238373429343832 3536 3329 323536 37393840 3837 39 383433 403636取组距为3,列出频数分布表,画出频数分布直方图、这个问题中,最大值是____,最小值是____,取组距为3,可分成的组数为____组、频数分布表画频数分布直方图和频数折线图(已画出一部分,请补全)【教学说明】全班同学独立作业,然后交流成果、二、考虑探究,获取新知考虑1、如何确定组距、组数?什么叫频数?什么叫频率?2。
每组为什么只包括最小值,而不包括最大值?3、画频数分布直方图的目的是什么?【归纳结论】1、(1)组距的确定没有统一规定,应结合具体问题恰当选取,过小则组数太多,过大则组数太少,都不适宜、一般来说,选取的组距将数据分成5~9组比较合适、(3)频数:落在各组内数据的个数叫频数。
(4)频率=频数/数据总数、2。
分组时,规定每组只包括最小值,不包括最大值,这是为了幸免边界争端,这也是假如=7时应分成8组,而不能分成7组的原因、3、画频数分布直方图的目的是为了直观地了解数据的分布情况、三、运用新知,深化理解1。
最新人教版初一数学七年级下册 第十章 数据的收集整理与描述 全单元教案设计
10.1 统计调查(一)1.学习目标:了解全面调查的意义,初步学会简单的数据的收集、整理以及会用条形统计图、扇形统计图直观地描述数据。
2.重点:对数据的收集、整理及描述3.难点:绘制扇形统计图和条形统计图4.教学内容一、问题:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?(一)设计调查问题的问卷1、确定调查目的;2、选择调查对象;3、设计调查问题。
需要注意:(1)调查目的要明确;(2)选择调查对象要合理;(3)设计调查问题要科学。
(二)实施调查,收集数据收集全班同学在上面的问卷调查中的数据。
划记(三)整理数据填完后交数学科代表,由科代表唱票,全班同学在表格中进行统计。
(四)描述数据(用统计图)常见的统计图有:条形统计图、扇形统计图、折线统计图。
1、条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。
从条形统计图中很容易看出各种数量的多少。
制作条形统计图的步骤是:(1)根据图纸的大小,画出两条互相垂直的射线,作为纵轴和横轴(2)在横轴上适当分配条形的位置,确定直条的宽度和间隔。
(3)在纵轴上确定单位长度,并标出数量的标记和计量单位。
(4)根据数据的大小,画出长短不同的直条。
并标上标题。
(5)若条形太小可适当在条形内画上颜色等区分。
作用:可以清楚的反应数量,便于比较做一做:请根据你所得到的数据,制作条形统计图。
2、扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数。
通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。
用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.作用:能清楚地反映出各部分数同总数之间的关系与比例.制作扇形统计图的步骤是:(1)已知单位一,求出各面积占单位一的百分率.(2)用360(圆的度数)乘求出的百分率,求应画扇形圆心角的度数.(3)画一个圆形(4)用量角器量出角度画出各扇形.制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如语文所占的百分比是20%,则相对应的圆心角为360o×20%=72o。
人教版七年级数学第10章数据的收集、整理与描述导学案(全章)
麦市中学师生共用导学案
麦市中学师生共用导学案
第3页
麦市中学师生共用导学案
第5页
麦市中学师生共用导学案
第7页
上面小长方形的面积表示什么意义?
小长方形的面积=×=.
可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少。
等距分组时,各小长方形的面积(频数)与高的比是常数(组距)
等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数。
(图10.2-3)
在频数分布直方图的基础上,我们还可以用频数折线图来描述频数的分布情
麦市中学师生共用导学案
第9页
C
_____C
_____C
C、_______C ________C________C
麦市中学师生共用导学案
第11页。
人教版七年级下册数学第十章《数据的收集与整理》四步导学案
10.1.1 统计调查(第一课时)学习目标:知识:了解通过全面调收集数据的方法,会设计简单的调查问卷收集数据。
方法:理论联系实际。
情感:感受统计调查的思想,体会动手收集数据、处理数据过程的乐趣。
学习重点:1:统计调查过程中,数据处理的一般过程和方法。
2:掌握用划记法、表格整理数据,并会用扇形统计图描述数据。
学习难点:组织有效的统计活动,使学生在活动中学会合作与交流;扇形统计图的绘制。
教具准备:多媒体课件、作图工具。
教学流程: 【导课】如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的的喜爱情况,你会怎样做? 板书课题【阅读质疑,自主探究】请同学们自学课本151页—153页的内容,思考下面的问题:1:从课本151页的数据中,你能看出全班同学喜爱各类节目的情况吗?怎样才能很清楚地看出全班同学喜爱各类节目的情况?2:你能根据表10-1和图10.1-1,说出全班同学喜爱五类电视节目的情况吗? 3:如何根据百分比或圆心角画出相应的扇形图? 【多元互动,合作探究】上述问题展示给学生,让学习困难的学生先回答,中等生补充,优等生总结;教师适当点拨、指导,最后汇总得出:为解决问题,需要做统计调查:1、首先对全班同学采用问卷调查的方法收集数据。
2、为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。
统计中经常用表格整理数据,其中经常用划计法记录数据。
3、为了更直观地表中信息,经常用条形图和扇形图来描述数据。
条形统计图:就是用坐标的形式来描述.扇形统计图:用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称。
语文 数学 外语 物理 政治 历史 地理 生物0 51015 20人数学科类别如制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如体育所占的百分比是20%,则相对应的圆心角为360o ×20%=72o 。
七年级下册数学_第十章_数据的收集、整理与描述全章导学案[1]
第十章数据的收集、整理与描述10.1.1 统计调查(1)一、学习目标:1、了解通过全面调查收集数据的方法。
2、会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据,并体会表格在整理数据中的重要作用;会画扇形图,并会用扇形图描述数据。
(重点、难点)3、体验统计图与生活的联系,感受统计图在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度。
二、自主学习:请认真阅读课本第150页的内容,独立思考并回答以下问题:1.在实际生活中,你了解过统计数据、统计图表吗?2.你知道统计数据是怎么得到的吗?它们表示什么呢?三、合作学习:1、阅读课本第151页问题1,分组讨论,合作交流,并回答以下问题:(1)我们都可以通过怎么样的方法收集数据?该怎样设计调查问卷呢?(2)如果我们得到数据之后,该怎么来整理这些数据呢?说一说你的方法,它们各有什么好处呢?(3)为了更直观地看出划记法表中的信息,可以用哪些方法来描述数据?2、分组合作――探究扇形统计图的画法:阅读课本第152页图10.1-1.(1)扇形统计图中的整个圆代表什么?(2)你认为图中的各个百分比是如何得到的?所有的百分比的和是多少?(3)图中各个扇形分别代表了什么?它的圆心角是怎样确定的?(4)你认为扇形统计图有什么特点?3、分组讨论,并归纳统计调查的一般过程.四、巩固提高:1、王聪一家三口随旅游团去九寨沟旅游,王聪把这次旅游的费用支出情况制成了如下的统计图:①你能说出王聪一家这次旅游的费用支出情况吗?哪方面的费用支出最高?②若他们共花费人民币8 600元,则在食宿上用去多少元?往返的路费又是多少元?2、如图是某报“百姓热线”一周内接到热线电话的统计图,其中有关环境保护问题的电话最多,有105个,请回答下列问题:(1)这一周“百姓热线”共接到多少个电话?(2)有关道路交通问题的电话有多少个?(32、就“父母回家后,你会主动为他们倒一杯水吗?”调查你们班的同学,并用统计图表表示你们的调查结果,4人一组完成。
七年级下册数学第十章 数据的收集、整理与描述 导学案
第十章数据的收集、整理与描述10.1 统计调查第1课时全面调查1.了解全面调查的概念.2.会设计简单的调查问卷,收集数据.3.掌握划记法,会用表格整理数据.4.会画扇形统计图,能用统计图描述数据.5.经历统计调查的一般过程,体验统计与生活的关系.自学指导:阅读教材第136至138页(练习以上),回答下列问题:自学反馈1.下面的调查,哪些适合用全面调查?哪些不适合?(1)调查中央电视台《大风车》的收视率;(不适合)(2)调查我班同学最喜欢的颜色;(适合)(3)调查一批炮弹的杀伤力情况;(不适合)(4)调查我班同学最喜欢的科目;(适合)(5)调查我班同学最喜爱的体育活动.(适合)2.某年级组织学生参加社会实践活动,本次活动将学生分成三组,下面两幅统计图反映了学生报名参加社会实践活动的情况,请你根据图中的信息回答下面问题:(1)该年级报名参加丙组的人数为25人.(2)该年级报名参加本次活动的总人数为50,并补全条形图.3.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区下面两张统计图,利用这些图提供的信息,解答下列问题:(1)1999年该地区销售盒饭共88.5万盒;(2)该地区盒饭销量最大的年份是2000年,这一年的销量是160万盒;(3)这三年中该地区每年平均销售盒饭99.5万盒.活动1 了解统计调查的一般过程步骤一:收集数据问题1 假设我们要了解你班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?举手表决、问卷调查等.问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷.你认为设计调查问卷应包括哪些内容?问卷设计的内容应包括调查中所提的问题、答案选项以及要求等.就上面的问题我们可以设计如下的调查问卷:(1)提问不能涉及提问者个人的观点;(2)不要提问人们不愿回答的问题;(3)提供选择的答案尽可能全面;(4)问题应简明;(5)问卷应简洁.问卷设计好后,请每位同学填写,然后收集起来.例如,某同学经问卷调查,得到如下50个数据:CCADBCADCDCEABDDBCCCDBDCDDDCDCEBBDDCCEBDABDDCBCBDD用字母代替节目的类型,可方便统计.步骤二:整理数据1.从上面的数据中你容易看出你班同学喜爱各类节目的情况吗?为什么?不容易.因为这些数据杂乱无章,不容易发现其中的规律.2.为了更清楚地了解数据所蕴含的规律,需要对数据进行整理.你认为应该怎样整理我们收集到的数据?划“正”字,这就是所谓的划记法.下面我们利用下表整理数据.全班同学最喜爱节目的人数统计表:上表可以清楚地反映你班同学喜爱各类节目的情况.步骤三:描述数据为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据.绘制条形统计图绘制扇形统计图我们知道,扇形图用圆代表总体,每一个扇形代表总体的一部分.扇形图通过扇形的大小来反映各个部分占总体的百分比.扇形的大小是由圆心角的大小决定的,所以,我们只要知道圆心角的度数就可以画出代表某一部分的扇形.因为组成扇形图的各扇形圆心角的和是360°,所以只需根据各类节目所占的百分比就可以算出对应扇形圆心角的度数.新闻:360°×8%=28.8°,体育:360°×20%=72°,动画:360°×30%=108°,娱乐:360°×36%=129.6°,戏曲:360°×6%=21.6°.在一个圆中,根据算得的圆心角的度数画出各个扇形,并注明各类节目的名称及相应的百分比.扇形图是根据扇形的大小来描述各个数据占总体的百分比,而扇形的大小是由扇形对的圆心角决定的,所以画扇形统计图,要先计算扇形的圆心角大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数就越大.扇形所对的圆心角的度数与百分比的关系是什么?(圆心角的度数=百分比×360°)归纳:条形图能够显示每组中具体的数据,易于比较数据之间的差别;扇形图的大小表示部分在总体中所占百分比,易于显示每组数据相对于总数的大小,而不能判断出每组数的绝对大小.步骤四:分析数据你能根据上面的条形统计图和扇形统计图直接说出你班同学喜爱各类电视节目的情况吗?步骤五:得出结论在上面的调查中,我们利用调查问卷得到你班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述.通过分析表和图,了解到了你班同学喜爱电视节目的情况.在这个调查中,你班同学是要考察的全体对象,我们对全体对象都进行了调查,像这样考察全体对象的调查叫做全面调查.例如,2000年我国进行的第五次人口普查,就是一次全面调查.请你举出一些生活中运用全面调查的例子.活动2 全面调查1.全面调查的基本过程2.宜采用全面调查①总体中个体数目较少且研究问题要求情况真实、准确性较高时.②调查工作较方便、没有破坏性③当调查的结果有特别要求时,或调查的结果有特殊意义时,如国家的人口普查,我们仍须采用全面调查的方式进行.活动3 跟踪训练幻灯片出示,同学们观看完成.活动4 课堂小结第2课时抽样调查1.了解抽样调查的意义,会针对具体问题选用全面调查或抽样调查.2.掌握总体、个体、样本和样本容量的概念.3.能正确指出抽样调查问题中调查的总体、个体、样本和样本容量.4.了解简单随机抽样的方法.通过解决实际问题,体会抽样调查中样本的代表性的作用.自学指导:阅读教材第138至140(练习以上)页,完成知识探究:知识探究1.抽样调查:采用调查部分对象的方式来收集数据,根据部分来估计整体的情况,叫做抽样调查.2.总体:所要考察对象的全体叫做总体.3.个体:总体中每一个考察对象叫做个体4.样本:从总体中所抽取的一部分个体叫做总体的一个样本.5.样本容量:样本中个体的数目(不含单位).自学反馈1.为了了解一批电视机的使用寿命,从中抽取了10台进行试验,对于这个问题,下列说法中正确的是(A)A.每台电视机的使用寿命是个体B.一批电视机是总体C.10台电视机是总体的一个样本D.10台是样本容量2.填空:某中学有520名学生参加升学考试.从中随机抽取60名考生的数学成绩进行分析,在这个问题中:总体是:520名考生的升学考试数学成绩;个体是:每一个考生的升学考试数学成绩;样本是:抽取的60名考生的升学考试数学成绩;样本容量是:60.活动1 激发兴趣,设疑导入1.生活中的“小插曲”妈妈:“孩子,再帮妈妈买鸡蛋去”.妈妈:………孩子高兴地跑回来.孩子:“妈妈,这次的鸡蛋全是好的,我每个都打开看过了”.妈妈:“啊!”在这个小故事中,孩子采用的是什么调查方式?这种调查方式好不好?答:全面调查,不好.2.如何知道一锅汤的味道?你知道其中蕴涵的道理吗?根据这个道理,孩子应采用怎样正确的调查方式?活动2 概念学习1.明确概念:(1)抽样调查:采用调查部分对象的方式来收集数据,根据部分来估计整体的情况,叫做抽样调查.(2)总体:所要考察对象的全体叫做总体.(3)个体:总体中每一个考察对象叫做个体.(4)样本:从总体中所抽取的一部分个体叫做总体的一个样本.(5)样本容量:样本中个体的数目(不含单位).2.解释概念:幻灯片显示:通过调查某地区学生的视力情况,进一步说明总体、个体、样本、样本容量之间的关系,并提出有些时候样本可以估计总体这一想法.抽样调查是实际中应用非常广泛的一种调查方式,它是从总体中抽取样本进行调查,根据样本来估计总体的一种调查.3.比较概念:全面调查是通过调查总体的方式来收集数据,因而得到的调查结果比较精确;但可能要投入数十倍甚至更多的人力、物力和时间.抽样调查是通过调查样本的方式来收集数据,因而调查结果与总体的结果可能有一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择.活动3 跟踪训练1.要调查下面几个问题,你认为应该做全面调查还是抽样调查?(1)要调查市场上某种食品含量是否符号国家标准(2)检测某城市的空气质量(3)调查一个村子所有家庭的收入(4)调查人们对保护环境的意识(5)调查一个班级中的学生对建立班级英语角的看法(6)了解一批灯泡的使用寿命.活动4 比较概念抽样调查是实际中经常采用的调查方式,它只抽取了一部分对象进行调查,然后根据样本数据推断全体对象的情况.如果抽取的样本得当,就能很好地反应总体情况,否则,抽样调查的结果会偏离总体情况.因此在抽样调查中抽取的样本要具有代表性.活动5 跟踪训练请指出下列调查中的样本是否具有代表性.(1)在大学生中调查我国青年业余时间娱乐的主要方式.(2)在公园里调查老年人的健康状况.(3)调查一个班级里学号为3的倍数的学生,以了解学生们对班主任老师某一新举措的意见和建议.(4)为了解公园里一年中的游客情况,小明利用”十一”长假作进园人数调查.活动6 例题解析问题2某校有2 000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你打算怎样进行调查?解:1.确定调查方式:抽样调查.2.可以在全校2 000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.1.为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到.例如,可以在2 000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.2.上面抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样.活动7 课堂小结第3课时用样本估计总体1.对较大数据分层次进行数据抽样.2.正确确定比例进行抽样和由数据描述作出判断,通过样本估计总体.自学指导:阅读教材第140至144页,回答下列问题:自学反馈小红帮助母亲预算家庭4月份电费开支情况,下表是小红家4月初连续8天的读数.若每度电收取电费0.5元.估计小红家4月份(按30天计)的电费是60元(注:电表计数器上先后两次显示读数之差就是这段时间内消耗电能的度数).活动1 例题解析问题3 某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.(1)能不能用问题2中对学生的调查数据去估计整个地区电视观众的情况呢?(2)如果抽取一个容量为1 000的样本进行调查,你会怎样调查?从上节课我们已经看到在总体数目比较大时,对它进行全面调查很难做到,甚至根本就不可能,如:问题3中有百万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,能否像上节课中提到的抽100名学生来估计2 000名学生的喜爱情况吗?那么如何按层次抽取呢?可以按年龄段的实际人口的比例分配来确保每个年龄段都有相应的比例的代表,按青少年、成年人、老年人的人数比为2∶5∶3抽取.请同学们计算按这样的比例填表格.在抽取的1 000名观众中,对各类节目的喜爱情况整理、绘制成喜爱节目的人数统计表:那么如何统计出各段人数对节目的喜爱的百分比呢?这个表格又如何设计呢?用折线统计图反映不同年龄段对节目喜爱的百分比变化情况,并根据图形说出各段喜爱节目的变化情况.全面调查和抽样调查是收集数据的两种方式.全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.活动2 探究怎样估计鱼塘里有多少条鱼?具体做法是:第一次捕捞出10条,把它们全部做上标记后放到池塘里,过一段时间进行第二次捕捞,若一共捕捞到100条鱼,其中2条鱼身上有标记,那么池塘里鱼的数目就可以通过近似比例关系,得到估计的数目.其近似比例关系为:池塘里有标记鱼的数目池塘中鱼的数目≈第二次捕捞出有标记鱼的数目第二次捕捞出鱼的数目只进行两次捕捞是不够准确的,应多进行几次,将每次结果相加,求出平均数就比较准确了. 活动3 课堂小结10.2 直方图1.使学生了解描述数据的另一种统计图——直方图.2.通过事例掌握用直方图的几个重要步骤,理解组距、频数、频数分布的意义,能绘制频数分布图.自学指导:阅读教材第146至150页,回答下列问题:自学反馈1.在对七年级某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观察图形,并回答下列问题.(1)该班有44名学生;(2)70.5~80.5这一组的频数是14,频率是0.32;(3)请你估算该班这次测验的平均成绩是80.2.对某班同学的身高进行统计(单位:厘米),频数分布表中165.5~170.5这一组学生人数是12,频率是0.25,则该班共有48名学生.3.已知一个样本:27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,24,26,27,28,30.列出频数分布表;并绘出频数分布直方图.解:(1)计算最大值与最小值的差:32-23=9.(2)决定组距为2,因为92=4.5,所以组数为5.(3)决定分点:23~25,25~27,27~29,29~31,31~33.(4)列频数分布表:(5)画频数分布直方图:活动1 对数据分组整理1.问题提出:为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:cm)如下:选择身高在哪个范围的学生参加呢?分析:为了使选取的参赛选手身高比较整齐,需要知道数据的分布情况:身高在哪个范围内的学生多,哪个范围内的学生少,因此得对这些数据进行适当的分组整理.活动2 对数据分组整理的步骤①计算最大与最小值的差.最大值-最小值=172-149=23(cm),这说明身高的范围是23 cm.②决定组距和组数.把所有数据分成若干个组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.例如:第一组从149~152,这时152-149=3,则组距就是3.那么将所有数据分为多少组可以用公式:-最大值最小值组距=组数,如:-最大值最小值组距=1721493-=233=723,则可将这组数据分为8组.注意:组距和组数没有固定的标准,要根据具体问题来决定,分组数的多少原则上按照:100个数据以内分为5~12组较为恰当.③列频数分布表.(频数:落在各个小组内的数据的个数)每个小组内数据的个数(频数)在各个小组的分布状况用表格表示出来就是频数分布表.如:对上述数据列频数分布就得到频数分布表.注:划记也可以写成频数累计.你能不能用更直观形象的方法来表示频数分布的情况呢?④画频数分布直方图.所以身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,共有12+19+10=41(人),因此可以从身高在155~164 cm(不含164 cm)的学生中选队员.以上四个步骤也对这63个数据进行了整理,通过这样的整理,选出了比较合适的队员.活动3 频数折线图方法:(1)取直方图上每一个长方形上边的中点.(2)在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距(3)将所取的这些点用线段依次连接起来活动4 例题解析课本166页例题,幻灯片出示.活动5 课堂小结画频数分布直方图的一般步骤:(1)计算最大值与最小值的差(极差).(2)决定组距与组数.(3)决定分点.(4)列频数分布表:数出每一组频数.(5)绘制频数分布直方图.横轴表示各组数据,纵轴表示频数,该组内的频数为高,画出一个个矩形.10.3 课题学习从数据谈节水1.使学生经历收集、整理、分析数据,得出结论的过程,从中体会节水的重要性.2.通过分析数据,得出结论,让学生体会用数据分析问题的过程,提出合理化建议,感受数学给生活带来的价值.3.通过具体的数据,使学生了解节水的重要性.自学指导:阅读教材第154至156页,回答下列问题:自学反馈1.近30年来,我国湖泊水面面积已缩小了30%.洞庭湖在1949年至1983年的34年间湖区面积已减少了1 459 km2,平均每年减少42.9 km2,容量共减少115亿m3,平均每年减少3.4亿m3.如果按此速度发展,现有容量为168亿m3的洞庭湖将会在50年内消失.2.郑光调查了他们班50名同学各自家庭的人均日用水量(单位:升),结果如下:55 42 50 48 42 35 38 39 40 51 47 5250 42 43 47 52 48 54 52 38 42 60 5241 46 35 47 53 48 52 47 50 49 57 4340 44 52 50 49 37 46 42 62 58 46 4839 60请根据以上数据绘制频数分布表和频数分布直方图,并回答下列问题:(1)家庭人均日用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?(2)如果每人每天节约用水8升,按全班50人计算,一年(按365天计算)可节约用水多少吨?按生活基本日均需水量50升的标准计算,这些水可供1个人多长时间的生活用水?解:计算最大值与最小值的差:62-35=27.决定组距与组数:取组距为4,由于27÷4=6.75,因此要将整个数据分为7组,用x(升)表示人均日用水量,则所分的组为35≤x<39,39≤x<43,43≤x<47,…,59≤x<63.列频数分布表:根据频数分布表和频数分布直方图可以得到:(1)家庭人均日用水量在不小于47升而小于51升的范围内的家庭最多,这个范围内的家庭共有14家,占全班家庭的28%.(2)一年可节约水:8×50×365÷1 000=146(吨)按生活基本日均需水量50升的标准计算,这些水可供1个人生活:146×1 000÷50÷365=8(年)资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片问题:(1)看了这些图片,你有哪些感受?(2)你了解世界及我国有关水资源的现状吗?活动1 探求新知阅读课本的“背景资料”,从中收集数据,画出统计图,并回答下列问题:(1)地球上的水资源和淡水资源分布情况怎么样?(2)我国农业和工业耗水量情况怎么样?(3)我国不同年份城市生活用水的变化趋势怎么样?(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?学生阅读资料,通过小组合作、讨论的形式完成.活动2 数据整理收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?(4)如果每人每天节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?(5)你还可以得到哪些信息?(教师巡视,指导各小组开展调查实验活动)活动3 资料展示资料展示:(投影)我国水资源利用情况的有关资料,讨论工农业生产及生活中节约用水的好办法.活动4 课堂小结。
人教七下数学第十章-数据的收集-整理与描述教案
4.为了了解某校学生每日运动量,收集数据正确的是()
A.调查该校七年级学生每日运动量B.调查该校女生每日的运动量
C.调查该校男生每日的运动量D.从七、八,九年级各抽调100人调查他们每日的运动量
5.如图是某公司四个部门的营业情况,则销售情况最好的是()
A.甲B.乙C.丙D.丁
公式: .
由以上公式还可得出两个变形公式:
(1)频数=频率×数据总数.
(2) .
注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.
2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况.
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.
知识点二:全面调查与抽样调查
调查的方式有两种:全面调查和抽样调查:
1.全面调查:考察全面对象的调查叫全面调查.全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.
全面调查的步骤:
(1)收集数据;
(2)整理数据(划记法);
(3)描述数据(条形图或扇形图等).
2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查.抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.
16.某校七年级(1)班60名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是度;表示良好的扇形圆心角是120°,则良好的学生有.
17.某校九年级部分学生做引体向上的成绩进行整理,分成四组,
其中15次以下占比例为5%,16~19次占15%,20~27次占30%,28次以上有25人,若20次以上为及格(包括20次),如果该校有600名学生,你估计能通过引体向上检测的约有人.
【精选】人教版七年级下册数学第十章《数据的收集》优秀教案
158 158 160 168 159 159 151 158 159
168 158 154 158 154 169 158 158 158
159 167 170 158 160 160 159 158 160
149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164
在前面我们用条形、扇形、折线三种统计图直观地描述了数据,那么对 于一组数据的频数分布用什么图象来描述呢?这就需要用到频数分布直方图.
二、讲授新课 1.频数分布直方图的绘制 频数分布直方图主要是直观形象地反映出频数分布的情况,上节课我们 对 63 名学生的身高做了数据的整理,并且也列出了频数分布表,现在我们利用 频数分布表作出相应的频数分布直方图. (1)以横轴表示身高,纵轴表示频数与组距的比值.如图:
12+19+10=41(人),因此可以从身高在 155~164 cm(不含 164 cm)的学生中选
队员.
以上三个步骤也对这 63 个数据进行了整理,通过这样的整理,也选出
了比较合适的队员.
三、巩固练习
在上述数据中,如果组距取为 2 或 4,分为几组,能否选出 40 名队员,
请试试看.
【答案】 略
四、课堂小结
今天主要学习的仍是有关数据的整理,但是它主要研究的是数据在各个
小范围内的分布状况,通过频数分布来体现某个数据在一定范围内的情况,从而
达到解决问题的要求.
【教学反思】
本节课的教学过程中,以学生熟悉的生活实例引入课题,激发了学生的学习
兴趣,充分调动了学生的学习积极性.
7
10.2 直方图(2)
【教学目标】 能由频数分布表绘制频数分布直方图,明确频数分布直方图中小长方形所表 示的实际意义. 【重难点】 重点 对数据的整理和描述. 难点 对数据进行合理分组. 【教学设计】 一、创设情境,引入新课
最新人教版七年级数学下册第十章数据的收集、整理与描述导学案1
第十章第一课时统计调查(1)学习目标:了解全面调查的意义,初步学会简单的数据的收集、整理以及会用条形统计图、扇形统计图直观地描述数据.重点:对数据的收集、整理及描述难点:绘制扇形统计图和条形统计图一、自学课本135—137页。
二、合作探究问题 1 如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?为解决此问题,需要进行统计调查。
首先对全班同学采用问卷调查的方法收集数据。
为此要设计调查问卷。
思考:如果想了解男、女生喜欢节目的差问卷中还应包括哪些内容?(阅读)利用调查问卷,可以收集到全班每位同学最喜欢的节目的编号(字母),我们把它们称为数据。
例如,某同学经调查,得到如下50个数据:CCADBCADCD CEABDDBCCC DBDCDDDCDC EBBDDCCEBD ABDDCBCBDD从上面的数据中,你能看出全班同学喜欢各类节目的情况吗?杂乱无章的数据不利于我们发现其中的规律,为了更清楚地了解数据所蕴含的规律,需要对数据进行整理,统计中经常用表格整理数据。
我们通常用划记法记录数据,“正”字的每一划(笔画)代表一个数据,编号为A的节目对应的数据是4,记为“””问题2 填表全班同学最喜爱节目人数统计表正正正正正问题3 为了更直观的看出表中的信息,还可以用条形统计图和扇形统计来描述数据。
请你利用表中的数据制成条形统计图和扇形统计图。
问题4 总结统计调查的全过程:1、 ( )2、 ( )3、 ( )考察全体对象的调查叫做全面调查。
2000年我国进行的第5次人口普查就是一次全面调查。
三 展示交流1 经调查,某班同学上学所用的交通工具中,自行车占60%,三轮车占30%,其他占10%,请画出扇形图描述以上统计数据。
2、春节文艺晚会是大家都喜欢的节目,下面是小刚班级喜爱某种节目的人数分布表,但 因不小心,他打翻墨水,有些地方被墨水遮掉了.请你帮他解决以下问题。
50(1)被墨水遮掉的3处应是① _______ ②_______ ③________(2)从上表中可知该班同学喜欢_______的人数最多。
新人教版七年级下数学第十章 数据的收集、整理与描述导学案
10.29.910.110.19.89.69101124681012课题:10.1.1 统计调查(第一课时 全面调查)学习目标:了解全面调查的意义,初步学会简单的数据的收集、整理以及会用条形统计图、扇形统计图直观地描述数据。
重点:对数据的收集、整理及描述 难点:绘制扇形统计图和条形统计图 教学内容一、创设情境、引入课题问题1:如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,你会怎样做?二、探索新知、归纳方法问题2:为了解决问题1,我们需要做统计调查,怎样做调查呢?问题3:怎样设计调查问卷呢?动手设计一个调查问卷。
思考:如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容呢?归纳:1、确定调查目的;2、选择调查对象;3、设计调查问题; 4、设计调查问题的问卷。
注意:(1)调查目的要明确;(2)选择调查对象要合理;(3)设计调查问题要科学。
实施调查:(一)收集数据(用问卷调查)收集全班同学在上面的问卷调查中的数据(35个数据)。
C A C B A D B C C D C C A B D C E C E C C A B E C B C C B C C C B C D (二)整理数据(用统计表格)填完后交数学科代表,由科代表划票,全班同学在表格中进行统计。
以小组为单位在练习本上绘制出条形统计图、扇形统计图。
(三)描述数据(用统计图)常见的统计图有:条形统计图、扇形统计图、折线统计图。
思考:条形图和扇形图在直观反映统计信息时各自有什么特点?问题4:上面调查中,我们的考查对象是什么?三、基础训练,巩固应用练习1:习题10.1 第2题 练习2:教材第137页 练习第2题 四、归纳小结、自我完善谈一谈本节课你有什么收获?条形统计图能够显示每组中的具体数据,易于比较数据之间的差别;扇形统计图反映了各部分在总体中所占的百分比的大小,易于显示每组数据相对于总数的大小; 折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。
2024年人教版七年数学下册教案(全册)第10章 数据的收集、整理与描述直方图
课时目标1.通过经历数据整理的过程,能了解频数分布表的相关概念,会利用频数分布表整理数据,感受数据的整理过程,树立学生数据分析的观念.2.通过分组合作,动手绘图,尝试画出频数分布直方图,从频数分布直方图了解数据的分布情况,感受统计在生产生活中的应用,了解统计的作用,培养学生思考、操作、整理数据的能力以及增强学生的合作意识,进一步发展数据观念的核心素养.3.通过分析、解决问题,能利用直方图解释数据中蕴含的信息.通过频数分布直方图在数据中所起的作用,反映数据中蕴含的规律,感受和体会统计结果对决策的意义和作用,培养数学的模型意识.学习重点频数分布表和频数分布直方图的制作.学习难点如何确定组数和组距.课时活动设计知识回顾问题1:在前面我们学习了哪几种表示数据的方法?它们各自的优缺点是什么?预设1:用统计表整理数据,准确但不形象直观.预设2:条形图可以直观地表示各类数据的多少.预设3:我们还可以用扇形图表示出各类数据的百分比.预设4:我们还学习过折线图.折线统计图主要表示数据的变化趋势或数据的波动情况.用统计图表示数据资料,形象直观,各有特点.问题2:在统计中,我们关心总体中所有个体某个数量指标的分布情况.当这个数量指标取连续变化的值时,应如何整理和表示数据呢?设计意图:复习旧知,引出新知.以问题形式引入新课,引导学生积极思考,激发学生的学习兴趣.创设情境,导入新课为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑选身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:cm)如下:158158160168159159151158159168158154158154169158158158159167170153160160159159160149163163162172161153156162162163157162162161157157164155156165166156154166164165156157153165159157155164156选择身高在哪个范围的同学参加呢?请学生自由讨论,寻求可行的方法.设计意图:以学生身边的实例提出问题,引发学生的思考与讨论,激发学生的探究欲望.实践探究,交流新知为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即身高在哪个范围内的同学多,哪个范围内的同学少,因此需要对这些数据进行适当地分组整理.1.计算最大值与最小值的差最大值-最小值=172-149=23.这说明身高的变化范围是23.2.决定组距和组数把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距.=组数,令各组的组距相同,那么将所有数据分为多少组可以用公式最大值-最小值组距=172-1493=233=723,例如:最大值-最小值组距所以可将这组数据分为8组:149≤x<152,152≤x<155,…,170≤x<173.这里组数和组距分别为8和3.注意:组距和组数没有固定的标准,要凭借经验和所研究的具体问题来决定将一批数据分组,一般数据越多分组的组数也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.3.列频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数).整理可以得到频数分布表:身高分组划记频数149≤x<1522152≤x<155正6155≤x<158正正12158≤x<161正正正19161≤x<164正正10164≤x<167正8167≤x<1704170≤x<1732从表中可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,一共有12+19+10=41(人),因此可以从身高在155cm至164cm(不含164cm)的同学中挑选参加比赛的同学.4.画频数分布直方图为了更直观形象地看出频数分布的情况,可以根据表中的数据画出频数分布直方图.在图中,横轴表示身高,纵轴表示频数与组距的比值.容易看出,=频数.小长方形的面积=组距×频数组距可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的大小.小长方形的高是频数与组距的比值.等距分组时,各小长方形的面积(频数)与高的比值是常数(组距),因此画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数.例如,上图表示的等距分组问题通常用下图的形式表示.设计意图:通过对实际问题的研讨,了解用频数分布直方图描述数据的意义和作用.在用统计方法解决问题的过程中学习用频数分布描述数据的方法,掌握列频数分布表和画频数分布直方图的一般步骤.典例训练,实例应用例为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100根麦穗,量得它们的长度如下表(单位:cm):6.56.46.75.85.95.95.24.05.44.65.85.56.06.55.16.55.35.95.55.86.25.45.05.06.86.05.05.76.05.56.86.06.35.55.06.35.26.07.06.46.45.85.95.76.86.66.06.45.77.46.05.46.56.06.85.86.36.06.35.65.36.45.76.76.25.66.06.76.76.05.56.26.15.36.26.86.64.75.75.75.85.37.06.06.05.95.46.05.26.06.35.76.86.14.55.66.36.05.86.3列出样本的频数分布表,画出频数分布直方图,从图表中可以得到什么信息?学生分组合作,按步进行.解:(1)计算最大值与最小值的差.在样本数据中,最大值是7.4,最小值是4.0,它们的差是7.4-4.0=3.4.(2)决定组距和组数.最大值与最小值的差是3.4,如果取组距为0.3,3.40.3=1113,可分成12组,组数适合.于是取组距为0.3,组数为12.(3)列频数分布表.分组划记频数4.0≤x<4.3一14.3≤x<4.6一14.6≤x<4.924.9≤x<5.2正55.2≤x<5.5正正一115.5≤x<5.8正正正155.8≤x<6.1正正正正正286.1≤x<6.4正正136.4≤x<6.7正正一116.7≤x<7.0正正107.0≤x<7.327.3≤x<7.6一1合计100(4)画频数分布直方图.从图表中可以得到以下结论:麦穗长度大部分落在5.2cm至7.0cm之间,其他范围较少.长度在5.8≤x<6.1范围内的麦穗根数最多,有28根,而长度4.0≤x<4.3,4.3≤x<4.6,4.6≤x<4.9,7.0≤x<7.3,7.3≤x<7.6范围内的麦穗根数很少,总共只有7根.变式:为了进一步了解七年级学生的身体素质情况,体育老师对七(1)班50名学生进行了一分钟跳绳次数测试,以测试数据为样本,绘制出了部分频数分布表和部分频数分布直方图如下所示.组别次数x频数第1组80≤x<1006第2组100≤x<1208第3组120≤x<140a第4组140≤x<16018第5组160≤x<1806请结合图表回答下列问题:(1)表中的a=12;(2)请把频数分布直方图补充完整;(3)若七年级学生一分钟跳绳次数x的评分标准是x<120为不合格;120≤x<140为合格;140≤x<160为良好;x≥160为优秀,根据以上信息,请你给学校或七年级学生提一条合理化的建议.解:(2)补充完整的频数分布直方图如下:(3)不合格人数占比为6+850=28%.建议:学校可以在体育课上增加跳绳这一项目.(答案不唯一,合理即可)师生活动:学生独立思考,举手回答,师生交流心得和方法.设计意图:通过典型例题和变式训练进一步巩固频数分布直方图的相关知识,形成学生数据分析观念,感受统计的实际价值,发展学生的应用意识.畅谈收获,分享心得教师引导学生,鼓励学生总结本节课的学习内容,归纳总结出重要知识、思想方法.(1)频数、组距、组数等概念;(2)频数分布表的制作、频数分布直方图的制作方法.谈谈自己的收获与感想,学生独立思考,班内汇报.设计意图:总结归纳出本节课的重难点,注重课堂小结,激发学生参与课堂总结的主动性,培养学生的概括能力,为每一个学生的发展与表现创造机会,发展学生数学核心素养.课堂8分钟.1.教材第150,151页习题10.2第1,2,3,4题.2.七彩作业.10.2直方图画频数分布直方图的步骤:(1)找最值;(2)定组距与组数;(3)列频数分布表;(4)画图:明确横轴和纵轴.例题.教学反思。
人教版数学七年级下册第十章数据的收集、整理与描述(教案)
-统计图的正确应用:学生在绘制和解读统计图时可能会出现错误,如比例不准确、信息解读错误等,教师需提供具体的指导。
举例:
-在数据整理环节,学生可能会对数据进行不恰当的分类,如将不同性质的数据混为一谈。教师应指导学生如何根据数据特征进行合理分类,例如根据性别、年龄等属性进行分类。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数据的收集、整理与描述在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-数据整理的基本技巧:强调数据分类、排序和汇总的重要性,以及如何避免数据整理过程中的错误。
-统计图的绘制与解读:详细介绍条形图、折线图、扇形图等统计图的绘制方法,以及如何从图表中提取和解读信息。
举例:在数据收集环节,教师需强调如何选择合适的样本,避免采样偏差,确保数据的准确性。
2.教学难点
-数据收集的准确性:学生在实际操作中可能难以确保数据的准确性和全面性,需要教师指导如何避免误操作和重复记录。
在小组讨论环节,同学们表现得非常积极,能够主动提出自己的观点和想法,并进行有效的沟通交流。这说明同学们具备了良好的团队协作能力,这是十分宝贵的品质。但同时,我也注意到,部分同学在讨论过程中过于依赖他人意见,缺乏独立思考的能力。为了培养同学们的独立思考能力,我将在今后的教学中,鼓励他们多发表自己的见解,勇于表达自己的观点。
最新人教版七年级下册数学 第十章 数据的收集、整理与描述 导学案
第十章数据的收集、整理与描述问题1:什么是全面调查?问题2:你能举出全面调查的实际例子吗?例2.下列调查中,适合用全面调查方式的是( ) A .了解某班学生“50米跑”的成绩 B .了解一批灯泡的使用寿命 C .了解一批炮弹的杀伤半径D .了解一批袋装食品是否含有防腐剂方法总结:全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就不适合用普查.1.小明为了了解同学们的课余生活,设计了如下调查问题:你平时最喜欢的一项课余活动是()A.看课外书B.体育活动C.看电视D.踢足球你认为此问题的答案选项设计合理吗?为什么?如果不合理,请修改.2.下列调查中,适宜采用全面调查方式的是( )A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的状况C.调查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.对某班40名同学的一次数学成绩进行统计, 适当分组后80~90分这个分数段的划记人数为:"" 那么这个班这个分数段的人数占全班人数的百分比是( )A. 20%B. 40%C. 15%D. 25%4.下列调查不属于全面调查有()A. 在可疑区域搜马航失事飞机MH370残骸B. 乘飞机时,机场对旅客的行李安全检查C. 中央电视台2016年春节联欢晚会“您最喜D. 调查我们班全体同学的体重情况5. 某中学七年级共100人,为了了解这些学生的家庭经济情况,校长决定做一次调查,每个同学发一张调查问卷,等同学们填好后再收起来统计整理,则在这次调查活动中,(1)校长要调查的问题是__________________________;(2)校长的调查对象是________________________;(3)校长使用的调查方式是__________.6.经调查,某班同学上学所用的交通工具中,自行车占有60%,公交车占30%,其他占10%.(1)请画出扇形图描述以上统计数据;(2)如果这个班共有50名学生,那么坐公交车的学生有多少人?(3)如果我班同学有50人,步行同学部分在扇形中的圆心角为72度,那么步行有多少人?第十章 数据的收集、整理与描述10.1 统计调查第2课时 抽样调查... .. .二、要点探究探究点1:抽样调查问题1:某中学共有2 000问题2:问题1问题3:什么是抽样调查?问题4:问题5:问题6:例1.在一次考试中,考生有2了500总体是个体是样本是样本容量是_______________.例2.(1(2)生进行调查.1949年,美国某杂志报道:1924年从耶鲁大学毕业的学生目前的年收入一般为25111美元.这一数据是耶鲁大学对与母校保持联系的校友的一次问卷调查后的统计结果.问题1:这个结果能较准确地反映当时的情况吗?为什么?问题2:以下两种调查得来的结果,准确吗?为什么?(1)某市为了解全市九年级学生的体重情况,从中抽查了500名男生.(2)某小区为了解小区所有居民晨练的情况,从中抽查了100名老人.问题3:怎样的抽样是简单随机抽样?问题4:抽样调查选取样本时要注意什么?要点归纳:合理抽取样本要注意:样本要具有代表性;样本容量要适当.例3.某地教育部门为了解本地区30000名中小学学生(高中生9000人,初中生10000人,小学生11000人)的近视情况,计划进行抽样调查.(1)能不能只调查高中生?(2)若从该地区的中小学学生中抽取300名学生作为代表进行调查,你认为应当怎样抽取?(3)每个阶段抽取的人数怎么分配?1.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的添加剂的含量是否符合国家标准;②检测某地区空气的质量;③调查全市中学生一天的学习时间.A.①② B.①③ C.②③ D.①②③2.为了了解一批电视机的平均寿命,从中抽取100台电视机进行试验,这个问题的样本是( )A.这批电视机的寿命B.抽取的100台电视机C.100D.抽取的100台电视机的寿命3.为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是( )A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校七、八、九年级中各班随机抽取10%的学生4.假如你想知道你们全班同学对踢足球、打篮球、打乒乓球和跑步的爱好情况,那么在你调查收集数据的过程中:(1)你的调查目的:____________________________________________________________________;(2)你的调查对象:________________________;(3)你要记录的数据:______________________;(4)你将如何开展调查并得出结论?第十章 数据的收集、整理与描述10.2 直方图.. . . . 首先要计算出这组数据的变动范围,数据的变)最小值 D.个数三、要点探究探究点1:用频数直方图表示数据问题1:绘制频数分布表的方法步骤是什么?问题2:何为组距?怎样计算组距?问题3:绘制频数分布表有哪些技巧?问题4:直方图中的横轴、纵轴分别表示什么?问题5:画直方图的步骤有哪些?问题6:条形统计图与频数直方图有什么区别和联系?典例精析例1.某校一学生社团参加数学实践活动,和交警一起在金山大道入口用移动测速仪监测一组汽车通过的时速(千米/时),在数据整理统计绘制频数直方图的过程中,不小心用墨汁将表中的部分数据污染(见下表),请根据下面不完整的频数分布表和频数直方图,解答问题:(注:50~60指时速大于等于50千米/时而小于60千米/时,其他类同)(1)请用你所学的数学统计知识,补全频数直方图;(2)如果此地汽车时速不低于80千米/时即为违章,求这组汽车的违章频数;(3)如果请你根据调查数据绘制扇形统计图,那么时速在70~80范围内的车辆数所对应的扇形圆心角的度数是________.探究点2:制作频数直方图课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-17)典例精析例2.为了了解某地区新生儿体重状况,某医院随机调取了该地区60名新生儿出生体重,结果(单位:克)如下:385039003300350033153800255038004150250027003850380035002900285033003650400036002800215037003465368029003050385036103800328031003000280035004050330034503100340041603300275032502350352038502850345038003500310019003200340034003400312036002900将数据适当分组,并绘制相应的频数直方图,从图中反映出该地区新生儿体重状况怎样?针对训练为了解某校九年级男生的身高情况,该校从九年级随机找来50名男生进行了身高测量,根据测量结果(均取整数,单位:cm)列出了下表.根据表中提供的信息回答下列问题:(1)数据在161~165范围内的频数是_____;(2)频数最大的一组数据的范围是________;(3)估计该校九年级男生身高在176cm(包括176cm)以上的约占____%.二、课堂小结直方图制作频数直方图从频数直方图获取信息教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片18-22)4.课堂小结1.在频数分布表中,各小组的频数之和( )A.小于数据总数B.等于数据总数C.大于数据总数D.不能确定 2.如图是某班45名同学爱心捐款额的频数直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )A.5~10元B.10~15元C.15~20元D.20~25元3.一个样本有100个数据,最大值为7.4,最小值为4.0,如果取组距为0.3,那么这组数据可分成( )A.11组 B .12组 C.13组 D .以上答案均不对4.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出频数分布表和频数直方图(不完整)如下:请结合图表完成下列各题: (1)求表中a 的值;(2)请把频数直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?5.为了解某中学九年级300名男学生的身体发育情况,从中对20名男学生的身高进行了测量,结果(单位: cm)如下: 175 161 171 176 167 181 161 173 171 177 179 172 165 157 173 173 166 177 169 181 下表是根据上述数据填写的表格的一部分.(1)请填写表中未完成的部分;(2)该校九年级男学生身高在171.5 cm ~176.5 cm 范围内的人数为多少?当堂检测教学备注 配套PPT 讲授 5.当堂检测 (见幻灯片23-26)第十章数据的收集、整理与描述四、要点探究探究点:从数据谈节水问题1:看右边的这幅图片,你感受到了什么?问题2:你了解地球上的水资源的现状吗?问题3:我国为什么缺水呢?问题4:从下列两幅图,你可以获取哪些信息?地球上海水资源与淡水资源分布情况 淡水资源分布情况海水96.53%淡水 2.53%冰川77.2%人类可用水0.4%地下水22.4%问题5:如图是我国的农业和工业耗水情况的统计图,从图中你可以获取哪些信息?问题6:用何种统计图可以表示全国生活用水变化趋势?课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点新知讲授(见幻灯片4-22)问题7:根据国外的经验,一个国家的用水量超过其水资源总量的20%,就有可能发生“水危机”,依据这个标准,我国2000年是否曾出现过“水危机”?典例精析例.观察下列家庭人均月用水量频数分布直方图,回答问题:(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全部家庭的百分之几?(2)家庭人均月用水量最多和最少的小组各有多少家庭?各占全部家庭的百分之几?(3)家庭人均日用水量的平均数是多少(每月按30天计)?按生活基本日均用水量(BWR)50升的用水标准,这个平均数是否超过用水标准?(4)如果每人每天节约用水10升,按12亿人口计算,一天可以节约多少升水?按BWR标准计算,这些水可为1个人提供多少年的生活用水?教学备注配套PPT讲授2.探究点新知讲授(见幻灯片4-22)。
人教版数学七年级下册教案 第十章 数据的收集、整理与描述
人教版七年级下册数学教案第十章数据的收集、整理与描述10.1 统计调查第1课时全面调查1.了解收集数据的目的,掌握简单的收集与整理数据的方法;2.掌握全面调查的概念;(重点)3.能用统计图描述数据.(难点)一、情境导入小丽是班级的组织委员,为了响应学校提出的“全民健身、阳光体育”号召,她假期里准备组织全班同学观看一场球类比赛,为了吸引更多的同学参加,她应该组织观看哪种球类的比赛呢?为了解决上述问题,接下来让我们一起去看看吧!二、合作探究探究点一:全面调查下列调查中,适宜采用全面调查方式的是( )A.了解一批圆珠笔的寿命 B.了解全国九年级学生身高的状况C.调查人们保护海洋的意识 D.检查一枚用于发射卫星的运载火箭的各零部件解析:A,B,C中所有调查的对象数量庞大,且全面调查的意义不太大,不适合全面调查,D中检查运载火箭的各零部件,对精准度的要求很高,所以必须采用全面调查的方式.故选D.方法总结:一般来说,对于具有破坏性的调查,无法进行全面调查,全面调查的意义或价值不大,对于精准度要求高的、事关重大的调查往往选用全面调查.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:用统计图描述数据【类型一】合理选择统计图描述数据要反映某市一周大气中PM2.5的变化情况,宜采用( ) A.条形统计图 B.折线统计图 C.扇形统计图 D.以上都行解析:因为PM2.5的含量变化没有规律,只能测出不同的变化情况,应选折线统计图.故选B.方法总结:要结合三种统计图的缺点进行选择,条形统计图不能反映出各部分占总体的百分比;折线统计图除了不能反映出各部分占总体的百分比外,还不能反映每一部分的具体数量;扇形统计图也不能反映各部分的具体数量.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型二】根据统计图获取需要的信息某学校在七年级随机抽取若干名学生进行“创建文明城市”知识答题,成绩分为1分,2分,3分,4分共4个等级,将调查结果绘制成如图所示的条形统计图和扇形统计图.根据图中信息,这些学生中得2分的有( )A.8人 B.10人 C.6人 D.9人解析:先求出抽取的总人数,再求出得3分的人数,即可求出得2分的人数.抽取的总人数为12÷30%=40(人),得3分的人数为40×42.5%=17(人),得2分的人数为40-3-17-12=8(人).故选A.方法总结:本题主要考查了条形统计图与扇形统计图,解题的关键是能从条形统计图与扇形统计图中获取需要的信息.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型三】制作统计图下表是某学校学生上学时使用的交通工具调查统计表.交通工具步行骑自行车乘公交车其他人数(人)50010016040你能根据上面的数据,尝试绘制扇形统计图吗?解析:根据画扇形统计图的步骤先确定使用不同交通方式的同学的人数,再求使用不同交通方式的同学占全体的百分比,并求出要画的扇形对应的圆心角,根据圆心角画出扇形统计图并写出名称即可.解:总人数是500+100+160+40=800(人).各部分占总体百分比分别如下:步行:500÷800=62.5%,骑自行车:100÷800=12.5%,乘公交车:160÷800=20%,其他:40÷800=5%.所对应扇形圆心角的度数分别为360°×62.5%=225°,360°×12.5%=45°,360°×20%=72°,360°×5%=18°.画出扇形统计图如下:方法总结:本题考查了制作扇形统计图的能力,扇形统计图直接反映部分占总体的百分比大小.三、板书设计1.全面调查:考察全体对象的调查.2.用统计图描述数据教学过程中,应鼓励学生积极参与教学活动,在活动中,体会数学的实用性,从而产生对数学的好奇心和求知欲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、自主学习 探究新知 【问题】某校有 2 000 名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五 类电视节目的喜爱情况,怎样进行调查? 抽取一部分对象进行调查的方法叫_____________。 总体:_________________________。 个体:__________________________。 样本:___________________________。 样本容量:__________________________。 上面问题中 是总体, 是个体, 是一个样本,样本容量是 。 【注意】抽样调查还适用一些具有破坏性的调查,如关于灯泡寿命、火柴质量等。 讨论 1:抽取多少名学生进行调查比较合适?被调查的学生又如何抽取呢? 讨论 2:从教材第 154 页表 10-2 中可以看出什么信息? 讨论 3:你可以用条形图和扇形图来描述表格中的数据吗? 抽样的注意事项 ①抽样调查要具有广泛性和代表性,即样本容量要恰当。如果样本容量过大,那么达不 到省时省力的目的;样本容量过少,那么不能很好地反映总体的情况。 ②抽取的样本要有随机性。为了使样本能较好地反映总体的情况,除了有合适的样本容 量外,抽取时还要尽量使每一个个体都有相等的机会被抽到。
新闻 体育 动画 娱乐 节目类别
38 30 娱乐 38%
8% 24% 30%
新闻
体育
动画
二、自主应用 巩固新知 1、以下调查中适合做全面调查的是( ) A.值日老师调查各班学生的出勤情况 B.调查长江水的污染情况 C.调查某种钢笔的使用情况 D.中央电视台调查某节目的收视率 2、学校为了考察我校七年级同学的视力情况,从七年级的 10 个班共 540 名学生中,每班 抽取了 5 名进行分析,在这个问题中,总体是 __ __________, 个 体 是 _______________,样本是 ________________________ _______,样本的容量是 . 3、为了了解某厂 1000 台冰箱的质量,把这 1000 台冰箱编上序号,然后用抽签的方法抽取 10 台.这种抽样方法是____________,这种抽样方法_____代表性(填“具有”或“不具有”). 4、在下列调查中,①了解一批灯泡的使用寿命;②了解某池塘鱼的产量;③调查某一地 区合资企业的数量; ④调查全国中学生的环保意识;⑤审查某篇文章中的错别字数,其中适合 全面调查的有 ,适合抽样调查的有 . 5、要调查下面几个问题,你觉得应该做全面调查还是抽样调查? (1)了解全班同学每周体育锻炼的时间. 答: ______ (2)调查市场上某种食品的色素含量是否符合国家标准. 答: ____ (3)鞋厂检测生产的鞋底能承受的弯折次数. 答: ____ (4)了解中央电视台春节联欢晚会的收视率. 答: _____ (5)了解九年级某班的每名学生星期六晚上的睡眠时间. 答: ____ (6)了解夏季冷饮市场上一批冰淇淋的质量情况. 答: ____ 6、指出下列调查中的总体、个体、样本和样本容量. (1)从一批电视机中抽取 20 台,调查电视机的使用寿命. (2)从学校七年级中抽取 30 名学生,调查学校七年级学生每周用于做数学作业的时间.
总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽 样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高。 【归纳】上面抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的 抽样方法叫_________________________. 【思考】 “要了解一罐八宝粥里各种成分的比例,你会怎么做?”这个问题了吗? 样本的处理 和全面调查一样,对收集的数据要进行整理。表 10-2 是某同学抽取样本容量为 100 的调 查数据统计表。 从上表可以看出,样本中喜爱娱乐节目的学生最多,是 ,据此可以估计出,这个 学校的学生中,喜欢娱乐节目的人最多,约为 。类似地,由上表可以估计这个学校喜 爱其他节目的学生人数的百分比。 表格中的数据也可以用条形统计图和扇形统计图来表示描述。 人数 40 30 20 10 0 24 8
第十章数据的收集、整理与描述
科目: 数学 课题:统计调查(1) 班级: 学生的概念;2、会设计简单的调查问卷,收集数据;3、掌握划记法,会 学习目标 学习重点 学习难点 用表格整理数据;4、会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般 过程,体验统计与生活的关系. 全面调查的过程(数据的收集、整理、描述). 绘制扇形统计图和条形统计图. 学 习 过 程 一、自主学习 探究新知 【问题】如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情 况,你会怎样做? 1.收集数据 如何收集数据, 让全班同学在下面的问卷调查中获取数据。 (问卷设计的内容一般包括调 查中所提问题的设计,问题答案的设计,以及提问顺序的设计等) 调查问卷 在下面五类电视节目中,你最喜欢的是( A.新闻 B.体育 C.动画 D.娱乐 ) (只选一个) E.戏曲 备 注
四、课堂作业 P158 1 2 7 12 五、教学反思:
第十章
科目: 数学 课题:统计调查(2) 学习目标 学习重点 学习难点 班级:
数据的收集、整理与描述
学生: 课型:新课 授课时间:5 月 29 日 课时数:1
1、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计 概念;2、初步感受抽样调查的必要性,初步体会用样本估计总体的思想。 抽样调查、样本、总体等概念以及用样本估计总体的思想. 总体概念的理解和随机抽样的合理性. 备 学 习 过 程 注
分,再在各部分中标出相应的百分比和名称。 (3)完成下列图形
制作扇形统计图关键是确定各部分所占圆心角的大 的确定方法就是用该部分数据所占的百分比×360
o
小,它
条形统计图与扇形统计图的优缺点各是什么? (条形统计图能够显示每组中的具体数据,易于比 之间的差别;扇形统计图反映了各部分在总体中所占的 的大小,易于显示每组数据相对于总数的大小,而不能判 组数的绝对值) 4.全面调查: ______________________叫做全面调查. 二、自主应用 巩固新知 【例】政府为了更好地加强城市建设,就社会热点问题广泛 征求市民意见,调查方式是 发调查表,要求每位被调查人员只写一个你最关心的有关城市建设的问题 ,经统计整理,发现 对环境保护问题提出的最多,有 700 人,同时作 应的条形统计图,如图所示,请回答下列问题. (1)共收回调查表 张; (2)提道路交通问题的有_____人; (3) 请你把这个条形统计图用扇形统计图 出来.
填完后交数学科代表,由科代表唱票,全班同学在表格中进行统计。 2.整理数据(说明:用划记法记录数据时, “正”字的每一划代表一个数据) 科目 A.新闻 B.体育 C.动画 D.娱乐 E.戏曲 合计 3.描述数据 描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息。 (1) 条形统计图:就是用坐标的形式来描述. (2) 扇形统计图: 用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部 划记 人数 百分比
百分比
35% 30% 25% 20% 15% 10% 5%
较数据 百分比 断出每
出 相
表 示
其他 房屋 环境 绿化 道路 交通 建设 保护 类型
【随堂练习】P153 三、自主总结 拓展新知
1 2 3
1、本节课我们经历了全面调查的一般过程,知道了利用问卷调查来收集数据,利用表格来整 理数据,利用条形统计图和扇形统计图来描述数据。 2、学会了设计调查问卷和扇形统计图的画法。