2019中考数学专题总复习(一)
2019年中考数学:专题(1)-规律探索问题(含答案)
数学精品复习资料第二篇专题能力突破专题一规律探索问题A组全国中考题组一、选择题1.(2015·湖北黄冈中学自主招生,9,3分)两列数如下:7,10,13,16,19,22,25,28,31…7,11,15,19,23,27,31,35,39…第1个相同的数是7,第10个相同的数是() A.115 B.127 C.139 D.151解析第一组数7,10,13,16,19,22,25,28,31,…第m个数为:3m+4;第二组数7,11,15,19,23,27,31,35,39,…第n个数为:4n+3.∵3与4的最小公倍数为12,∴这两组数中相同的数组成的数列中两个相邻的数的差值为12.∵第一个相同的数为7,∴相同的数组成的数列的通式为12n-5.第10个相同的数是:12×10-5=120-5=115.答案 A2.(2015·重庆(B),8,3分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图1中有2个黑色正方形,图2中有5个黑色正方形,图3中有8个黑色正方形,图4中有11个黑色正方形,…,依此规律,图11中黑色正方形的个数是()A.32 B.29C.28 D.26解析观察图形发现:图1中有2个黑色正方形,图2中有2+3×(2-1)=5个黑色正方形,图3中有2+3×(3-1)=8个黑色正方形,图4中有2+3×(4-1)=11个黑色正方形,…,图n中有2+3×(n-1)=3n-1个黑色的正方形,当n=11时,2+3×(11-1)=32.答案 A3.(2015·重庆(A),8,3分)下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为()A.21 B.24C.27 D.30解析观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…,第n个图形有3+3n=3(n+1)个圆圈.当n=7时,3×(7+1)=24,故选B.答案 B4.(2015·浙江宁波,10,3分)一列数b0,b1,b2,…,具有下面的规律,b2n+1=b n,b2n+2=b n+b n+1,若b0=1,则b2 015的值是()A.1 B.6 C.9 D.19解析∵b2n+1=b n,b2n+2=b n+b n+1,∴b2 015=b1 007=b503=b251=b125=b62=b30+b31=b14+b15+b15=b6+b7+2b7=3b3+b2+b3=4b3+b0+b1=5b1+b0=6b0.∵b0=1,∴b2 015的值是6.答案 B5.(2015·山东德州,5,4分)一组数1,1,2,x,5,y,…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为() A.8 B.9 C.13 D.15解析∵每个数都等于它前面的两个数之和,∴x=1+2=3,∴y=x+5=3+5=8,即这组数中y表示的数为8.故选A.答案 A二、填空题6.(2015·广东深圳,9,4分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有________个太阳.解析第一行小太阳的个数为1,2,3,4,…,第5个图形有5个太阳,第二行小太阳的个数是1,2,4,8,…,2n-1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.答案217.(2015·浙江湖州,16,4分)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A 2C 2C 3D 3,(如图所示),以此类推…,若A 1C 1=2,过点A ,D 2,D 3,…D 10都在同一直线上,则正方形A 9C 9C 10D 10的边长是________.解析 设A 1C 1交AD 10于点E ,根据正方形的排放规律,可知,△AD 1E ∽△D 2A 1E ,∴12=1-A 1E A 1E ,解得A 1E =23;△D 2A 1E ∽△D 3A 2D 2,∴A 2D 3-223=A 2D 32,解得A 2D 3=3,△A 2D 2D 3∽△A 3D 3D 4,∴A 3D 4-31=A 3D 43,解得A 3D 4=92; △A 3D 3D 4∽△A 4D 4D 5,∴A 4D 5-9292-3=A 4D 592,解得A 4D 5=3322;∴A n D n +1=3n -12n -2,A 9D 10=3827(或6 561128).答案 3827(或6 561128) 三、解答题8.(2015·四川自贡,22,12分)观察下表:我们把某格中各字母的和所得多项式称为“特征多项式”.例如,第1格的“特征多项式”为4a +b .回答下列问题:(1)第3格的“特征多项式”为________,第4格的“特征多项式”为________,第n 格的“特征多项式”为________;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,求a ,b 的值. 解 (1)观察图形发现:第1格的“特征多项式”为 4a +b , 第2格的“特征多项式”为 8a +4b , 第3格的“特征多项式”为 12a +9b , 第4格的“特征多项式”为16a +16b , …第n 格的“特征多项式”为4na +n 2b ; 故填12a +9b 16a +16b 4na +n 2b .(2)∵第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,∴⎩⎨⎧4a +b =-10,8a +4b =-16,解得:a =-3;b =2,∴a ,b 的值分别为-3和2.B 组 全国中考题组一、选择题1.(2012·浙江丽水,10,3分)小明用棋子摆放图形来研究数的规律,图1中棋子围成三角形,其颗数3,6,9,12,…称为三角形数,类似地,图2中的4,8,12,16,…称为正方形数,下列数中既是三角形数又是正方形数的是( )图1图2A.2 010 B.2 012 C.2 014 D.2 016解析∵图1中各三角形的棋子数分别是3,6,9,12,…,显然都是3的倍数,图2中各正方形棋子数分别是4,8,12,16,…,显然都是4的倍数,∴既是三角形数又是正方形数的棋子数必能被12整除,而2 010,2 012,2 014,2 016四个数中,只有2 016能被12整除,故答案选D.答案 D2.(2013·山东日照,11,4分)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是()A.M=mn B.M=n(m+1)C.M=mn+1 D.M=m(n+1)解析方法一:验证法:A中等式不满足第一个图形,故排除A;B中等式不满足第一个图形,故排除B;C中等式不满足第二个图形,故排除C;故选D.方法二:观察三个图形中数字的变化,可知1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,故M与m,n的关系是M=m(n+1),故选D.答案 D3.(2014·重庆,10,4分)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()A.22 B.24 C.26 D.28解析 已知三个图形中三角形的数目为:2,8,14,求差为:8-2=6,14-8=6,差相等,所以各个数据可以看作:2=6-4,8=6×2-4,14=6×3-4,则第五个图形中三角形的个数是:6×5-4=26,故选C. 答案 C4.(2012·浙江绍兴,10,4分)如图,直角三角形纸片ABC 中,AB =3,AC =4,D 为斜边BC 中点.第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;……;设P n -1D n -2的中点为D n -1,第n 次将纸片折叠,使点A 与点D n -1重合,折痕与AD 交于点P n (n >2).则AP 6的长为( )A.5×35212B.365×29C.5×36214D.375×211解析 在Rt △ABC 中,AC =4,AB =3,所以BC =5.又D 是BC 的中点,所以AD =52.因为点A ,D 是一组对称点,所以AP 1=52×12.因为D 1是DP 1的中点,所以AD 1=52×12×32,∴AP 2=52×12×32×12,同理AP 3=52×12×(32×12)2,…,AP n =52×12×(32×12)n -1,所以AP 6=52×12×(32×12)6-1=52×12×(32×12)5=5×35212,故应选A. 答案 A5.(2014·山东威海,12,3分)如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,…的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=…=30°.若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4,…则依此规律,点A 2 014的纵坐标为( ) A .0 B .-3×(233)2 014C .(23)2 014D .3×(233)2 013解析 OA 2=OC 2sin 60°=OA 1sin 60°=332=3×233.同理可求:OA 3=3×(233)2;OA 4=3×(233)3......以此类推OA n =3×(233)n -1.又因为2 014÷4=503…2,所以点A 2 014与点A 2在同一半轴上,故点A 2 014的纵坐标为3×(233)2 013,故选D. 答案 D 二、填空题6.★(2013·江西,11,3分)观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为________(用含n 的代数式表示).解析 第一个图形共有4个点,第二个图形共有9个点,第三个图形共有16个点,4,9,16都是完全平方数,故可看作4=(1+1)2,9=(2+1)2,16=(3+1)2,则第n 个图形中所有点的个数为(n +1)2. 答案 (n +1)27.(2013·浙江湖州,15,4分)将连续的正整数按以下规律排列,则位于第七行、第七列的数x 是________. 第一列 第二列 第三列 第四列 第五列 第六列 第七列 … 第一行1 3 6 10 15 21 28第二行2 5 9 14 20 27第三行4 8 13 19 26 …第四行7 12 18 25 …第五行11 17 24 …第六行16 23 …第七行22 (x)……解析第一行的第一列与第二列相差2,第二列与第三列相差3,第三列与第四列相差4,…第六列与第七列相差7,第二行的第一列与第二列相差3,第二列与第三列相差4,第三列与第四列相差5,…第五列与第六列相差7,第三行的第一列与第二列相差4,第二列与第三列相差5,第三列与第四列相差6,第四列与第五列相差7,…第七行的第一列与第二列相差8,是30,第二列与第三列相差9,是39,第三列与第四列相差10,是49,第四列与第五列相差11,是60,第五列与第六列相差12,是72,第六列与第七列相差13,是85;故答案为85.答案858.(2014·贵州毕节,18,5分)观察下列一组数:14,39,516,725,936…,它们是按一定规律排列的,那么这一组数据的第n个数是________.解析分子依次为1,3,5,7,9,…,可表示为2n-1;分母依次为22,32,42,52,62,…,可表示为(n+1)2,所以第n个数是2n-1(n+1)2.答案2n-1(n+1)29.(2012·浙江湖州,16,4分)如图,将正△ABC 分割成m 个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n 个边长为1的小正三角形,若m n =4725,则正△ABC 的边长是________.解析 设正△ABC 的边长为x ,则高为32x ,S △ABC =12x ·32x =34x 2.∵所分成的都是正三角形,∴结合图形可得黑色菱形的较长的对角线为32x -3,较短的对角线为(32x -3)33=12x -1,∴黑色菱形的面积=12⎝ ⎛⎭⎪⎫32x -3⎝ ⎛⎭⎪⎫12x -1=38(x -2)2,∴m n =34x 2-38(x -2)238(x -2)2=4725,整理得,11x 2-144x +144=0,解得x 1=1211(不符合题意,舍去),x 2=12.∴△ABC 的边长是12. 答案 1210.(2014·江苏扬州,18,3分)设a 1,a 2,…,a 2 014是从1,0,-1这三个数中取值的一列数,若a 1+a 2+…+a 2 014=69,(a 1+1)2+(a 2+1)2+…+(a 2 014+1)2=4 001,则a 1,a 2,…,a 2 014中为0的个数是________.解析 设这些数中0的个数为a ,则由a 1+a 2+a 3+…+a 2 014=69可知:1的个数比-1的个数要多69,即1的个数为2 014-a +692,而-1的个数为2 014-a -692;再考虑到另一个等式(a 1+1)2+(a 2+1)2+…+(a 2 014+1)2=4 001,得到每个数+1后,其中平方后为4的数有2 014-a +692个,1有a 个,其余都是0,可知4·2 014-a +692+a =4 001,解得a =165.答案 165三、解答题11.(2013·浙江绍兴,19,8分)如图,矩形ABCD中,AB=6.第1次平移矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1;第2次平移矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2;…;第n次平移矩形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位,得到矩形A n B n C n D n(n≥2).(1)求AB1和AB2的长;(2)若AB n的长为56,求n.解(1)由题意可得,B点向右平移5个单位到达B1点,故AB1=6+5=11;B1点再向右平移5个单位到达B2点,所以AB2=11+5=16;(2)由(1)知AB1=6+5,AB2=6+2×5,依此类推,AB3=6+3×5,…,AB n=6+5n,∴AB n=6+5n=56,n=10.。
中考数学专题01 实数-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)
专题01 实数一.选择题目1.(2021·湖南邵阳市·中考真题)3-的相反数是()A.3-B.0C.3D.π【答案】C【分析】根据相反数的概念求解即可.【详解】-(-3)=3,即-3的相反数是3,故选:C.【点睛】本题主要考查相反数.只有符号不同的两个数叫做互为相反数,在任意一个数的前面填上“-”号,新的数就表示原数的相反数.2.(2021·山东泰安市·中考真题)下列各数:4-, 2.8-,0,4-,其中比3-小的数是()A.4-B.4-C.0D. 2.8-【答案】A【分析】根据正数比负数大,正数比0大,负数比0小,两个负数中,绝对值大的反而小解答即可.【详解】解:∵∵﹣4∵=4,4>3>2.8,∵﹣4<﹣3<﹣2.8<0<∵﹣4∵,∵比﹣3小的数为﹣4,故选:A.【点睛】本题考查有理数大小比较,熟知有理数的比较大小的法则是解答的关键.3.(2021·浙江中考真题)实数2-的绝对值是()A.2-B.2C.12D.12-【答案】B【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:实数-2的绝对值是2,故选:B.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.4.(2021·四川乐山市·中考真题)如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.5.(2021·四川凉山彝族自治州·中考真题)2021-=()A.2021B.-2021C.12021D.12021-【答案】A【分析】根据绝对值解答即可.【详解】解:2021-的绝对值是2021,故选:A.【点睛】此题主要考查了绝对值,利用绝对值解答是解题关键.6(2021·湖南怀化市·中考真题)数轴上表示数5的点和原点的距离是()A.15B.5C.5-D.15-【答案】B【分析】根据数轴上点的表示及几何意义可直接进行排除选项.【详解】解:数轴上表示数5的点和原点的距离是5;故选B.【点睛】本题主要考查数轴上点的表示及几何意义,熟练掌握数轴上点的表示及几何意义是解题的关键.7.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3B.﹣1C.0D.2【答案】A【分析】画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.【详解】这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x元,∵先打九五折,再打九五折,∵调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∵调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∵调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∵调价后的价格为1.25x×0.75=0.9375x元,∵0.90x <0.9025x <0.91x <0.9375x 故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( ) A .2-B .2C .1D .1- 【答案】D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∵m 和2m +互为相反数,∵m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键. 10.(2021·湖南常德市·中考真题)阅读理解:如果一个正整数m 能表示为两个正整数a ,b 的平方和,即22m a b =+,那么称m 为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是( ) A .②④B .①②④C .①②D .①④【答案】C【分析】结合题意,根据有理数乘方、有理数加法的性质计算,即可得到答案.【详解】∵716=+或25+或34+ ∵7不是广义勾股数,即①正确;∵22134923=+=+ ∵13是广义勾股数,即②正确;∵22512=+,221013=+,15不是广义勾股数∵③错误;∵22512=+,221323=+,65513=⨯,且65不是广义勾股数∵④错误;故选:C .【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数乘方、有理数加法的性质,从而完成求解.11.(2021·湖北黄冈市·中考真题)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A .74710⨯B .74.710⨯C .84.710⨯D .90.4710⨯ 【答案】C【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则8470000000 4.710=⨯,故选:C .【点睛】本题考查了科学记数法,熟记定义是解题关键.12.(2021·天津中考真题)计算()53-⨯的结果等于( )A .2-B .2C .15-D .15 【答案】C【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:()5315-⨯=-,故选:C .【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.13.(2021·新疆中考真题)下列实数是无理数的是( )A .2-B .1CD .2 【答案】C【分析】无理数是指无限不循环小数,据此判断即可.为无理数,2-,1,2均为有理数,故选:C .【点睛】本题考查无理数的辨别,理解无理数的定义以及常见形式是解题关键.14.(2021·湖南长沙市·中考真题)下列四个实数中,最大的数是( )A .3-B .1-C .πD .4 【答案】D【分析】根据实数的大小比较法则即可得.【详解】解: 3.14π≈,314π∴-<-<<,即这四个实数中,最大的数是4,故选:D .【点睛】本题考查了实数的大小比较法则,熟练掌握实数的大小比较法则是解题关键.15.(2021·湖南岳阳市·-1,0,2中,为负数的是( )A B .-1 C .0 D .2【答案】B【分析】利用负数的定义即可判断.【详解】解:A 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故选:B【点睛】本题考查了实数的分类的知识点,熟知负数的定义是解题的关键.16.(2021·浙江台州市· )A .0个B .1个C .2个D .3个 【答案】B【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.17.(2021·浙江金华市·中考真题)实数12-,2,3-中,为负整数的是( )A .12-B .C .2D .3- 【答案】D【分析】按照负整数的概念即可选取答案.【详解】解:12-是负数不是整数;2是正数;3-是负数且是整数,故选D . 【点睛】本题考查了实数的分类,比较简单.18.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.19.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( )A .2,1--B .1-,0C .0,1D .1,2【答案】C1的范围即可得到答案.【详解】解: 12,<<∴ 011,<<0,1,a b ∴== 故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.20.(2020·四川攀枝花市·中考真题)下列说法中正确的是( ).A .0.09的平方根是0.3B 4=±C .0的立方根是0D .1的立方根是±1【答案】C【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A 、0.09的平方根是±0.3,故选项错误;B 4=,故选项错误;C 、0的立方根是0,故选项正确;D 、1的立方根是1,故选项错误;故选C.【点睛】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键.21.(2020·四川达州市·中考真题)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .294【答案】D 【分析】类比十进制“满十进一”,可以表示满5进1的数从左到右依次为:2×5×5×5,1×5×5,3×5,4,然后把它们相加即可.【详解】依题意,还在自出生后的天数是:2×5×5×5+1×5×5+3×5+4=250+25+15+4=294,故选:D .【点睛】本题考查了实数运算的实际应用,解答的关键是运用类比的方法找出满5进1的规律列式计算. 22.(2020·山东菏泽市·中考真题)下列各数中,绝对值最小的数是( )A .5-B .12C .1- D【答案】B【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【详解】解:55-=,1122=,11-==,∵1512>>>,∵绝对值最小的数是12;故选:B . 【点睛】本题考查的是实数的大小比较,熟知绝对值的性质是解答此题的关键.23.(2020·江苏宿迁市·中考真题)在∵ABC 中,AB=1,下列选项中,可以作为AC 长度的是( ) A .2B .4C .5D .6【答案】A【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC 的长度可以取得的数值的取值范围,从而可以解答本题.【详解】∵在∵ABC 中,AB=1,﹣1<AC ,1<2,4,5,6,∵AC 的长度可以是2,故选项A 正确,选项B 、C 、D 不正确;故选:A .【点睛】本题考查了三角形三边关系以及无理数的估算,解答本题的关键是明确题意,利用三角形三边关系解答.24.(2020·四川攀枝花市·中考真题)实数a 、b 在数轴上的位置如图所示,化简的结果是( ).A .2-B .0C .2a -D .2b 【答案】A【分析】根据实数a 和b 在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案.【详解】解:由数轴可知-2<a <-1,1<b <2,∵a+1<0,b -1>0,a -b <0,+=11a b a b ++---=()()()11a b a b -++-+-=-2故选A.【点睛】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.25.(2020·湖南株洲市·中考真题)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∵从轻重的角度看,最接近标准的是选项D 中的元件,故选D .【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.26.(2020·北京中考真题)实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-3 【答案】B【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2 观察四个选项,只有选项B 符合,故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.27.(2020·湖南长沙市·中考真题)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )A .②③B .①③C .①④D .②④【答案】A【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母π表示,π是一个无限不循环小数;据此进行分析解答即可.【详解】解:①圆周率是一个有理数,错误;②π是一个无限不循环小数,因此圆周率是一个无理数,说法正确;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A .【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值.28.(2020·黑龙江大庆市·中考真题)若2|2|(3)0x y ++-=,则x y -的值为( )A .-5B .5C .1D .-1【答案】A 【分析】根据绝对值和平方的非负性可求出x ,y 的值,代入计算即可;【详解】∵2|2|(3)0x y ++-=,∵20x +=,30y -=,∵2x =-,3y =,∵235-=--=-x y .故答案选A .【点睛】本题主要考查了绝对值和平方的非负性,准确计算是解题的关键.29.(2020·山东烟台市·中考真题)实数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定 【答案】A【分析】根据有理数大小比较方法,越靠近原点其绝对值越小,进而分析得出答案.【详解】解:观察有理数a ,b ,c 在数轴上的对应点的位置可知,这三个数中,实数a 离原点最远,所以绝对值最大的是:a .故选:A .【点睛】此题主要考查了绝对值的意义,以及有理数大小的比较,正确掌握绝对值的意义是解题关键. 30.(2020·四川乐山市·中考真题)数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B .则点B 表示的数是( )A .4B .4-或10C .10-D .4或10-【答案】D【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可.【详解】解:点A 表示的数是−3,左移7个单位,得−3−7=−10,点A 表示的数是−3,右移7个单位,得−3+7=4,故选:D .【点睛】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:数轴上的点右移加,左移减.31.(2020·湖南郴州市·中考真题)如图表示互为相反数的两个点是( )A .点A 与点BB .点A 与点DC .点C 与点BD .点C 与点D 【答案】B【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A 与点D 表示互为相反数的两个点.故选:B .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.(2019·台湾中考真题)数线上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且5d d c -=-,则关于D 点的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、C 之间 C .介于C 、O 之间D .介于O 、B 之间【答案】D【分析】根据O 、A 、B 、C 四点在数轴上的位置和绝对值的定义即可得到结论.【详解】解:0c <,5b =,5c <,5d d c -=-,BD CD ∴=,D ∴点介于O 、B 之间,故选:D .【点睛】本题考查实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.33.(2019·江苏徐州市·中考真题)如图,数轴上有O 、A 、B 三点,O 为O 原点,OA 、OB 分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是( )A .6510⨯B .710C .7510⨯D .810 【答案】D【分析】用各选项的数分别除以62.510⨯,根据商结合数轴上AO 、OB 间的距离进行判断即可. 【详解】A. (6510⨯)÷(62.510⨯)=2,观察数轴,可知A 选项不符合题意; B. 710÷(62.510⨯)=4,观察数轴,可知B 选项不符合题意; C. 7510⨯÷(62.510⨯)=20,观察数轴,可知C 选项不符合题意;D. 810÷(62.510⨯)=40,从数轴看比较接近,可知D 选项符合题意,故选D .【点睛】本题考查了数轴,用科学记数法表示的数的除法,正确进行运算,结合数轴恰当地进行估算是解题的关键.34.(2019·山东枣庄市·中考真题)点,,,O A B C 在数轴上的位置如图所示,O 为原点,1AC =,OA OB =.若点C 所表示的数为a ,则点B 所表示的数为( )A .()1a -+B .()1a --C .1a +D .1a -【答案】B【分析】根据题意和数轴可以用含 a 的式子表示出点 B 表示的数,本题得以解决. 【详解】O 为原点,1AC =,OA OB =,点C 所表示的数为a ,∴点A 表示的数为1a -,∴点B 表示的数为:()1a --,故选B .【点睛】本题考查数轴,解答本题的关键是明确题意,利用数形结合的思想解答.35.(2019·四川中考真题)实数m,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .1m <B .1m 1->C .0mn >D .10m +>【答案】B【分析】利用数轴表示数的方法得到m <0<n ,然后对各选项进行判断.【详解】利用数轴得m <0<1<n ,所以-m >0,1-m >1,mn <0,m+1<0.故选B. 【点睛】本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大. 二.填空题目1.(2021·重庆中考真题)计算:031_______.【答案】2.【分析】分别根据绝对值的性质、0指数幂的运算法则计算出各数,再进行计算即可. 【详解】解:031312,故答案是:2.【点睛】本题考查的是绝对值的性质、0指数幂,熟悉相关运算法则是解答此题的关键.2.(2021·四川自贡市·中考真题)某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.【答案】143549【分析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=151025 9⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654, 8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∵7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.3.(2021·云南中考真题)已知a ,b 2(2)0b -=则a b -=_______. 【答案】-3【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解. 【详解】解:根据题意得,a +1=0,b -2=0,解得a =-1,b =2, 所以,a -b =-1-2=-3.故答案为:-3.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.(2021·湖南怀化市·中考真题)比较大小:2__________12(填写“>”或“<”或“=”).【答案】>【分析】直接用122-,结果大于0,则2大;结果小于0,则12大.【详解】解:11=0222->,∵122,故答案为:>. 【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.5.(2021·山东临沂市·中考真题)比较大小:(选填“>”、“ =”、“ <” ). 【答案】<【分析】先把两数值化成带根号的形式,再根据实数的大小比较方法即可求解.【详解】解:∵=5=,而24<25,∵5.故答案为:<.【点睛】此题主要考查了实数的大小的比较,当一个带根号的无理数和一个有理数进行比较时,首选的方法就是把它们还原成带根号的形式,然后比较被开方数即可解决问题.6.(2021·四川自贡市·中考真题)请写出一个满足不等式7x >的整数解_________. 【答案】6(答案不唯一)1.4,再解不等式即可.【详解】解: 1.4≈,∵7x >,∵ 5.6x >.所以6是该不等式的其中一个整数解(答案不唯一,所有不小于6的整数都是该不等式的整数解); 故答案为:6(答案不唯一).【点睛】本题考查了解一元一次不等式、不等式的整数解、二次根式的值的估算等内容,要求学生在理解相关概念的前提下能灵活运用解决问题,本题答案不唯一,有一定的开放性. 7.(2021·湖南邵阳市·中考真题)16的算术平方根是___________. 【答案】4【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根 ∵2(4)16±= ∵16的平方根为4和-4 ∵16的算术平方根为48.(2020·______. 【答案】2(或3)【详解】∵1<2,34,∵2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.9.(2020·|1|0b +=,则2020()a b +=_________. 【答案】1【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案.【详解】|1|0b +=∵2a =,1b =-,∵2020()a b +=202011=,故答案为:1. 【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键.10.(2020·湖北荆州市·中考真题)若()112020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接) 【答案】b a c <<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.【详解】解:()020201,a π=-=112,2b -⎛⎫=-=- ⎪⎝⎭33,c =-=∴ b a c <<.故答案为:b a c <<.【点睛】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.11.(2020·内蒙古赤峰市·中考真题)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O 起跳,落点为A 1,点A 1表示的数为1;第二次从点A 1起跳,落点为OA 1的中点A 2;第三次从A 2点起跳,落点为0A 2的中点A 3;如此跳跃下去……最后落点为OA 2019的中点A 2020.则点A 2020表示的数为__________.【答案】201912【分析】先根据数轴的定义、线段中点的定义分别求出点1234,,,A A A A 表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点1A 表示的数为0112=;点2A 表示的数为11111222OA ==点3A 表示的数为22111242OA ==;点4A 表示的数为33111282OA == 归纳类推得:点n A 表示的数为112n -(n 为正整数);则点2020A 表示的数为2020120191122-=,故答案为:201912. 【点睛】本题考查了数轴的定义、线段中点的定义,根据点1234,,,A A A A 表示的数,正确归纳类推出一般规律是解题关键.12.(2019·山东德州市·中考真题)33x x -=-,则x 的取值范围是______. 【答案】3x ≤【分析】根据绝对值的意义,绝对值表示距离,所以30x -≥,即可求解; 【详解】根据绝对值的意义得,30x -≥,3x ∴≤; 故答案为3x ≤; 【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键. 三.解答题1.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】解:1129|12-+-(112-⨯31=2. 【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.(2021·新疆中考真题)计算:020211)|3|(1)+--. 【答案】0.【分析】第一项根据零指数幂计算,第二项根据绝对值的意义计算,第三项进行立方根运算,第四项进行有理数的乘方运算,最后进行加减运算即可. 【详解】解:原式=1+3-3+(-1)=0.【点睛】本题考查了实数的运算,包括零指数幂、绝对值的意义,求一个数的立方根,有理数的乘方运算.正确化简各数是解题的关键.3.(2021·湖南怀化市·中考真题)计算:021(3)()4sin 60(1)3π---+︒--【答案】11【分析】根据非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则计算即可.【详解】解:原式=191=11-+.【点睛】本题主要考查非零实数0次幂、二次根式、负整数次幂、特殊角三角函数值根据实数加减混合运算法则,正确掌握每个知识点是解决本题的关键.4.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒. 【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=114-+=11-+ 【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.5.(2021·湖南岳阳市·中考真题)计算:())02021124sin 30π-+-+︒-.【答案】2【分析】分别根据有理数的乘方、绝对值的代数意义、特殊锐角三角函数值和零指数幂的运算法则化简各项后,再进行加减运算即可得到答案.【详解】解:())2021124sin 30π-+-+︒-=112412-++⨯- =1221-++-=2. 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和特殊锐角三角函数值是解答此题的关键.6.(2021·云南中考真题)计算:201tan 452(3)1)2(6)23-︒-++-+⨯-. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法.【详解】解:201tan 452(3)1)2(6)23-︒-++-+⨯-=1191422++--=6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.7.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=. 【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.8.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.【答案】(1)输液10分钟时瓶中的药液余量为200毫升;(2)小华从输液开始到结束所需的时间为60分钟.【分析】(1)先求出每分钟输液多少毫升,进而即可求解;(2)先求出输液10分钟时调整后的药液流速,进而即可求解.【详解】(1)解:75÷15=5(毫升/分钟),250-5×10=200(毫升), 答:输液10分钟时瓶中的药液余量为200毫升;(2)(200-160)÷10=4(毫升/分钟),160÷4+20=60(分钟), 答:小华从输液开始到结束所需的时间为60分钟.【点睛】本题主要考查有理数运算的实际应用,明确时间,流速,输液量三者之间的数量关系,是解题的关键.9.(2020·青海中考真题)计算:101145( 3.14)3π-⎛⎫+︒+-- ⎪⎝⎭【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】101145( 3.14)3π-⎛⎫+︒+- ⎪⎝⎭3|11|13=+-+-3113=++-=【点睛】本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上。
2019年中考数学复习讲义:专题(一)有理数与数轴的数形结合
专题一 有理数与数轴的数形结合要点归纳1.像2,31,0.25,π,30%等这样大于零的数叫做________;像-20,-32,-0.25,-30%等这样在正数前面加上负“-”的数叫做________.2.用正、负数可以表示具有相反意义的量,若一个相反意义的量中一个“意义”规定用“+”表示,则另一个“意义”必定用“_______”表示.3.有理数按性质可分为_______、_______、______;整数和_______统称为有理数.4.我们把规定了_______、_______、______的直线叫数轴,这条直线上的任意数轴一个点表示一个数,原点左边的数都是______数,原点右边的数都是______数,在实际问题中,一个单位长度可表示一定的数量,如1米,1千米,400千克等.5.数轴上的点与有理数之间的关系:所有的______都可以用数轴上的点来表示,但是数轴上的点不都表示有理数.典例讲解经典再现一、正、负数的识别及应用例1 下列各数中,哪些是正数?哪些是负数?+0.007,-200,53,-45,0.666…,-9,20.5,0,-32 【思路点拨】由正、负数的定义进行判断.解:整数:+0.007,53,0.666…,20.5;负数:-200,-45,-9,-32. 【方法规律】正数前面可以加“+”号,也可以不加“+”号;负数前面的“-”号不可以省略.判断一个数是不是负数,要看它是不是在正数的前面加“-”号,而不是看它是不是带有“-”号,特别注意 ,“-a ”不一定是负数,如-(-5)数不是负数.例2 课桌的高度比标准高度高2cm 记作+2cm ,那么比标准高度低3cm 记作什么?现有5 张课桌,小明测量了它们的高度,记录如下:+1cm ,0cm ,-1cm ,+3cm ,-1.5cm .若规定课桌的高度与标准高度相差最多不能超过2cm ,问上述5张课桌有几张合格?【思路点拨】具有相反意义的量可以分别用“+”、“-”数来表示,与标准高相差2cm ,是指可以高2cm ,也可以低2cm .解:比标准高度低3cm 记作-3cm ,这5张课桌中,合格的有:比标准高度:+1cm 、0cm 、-1cm 、-1.5cm ,共4张.【方法规律】如果超过标准高度记为“+”,那么不是(或低于)标准高度记为“-”,在判断几张桌子合格的问题中,我们不管超过还是低于标准高度,不看数前面的“+”、“-”号,只看符号后面数是否小于或等于0.二、有理数的相关概念(1)整数:正整数、0、负整数的统称;(2)分数:正分数、负分数的统称;(3)有理数:整数和分数的统称;(4)有理数包括有限小数和无限循环小数.例3 下列说法中,正确的是( )A .正有理数和负有理数统称为有理数B .正整数和负整数统称为整数C .整数和分数统称为有理数D .非正整数就是指零、负整数和所有分数【思路点拨】A 选项中,有理数应包括正有理数、0和负有理数;B 选项中也漏掉了0;D 选项中,非正整数是指负整数和0.解:C三、有理数的分类例4 把下列各数填在相应的横线上.-25,3.14,48,-32,-0.40,0,+34,-3.5,1,41 (1)⎩⎨⎧________________________________分数:整数:有理数 (2)⎪⎩⎪⎨⎧____________________________________________负有理数:零:正有理数:有理数【思路点拨】此题考察有理数的两种分类方式,注意0是整数.解:(1)⎪⎩⎪⎨⎧-+---41,5.3,34,40.0,32,14.31,0,48,25:分数:整数有理数 (2)⎪⎪⎩⎪⎪⎨⎧----+5.3,40.0,32,25041,1,34,48,14.3负有理数:零:正有理数:有理数 【方法规律】对有理数进行分类时,必须按照同一标准,不能将两种分类方式混在一起,小数(有限小数、无限循环小数)都是分数.例5 下面四个结论中,正确的结论是( )A .两个不同的整数之间必有一个正分数B .两个不同的整数之间必有一个整数C .两个不同的整数之间必有一个有理数D .两个不同的整数之间必有一个负数【思路点拨】对于A ,如果是两个负整数,那么中间就没有正分数;对于B ,如果是两个连续的整数,中间就再没有整数;对于D ,如果两个整数是正整数,中间就没有负数;只有C ,不论是怎样的两个不同的整数,中间必有有理数,如2和3中间有25,-2,-3之间有-25. 解:选C【方法规律】如果一个说法(结论)不正确,可举反例说明.四、数轴上的点和数例6 指出下面数轴上A 、B 、C 、D 、O 各点分别表示什么数?【思路点拨】数的性质A 点、B 点在原点的左侧,表示的是负数;C 点、D 点在原点的右侧,表示的数是整数,0点在原点;其次,还要确定每个点到原点的距离.解:点A 表示-5,点B 表示-1,点C 表示2,点D 表示5,点O 表示0.【方法规律】本题一个单位长度表示2,而不是1,容易看错,确定数轴上的点表示的数,一定性质,二定距离.例7 数轴上表示到3的点的距离是5的点表示的数是__________.【思维点拨】数轴上与表示3的点相距5个单位长度的点有两个,一个表示3的点的右侧且相距5个单位长度,另一个表示3的点的左侧且相距5个单位长度.解:8或-2【方法规律】距离是一个长度,在数轴上表示与某个点的距离为a (a >0)的点时,用分类讨论思想时要考虑在这个点左侧且距此点a 个单位长度有一个点;在这个点右侧且距此点a 个单位长度也有一个点.五、画数轴画数轴时,一定要体现出数轴的三要素:原点、正方向、单位长度,画数轴的步骤可归纳为:一画、二定、三选、四统一、五标数,即画直线、定原点、选取正方向,统一单位长度,确定要表示的数的对应点的位置.例8 如图,数轴上有A 、B 、C 、D 、E 、F 六个点,每两个相邻的点的距离相等,那么下列说法中错误的是( )A .表示原点的数在C 、D 之间B .有三个点表示的数是负数C .这六个数中没有表示整数的点D .C 点与原点最接近【思维点拨】A 点到F 点的距离是436,且相邻的点之间的距离相等,所以每两个相邻点间距离为427÷5=2027,原点在C 、D 之间,213>413,因此原点靠近D 点,A 、B 、C 三点表示的数是负数,B 点表示的数是分数.解:D拓展研究一、正、负数应用在一些实际生产和生活的问题中,并没有出现常见的意义相反的量,而是把其中某一个量规定为“0”这个量作为正、负数的界限,解决问题时,要按题目的要求正确理解整数、负数所代表的实际的量的真正意义,把实际的量进行转化.例1 图中这个游戏叫做(井底之蛙),一个人或几个人玩,每人投一次骰子(可以是一粒或二粒),按点数井底之蛙开始往上爬,爬到哪一格,就按那一格的数字再往上升或往下降,只有升到井上或回到井底,才轮到第二个人.例如,投得3,往上爬三格,得“+1”,再升一格,又得“-4”,降四格回到井底,于是轮到第二个人投骰子.现在轮到你投骰子,请你简要分析一下,如果你投到哪些数,就可以把青蛙送到井上,不再坐井观天.【思路点拨】读懂题意,将每个数按题意上升或下降这些格,看是否送到井上,是否仍回井底. 解:投到8~12时,可以把青蛙送到井上;投到1~7时,青蛙回到井底.【方法规律】理解正、负数的意义是解题的关键.二、有理数分类中0的位置0既不是正数也不是负数,它是正数与负数的分界,是唯一的中性数.例2 下列说法正确的有( )①一个有理数不是正数就是分数; ②一个有理数不是正数就是负数;③一个整数不是正数就是负数; ④一个分数不是正数就是负数.A .1个B .2个C .3个D .4个【思路点拨】一个有理数可能是正数、负数或0,整数也包括零,其中①④是正确的. 解:B【方法规律】在有关有理数概念的考察中,0最容易被忽视,要防止“一个有理数非正即负”和“一个整数非正即负”的错误出现.三、利用正、负数探究数字的排列规律例3 观察下列依次排列的两列数,它们的排列有什么规律?你能说出这两列数的第48个数,第101个数,第2019个数分别是什么吗?(1)-1,21,-3,41,-5,61,-7,81,…; (2)21,0,-21,0,21,0,-21,0,…. 【思路点拨】(1)这列数从数的性质看正、负交替出现,再考虑分子、分母的变化规律;(2)这列数是0、21交替出现,再考虑性质符号的变化规律. 解:(1)这列数的排列规律是:对于第n 个数,n 为奇数时,此数是-n ,n 为偶数时,此数是n 1,因此,第48个数为481,第101个数为-101,第2019个数为-2019. (2)这列数的排列规律是:21,0,-21,0,…,从前往后奇数位上数是21或-21,偶数位上是0,位数除4余1的是21,位数除4余3的是-21,所以,第48个数是0,第101个数是21,第2019个数是-21. 【方法规律】从数的性质和除性质外的数的大小两方面寻找规律.四、有理数分类中小数的划分例4 下列各数中,哪些是有理数,哪些不是有理数?722,-3.0 ,-31,0.121121112…,0.676767…,π,-π,0.4. 【思路点拨】722,-31是分数,-3.0 ,0.676767…是循环小数,可以化为分数,0.4是有限小数,也可以化为分数,所以都是有理数.0.121121112…,π,-π都是无限不循环小数,不能化为分数,所以不是有理数.解:有理数:722,-3.0 ,-31,0.676767…,0.4; 不是有理数:0.121121112…,π,-π.【方法规律】小数有三类:有限小数,无限循环小数和无限不循环小数,其中有限小数与无限小数都可以化为分数,故都是有理数,无限不循环小数不是有理数,分数可化为有限小数或无限循环小数.五、数轴上的数形结合例5 如图,数轴上有A 、B 、C 三个点,请回答下列问题:(1)将B 点在数轴上移动3个单位长度后,所表示的数是什么?(2)怎样在数轴上移点C ,使移动后的C 点(不与B 点重合)与A 点的距离等于B 点与A 点的距离?此时C 点表示的数是什么?【思维点拨】(1)B 点在数轴的移动可向正方向,也可向负方向,有两个结果;(2)A 、B 两点间的距离是2,C 点向左移动,可在A 点左边,也可在A 点右边距离为2,但A 点右边距离为2的点与B 点重合,应排除.解:(1)-5或1(2)将C 点向左移动9个单位长度,此时C 点表示的数是-6.【方法规律】到数轴上某点的距离为a (a >0)的点有两个,在该点左、右两边各有一个点.六、数轴的实际应用利用数轴解决实际问题的关键是把实际问题转化为数学模型,确定好原点、正方向和单位长度,将实际问题在数轴上表示出来,再根据要求求解.例5 某人从A 地向东走10米到达B 地,然后向西走4米到达C 地,又向东走7米到达D 地,问此人现在在A 地的哪个方向?距A 地多远?【思路点拨】本题可借助数轴来解决,按照此人行走的方向和距离找出他三次行走后的位置.解:设A 地是原点,向东为正方向,以1米为一个单位长度,由图可知D 在A 地的正东方向,距A 地13米.【方法规律】本题运用数形结合思想解决问题,根据已知条件画出一条数轴,在数轴上讲三次运动过程表示出来,便能顺利解决问题.实战演练A 链接中考1.孔子出生于公元前551年,如果用-551表示,那么下列中国历史文化名人的出生年代表示为:①司马迁出生于公元前145年:__________;②李白出生于公元701年:_______.2.林艳在东西向的路上,先向东走30米,又向西走30米,她一共走了______米,她最后的位置是在_________.3.已知在数轴上有A、B两点,点A、B之间的距离为1,点A与原点的距离为3,那么点B表示的数是__________.4.数轴上的点A、B位置如图所示,则线段AB的长度为_______.5.点A为数轴上距原点距离4个单位长度的点,A点表示的数是_______.6.下列各组量具有相反意义的是()A.收入3000元与增加5000元 B.向东走5km与向南走3.5kmC.温度上升12℃与水位下降 D.七(5)班在比赛中胜3场与负3场7.下列说法中正确的有()①小数都是有理数;②存在最小的自然数;③-0.001是分数,也是有理数A.0个 B.1个 C.2个 D.3个8.如图,数轴上的点A表示的数可能是()A.2.4 B.-2.4 C.-1.6 D.-1.49.点A在数轴上表示-2的点所在的位置,当点A沿数轴移动5个单位长度到达点B时,点B表示的有理数是()A.3 B.-7 C.3或-7 D.无法确定B 冲刺中考10.下列说法中,正确的个数有()①0℃表示没有温度;②0是最小的整数;③0是偶数,也是自然数;④不带负号的数都是整数;⑤带负号的数不一定是负数A.0个 B.1个 C.2个 D.3个11.下列说法中错误的是( )A.正整数一定是自然数 B.自然数一定是正整数C.一个有理数不是整数就是分数 D.任何有理数都可以表示为分数12.下列说法正确的是( )A.规定了原点、正方向的直线是数轴 B.数轴上原点及原点右边的点表示的数是非正数C.有理数如11000-在数轴上无法表示 D.任何一个有理数都可以在数轴上找到13. 一次月考中,新欣所在班级平均分为95分,把高出平均分的部分记作正数,新欣105分,记为____,兰慧记-12分,她实际得分为分.14.下列四个判断中,错误的是( )A.存在着最小的自然数 B.存在最小的正有理数C.不存在最大的正有理数 D.不存在最大的负有理数15. -a 一定是( )A.正数 B.负数 C.正数或负数 D.正数或零或负数16.下列说法错误的是( )A.数轴上原点右边的点表示的数是正数 B.数轴上原点及原点左边的点表示的数是非正数C.所有的有理数都可以用数轴上的点表示 D.数轴上距离原点3个单位长度的点所表示的数是3 17.已知数轴上的点A到原点的距离为2个单位长度,那么数轴上到点A的距离是3个单位长度的点所表示的数是( )A.5 B.±5 C.±1 D.±1或±518.若b为正数,利用“<“号连接a,a-b,a+b为____.19.写出5个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数非负数;③五个数都是有理数,这五个数可以是.20.数轴上点A表示3,点B表示-4.5,点C表示-2,则点A和点B中,距离点C较远的点是___ _.21.点A在数轴上距原点3个单位长度,且位于原点的右侧,若将点A向左移动4个单位长度,此时点A 所表示的数是____,若点B表示的数是点A开始时所表示的数的相反数,作同样的移动以后,点B所表示的数是____.22.点A、B、C、D、E在数轴上的位置如图所示,其中,B、C、E分别为相邻整数点的中点,请回答下列问题:(1)点A、B、C、D、E各表示什么数?(2)点A、B之间的距离是多少?点B、E之间的距离是多少?(3)现在把数轴的原点取在点C处,其余都不变,那么点A、B、C、D、E又分别表示什么数?23.观察下列各数12345,,,,23456---,…(1)写出第10个数;(2)写出第2019个数.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,-9,+4,+7,-2,-10,+18,-3,+7,+5(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.4升,问从A地出发到收工时,共耗油多少升?25.如图,数轴上A、B两点对应的有理数都是整数,若A、B对应的有理数a、b满足b- 2a=5,那么请指出数轴上原点的位置.C决战中考26.将111111,,,,,,23456---…按一定规律排列如下:第1行 1第2行12-13第3行14-1516-第4行1718-19110-第5行111112-113114-115则第20行从左到右第10个数是 .27.在数轴任取一条长度为201913个单位长度的线段,则此线段在数轴上最多能盖住的整数点个数为( )A. 2019B.2019C.2019D.201928.小明家、学校、邮局、图书馆坐标落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小明家西150米,邮局位于小明家东100米,图书馆位于小明家西400米.(1)用数轴表示A、B、C、D的位置(建议以小明家为原点);(2)一天,小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了约8分钟,试问这时小明约在什么位置?距图书馆和学校各约多少米?29.如图,一条笔直的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示.(1)点M2和M5所表示的有理数是什么?(2)点M1和M4之间的距离为多少?(3)怎样将点M3移动,使它先到达M2,再到达M5,请说明;(4)若原点是一休息游乐所,那么5个卡通人到游乐所休息的总路程为多少?2019-2020学年数学中考模拟试卷一、选择题1.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m , 求道路的宽.如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )=540B .(20-x )(32-x )=100C .(20+x )(32+x )=540D .(20+x )(32-x )=5402.16的算术平方根是( ) A .4B .﹣4C .2D .±23.在Rt ABC 中,90,C B α∠=∠=o,若BC m =,则AB 的长为( ) A.cos mαB.cos m αgC.sin m αgD.tan m αg4.一个几何体的三视图如图所示,则这个几何体是( )A. B. C. D.5.如图,已知四边形ABCO 的边AO 在x 轴上,//,BC AO AB AO ⊥,过点C 的双曲线()0ky k x=≠交OB 于D ,且:1:2OD DB =,若OBC ∆的面积等于3,则k 的值等于( )A .2B .34C .65D .2456.如图,点,D E 分别在ABC ∆的,AB AC 边上,下列条件:①AED B ∠=∠;②AE DE AB BC=;③,AD AEAC AB =其中能使ADE ∆与ACB ∆相似的是( )A .①②B .②C .①③D .②③7.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在x 轴上,边OB 在y 轴上,点D 在边CB 上,反比例函数8y x=,在第二象限的图像经过点E ,则正方形AOBC 与正方形CDEF 的面积之差为( )A.6B.8C.10D.128.在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x ,然后从余下的两张中再抽出一张,记为y ,则点(x ,y )在直线y=-x-1上的概率为( ) A.12B.13C.23D.19.下列各式中不能用公式法分解因式的是 A .x 2-6x+9B .-x 2+y 2C .x 2+2x+4D .-x 2+2xy-y 210.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),60AOC ∠=︒,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N(点M 在点N 的上方),若OMN ∆的面积为S ,直线l 的运动时间为t 秒(04)t ≤≤,则能大致反映S 与t 的函数关系的图象是( )A. B.C. D.11.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A .2212a-B .212a+C .2aD .124a⎛⎫-⎪⎝⎭12.将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE 交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=ABBE;④EBCEHC33SS=;正确的个数是()A.1B.2C.3D.4二、填空题13.如图,已知tanα=12,如果F(4,y)是射线OA上的点,那么F点的坐标是______.14.抛物线y=(2x﹣1)2+t与x轴的两个交点之间的距离为4,则t的值是_____.15.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为_____.16.如图,在反比例函数y=2x(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=___________.17.方程21=1x-的根是____.18.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形. ②当m >0时,y =﹣mx+1与y =x两个函数都是y 随着x 的增大而减小. ③甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S 2甲=4,S 2乙=9,这个过程中乙发挥比甲更稳定.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18. 其中正确的命题是_____(只需填正确命题的序号) 三、解答题19.一服装经销商计划购进某品牌的A 型、B 型、C 型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A 型服装x 套,B 型服装y 套,三款服装的进价和预售价如下表: 服装型号 A 型 B 型 C 型 进价(元/套) 900 1200 1100 预售价(元/套)120016001300(1)如果所购进的A 型服装与B 型服装的费用不超过39000元,购进B 型服装与C 型服装的费用不超过34000元,那么购进三款服装各多少套?(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (套)的函数关系式;(注:预估利润P =预售总额﹣购服装款﹣各种费用) ②求出预估利润的最大值,并写出此时购进三款服装各多少套.20.已知:△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90°,AO =4,CO =2,接连接AD ,BC 、点H 为BC 中点,连接OH . (1)如图1所示,求证:OH =12AD 且OH ⊥AD ; (2)将△COD 绕点O 旋转到图2所示位置时,线段OH 与AD 又有怎样的关系,证明你的结论; (3)请直接写出线段OH 的取值范围.21.已知锐角△ABC ,∠ABC =45°,AD ⊥BC 于D ,BE ⊥AC 于E ,交AD 于F . (1)求证:△BDF ≌△ADC ;(2)若BD =4,DC =3,求线段BE 的长度.22.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系;(2)如果规定每天漆器笔筒的销售量不低于260件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3490元,试确定该漆器笔筒销售单价的范围.23.为了增强学生的环保意识,某校团委组织了一次“环保知识”考试,考题共10题考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)“答对10题”所对应扇形的心角为_____;(2)通过计算补全条形统计图;(3)若该校共有2000名学生参加这次“环保知识”考试,请你估计该校答对不少于8题的学生人数.24.(1)△ABC和△CDE是两个等腰直角三角形,如图1,其中∠ACB=∠DCE=90°,连结AD、BE,求证:△ACD≌△BCE.(2)△ABC和△CDE是两个含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD <AC,△CDE从边CD与AC重合开始绕点C逆时针旋转一定角度α(0°<α<180°);①如图2,DE与BC交于点F,与AB交于点G,连结AD,若四边形ADEC为平行四边形,求BGAG的值;②若AB=10,DE=8,连结BD、BE,当以点B、D、E为顶点的三角形是直角三角形时,求BE的长.25.甲、乙两车分别从A、B两地同时出发,相向而行.甲车中途因故停车一段时间,之后以原速维续行驶到达目的地B,此时乙车同时到达目的地A,如图,是甲、乙两车离各自出发地的路程y(km)与时间x (h)的函数图象.(1)甲车的速度是km/h,a的值为;(2)求甲车在整个过程中,y与x的函数关系式;(3)直接写出甲、乙两车在途中相遇时x的值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A C A C B C B B C A B D二、填空题13.(4,2)14.-1615.7×10716.3 217.x=±2.18.①三、解答题19.(1)购进A型服装30套,B型服装10套,则C型服装为20套;(2)①P=500x+500;②最大值为17500元,此时购进A型服装34套,B型服装18套,C型服装8套.【解析】【分析】(1)首先设购进A型服装x套,B型服装y套,则C型服装为(60-x-y)套;根据题意可得()()900120039000120011006034000900120011006061000x y y x y x y x y ⎧+≤⎪+--≤⎨⎪++--⎩①②=③,求解不等式组即可求得答案; (2)①根据由预估利润P=预售总额-购机款-各种费用,即可求得利润P (元)与x (套)的函数关系式为:P=1200x+1600y+1300(60-x-y )-61000-1500,整理即可求得答案;②根据题意列出不等式组:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解此不等式组求得x 的取值范围,然后根据①中一次函数的增减性,即可答案. 【详解】解:(1)设购进A 型服装x 套,B 型服装y 套,则C 型服装为(60﹣x ﹣y )套;由题意,得()()900120039000120011006034000900120011006061000x y y x y x y x y ⎧+≤⎪+--≤⎨⎪++--⎩①②=③,整理得:3413011320250x y y x y x +≤⎧⎪-≤-⎨⎪-⎩=,∴可得不等式组:()()3425013025011320x x x x ⎧+-≤⎪⎨--≤-⎪⎩,解得:x =30,y =10,∴购进A 型服装30套,B 型服装10套,则C 型服装为20套;(2)①由题意,得P =1200x+1600y+1300(60﹣x ﹣y )﹣61000﹣1500, 整理得:P =500x+500,∴利润P (元)与x (套)的函数关系式为:P =500x+500; ②由(1)得:y =2x ﹣50,∴购进C 型服装套数为:60﹣x ﹣y =110﹣3x ,根据题意列不等式组,得:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得29≤x≤34,∴x 范围为29≤x≤34,且x 为整数. ∵P 是x 的一次函数,k =500>0, ∴P 随x 的增大而增大.∴当x 取最大值34时,P 有最大值,最大值为17500元. 此时购进A 型服装34套,B 型服装18套,C 型服装8套. 【点睛】此题考查了一次函数与不等式组的实际应用问题.此题难度较大,解题的关键是结合图表,理解题意,求得不等式组与一次函数,然后根据函数的性质求解,注意函数思想的应用.20.(1)见解析;(2)结论:OH=12AD,OH⊥AD.理由见解析;(3)1≤OH≤3.【解析】【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)延长HO交AD于K.延长OH到M,使得HM=OH,连接BM,CM.。
(遵义专版)2019年中考数学总复习第1节图形的相似与位似(精练)试题
第五章图形的相似与解直角三角形第一节图形的相似与位似1.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( B )A.12B.2 C.3 D.4(第1题图)(第2题图)2.(2019泰安中考)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( B )A.18 B.1095C.965D.2533.(2019遵义十九中一模)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( D )A.∠ABP=∠C B.∠APB=∠ABCC.APAB=ABACD.ABBP=ACCB(第3题图)(第4题图)4.(济南中考)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,DB于M,N两点.若AM=2,则线段ON的长为( C )A.22B.32C.1 D.625.(2019滨州中考)在平面直角坐标系中,点C,D的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为__(4,6)或(-4,-6)__.6.(2019随州中考)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =__125或53__时,以A ,D ,E 为顶点的三角形与△ABC 相似. 7.(汇川升学一模)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上.若△ABC 的边BC 长为40 cm ,高AH 为30 cm ,则正方形DEFG 的边长为__1207__cm.(第7题图)(第8题图)8.(2019包头中考)如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =kx 的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为__-16__.9.(2019六盘水中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F ,若CD =5,BC =8,AE =2,则AF =__169__. 10.(泰安中考)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长. 解:(1)∵AB=AC , ∴∠B =∠C. ∵∠APD =∠B, ∴∠APD =∠B=∠C. ∵∠APC =∠BAP+∠B, ∠APC =∠APD+∠DPC, ∴∠BAP =∠DPC, ∴△ABP ∽△PCD ,∴BP CD =AB CP, ∴AB ·CD =CP·BP. ∵AB =AC ,∴AC ·CD =CP·BP;(2)∵PD∥AB,∴∠APD =∠BAP. ∵∠APD =∠C ,∴∠BAP =∠C. ∵∠B =∠B,∴△BAP ∽△BCA , ∴BA BC =BP BA. ∵AB =10,BC =12, ∴1012=BP 10,∴BP =253.11.(随州中考)如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( B ) A .1∶3 B .1∶4 C .1∶5 D .1∶2512.(盘锦中考)如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD =3,DC =4,DE =52,∠EDF =90°,则DF 长是( C )A.158 B.113 C.103 D.165(第12题图)(第13题图)13.(2019杭州中考)如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于__78__.14.(2019长春中考)如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G. (1)求证:BD∥EF;(2)若DG GC =23,BE =4,求EC 的长.解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∵DF =BE ,∴四边形BEFD 是平行四边形, ∴BD ∥EF ;(2)∵四边形BEFD 是平行四边形, ∴DF =BE =4. ∵DF ∥EC , ∴△DFG ∽△CEG , ∴DG CG =DF CE, ∴CE=DF·CG DG =4×32=6.15.(2019杭州中考)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE∽△ABC; (2)若AD =3,AB =5,求AFAG的值. 解:(1)∵AG⊥BC,AF ⊥DE , ∴∠AFE =∠AGC=90°.∵∠EAF =∠GAC,∴∠AED =∠ACB, ∵∠EAD =∠BAC,∴△ADE ∽△ABC ; (2)由(1)可知:△ADE∽△ABC, ∴AD AB =AE AC =35. ∵∠AFE =∠AGC=90°,∠EAF =∠GAC, ∴△EAF ∽△CAG , ∴AF AG =AE AC , ∴AF AG =35. 16 .(2019枣庄中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求, 由图形可知,∠A 2C 2B 2=∠ACB, 过点A 作AD⊥BC 交BC 的延长线于点D ,由A(2,2),C(4,-4),B(4,0),易得D(4,2), ∴AD =2,CD =6,AC =22+62=210, ∴sin ∠ACB =AD AC =2210=1010,即sin ∠A 2C 2B 2=1010.17.(2019连云港中考)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH∥AB,交BC 的延长线于点H. (1)求BD·cos ∠HBD 的值; (2)若∠CBD=∠A,求AB 的长. 解:(1)∵DH∥AB,∴∠BHD =∠ABC=90°,∠A =∠HDC, ∴△ABC ∽△DHC , ∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4, 在Rt △BHD 中,cos ∠HBD =BH BD, ∴BD ·cos ∠HBD =BH =4;(2)∵∠CBD=∠A,∠ABC =∠BHD, ∴△ABC ∽△BHD , ∴BC HD =AB BH. ∵△ABC ∽△DHC , ∴AB DH =ACCD=3, ∴AB =3DH , ∴3DH =3DH4,解得DH =2, ∴AB =3DH =3×2=6.18.(2019眉山中考)如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,AC =42,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD,线段BE 与CD 相交于点F.(1)求证:PC CD =CECB;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)设PE =x ,△PBD 的面积为S ,求S 与x 之间的函数关系式. 解:(1)∵△BCE 和△CDP 均为等腰直角三角形, ∴∠ECB =∠PCD=45°, ∠CEB =∠CPD=90°, ∴△BCE ∽△DCP , ∴PC DC =EC CB; (2)AC∥BD.理由如下:∵∠PCE +∠ECD=∠BCD+∠ECD=45°, ∴∠PCE =∠BCD. 又∵PC DC =EC CB ,∴△PCE ∽△DCB , ∴∠CBD =∠CEP=90°, ∴∠ACB =∠CBD, ∴AC ∥BD ;(3)作PM ⊥BD ,交BD 的延长线于点M. ∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4. ∵△PCE ∽△DCB ,∴EC CB =PE BD ,即442=x BD, ∴BD =2x.∵∠PBM =∠CBD-∠CBP=45°, BP =BE +PE =4+x , ∴PM =4+x 2,∴S △PBD =12BD ·PM=12×2x×4+x 2, =12x 2+2x.2019-2020学年数学中考模拟试卷一、选择题1.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°2.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是()A.m>9 B.m≥9C.m<﹣9 D.m≤﹣93.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.5.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是( ) A.与2017年相比,2018年年末全国农村贫困人口减少了1386万人 B.2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降C.2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D.2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .47.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .﹣1B .2C .﹣7D .08.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B =135°,则劣弧AC 的长是( )A.4πB.2πC.πD.23π9.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .210.如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD =2∠ACB .若DG =5,EC =1,则DE 的长为( )A .2B .4C .D .11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ).A.15°B.20°C.25°D.30°12.下列运算正确的是( )A.222()x y x y +=+ B.632x x x ÷= 3=D.32361126xy x y ⎛⎫-=- ⎪⎝⎭二、填空题13.分解因式(a -b)(a -9b)+4ab 的结果是____.14.如图,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA .若BD =4,DC =5,则AB 的长为_____.15.方程3x x -=1xx +的解是_____. 16.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.已知a ,b 是一元二次方程x 2+x ﹣4=0的两个不相等的实数根,则a 2﹣b =_____. 18.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是_____. 三、解答题19.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球,记两次取得乒乓球上的数字依次为a 、b . (1)求a 、b 之积为偶数的概率;(2)若c =5,求长为a 、b 、c 的三条线段能围成三角形的概率.20.在正方形ABCD 中,点M 是射线BC 上一点,点N 是CD 延长线上一点,且BM =DN ,直线BD 与MN 交于点E .(1)如图1.当点M 在BC 上时,为证明“BD﹣2DE BM”这一结论,小敏添加了辅助线:过点M 作CD 的平行线交BD 于点P .请根据这一思路,帮助小敏完成接下去的证明过程.(2)如图2,当点M 在BC 的延长线上时,则BD ,DE ,BM 之间满足的数量关系是 . (3)在(2)的条件下,连接BN 交AD 于点F ,连接MF 交BD 于点G ,如图3,若1,3AF AD = CM =2,则线段DG = .21.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,tan ∠DBC=43,且BC=6,AD=4.求cosA 的值.22.计算:(π0﹣3|+(12)﹣123.已知二次函数y =﹣x 2+2mx ﹣m 2﹣1(m 为常数).(1)证明:不论m 为何值,该函数的图象与x 轴没有公共点;(2)当自变量x 的值满足﹣3≤x≤﹣1时,与其对应的函数值y 的最大值为﹣5,求m 的值.24.(1)计算:10124303)cos -︒⎛⎫-++-- ⎪⎝⎭(2)先化简,再求值:2222121111a a aa a a a+-+⋅---+,其中a=﹣12.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题13.(a-3b)214.615.x=﹣3 216.5 17.518.3 10三、解答题19.(1)P(数字之积为偶数)=56;(2)P(三线段能围成三角形)=13.【解析】【分析】(1)通过列表法可得a、b所有可能的结果,计算出a、b之积为偶数的次数,然后用a、b之积为偶数的次数除以总次数即可计算a、b之积为偶数的概率;(2)首先列出a、b、c所有可能的结果,根据三角形的性质找到能组成三角形的结果,最后计算能围成三角形的概率.【详解】(1)根据题意列表如下:由以上表格可知:有12种可能结果,分别为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其积分别为:2,3,4,2,6,8,3,6,12,4,8,12;积为偶数的有2,4,2,6,8,6,12,4,8,12,共10个,则P(数字之积为偶数)=1012=56;(2)所有的可能结果有12种,a,b及c的值分别为(1,2,5),(1,3,5),(1,4,5),(2,1,5),(2,3,5),(2,4,5),(3,1,5),(3,2,5),(3,4,5),(4,1,5),(4,2,5),(4,3,5),能构成三角形的有(2,4,5),(3,4,5),(4,2,5),(4,3,5),共4种,则P(三线段能围成三角形)=412=13.【点睛】本题考查了用列举法计算概率的知识,正确理解题意是解题的关键.20.(1)见解析;(2)BD+2DE BM;(3.【解析】【分析】(1)过点M作MP∥CD,交BD于点P,推出PM=DN,证明△EPM≌△EDN,推出EP=ED,根据正方形的性质和勾股定理求出即可;(2)过点M作MP∥CD交BD的延长线于点P,推出BM=PM=DN,根据AAS证明△EPM≌△EDN,推出EP =ED,根据正方形的性质和勾股定理求出即可;(3)证明△ABF∽△DNF,得出比例式,得到AB:ND=1:2,设AB=x,则DN=2x,根据BM =DN ,列出方程求出AB 的长度,根据DF ∥BM ,得到413,43DF DG BM BG ===即可求解. 【详解】解:(1)如图1,过点M 作MP ∥CD ,交BD 于点P ,∵四边形ABCD 是正方形,∴∠C =90°,∠CBD =∠CDB =45°, ∵PM ∥CD ,∴∠NDE =∠MPE ,∠BPM =∠CDB =45°, ∴△BPM 是等腰直角三角形, ∴PM =BM,PB =,∵BM =DN , ∴PM =DN ,在△EPM 和△EDN 中,,MPE NDE PEM DEN PM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPM ≌△EDN (AAS ), ∴EP =ED ,∴PB =BD ﹣PD =BD ﹣2DE ,根据勾股定理得:BP =,即2BD DE -=;(2)如图2,过点M 作MP ∥CD 交BD 的延长线于点P ,∴∠PMB=∠BCD=90°,∵∠CBD=45°,∴△BMP是等腰直角三角形,∴BM=PM=DN,与(1)证法类似:△EPM≌△EDN(AAS),∴EP=ED,∴PB=BD+PD=BD+2DE,根据勾股定理得:BP BM,即BD+2DE=BP BM,故答案为:BD+2DE BM;(3)如图3,∵AB∥CD,∴AB∥DN,∴△ABF∽△DNF,∴AF:FD=AB:ND,∵AF:FD=1:2,∴AB:ND=1:2,设AB =x ,则DN =2x , ∵BM =DN , ∴x+2=2x ,x =2, ∴AB =AD =2,DF =43,∴BD = ∵DF ∥BM ,∴413,43DF DG BM BG ===∴142DG =⨯=故答案为:2【点睛】本题综合考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题的能力.用的数学思想是类比推理的思想.21.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =.【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22【解析】【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】原式=1﹣(3+2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.(1)见解析;(2)m的值为﹣5或1.【解析】【分析】(1)根据判别式的值得到△=﹣4<0,然后根据判别式的意义得到结论;(2)利用配方法得到y=﹣(x﹣m)2﹣1,则抛物线的对称轴为直线x=m,讨论:当m<﹣3时,根据二次函数性质得到x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5;当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,利用二次函数的性质得到x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,然后分别解关于m的方程即可得到满足条件的m的值.【详解】(1)证明:△=4m2﹣4×(﹣1)×(﹣m2﹣1)=﹣4<0,所以﹣x2+2mx﹣m2﹣1=0没有实数解,所以不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=﹣x2+2mx﹣m2﹣1=﹣(x﹣m)2﹣1,抛物线的对称轴为直线x=m,当m<﹣3时,﹣3≤x≤﹣1,y随x的增大而减下,则x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5,解得m1=﹣5,m2=﹣1(舍去);当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,﹣3≤x≤﹣1,y随x的增大而增大,则x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,解得m1=1,m2=﹣3(舍去);综上所述,m的值为﹣5或1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.24.(1)4;(2)1a,-2. 【解析】 【分析】(1)根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算; (2)将原式的分子、分母因式分解,约分后计算减法,再代值计算即可. 【详解】(1) )0+(13)﹣1+4cos30°﹣﹣==4; (2)2222121111a a a a a a a+-+-+-- =22111(1)(1(1)1a a a a a a a +--+--+())=21(1)(1)a aa a a a +-++=1(1)a a a ++=1a, 当a =﹣12 时,原式=11-2=﹣2.【点睛】本题考查了实数的混合运算,分式的化简求值.解答(1)题的关键是根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算;解答(2)题的关键是把分式化到最简,然后代值计算.25.(1)94;(2)94,92,94;八;(3)23【解析】 【分析】(1)根据中位数、众数和平均数的定义求解; (2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.如图,在等腰梯形ABCD 中,AD ∥BC ,AB≠AD,对角线AC 、BD 相交于点O .以下结论不正确的是( )A.梯形ABCD 是轴对称图形B.∠DAC =∠DCAC.△AOB ≌△DOCD.△AOD ∽△COB2.下列说法正确的是( )A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明甲的射击成绩比乙稳定3.12019的倒数是( ) A.12019 B.﹣12019C.2019D.﹣20194.在四边形ABCD 中,//,AB CD AB AD =,添加下列条件不能推得四边形ABCD 为菱形的是( ) A .AB CD =B .//AD BCC .BC CD =D .AB BC =5.下列各式变形中,正确的是( )A .2=x B .2(1)(1)1x x x ---=-C .x xx y x y=--++D .22131=x+-24x x ⎛⎫++ ⎪⎝⎭6.如图,在数轴上,点A 表示的数是2,△OAB 是Rt △,∠OAB =90°,AB =1,现以点O 为圆心,线段OB 长为半径画弧,交数轴负半轴于点C ,则点C 表示的实数是( )A B C.﹣3 D.﹣7.如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.8.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=6,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为()A.1 B.2 C.D.39.在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A B.C D10.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x 2+52 =(x+1)2B.x 2+52 =(x ﹣1)2C.x 2+(x+1)2 =102D.x 2+(x ﹣1)2=52 11.下列计算正确的是( )A .3a ﹣a =3B .(a 2)3=a 6C .3a+2a =2a 2D .a 2﹣a 2=a 412.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为( )A .1.32×109B .1.32×108C .1.32×107D .1.32×106二、填空题13.已知:如图,△ABC 中,过AB 的中点F 作DE ⊥BC ,垂足为E ,交CA 的延长线于点D .若EF =3,BE =4,∠C =45°,则DF :FE 的值为_____.14.如图,OC 是O 的半径,弦AB OC ⊥于点D ,点E 在O 上,EB 恰好经过圆心O ,连接EC .若B E ∠=∠,32OD =,则劣弧AB 的长为__________.15.分解因式:228ax a -=_______.16.对非负实数x“四舍五入”到个位的值记为< x >,即已知n 为正整数,如果n -12≤x<n +12,那么< x >=n .例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…则满足方程< x >=1x 1.62+的非负实数x 的值为____. 17.在不透明的袋子中有2个白球,3个红球,除颜色外完全相同,任意摸出一个球,摸到红球的概率18.截至2019年4月份,全国参加汉语考试的人数约为3500万,将3500万用科学记数法表示为_____.三、解答题19.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.(1)求证:ED是⊙O的切线;(2)若AD=,AB=6,求FD的长.20.如图,在数轴上点A、B、C分别表示-1、-2x+3、x+1,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当AB=2BC时,x的值为_____.21.化简分式:2222334424x x xx x x x⎛⎫---÷⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.22.2018年4月,无锡外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另加外卖送单补贴(送一次外卖称为一单),具体方案如下:(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.23.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,∠OAB=90°且OA=AB,OB=8,(1)求点A的坐标;(2)点P是从O点出发,沿X轴正半轴方向以每秒1单位长度的速度运动至点B的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,交四边形ABCD的边AO或AB于点Q,交OC或BC于点R.设运动时间为t(s),已知t=3时,直线l恰好经过点 C.求①点P出发时同时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求当0<t<3时S与t的函数关系式;并直接写出S的最大值.②是否存在某一时刻t,使得△ORE为直角三角形?若存在,请求出相应t的值;若不存在,请说明理由.24.在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.25.如图,以点B为圆心,适当长为半径画弧,交BA于点D,交BC于点E;分别以点D,E为圆心,大于12DE 的长为半径画弧,两弧在∠ABC 的内部相交于点F ;画射线BF ,过点F 作FG ⊥AB 于点G ,作FH ⊥BC 于点H求证:BG =BH .【参考答案】***一、选择题二、填空题13.7:314.2π15.2(2)(2)a x x +-16.817.3518.5×107三、解答题19.(1)证明见解析;(2)7. 【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BFDF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图,∵OA =OD ,∴∠2=∠3,∵AD 平分∠EAB ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∵ED ⊥CA ,∴OD ⊥ED ,∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)连接BD ,如图,∵AB 是直径,∴∠ADB =90°.∴BD =2,∵EF 是⊙O 的切线,∴OD ⊥EF ,∴∠4+∠5=90°,∵∠3+∠5=90°,∴∠4=∠3=∠2,∵∠F =∠F ,∴△FBD ∽△FDA , ∴BF BD DF AD ==∴BF =4DF , 在Rt △ODF 中,∵(3+BF )2=32+DF 2,∴(3+4DF )2=32+DF 2,∴DF =7.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键.20.(1) 223x<<;(2)1【解析】【分析】(1)根据A、B、C三点在数轴上的位置列不等式组即可得出x的取值范围;(2)分别求出AB、BC的距离,根据AB=2BC列方程即可得出x的值.【详解】(1)由题意得:231123xx x-+>-⎧⎨+>-+⎩①②解不等式①得:x<2;解不等式②得:x>23.∴不等式组的解集为:23<x<2.(2)∵AB=2BC,∴-2x+3-(-1)=2[x+1-(-2x+3)]-2x+4=2x+2+4x-68x=8解得x=1.故答案为:1【点睛】本题考查数轴的性质、解一元一次不等式组及解一元一次方程,不等式解集遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.x+2,3.【解析】【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【详解】2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ =22(2)33(224x x x x x x ⎡⎤---÷⎢⎥---⎣⎦) =233()224x x x x x --÷--- =(-2)(2)323x x x x x -⋅--+ =x+2,∵x 2﹣4≠0,x ﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x =1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.22.(1)若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)见解析;(3)750≤m≤900.【解析】【分析】:(1)根据题意,直接按照第一个标准,由底薪每单补贴,求解即可(2)按照x >m,0<x≤500和0<x≤500三种情况,分别求解即可;(3)根据(2)中的关系式,分别代入求解,注意要符合工资要求【详解】(1)由题意可得,1000+500×6+(600﹣500)×8=1000+3000+800=4800(元),答:若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)由题意可得,当0<x≤500时,y =1000+6x ,当500<x≤m 时,y =1000+500×6+(x﹣500)×8=8x ,当x >m 时,y =1000+500×6+(m﹣500)×8+(x﹣m)×10=10x ﹣2m ,由上可得,y =10006(05008(500102(x x x x m x m x m +⎧⎪⎨⎪-⎩<≤)<≤)>) ;(3)若800<m≤900,y =8×800=6400,符合题意,若700≤m≤800,6400≤﹣2m+10×800≤6500,解得,750≤m≤800,综上所述:750≤m≤900.【点睛】此题考查不等式组的应用,解题关键在于列出方程23.(1)A (4,4);(2)①2728.S (t 2)33=-+,S 有最大值为283;②t 的值为4或3614. 【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)①首先求出直线OA 、OB 、OC 、BC 的解析式.①求出P 、Q 的坐标即可解决问题;即可表示出QR 和PE 的长,即可得到三角形面积解析式利用配方法求出最值即可;②分三种情况讨论,即∠REO =90°或∠ORE =90°或∠ROE =90°分别求解即可.【详解】解:(1)由题意△OAB 是等腰直角三角形,∵OB =8,即B (8,0)∴A (4,4),(2)∵A (4,4),B (8,0),∴直线OA 的解析式为y =x ,直线AB 的解析式y =﹣x+6,∵t =3时,直线l 恰好过点C ,即OP =3,OC =5,∴PR =4,C (3,﹣4),∴直线OC 的解析式为y =-43x ,直线BC 的解析式为y =43255x -, ①当0<t <3时,Q (t ,t ),R (t ,-43t ), ∴QR=t-(-43t)=73t .PE =8﹣2t . ∴S =2117728(82)(2)22333PE QR t t t =-=--+. ∴t =2时,S 有最大值为283. ②要使△ORE 为直角三角形,则有三种情况:Ⅰ.若∠REO=90°,如图1,则点P与E点重合,∴8﹣2t=0,解得t=4,Ⅱ.若∠ORE=90°,如图2.△ORP∽△REP,∴OP RPRP PE=,即RP2=OP•PE,∴24(82) 3tt t⎛⎫=-⎪⎝⎭,解之得:t=36 17,Ⅲ.当t>4时,△ORE不可能为直角三角形.故使得△ORE为直角三角形时,t的值为:4或36 17,【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.24.(1)30;(2)y=﹣30x+60;(3)甲、乙第一次相遇是在出发后0.6小时;(4)25≤x≤56或76≤x≤2.【解析】【分析】(1)观察图形即可求得A 、B 两地间的距离;(2)乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由待定系数法可求乙与B 地的距离y (km )与乙行驶时间x (h )之间的函数关系式;(3)由相遇问题的数量关系直接求出结论;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由待定系数法求出解析式建立不等式组求出其解即可.【详解】解:(1)由题意,得A 、B 两地间的距离为30km .故答案为:30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得 30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由题意,得 22223002k b k b =+⎧⎨=+⎩, 解得:223060k b =-⎧⎨=⎩, ∴y =-30x+60.(3)由函数图象,得(30+20)x =30,解得x =0.6.故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,由题意,得30150.75b k b =⎧⎨=+⎩, 解得:k 20b 30=-⎧⎨=⎩, y 甲1=﹣20x+30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩, ∴y 甲2=﹣20x+40,当20303010301510x x x -+-≤⎧⎨-⎩…时, ∴25≤x≤56; 306015102x x -+-⎧⎨⎩……, 解得:76≤x≤2. ∴25≤x≤56或76≤x≤2.【点睛】本题考查了行程问题的数量关系路程÷时间=速度的运用,运用待定系数法求一次函数的解析式的运用,不等式组的解法的运用,解答时求出一次函数的解析式是关键.25.详见解析【解析】【分析】由作法可知BF 是∠ABC 的角平分线,再证明△GBF ≌△HBF 即可得到结论.【详解】证明:由作法可知BF 是∠ABC 的角平分线,∴∠ABF =∠CBF ,∵FG ⊥AB ,FH ⊥BC .∴∠FGB =∠FHB ,在△GBF 和△HBF 中,FGB FHB GBF HBF BF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△GBF ≌△HBF (AAS ),∴BG =BH .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.。
中考数学复习专题分类练习
2019年中考数学复习专题分类练习---应用题1.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?2.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?3.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.(1)用含x的代数式表示第二周旅游纪念品销售数量为个;(2)如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?4.某工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的2;若由甲队先3做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断,并说明理由.5.某经销商销售台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从38元/kg下调了x元时,销售量为y kg.(1)写出y与x间的函数关系式.(2)如果凤梨的进价是20元/kg,某天的销售价定为30元/kg,问这天的销售利润是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(7天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/kg,问一次进货最多只能是多少千克?6.有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨,求每辆大车和每辆小车一次分别可以运货多少吨?7.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,(1)根据题意,填写下表:(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.8.政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.9.某市从3月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0. 80元.已知小张家3月份用水20吨,交水费52元;4月份用水25吨,交水费69元.(温馨提示:水费=水价+污水处理费)(1)求m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把5月份的水费控制在不超过月收入的2%.若小张的月收入为6 500元,则小张家5月份最多能用水多少吨?.10.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?11.某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行了跟踪记录,根据所记录的数据绘制如下的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图(1)所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图(2)所示.(销售额=销售单价×销售量).(1)从图(1)可知.第6天日销售量为千克,第18天日销售为千克.(2)求第6天和第18天的销售额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中,“最佳销售期”共有多少天?在此期间销售单价最高为多少元?12.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(t)近似满足函数关系0.3y x=甲;乙种水果的销售利润y乙(万元)与进货量x(t)近似满足函数关系2y ax bx =+乙(其中0a≠,a、b为常数),且进货量x为1t时,销售利润y乙为1. 4万元;进货量x为2t时,销售利润y乙为2. 6万元.(1)求y乙(万元)与x(t)之间的函数关系式;(2)如果市场准备进甲、乙两种水果共10t,设乙种水果的进货量为t(t),请你写出这两种水果所获得的销售利润之和W(万元)与t(t)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少.感谢您的支持祝您生活愉快。
2019年中考数学总复习《三角形内角和定理》专题复习练习及答案
2019 初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠13. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF =____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC中,∠A∶∠B=2∶1,∠C=60°,则∠A=____°.17. 如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD11. 3512. 60°13. 4514. 30°15. 360°16. 8017. 解:在△ABN中,∠A+∠B+∠1=180°,在△CDP中,∠C+∠D+∠3=180°,在△EFM中,∠E +∠F+∠2=180°,∴∠A+∠B+∠1+∠C+∠D+∠E+∠F+∠3+∠2=540°,在△MNP中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD=90°-∠FED=90°-(∠B+∠BAE)=90°-∠B-12∠BAC=90°-∠B-12(180°-∠B-∠C)=90°-∠B-90°+12∠B+12∠C=12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD=12(∠C-∠B)20. 证明:∵∠BAC>∠ACE,∠DCE>∠B,又∠ACE=∠DCE,∴∠BAC>∠B21. 证明:∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A2019-2020学年数学中考模拟试卷一、选择题1.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a .如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x 2+1,﹣x}的最大值是( )C.1D.02.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272-3.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为( )A. B. C. D.4.下列各因式分解正确的是( ) A .x 2+2x ﹣1=(x ﹣1)2 B .﹣x 2+(﹣2)2=(x ﹣2)(x+2) C .x 3﹣4x =x (x+2)(x ﹣2)D .(x+1)2=x 2+2x+15.合肥市教育教学研究室为了了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A 等,130分:150分;B 等,110分:129分;C 等,90分:109分;D 等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):2019年合肥市一模数学成绩频数分布表2019年合肥市一模教学成绩频数分布直方图根据图表中的信息,下列说法不正确的是( ) A .这次抽查了20名学生参加一模考试的数学成绩 B .这次一模考试中,考试数学成绩为B 等次的频率为0.4C .根据频数分布直方图制作的扇形统计图中等次C 所占的圆心角为105︒D .若全市有20000名学生参加中考一模考试,则估计数学成绩达到B 等次及以上的人数有12000人 6.把一副三角板按如图所示摆放,使FD BC ∕∕,点E 恰好落在CB 的延长线上,则BDE ∠的大小为( )A .10︒B .15︒C .25︒D .30°7.已知一次函数y =kx ﹣1和反比例函数y =kx,则这两个函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.等腰三角形的周长为16,其一边长为6,那么它的底边长为( ) A.4或6B.4C.6D.59.甲、乙、丙三个人玩一种游戏,每玩一局都会将三人随机分成两组.积分方法举例说明:第一局甲、乙胜出,分别获得3分,丙获得﹣6分;第二局甲胜出获得12分,乙、丙分别获得﹣6分,两局之后的积分是:甲15分,乙﹣3分,丙﹣12.如表是三人的逐局积分统计表,计分错误开始于( )A .第三局B .第四局C .第五局D .第六局10.如图,下图经过折叠不能围成一个正方体是( )A .B .C .D .11.如图,在△ABC 中,∠B =50°,点D 为边AB 的中点,点E 在边AC 上,将△ADE 沿DE 折叠,使得点A 恰好落在BC 的延长线上的点F 处,DF 与AC 交于点O ,连结CD ,则下列结论一定正确的是( )A .CE =EFB .∠BDF =90°C .△EOD 和△COF 的面积相等D .∠BDC =∠CEF+∠A12.若一个多边形的内角和等于1620°,则这个多边形的边数为( ) A .9 B .10C .11D .12二、填空题13.把多项式33327a b ab 分解因式的结果是_____.14.如图,在平面直角坐标系中,点A (0,3),将△AOB 沿x 轴向右平移得到△A'O'B',与点A 对应的点A'恰好在直线y =32x 上,则BB'=_____.15.已知x 满足(x+3)3=64,则x 等于_____. 16.写出一个比5大且比6小的无理数________.17.若直线232y x b =-++经过第一、二、四象限,则b 的取值范围是_____.18.小明有5根小棒,长度分别为3cm ,4cm ,5cm ,6cm ,7cm ,现从中任选3根小棒,怡好能搭成三角形的概率是______ 三、解答题19.如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交弧AC 于点D ,过点D 作⊙O 的切线,交BA 的延长线于点E . (1)求证:AC ∥DE ; (2)连接AD 、CD 、OC .填空①当∠OAC 的度数为 时,四边形AOCD 为菱形; ②当OA =AE =2时,四边形ACDE 的面积为 .20.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).21.如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC . (1)求证:四边形ABCD 是菱形;(2)过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.22.如图,二次函数图象的顶点为(﹣1,1),且与反比例函数的图象交于点A (﹣3,﹣3) (1)求二次函数与反比例函数的解析式;(2)判断原点(0,0)是否在二次函数的图象上,并说明理由;(3)根据图象直接写出二次函数的值小于反比例函数的值时自变量x 的取值范围.23.计算:14011(2018)|12sin 602π-︒⎛⎫-+---+- ⎪⎝⎭24.为弘扬“绿水青山就是金山银山”精神,某地区鼓励农户利用荒坡种植果树,某农户考察三种不同的果树苗A 、B 、C ,经引种试验后发现,引种树苗A 的自然成活率为0.8,引种树苗B 、C 的自然成活率均为0.9.(1)若引种树苗A 、B 、C 各10棵. ①估计自然成活的总棵数;②利用①的估计结论,从没有自然成活的树苗中随机抽取两棵,求抽到的两棵都是树苗A 的概率: (2)该农户决定引种B 种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B 种树苗多少棵?25.如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E. F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=2,BF=2,求⊙O 的半径.【参考答案】*** 一、选择题二、填空题13.3ab (a+3b )(a ﹣3b ). 14.2 15.16 17.23b >-; 18.35.三、解答题19.(1)证明见解析;(2)①30°;②【解析】【分析】(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得21222AO OF AFOE OD DE====+,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.【详解】(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∴△AFO∽△EDO∴21222 AO OF AFOE OD DE====+∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE=∴S四边形ACDE=DE×DF1==故答案为:【点睛】本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.(1)3;(2)﹣x+4.【解析】【分析】(1)先化简二次根式、负整数指数幂、代入三角函数值及零指数幂,再先后计算乘法和加减运算即可;(2)先计算完全平方式和单项式乘多项式的积,再合并同类项即可得.【详解】(1)原式=+2﹣4×2+1=+2﹣=3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.【点睛】本题主要考查实数和整式的混合运算,解题的关键是熟练掌握实数和整式的混合运算顺序和运算法则.21.(1)详见解析;(2)26.【解析】【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB =∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.(1)y=﹣(x+1)2+1,9yx=;(2)原点(0,0)是在二次函数的图象上;(3)当x<﹣3或x>0时二次函数的值小于反比例函数的值.【解析】(1)设二次函数为y=a(x+1)2+1,设反比例函数的解析式为y=kx,把A点的坐标代入,关键待定系数法即可求得;(2)把x=0代入求得的二次函数的解析式即可判断;(3)由两函数的图象直接写出x的取值范围即可.【详解】解:(1)设二次函数为y=a(x+1)2+1,∵经过点A(﹣3,﹣3)∴﹣3=4a+1,∴a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+1,设反比例函数的解析式为y=kx,∵二次函数的图象与反比例函数的图象交于点A(﹣3,﹣3)∴k=﹣3×(﹣3)=9,∴反比例函数的解析式为y=9x;(2)把x=0代入y=﹣(x+1)2+1,得y=﹣1+1=0,∴原点(0,0)是在二次函数的图象上;(3)由图象可知,二次函数与反比例函数图象的交点为A(﹣3,﹣3),当x<﹣3或x>0时二次函数的值小于反比例函数的值.【点睛】本题是一道函数的综合试题,考查了待定系数法求反比例函数的解析式和求二次函数的解析式,由图象特征确定自变量的取值范围.23.1【解析】【分析】直接利用零指数幂、负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.【详解】解:原式=11(2)122-+---⨯=﹣﹣1=1.【点睛】此题主要考查了实数运算,正确应用整数指数幂和绝对值的性质化简各数是解题关键.24.(1)①自然成活的有26棵;②16;(2)至少引种B种树苗700棵.【解析】(1)①根据成活率求得答案即可;②列出树状图,利用概率公式求解即可;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96x,未能成活棵数为0.04x,利用农户为了获利不低于20万元列出不等式求解即可.【详解】解:(1)①10×0.8+10×0.9+10×0.9=26(棵),答:自然成活的有26棵;②在这12种情况下,抽到的2棵均为树苗A的有2种,∴P=16;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96 x,未能成活棵数为0.04 x 300(0.96 x)﹣50(0.04x)≥200000x≥100000143=69943143∴x=700棵答:该户至少引种B种树苗700棵.【点睛】本题考查了利用频率估计概率及列表法求概率的知识,解题的关键是能够正确的通过列树状图将所有等可能的结果列举出来,难度不大.25.(1)相切,理由见解析;(2)2.【解析】【分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+2) =(2)+R,解得:R=2,即⊙O的半径是2.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.2019-2020学年数学中考模拟试卷一、选择题1.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.122.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×1073.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°4.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n.则11m n+的值为()A.35B.35-C.53D.53-5.如图,在△ABC中,BD、CE是高,点G、F分别是BC、DE的中点,则下列结论中错误的是()A.GE=GD B.GF⊥DE C.∠DGE=60°D.GF平分∠DGE6.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④B.①③C.①②D.③④7.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()8.下列四个数中,最大的数是( )A .-5BC .0D .π91导致乘积减小最大?( )A B C D10.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A.πB.32π C.6﹣ππ11.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种( ) A .2B .3C .4D .512.下列计算结果为a 2的是( ) A .a 8÷a 4(a≠0) B .a 2•a C .﹣3a 2+(﹣2a )2D .a 4﹣a 2二、填空题13.已知关于x 的一元二次方程x 2﹣x+m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是_____. 14.如图,在.△ABC 中,各边的长度如图所示,∠C=90°,AD 平分∠CAB 交BC 于点D ,则点D 到AB 的距离是__.15.如图,AD 是△ABC 的中线,点E 在边AB 上,且DE ⊥AD ,将△BDE 绕着点D 旋转,使得点B 与点C 重合,点E 落在点F 处,联结AF 交BC 于点G ,如果52AE BE =,那么GFAB的值等于______.16.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为_____.17.中国高铁被誉为“新四大发明”,截止2018年底中国高速铁路营业里程已达29000公里,请将29000用科学记数法表示为_____.18.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_____个.三、解答题19.如图,在平面直角坐标系中,直线l :y =﹣12与y 轴、x 轴分别交于点E 、F ,边长为2的等边△ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移,在平移过程中,得到△A 1B 1C 1,当点B 1与原点重合时,解答下列问题: (1)写出点E 、F 坐标;(2)求出点A 1的坐标,并判断点A 1是否在直线l 上;(3)如果点A 1在直线l 上,此问不作答,如果点A 1不在直线l 上,继续平移△ABC ,直到点A 的对应点A 2落在直线l 上这时点A 2横坐标为多少?20.现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩.(1)用x 的式子分别表示y、z ;(2)问如何安排劳力与养殖亩数收益最大?21.先化简,再求值:22211211x x x x x x ⎛⎫-÷-+ ⎪-+-⎝⎭,其中1x =.221tan 602|︒-+-.23.有四张完全一样的卡片,在正面分別写上2、3、4、6四个数字后洗匀,反面朝上放在桌上.小明从中先后任意抽取两张卡片,然后把先抽到的卡片上的数字作为十位数,后抽到的卡片上的数字作为个位数,组成一个两位数.求这个两位数恰好能被4整除的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.红星公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的日销售量y 1(件)与时间t (天)的关系如图所示;未来40天内,每天的价格y 2(元/件)与时间t (天)的函数关系式为:y 2=1t 25(1t 20)41t 40(21t 40)2⎧+⎪⎪⎨⎪-+⎪⎩剟剟(t 为整数);(1)求日销售量y 1(件)与时间t (天)的函数关系式;(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件商品就捐赠a 元(a 为定值)利润给希望工程.公司通过销售记录发现,前20天中,第18天的时候,扣除捐赠后日销售利润为这20天中的最大值,求a 的值.25.为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:“中位数”,“众数”或“平均数”)(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【参考答案】*** 一、选择题二、填空题 13.m <54. 14.3 15.106316.3 2 17.18.1 三、解答题19.(1) 点E 的坐标为:(0,,点F 的坐标为:(0),(2) 点A 1的坐标为:(1,点A 1不在直线l 上;(3)点A 2横坐标为 【解析】 【分析】(1)把x =0,y =0分别代入y =﹣12x +E,F 的坐标(2)先根据点A 1的横坐标为1,纵坐标为:2sin60°=2×求出A1的坐标,然后A1的坐标y=﹣12x +(3)根据前面两题把把y y =﹣12x + 【详解】解:(1)把x =0代入y =﹣12x +得:y =,把y =0代入﹣12x +﹣12x +0,解得:x =,即点F 的坐标为:(0),(2)根据题意得:点A 1的横坐标为1,即点A 1的坐标为:(1,把x =1代入y =﹣12x +y =12即点A 1不在直线l 上,(3)把y 代入y =﹣12x +﹣12x +,解得:x =,这时点A 2横坐标为【点睛】此题为一次函数的综合题,要运用到三角形函数来解答20.(1)y =140﹣2x ,z =x ﹣40.(2)对虾400亩,大黄鱼600亩,蛏子0亩;养植对虾的劳动力是12人,养殖大黄鱼的劳动力是12人,养殖蛏子的劳动力是0人.【解析】【分析】(1)本题考查对方程组的应用能力,要注意由题中提炼出的两个等量关系,即所需劳动力的总和是24、所养殖的总亩数是1000,据此可列方程组解应用题;(2)设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩的收益为T ,则T=2x+8y+1.6z ,再根据实际问题,求出定义域,然后,由函数的单调性来求值即可.【详解】解:(1)根据题意,得1010101000(1)0.30.20.124(2)x y z x y z ++=⎧⎨++=⎩解得,140240y x z x =-⎧⎨=-⎩∴y =140﹣2x ,z =x ﹣40.(2)设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩的收益为T ,则T =2x+8y+1.6z ①由(1)解得,140240y x z x =-⎧⎨=-⎩将其代入①并整理,得T =﹣12.4x+1056,∵0<10x≤1000,即0<x≤100,又∵01000100y z <⎧⎨<⎩……即01402100040100x x <-⎧⎨<-⎩…… 解得40≤x≤70,∵函数T =﹣12.4x+1056在[40,70]上是减函数,∴当x =40时,T 最大,∴y =140﹣2×40=60,z =40﹣40=0,10x =400,10y =600,10z =0,21.2. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2221(1)121x x x x x x -÷-+--+, =2221(1)(1)(1)1x x x x x x ----÷-- =222211(1)21x x x x x x --⋅--+- =211121x x x -⋅-- =11x -,当1x === 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.12【解析】【分析】根据负整数指数幂和12 【详解】原式=+12 =12. 【点睛】本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算.也考查了负整数指数幂以及特殊角的三角函数值.23.这个两位数恰好能被4整除的概率为13. 【解析】【分析】将可能出现的情况全部列举出来,一共12种可能,其中符合条件的只有4种可能即可求解【详解】画树状图如下:由树状图知共有12种等可能结果,其中这个两位数恰好能被4整除的有4种结果,所以这个两位数恰好能被4整除的概率为41123=. 【点睛】此题考查了列表法或树状图法求概率24.(1)y =﹣2t+96;(2)第14天时,销售利润最大,为578元;(3)a =2.【解析】【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值.【详解】解:(1)设一次函数为y =kt+b ,将(30,36)和(10,76)代入一次函数y =kt+b 中,有36307610k b k b=+⎧⎨=+⎩ 解得:.296k b =-⎧⎨=⎩故所求函数解析式为y =﹣2t+96;(2)设前20天日销售利润为W1元,后20天日销售利润为W2元.由W1=(﹣2t+96)(14t+25﹣20)=(﹣2t+96)(14t+5)=﹣12t2+14t+480=﹣12(t﹣14)2+578,∵1≤t≤20,∴当t=14时,W1有最大值578(元).由W2=(﹣2t+96)(﹣12t+40﹣20)=(﹣2t+96)(﹣12t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数W2在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴当t=21时,W2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)由题意得:W=(﹣2t+96)(14t+25﹣20﹣a)(1≤t≤20),配方得:W=﹣12[t﹣2(a+7)]2+2(a﹣17)2(1≤t≤20)∵a为定值,而t=18时,W最大,∴2(a+7)=18,解得:a=2【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.25.(1)10、10、11;(2)中位数和众数;(3)2200次【解析】【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是10102+=10(次),众数为10次,平均数为015110415320110⨯+⨯+⨯+⨯+⨯=11(次),故答案为:10、10、11;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为200×11=2200次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.。
2019中考数学《线段与角》专题复习考点讲解(含答案)
线段与角考点图解技法透析1.与直线、射线、线段有关的知识(1)直线:①直线的概念,一根拉得很紧的线,给我们以直线的形象,直线是直的,并且是向两方无限延伸的.②直线的表示方法:如图记作“直线AB”或“直线BA”;l 记作“直线l”.③直线的性质:过两点有且只有一条直线,即:两点确定一条直线.(2)射线:①射线的概念,直线上一点和它一旁的部分叫射线,这一点叫射线的端点.射线向一方无限延伸.②射线的表示方法:如图记作“射线AB”;l记作射线l,注意必须把表示端点的字母写在前面.(3)线段:①线段的概念:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点,线段不延伸.②线段的表示方法:如图记求“线段AB”或“线段BA”或“线段a”.③线段的性质:两点的所有连线中,线段最短.即两点之间,线段最短.(4)直线、射线、线段的区别与联系.①联系:直线、射线都可以看作是线段无限延伸得到的;反过来,射线和线段都是直线的一部分,线段可以看作是直线上两点及这两点间的部分,射线可以看作是直线上一点及其一旁的部分.②区别:如下表(5)线段的画法:①用直尺可以画出以A、B为端点的线段,画时不能向任何一方延伸.②“连接AB”的意义就是画出以A、B为端点的线段.③线段的延长线,如图,延长AB是指按由A向B的方向延长.延长BA是指按由B向A的方向延长.(也可说反向延长AB)(6)线段的比较①度量法:测量线段的长度后比较大小,②叠合法:用圆规把一条线段移到另一条线段上比较大小.(7)画一条线段等于已知线段,如:已知线段a,画一条线段AB=a,有两种画法:①先画射线AC,再在射线AC上截取AB=a.②先测量线段a的长度、再画一条等于这个长度的线段AB即可.(8)线段的中点及等分点的概念①如图①点O把线段AB分成相等的两条线段,AO与OB,点O叫线段AB的中点,显然有AO=OB=12AB(或AB=2AO=2OB)②如图②点O1,O2把线段AB分成相等的三条线段AO1=O1O2=O2B,则点O1,O2叫做线段AB 的三等分点,显然有:AO 1=O 1O 2=O 2B =13AB(或AB =3AO ,=3O 1O 2=3O 2B) ③如图③,点O 1,O 2,O 3把线段AB 分成相等的四条线段,则点O 1,O 2,O 3叫做线段AB的四等分点,显然有:AO 1=O 1O 2=O 2O 3=O 3B =14AB(或AB =4AO 1=4O 1O 2=4O 2O 3=4O 3B) (9)两点间的距离:连接两点间的线段的长度叫两点间的距离.2.与角有关的知识(1)角的概念:角既可以看成有公共端点的两条射线组成的图形,又可以看成是一条射线绕着端点从一个位置旋转到另一个位置所组成的图形.(2)角的四种表示方法:①一般可以用三个大写字母表示,且表示顶点的字母必须写在中间.如图①,记作∠AOB (或∠BOA );②当角的顶点处只有一个角时,可以用角的顶点字母来表示这个角,如图①可记作∠O ;③可以用一个小写希腊字母(如α、β、γ等)表示,如图②∠BOC 记作∠a ;④用一个阿拉伯数字表示如图②∠AOC 记作∠1.(3)特殊角及角的分类:①平角:一条射线绕着它的端点旋转,当转到与起始位置在同一条直线上时所成的角. ②周角:一条射线绕着它的端点旋转,当转到与起始位置重合时所成的角. ③直角:等于90°的角叫直角.④锐角:小于直角的角叫锐角.⑤钝角:大于直角而小于平角的角叫钝角.(4)角度制及角的画法:①角度制:以度、分,秒为单位的角的度量制,1°=60',1'=60".②借助三角尺和量角器画角.(5)角的和、差、倍、分的关系①每的和、差,如图所示:∠AOC =∠AOB +∠BOC ,∠AOB =∠AOC -∠BOC②角的倍、分:角平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,如图所示,若∠1=∠2,则OC 是∠AOB 的平分线,此时有∠1=∠2=12∠AOB (或∠AOB =2∠1=2∠2). 同理,还有角的三等分线、四等分线……等.(6)余角和补角:①定义:如果两个角的和等于90°,那么这两个角互为余角;如果两个角的和等于180°,那么这两个角互为补角.②性质:同角(或等角)的余角相等;同角(或等角)的补角相等(7)方位角:方位角是表示方向的角.具体表示时.是南(或北)在先,再说偏东(或偏西)3.钟表上有关角的问题(1)钟表上,相邻两个数字之间有5个小格,每个小格表示1分钟,如果与角度联系起来,每一小格对应6°;(2)秒针每分钟转过360°,分钟每分钟转过6°,时针每分钟转过0.5°.(3)时针与分针成一直线必须成180°的角,两针重合必须成0°的角,名题精讲考点1例1 平面内两两相交的6条直线,其交点个数最少为_______个,最多为_______个.【切题技巧】可以通过画图来探求,先从简单情形、特殊情形考虑,再进行归纳,得出结论.①当平面内两两相交的6条直线相交于一点,此时交点的个数最少为1个,②当平面内两两相交的5条直线相交于一点,第6条直线与前面的5条直线都相交,此时交点的个数为1+5=6个,③当平面内两两相交的4条直线相交于一点,第5条直线与前面的4条直线都相交,第6条直线再与前面的5条直线都相交,此时交点的个数为1+4+5=10个……,因此为使平面内两两相交的直线的交点个数最多,则要使任意两直线相交都产生新的交点,即任意两条直线相交都确定一个交点,且任意三条直线都不过同一点,于是可得交点数最多为:1+2+3+4+5=()1552+⨯=15(个)【规范解答】分别填1个,15个.(1)本例可进行如下推广:若平面内有两两相交的n条直线,其交点最少为1个,最多为1+2+3+…+(n+1)=12n(n-1)个交点;(2)一般地,平面内n条直线两两相交,且任意三条直线都不共点,那么这些直线将平面分成12(n+1)n+1个互不重叠的部分.(3)-般地,如果一条直线上有n个点,那么这条直线上的不同线段的条数为(n-1)+(n-2)+…+2+1=12n(n-1)条;共有2n条不同的射线.【同类拓展】1.如图,数一数图中共有多少条不同的线段,多少条不同的射线?考点2 线段长度的计算例2 如图C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=42,求PQ的长.【切题技巧】先根据比例把AC、CD、DE、EB用含x的代数式表示,再利用线段的和差及线段的中点的意义可得到相应的方程,从而求得PQ的长.【规范解答】∴【借题发挥】几何问题本身是研究图形的性质和数量关系,准确地画出图形,能使问题中各个量之间的关系直观化.本题的分析要着眼于找出未知线段的联系,使未知向已知转化,求线段的长度要充分利用线段的和差与线段的中点、等分点的意义,其解题方法与途径不是唯一的,需要我们根据题意灵活运用不同方法解决实际问题.【同类拓展】2.已知三条线段a、b、c在同一条直线上,他们有共同的起点,a 的终点是b的中点,c的中点是b的终点,且a+b+c=7cm,求a、b、c的长.考点3 角的个数及角的度数的计算例3 如图已知OA、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.(1)若∠AOD=70°,∠MON=50°求∠BOC的大小;(2)若∠AOD=α;∠MON=β,求∠BOC的大小(用含α、β的式子表示).利用角的平分线性质,角的和、差之间的转化,先找出∠AOD,∠MON与∠BOC之间的数量关系,为方便角的表示,可用含α、β的式子表示所求的角,也可设未知数,把几何问题代数化,通过整体变形、列方程,从而确定出角的大小.【规范解答】【借题发挥】(1)对于求角的度数的计算,通常有两种思路:一是根据各个量之间的关系,用已知量来表示未知量,直接求未知量;二是通过设辅助未知数,把几何问题代数化,根据图形中角的相等关系列方程或方程组,从而求解,应注意挖掘题目中的隐含的条件,适当转换.(2)一般地,同一平面内,在平角∠AOB的内部引以O为端点的(n-1)条射线,则图中共有:n+(n-1)+(n-2)+…+3+2+1=12n(n+1)个小于平角的角.【同类拓展】 3.如图,∠AOB=100°,OM平分∠AOC,ON平分∠BOC,则∠MON=_______.考点4 钟表上有关的角度问题例4 时钟在下午4点至5点的什么时刻:(1)分针和时针重合?(2)分针和时针成一条直线?(3)分针和时针成45°角?【切题技巧】4点整时针已转过4大格,每大格30°,这时可看成时针在分针前面120°,若设所需时间为x分钟,则有6x-12x的值等于1200时,两针就重合;当时针与分针之间的角度为1200+180°时两针成一条直线;当时针与分针之间的角度差等于120°-45°(时针在前)或120°+45°(分针在前)时,两针成45°角.【规范解答】【借题发挥】钟表上时针和分钟问题实质是数学中的追及问题,钟面上有12大格,60小格,每个大格为30°的角,每个小格为6°的角.如果把单位时间内,分针和时针转过的度数当作是它们的“速度”,那么分针的速度为6°/分,时针的速度为0.5°/分,因此,分针速度是时针速度的12倍.在时针与分针的转动过程中,总是分针追及时针,然后超过时针又转化为追及时针,【同类拓展】4.王老师在活动课上为学生们讲数学故事,他发现故事开始时挂钟上的时针和分针恰好成90°角,这时是7点多;故事结束时两针恰好也是90°角,这时是8点多,他还发现,讲故事中,两针成90°角的有趣图形还出现过一次,求王老师讲故事所花的时间多少分?考点5 与线段有关的实际问题例5 摄制组从A市到B市有1天的路程,计划上午比下午多走100千米到C市吃中饭,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C市到这里路程的二分之一就到达目的地了,问A、B两市相距多少千米?【切题技巧】题目中所给条件只有路程,而没有给出时间与速度,所以可以画出线段表示各段路程,借助图形,思考它们之间的数量关系,从而利用形数结合思想解决问题.【规范解答】如图,设小镇为D,傍晚汽车E处休息,令AD=x,则AC=3x,DE=400,CE=400-2x ED=12(400-2x)=200-x,于是有:AB=AC+CE+EB=3x+400-2x+200-x=600(km) 答:A、B两市相距600千米,【借题发挥】利用“线段图”将实际问题转化为几何问题,借助图形,利用“形数结合”思想解决实际问题是数学竞赛中的常用方法,如:A、B、C、D、E、F六支足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E五队已分别比赛了5、4、3、2、1场球,则还没有与B队比赛的球队是哪支队?此题用算术或代数方法求解容易陷入困境,此时可考虑用6个点表示A、B、C、D、E、F这6支足球队,若两队已赛过一场、就在相应的两个点之间连一条线,这样用“线段图”来辅助解题,形象直观,如图所示,则还没有与B队比赛的球队是E队.【同类拓展】5.某公司员工分别在A、B、C三个住宅区,A区有30个,B区有15人,C区有10人,三个区在同一条直线上.位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在 ( )A.A区B.B区C.C区D.A、B两区之间参考答案1.(1)21(条) (2)14(条) 2.1cm,2cm,4cm. 3.50°4.1小时零5511分钟. 5.A2019-2020学年数学中考模拟试卷一、选择题1.如图,一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸盒的A点沿纸盒面爬到B点,那么它所行的最短路线的长是( )+8)cm B.10cm C.14cm D.无法确定2.2018年全国消协组织创新维权手段,聚焦维权难点,消费维权能力和水平不断提.2018年,全国消协组织共受理消费者投诉76.2万件,解决55.6万件,为消费者挽回经济损失约9.8亿元;其中,9.8亿可用科学记数法表示为()A.9.08×108B.9.8×108C.0.98×109D.0.98×1010 3.2019年3月3日至3月15日,中国进入“两会时间”,根据数据统计显示,2019年全国两会热点传播总量达829.8万条,其中数据“829.8万”用科学记数法表示为()A.8.298×107B.82.98×105C.8.298×106D.0.8298×1074.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数kyx(k≠0)的图象恰好经过点B',M,则k=()A.4B.6C.9D.12 5.下列立体图形中,主视图是三角形的是()A. B. C. D.6.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为27.下列运算中,正确的是( )A .(﹣x )2•x 3=x 5B .(x 2y )3=x 6yC .(a+b )2=a 2+b 2D .a 6+a 3=a 28.如图,点E 、F 是正方形ABCD 的边BC 上的两点(不与B 、C 两点重合),过点B 作BG ⊥AE 于点G ,连接FG 、DF ,若AB =2,则DF+GF 的最小值为( )A. ﹣1B.C.3D.49.关于x 的一元二次方程(m-5)x 2+2x+2=0有实根,则m 的最大整数解是( )A .2B .3C .4D .510.如图,在平面直角坐标系中,点A 的坐标为()0,1,点B 是x 轴正半轴上一点,以AB 为边作等腰直角三角形ABC ,使BAC=90∠︒,点C 在第一象限。
2019届中考数学综合题型专题复习卷:三角形
三角形一、单选题1.如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有()(1)△ABC是等腰三角形;(2)BF=AC;(3)BH:BD:BC=1::;(4)GE2+CE2=BG2.A.1个B.2个C.3个D.4个【答案】C2.如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为( )A.2B.4C.D.【答案】B3.如图,,,,点D、E为BC边上的两点,且,连接EF、BF 则下列结论:≌;≌;;,其中正确的有( )个.A.1B.2C.3D.4【答案】D4.如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P,记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A.B.C.D.【答案】A5.如图,已知AD为△ABC的高线,AD=BC,以AB为底边作等腰Rt△ABE,连接ED,EC,延长CE交AD于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③B.①②④C.①②③④D.①③④【答案】C6.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.4【答案】D7.已知等边△ABC中,在射线BA上有一点D,连接CD,并以CD为边向上作等边△CDE,连接BE和AE.试判断下列结论:①AE=BD;②AE与AB所夹锐夹角为60°;③当D在线段AB或BA延长线上时,总有∠BDE-∠AED=2∠BDC;④∠BCD=90°时,CE2+AD2=AC2+DE2 .正确的序号有()A.①②B.①②③C.①②④D.①②③④【答案】C8.如图,在△ABC中,AB=AC,∠BAC=120°,D,E是BC上的两点,且∠DAE=30°,将△AEC绕点A顺时针旋转120°后,得到△AFB,连接DF.下列结论中正确的个数有()①∠FBD=60°;②△ABE∽△DCA;③AE平分∠CAD;④△AFD是等腰直角三角形.A.1个B.2个C.3个D.4个【答案】B9.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.B.C.2 D.【答案】A11.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值【答案】D12.如图,点D 是等腰直角△ABC 腰BC 上的中点,点B 、B′ 关于AD 对称,且BB′ 交AD 于F,交AC 于E,连接FC 、AB′,下列说法:①∠BAD=30°;②∠BFC=135°;③AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B13.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【答案】A14.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④【答案】B15.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对B.3对C.4对D.5对【答案】C二、填空题16.如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第个等边三角形的边长等于__________.【答案】17.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为__.(用含正整数n的代数式表示)【答案】()2n﹣2×18.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=_____.【答案】19.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC 是菱形,则△OAE的面积为________.【答案】20.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD 分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.【答案】①②④.21.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
2019届中考数学综合题型专题复习卷:最值问题
【答案】6
35.如图,M、N 是正方形 ABCD 的边 CD 上的两个动点,满足
,连接 AC 交 BN 于点 E,连
接 DE 交 AM 于点 F,连接 CF,若正方形的边长为 6,则线段 CF 的最小值是______.
【答案】 36.如图,在矩形 ABCD 中,AB=4,AD=3,矩形内部有一动点 P 满足 S△PAB= S 矩形 ABCD,则点 P 到 A、B 两点的距离之和 PA+PB 的最小值为______.
图 2 中的图案外轮廓周长是_____;
在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____. 【答案】 14 21 27.如图,在▱ABCD 中,AD=7,AB=2 ,∠B=60°.E 是边 BC 上任意一点,沿 AE 剪开,将△ABE 沿 BC 方向平移到△DCF 的位置,得到四边形 AEFD,则四边形 AEFD 周长的最小值为_____.
小正方体最少有( )
A.4 个 B.5 个 C.6 个 D.7 个
【答案】B
8.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运
动员起跳后的竖直高度(单位: )与水平距离(单位: )近似满足函数关系
( ).下
图记录了某运动员起跳后的 与 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞
A. B.1 C.
D.2
【答案】B
13.抛物线 C1:y1=mx2-4mx+2n-1 与平行于 x 轴的直线交于 A、B 两点,且 A 点坐标为(-1,2),请结
合图象分析以下结论:①对称轴为直线 x=2;②抛物线与 y 轴交点坐标为(0,-1);③m> ;④若抛物
中考数学总复习【题型十 函数的实际应用】
2. (2019·青岛)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的 销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式; (2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使 销售该商品每天获得的利润w(元)最大?最大利润是多少? (3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为 多少件?
品种 原运费 现运费
A
B
45
25
30
20
(1)求每次运输的农产品中A,B产品各有多少件? (2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送 的产品总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件 数增加后,每次运费最少需要多少元?
解:(1)设每次运输的农产品中 A 产品有 x 件, 每次运输的农产品中 B 产品有 y 件, 根据题意得:4350xx++2250yy==11220000,-300,解得:xy==1300,, 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件;
解:(1)y=0.3x+0.4(2500-x)=-0.1x+1000, 因此 y 与 x 之间的函数表达式为 y=-0.1x+1000; (2)由题意得0x.≤252x5+000,.5(2500-x)≤1000, ∴1000≤x≤2500, 又∵k=-0.1<0,∴y 随 x 的增大而减小. ∴当 x=1000 时,y 最大,此时 2500-x=1500, 因此,生产甲产品 1000 吨,乙产品 1500 吨时,利润最大.
∵a为整数, ∴共有51种购买方案, ∵w=-5a+3000, ∴当a=100时,w取得最小值, 此时w=2500,150-a=50, 答:有51种购买方案,经费最少的方案是购买A种文具100件, B种文具50件,最低费用为2500元.
2019届中考数学综合题型专题复习卷:方程(组)专题(含精品解析)
方程(组)专题一、单选题1.若x=4是分式方程的根,则a的值为A.6B.-6C.4D.-4【答案】A2.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【答案】A3.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种【答案】B4.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3 D.m<3且m≠2【答案】D5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【答案】C6.2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x支,则可列方程为()A.B.C.D.【答案】B7.若2-是方程x2-4x+c=0的一个根,则c的值是()A.1 B.3-C.1+D.2+【答案】A8.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【答案】A9.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2 B.﹣1或2 C.1或2 D.0或﹣2【答案】D10.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为A.B.C.D.【答案】A11.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A.﹣1 B.0 C.1 D.2【答案】B12.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( ) A.1种B.2种C.3种D.4种【答案】B13.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360 B.480 C.600 D.720【答案】C14.已知关于x的一元二次方程x2-2x+k-1=0有两个不相等的实数根,则实数的取值范围是A.k≤2B.k≤0C.k<2D.k<0【答案】C15.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m 的值是()A.2 B.﹣1 C.2或﹣1 D.不存在【答案】A16.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【答案】A17.阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.B.C.D.方程组的解为【答案】C二、填空题18.若关于x的一元二次方程有两个相等的实数根,则的值为__.【答案】19.已知x1,x2是一元二次方程x2-2x-1=0的两实数根,则的值是__.【答案】620.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的__倍.【答案】621.若关于x的方程无解,则m的值为__.【答案】-1或5或22.已知实数m,n满足,,且,则= .【答案】.23.为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是_____(商品的销售利润率=×100%)【答案】24.已知是关于x,y的二元一次方程组的一组解,则a+b=_____.【答案】525.已知关于的方程有两个相等的实根,则的值是__________.【答案】26.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【答案】27.若是一元二次方程的两个实数根,则=__________.【答案】-3三、解答题28.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:购买数量(件购买总费用(元根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.【答案】(1)A种商品的单价为20元,B种商品的单价为15元;(2) 当a=8时所花钱数最少,即购买A商品8件,B商品4件.29.如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x表示什么,庆庆同学所列方程中的y表示什么;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.【答案】(1)甲队每天修路的长度;甲队修路400米所需时间;(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;(3)甲队每天修路的长度为40米.30.某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?【答案】(1)A型芯片的单价为26元/条,B型芯片的单价为35元/条;(2)80.31.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.【答案】(1)-2,1;(2)x=3;(3)4m.32.小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.【答案】(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件33.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.34.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1) 50千克(2) 12.535.已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.【答案】(1)见解析;(2)m=﹣1或m=3.36.已知关于x的一元二次方程有实数根.求m的取值范围;当时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.【答案】;该矩形外接圆的直径是37.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【答案】(1)0.3;(2)60家;(3)Q=20.5;a=9.5.38.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?【答案】(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
专题01 实数(第一篇)-2019年中考数学母题题源系列(原卷版)
【母题来源一】【2019•河北】规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作A.+3 B.-3 C.-13D.+13【答案】B【解析】“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作-3.故选B.【名师点睛】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.【母题来源二】【2019•吉林】如图,数轴上蝴蝶所在点表示的数可能为A.3 B.2 C.1 D.-1【答案】D【解析】数轴上蝴蝶所在点表示的数可能为-1,故选D.【名师点睛】本题考查了数轴、根据数轴-1是解题关键.【母题来源三】【2019•安顺】2019的相反数是A.-2019 B.2019 C.-D.【答案】A【解析】2019的相反数是-2019,故选A.【名师点睛】主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【母题来源四】【2019•河南】-12的绝对值是专题01 实数A.-12B.12C.2 D.-2【答案】B【解析】|-12|=12,故选B.【名师点睛】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.【母题来源五】【2019•桂林】23的倒数是A.32B.-32C.-23D.23【答案】A【解析】23的倒数是:32.故选A.【名师点睛】此题主要考查了倒数,正确把握定义是解题关键.【母题来源六】【2019•安徽】在-2,-1,0,1这四个数中,最小的数是A.-2 B.-1 C.0 D.1【答案】A【解析】根据有理数比较大小的方法,可得-2<-1<0<1,∴在-2,-1,0,1这四个数中,最小的数是-2.故选A.【名师点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【命题意图】这类试题主要考查有理数的有关知识,包括正数和负数、数轴、相反数、绝对值、倒数、有理数的比较大小等.【方法总结】1.正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如5、7、50、+14200等;负的量用小学学过的数前面放上“–”(读作负)号来表示,如–3、–8、–47、–4745等.2.相反数(1)注意:①相反数是成对出现的;②相反数只有符号不同,若一个为正,则另一个为负;③0的相反数是它本身;相反数为本身的数是0.(2)多重符号的化简方法:①在一个数前面添加一个“+”,所得的数与原数相等;②在一个数前面添加一个“–”,所得的数是原数的相反数;③对于有三个或三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”,都可以把“+”去掉,其次要看“–”的个数,当“–”的个数为偶数时,结果取“+”,当“–”的个数为奇数时,结果取“–”. 3.绝对值 即:(0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩或 (0)(0)aa a a a ≥⎧=⎨-<⎩.【母题来源七】【2019•天津】计算(-3)×9的结果等于 A .-27B .-6C .27D .6【答案】A【解析】(-3)×9=-27,故选A . 【名师点睛】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.【母题来源八】【2019•贵港】计算(-1)3的结果是A .-1B .1C .-3D .3【答案】A【解析】(-1)3表示3个(-1)的乘积,所以(-1)3=-1.故选A .【名师点睛】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.【母题来源九】【2019•北京】4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为 A .0.439×106B .4.39×106C .4.39×105D .439×103【答案】C【解析】将439000用科学记数法表示为4.39×105.故选C.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十】【2019•安徽】2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【答案】B【解析】根据题意161亿用科学记数法表示为1.61×1010.故选B.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十一】【2019•河南】成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C.【名师点睛】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.【母题来源十二】【2019•聊城】计算:115()324--÷=__________.【答案】2 3 -【解析】原式=542()653-⨯=-,故答案为:23-.【名师点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序.【命题意图】这类试题主要考查有理数的运算,包括有理数的加减法、乘除法、乘方、混合运算、科学记数法等.【方法总结】1.有理数的加法有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得0.2.有理数的减法对于有理数的减法运算,应先转化为加法,再根据有理数加法法则计算,即加法与减法是互逆运算.3.有理数的乘法两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0.4.有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a b÷=1ab⨯(b≠0);(2)在进行除法运算时,若能整除,则根据“两数相除,同号得正,异号得负,并把绝对值相除”进行计算;若不能整除,则根据“除以一个不等于0的数,等于乘以这个数的倒数”进行计算;5.有理数的混合运算有理数的乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果.6.有理数的乘方(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数,0的任何正整数次幂都是0.7.科学记数法科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n 的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10−n的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零).【母题来源十三】【2019•攀枝花】用四舍五入法将130542精确到千位,正确的是A.131000 B.0.131×106C.1.31×105D.13.1×104【答案】C【解析】130542精确到千位是1.31×105.故选C.【名师点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.【母题来源十四】【2019•广东】的结果是A.-4 B.4 C.±4 D.2【答案】B2416.故选B.【名师点睛】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.【母题来源十五】【2019•烟台】-8的立方根是A.2 B.-2 C.±2 D.-22【答案】B【解析】∵-2的立方等于-8,∴-8的立方根等于-2.故选B.【名师点睛】本题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【母题来源十六】【2019•邵阳】下列各数中,属于无理数的是A.13B.1.414 C2D4【答案】C4=22是无理数,故选C.【名师点睛】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.【母题来源十七】【2019•聊城】2的相反数是A.-22B.22C.2D2【答案】D【解析】,故选D.【名师点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.【母题来源十八】【2019•广东】实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>b B.|a|<|b| C.a+b>0 D.ab<0【答案】D【解析】由图可得:-2<a<-1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;ab<0,故D正确,故选D.【名师点睛】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.【母题来源十九】【2019•扬州】下列各数中,小于-2的数是A.5B.3C.2D.-1【答案】A【解析】比-2小的数是应该是负数,且绝对值大于2的数,分析选项可得,5-2<3<2-1,只有A符合.故选A.【名师点睛】本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【母题来源二十】【2019•天津】33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D【解析】∵25<33<3625333633.故选D.【名师点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.【母题来源二十一】【2019•无锡】49的平方根为__________.【答案】2 3±【解析】49的平方根为23=±.故答案为:23±.【名师点睛】本题考查了平方根的知识,注意一个正数有两个平方根,它们互为相反数.【母题来源二十二】【2019•河南】12-=__________. 【答案】32142-=2-12=32.故答案为:32. 【名师点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.【母题来源二十三】【2019•北京】计算:|3-(4-π)0+2sin60°+(14)-1. 【解析】原式31+2×323-3+4=3+23 【名师点睛】此题主要考查了实数运算,正确化简各数是解题关键.【命题意图】这类试题主要考查实数的有关知识,包括平方根、立方根、无理数、实数的比较大小、无理数的估算、实数的运算等. 【方法总结】 1.精确度与近似数近似数与准确数的接近程度通常用精确度来表示,近似数一般由四舍五入取得,四舍五入到哪一位,就说这个近似数精确到哪一位. 2.平方根22()(0)(0)()000a a a a a a a a a ⎧⎪⎪⎪=≥⎨≥⎧==⎨-<⎩只有非负数才有平方根,的平方根和算术平方根都义是意 3.立方根3意义a a==⎪⎩4.实数大小的比较实数大小的比较可以利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法.除此之外,常用的方法有“差值比较法”适用于比较任何两数的大小;“商值比较法”只适用于比较两个正数的大小;“平方法”、“倒数法”常用于比较二次根式的大小;“底数比较法”、“指数比较法”常用于比较幂的大小. 5.实数的运算法则(1)实数的混合运算中,在同一个式子里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.(2)熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.注意运算顺序,分清先算什么,再算什么.1.【河北省张家口市桥西区2019届九年级中考6月模拟】中国人最早使用负数,下列各数中是负数的是 A .|1|--B .(1)--C .0()-πD .2(1)-2.【2019年浙江省宁波市北仑区中考数学模拟】2的相反数是 A .12B .-12 C .±12D .-23.【河南省新乡市2019届九年级第二次全真模拟】-2的绝对值是 A .-2B .12-C .12D .24.【福建省福州市2019年初中毕业班适应性数学试卷】已知A 、B 、C 三点在数轴上从左向右排列,且AC =3AB =6,若B 为原点,则点C 所表示的数是 A .-6B .2C .4D .65.【2019年湖北省孝感市孝南区中考数学二模】给出-2,-1,0,13这四个数,其中最小的是 A .13B .0C .-2D .-1【名师点睛】本题考查了有理数大小的比较法则,其关键是负数的绝对值越大,其本身越小. 6.【2019年福建省南平市六校联考中考数学模拟】计算-6+4的结果为 A .10B .-10C .2D .-27.【广东省东莞市2019届九年级中考数学二模】13-的倒数 A .13B .3C .-3D .30.⋅-8.【2019年河南省第二届名校联盟中考数学5月份模拟】2018年8月31日,中国最新一代芯片--麒麟980来了,它的诞生打破了欧美对芯片行业的垄断,该芯片堪称世界最强“心”,在比指甲盖稍大一点的芯片里安装了69亿颗晶体管,数据”69亿“用科学记数法表示为 A .6.9×109B .6.9×108C .69×108D .6.9×10109.【2019年广西贵港市中考数学三模】6.8×105这个数的原数是 A .68000B .680000C .0.000086D .-68000010.【河北省石家庄市新华区2019届九年级毕业生教学质量检测】近似数1.23×103精确到A .百分位B .十分位C .个位D .十位11.【浙江省杭州市下城区2019届九年级二模】16的平方根为A .±4B .±2C .+4D .212.【2019年广东省广州市南沙区中考数学一模】8的立方根等于A .-2B .2C .-4D .413.【2019年重庆市江北新区联盟中考数学一模】下列四个数中是无理数的是A .3B .3πC .3.14159D 914.【2019年河南省第二届名校联盟中考数学5月份模拟】下面四个实数中最大的是A 5B .0C .-2D .115.【天津市河西区201957的值在A .5和6之间B .6和7之间C .7和8之间D .8和9之间16.【湖北省武汉市部分学校20199__________. 17.【福建省厦门市双十中学2019届九年级3月月考】计算:|-3|+11()2=__________. 18.【2019年广东省深圳市罗湖区中考数学二模】计算:(12)-2-4cos30°+(-2)012.。
2019年中考数学《一次函数的实际应用》总复习训练含答案解析
一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A0.5千克0.2千克B0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D总计A200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200170乙店160150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y 与x的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b +15.b=2.(4分) 故当x >10时,y=2x ﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意; 假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意; ∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x 吨,y 吨,则甲用水的水费是(2x ﹣5)元,乙用水的水费是(2y ﹣5)元, 则(8分) 解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?每千克饮料果汁含量 果汁 甲 乙A 0.5千克 0.2千克 B0.3千克 0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30150=178∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10103503020850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x ,y 的值.(2)设生产甲种产品用x 分,则生产乙种产品用(25×8×60﹣x )分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60﹣x )分.则生产甲种产品件,生产乙种产品件.(5分)∴w 总额===0.1x +1680﹣0.14x =﹣0.04x +1680(7分)又,得x ≥900,由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。
2019年中考数学专题复习第1讲《实数及有关概念》(含详细参考答案)
2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。
2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。
3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。
4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。
(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。
知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。
2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。
3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。
知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。
2019年初三数学中考专题复习 尺规作图含答案
2019年初三数学中考专题复习尺规作图含答案一、单选题1.用尺规作图,不能作出唯一直角三角形的是()A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是()A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。
【怀化专版】2019届中考数学总复习试题:专题1_阴影部分图形的有关计算_含答案
第三编 综合专题闯关篇,中考重难点突破)求阴影部分图形面积【例1】(2015怀化一模)如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB =2,则图中阴影部分的面积为________.【解析】要求不规则图形的面积,可转化成规则图形面积的和差关系求解.如解图,连接OA ,OB ,OC ,则旋转角为∠AOC=90°,且∠OCD=∠OAD,又∵∠BAD =60°,四边形ABCD 是菱形,∴∠CBA =120°,∠BCD =60°,∵∠CBA +∠BCO+∠COA+∠OAB=360°,∴∠OCD =∠OAD=15°,∴∠BAO =∠BCO=75°,∴∠AOB =45°,由题意知△ABD 是等边三角形,作BD 边上的高AE ,∵AB =2,∴AE =3,OE =AE =3,∴OD =3-1,∴S △AOD =12×(3-1)×3=32-32.根据旋转的特征可知S 阴影部分=8S △AOD=8×(32-32)=12-4 3.【学生解答】12-4 3【点拨】求阴影部分面积往往都是不规则图形,所以把不规则的图形的面积问题转化为规则图形的面积是解决这类问题的主要思路,以下介绍几种常用的方法:1.和差法:不改变图形的位置,用规则图形面积的和或差表示,经过计算即得所求图形面积;2.移动法:通过平移、旋转、割补、等体积变换等将图形的位置进行移动求解;3.代数法:借助于列方程(组),通过解方程求解.本题则是通过作辅助线把不规则图形转化为规则图形,利用和差关系算出部分阴影面积,进而计算出全部阴影图形的面积.1.(2016怀化二模)如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF ,EG 分别交BC ,DC 于点M ,N ,若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( D )A .23a 2B .14a 2C .59a 2D .49a 2(第1题图)(第2题图)2.(2015泰安中考)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为( A ) A .(π2-1)cm 2 B .(π2+1)cm 2C .1 cm 2D .π2cm 23.(2016常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是__3π__.(第3题图)(第4题图)4.(2016毕节中考)如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为__π2-1__.5.(2015绵阳中考)如图,⊙O 的半径为1 cm ,正六边形ABCDEF 内接于⊙O,则图中阴影部分面积为__π6__cm 2.(结果保留π)(第5题图)(第6题图)6.(2015广东中考)如图,△ABC 三边的中线AD ,BE ,CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是__4__.7.(2016连云港中考)如图,⊙P 的半径为5,A ,B 是圆上任意两点,且AB =6,以AB 为边作正方形ABCD(点D ,P 在直线AB 两侧).若AB 边绕点P 旋转一周,则CD 边扫过的面积为__9π__.(第7题图)(第8题图)8.如图所示,正六边形ABCDEF 内接于⊙O,若⊙O 的半径为4,则阴影部分的面积等于__163π__.9.(2016鹤城模拟)如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,分别以AB ,AC ,BC 为边在AB 的同侧作正方形ABEF ,ACPQ ,BDMC ,四块阴影部分的面积分别为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4等于__18__.(第9题图)(第10题图)10.如图,在菱形ABCD 中,AB =1,∠DAB =60°,把菱形ABCD 绕点A 顺时针旋转30°得菱形AB′C′D′,其中点C 的运动路径为CC ︵′,则图中阴影部分的面积为42.求阴影部分图形的周长【例2】(2016原创)如图,将等腰直角△ABC 沿斜边BC 方向平移得到△A 1B 1C 1,若AB =3,△ABC 与△A 1B 1C 1重叠部分的面积为2,则重叠部分图形的周长为________. 【解析】∵△ABC 为等腰直角三角形,AB =3,∴S △ABC =3×3×12=92,又∵△A BC 与△HB 1C 相似,∴S △ABC ∶S 阴影=(AB B 1H)2,∴B 1H =2,在△HB 1C 中,B 1C =2B 1H =22,∴△B 1HC 周长为2+2+22=4+2 2. 【学生解答】4+2 2【点拨】此类问题涉及到的阴影部分图形一般为不规则的图形,解决的方法有以下三种:1.在规则图形中找与所求图形存在数量关系的边,利用勾股定理或锐角三角函数求得线段长度,有时会涉及到弧长;2.将所求图形进行平移、拼接,转化为规则图形的和差关系求解;3.构造直角三角形,利用直角三角形边角关系求解.此题阴影部分为规则的三角形,且已知直角三角形的边与阴影部分的面积,首先应考虑运用相似三角形相似比及勾股定理,求出阴影部分图形的边长,进而计算出周长.11.(2016沅陵模拟)如图,在矩形ABCD 中,AB =12 cm ,BC =6 cm ,点E ,F 分别在AB ,CD 上,将矩形ABCD 沿EF 折叠,使点A ,D 分别落在矩形ABCD 外部的点A 1,D 1处,则整个阴影部分图形的周长为( B )A .72 cmB .36 cmC .18 cmD .30 cm(第11题图)(第12题图)12.(2017怀化中考预测)如图,矩形花坛ABCD的周长为36 m,AD=2AB,在图中阴影部分种植郁金香,则种植郁金香部分的周长约为( B)A.18.84 m B.30.84 mC.42.84 m D.48 m13.(2016溆浦模拟)把四张大小相同的长方形卡片(如图①)按图②、图③两种方式放在一个底面为长方形(长比宽多 6 cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C2,图③中阴影部分的周长为C3,则( B)A.C2=C3B.C2比C3大12 cmC.C2比C3小6 cm D.C2比C3大3 cm14.如图所示,两个面积都为6的正六边形并排摆放,它们的一条边相互重合,那么图中阴影部分的面积为( B)A.2 B.3 C.4 D.6,(第14题图)) ,(第15题图)) 15.如图,在△ABC中,AB=AC,AD是∠BAC的平分线,若BC=16,AB=10,则图中阴影部分的面积是( B)A.12 B.24 C.36 D.4816.如图,已知正方形ABCD的对角线长为22,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为__8__.17.(2016洪江模拟)如图,将边长为2的正方形ABCD沿对角线AC平移,使点A移至线段AC的中点A′处,得到新正方形A′B′C′D′,则新正方形与原正方形重叠部分四边形A′NCM的周长是__.(第17题图)(第18题图)18.(2016芷江模拟)如图,两个全等的正六边形ABCDEF,PQRSTU,其中点P位于正六边形ABCDEF的中心,如果它们的边长均为1,PU,PQ与FE,CD的交点为M,N,且PM=0.6,则阴影部分的周长是__3.2__.19.(2016原创)如图,菱形花坛ABCD的周长为36 cm,∠B=60°,其中由两个正六边形拼接而成的图形部分种花,其余“四个角”是绿草地,则种花部分的图形的周长(不计拼接重合的边)为__33__cm.(第19题图)(第20题图)20.如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为.21.(2016黄石中考)如图所示,正方形ABCD对角线AC所在的直线上有一点O,OA=AC=2,将正方形绕点O顺时针旋转60°,在旋转过程中,正方形扫过的面积是__2π+2__.,(第21题图)) ,(第22题图))22.(2016白银模拟)如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__12__.。
2019年中考数学总复习—应用题经典题型汇总(附答案)
1、某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?2、水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?3、某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B 商品所需要的甲、乙两种原料及生产成本如下表所示.生产成本(单位:元)甲种原料(单位:千克)乙种原料(单位:千克)A商品 3 2 120B商品 2.5 3.5 200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?4、某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5、某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元,1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?6、一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?7、某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?8、大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?9、为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?10、小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.11、某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.12、为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?13、为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)14 16 28合理用地(m2/棵)0.4 1 0.414、某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a=;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.15、某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?16、某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?17、空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.18、一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义,并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500 km.19、为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:甲种客车乙种客车载客量(人/辆)30 42租金(人/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1) 参加此次研学旅行活动的老师和学生各有多少人?(2) 既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3) 你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.20、随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养天的总成本为,放养天的总成本为元.设这批小龙虾放养天后的质量为,销售单价为元/,根据往年的行情预测,与的函数关系为,与的函数关系如图所示.(1)设每天的养殖成本为元,收购成本为元,求与的值;(2)求与的函数关系式;(3)如果将这批小龙虾放养天后一次性出售所得利润为元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)21、某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?22、如图1,已知矩形AOCB,,,动点P从点A出发,以的速度向点O运动,直到点O为止;动点Q同时从点C出发,以的速度向点B运动,与点P同时结束运动.点P到达终点O的运动时间是______s,此时点Q的运动距离是______cm;当运动时间为2s时,P、Q两点的距离为______cm;请你计算出发多久时,点P和点Q之间的距离是10cm;如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.参考答案1、解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.2、解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米3、解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).4、解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得:x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.6解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.7解:(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据题意可得,解得,答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,根据题意可得,解得75<m≤78,∵m为整数,∴m的值为76、77、78,∴进货方案有3种,分别为:方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W随m的增大而增大,且75<m≤78,∴当m=78时,W最大,W最大值为1390,答:当m=78时,所获利润最大,最大利润为1390元.8解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240.∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.9解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x 米,根据题意得:﹣=3,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x=×40=60.答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤145,解得:m≥10.答:至少安排甲队工作10天.10解:(1)结合题意和图象可知,线段CD为小玲路程与时间函数图象,折现O﹣A﹣B为为小东路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为2000÷10=200m/s故答案为:4000,200(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x自变量x的范围为0≤x≤(3)由图象可知,两人相遇是在小玲改变速度之前∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.11解:(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,33≤x≤60①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.12解:(1)设y与x之间的函数关系式为y=kx+b,,得,即y与x之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴当x=120时,w取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.13解:(1)y=x(36﹣2x)=﹣2x2+36x.(2)由题意:﹣2x2+36x=160,解得x=10或8.∵x=8时,36﹣16=20<18,不符合题意,∴x的值为10.(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,∴x=9时,y有最大值162,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,此时a=2,需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=162.8>162,∴这批植物不可以全部栽种到这块空地上.14解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.15解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15故答案为:20,15(2)设y=kx+b把(2,15),(5,120)代入解得∴y=35x﹣55(3)由图2可知当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55吨∴再过1天装满第二节车厢16(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.17解:(1)设AD=x米,则AB=依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=当25+≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.18(1)80,120;(2)C的实际意义是快车到达乙地,点C坐标为(6,480);(3)当x为或时,两车之间的距离为500 km.19解:(1)设老师有人,学生有人,依题意得,解得答: 此次参加研学旅行活动的老师有16人,学生有284人.(2)8.(3)设乙种客车租辆,则甲种客车租辆.租车总费用不超过3100元,解得.为使300名师生都有车座,,解得为整数)共有3 种租车方案:方案一:租用甲种客车3 辆,乙种客车5 辆,租车费用2900元;方案二:租用甲种客车2 辆,乙种客车6 辆,租车费用3000元;方案三:租用甲种客车1辆,乙种客车7 辆,租车费用3100元;最节省费用的租车方案是:租用甲种客车3 辆,乙种客车5 辆.20(1)依题意得,解得(2)当时,设,由图象得:,解得∴当时,设,由图象得:,解得∴综上,(3)当时,∵,∴当时,当时,∵,抛物线开口向下,∴当,.∵∴当时,取得最大值,该最大值为元.21解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.22解:四边形AOCB是矩形,,动点P从点A出发,以的速度向点O运动,,此时,点Q的运动距离是,故答案为,;如图1,由运动知,,,过点P作于E,过点Q作于F,四边形APEB是矩形,,,,根据勾股定理得,,故答案为;设运动时间为t秒时,由运动知,,,同的方法得,,,点P和点Q之间的距离是10cm,,或;的值是不会变化,理由:四边形AOCB是矩形,,,,,直线AC的解析式为,设运动时间为t,,,,,,解析式为,联立解得,,,,是定值.先求出OA,进而求出时间,即可得出结论;构造出直角三角形,再求出PE,QE,利用勾股定理即可得出结论;同的方法利用勾股定理建立方程求解即可得出结论;先求出直线AC解析式,再求出点P,Q坐标,进而求出直线PQ解析式,联立两解析式即可得出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练(一)
1.(黑龙江中考·12·2017)如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE =FD ,连接BE 、CF 、BD ,CF 与BD 交于点G ,连接AG 交BE 于点H ,连接DH ,下列结论正确的个数是( ) ①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是252−. A .2 B . 3
C . 4
D . 5
2.(深圳一模·16·2017)如图,如图,10个边长为1的正方形如图摆放 在平面直角坐标系中,经过原点的一条直线l 将这10个正方形分成面积 相等的两部分,则该直线l 的解析式为___________________.
3(深圳一模·22·2017)已知,如图(1)P AB 为⊙O 的割线,直线PC 与⊙O 有公共点,且2PC PA PB =⋅. (1) 求证:①∠PCA =∠PBC ;②直线PC 是⊙O 的切线;
(2) 如图(2),作弦CD ,使CD ⊥AB ,连接AD 、BC ,若AD =2,BC =6,求⊙O 的半径; (3) 如图(3),若⊙O 的半径为2,OP=10,MO =2,∠POM =90°,⊙O 上是否存在一点Q ,使得2
PQ QM +
,有最小值?若存在,请求出这个最小值;若不存在,请说出理由.
图3
图2
图1
A
A
O B
P P B
O O
P M
C C
4.(深圳一模·23·2017)在平面直角坐标系中,抛物线254
y ax ax a
=−+与x轴交于A、B(A点在B点的左侧),与y轴交于点C.
(1)如图1,连接AC、BC,若△ABC的面积为3,求抛物线的解析式;
(2)如图(2),点P为第四象限抛物线上的一点,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图(3)在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,在K在PH的延长线上,AK=KF,KAH=∠FKP,PF
=−,连接KB并延长交抛物线与点Q,求PQ的长;
图3
图2
图1。