最新高中理科数学绝杀80题 三角函数与解三角形模拟篇学生版
最新高中理科数学绝杀80题 解析几何真题篇学生版
B. x2 − y2 = 1
12 4
C. x2 − y2 = 1
39
D. x2 − y2 = 1
93
16.【2018 年理新课标 I 卷】已知双曲线 C:x2 − y2 = 1,O 为坐标原点,F 为 C 的右焦点,
3
过 F 的直线与 C 的两条渐近线的交点分别为 M、N.若 OMN 为直角三角形,则|MN|=( )
3.【2019 年理全国卷 3】已知曲线 C:y= x2 ,D 为直线 y= 1 上的动点,过 D 作 C 的两条切
2
2
线,切点分别为 A,B.
(1)证明:直线 AB 过定点:
(2)若以
E(0,
5 2
)为圆心的圆与直线
AB
相切,且切点为线段
AB
的中点,求四边形
ADBE
的面积.
4.【2019 年全国卷 2】已知点 A(−2,0),B(2,0),动点 M(x,y)满足直线 AM 与 BM 的斜率之积为 − 1 .记 M 的轨迹为曲线 C.
D. 5
12.【2019
年全国卷
1】已知双曲线
C:
x2 a2
y2 b2
1(a
0,b 0) 的左、右焦点分别为
F1,F2,过
F1 的直线与 C 的两条渐近线分别交于 A,B 两点.若 F1A AB , F1B F2B 0 ,则 C 的离心率
为____________.
13.【2019
年江苏卷】在平面直角坐标系 xOy 中,若双曲线 x2
y2 b2
1(b
0) 经过点(3,4),
则该双曲线的渐近线方程是_____. 14.【2018 年浙江卷】双曲线x2 − y2=1 的焦点坐标是( )
2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)
决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。
专题04 三角函数与解三角形学霸必刷100题(解析版)
三角函数与解三角形学霸必刷100题1.已知函数()sin()(>0)6f x x πωω=+在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈使得0()1f x =,则ω的取值范围为( )A .11[,]52B .21[,]52C .14[,]55D .24[,]55【答案】B【解析】函数()sin()(>0)6f x x πωω=+在区间52[,]63ππ-上单调递增, 所以52[,][2,2],663622k k k Z ππππππωωππ-++⊆-++∈, 得:22362526620,k k k Z πππωππππωπω⎧+≤+⎪⎪⎪-+≤-+⎨⎪>∈⎪⎪⎩,即13241250,k k k Z ωωω⎧≤+⎪⎪⎪≤-⎨⎪>∈⎪⎪⎩经检验仅有0k =时有:102ω<≤.5[0,]6x π∈时,5[,]6666x ππππωω+∈+, 由题意得:552662ππππω≤+<,解得:21455ω≤<. 综上:2152ω≤≤.故选:B.2.已知函数()sin f x a x x =-的一条对称轴为π6x =-,12()()0f x f x +=,且函数()f x 在12(,)x x 上具有单调性,则12||x x +的最小值为 A .2π3B .π3C .π6D .4π3【答案】A【解析】由题,()sin f x a x x =-)x θ+,θ为辅助角, 因为对称轴为π6x =-,所以1()362f a π-=--即132a --=解得2a =所以()4sin()3f x x π=-又因为()f x 在()12,x x 上具有单调性,且()()120f x f x +=, 所以12,x x 两点必须关于正弦函数的对称中心对称, 即12122333()22x x x x k k z ππππ-+-+-==∈所以1222()3x x k k z ππ+=+∈ 当0k =时,12x x +取最小为2π3故选A3.在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c+=-,则1tan 2tan()C B C +-的最小值为( )AB .2C .1D.【答案】A【解析】因为222sin()SA C b c +=-,即222sin S B b c=-, 所以22sin sin ac BB b c =-,因为sin 0B ≠,所以22b c ac =+,由余弦定理2222cos b a c ac B =+-, 可得2cos a c B c -=,再由正弦定理得sin 2sin cos sin A C B C -=,因为sin 2sin cos sin()2sin cos sin()A C B B C C B B C -=+-=-, 所以sin()sin B C C -=,所以B C C -=或B C C π-+=, 得2B C =或B π=(舍去).因为ABC ∆是锐角三角形,所以02022032C C C ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,得64C ππ<<,即tan C ∈,所以11tan tan 22tan()2tan C C B C C+=+≥-,当且仅当2tan 2C =,取等号.故选:A 4.边长为2的等边ABC ∆和有一内角为30的直角1ABC ∆所在半平面构成60︒的二面角,则下列不可能是线段1CC 的取值的是( ) A .30 B .10C .102D .103【答案】D【解析】(1) 当1130,90C AB C BA ∠=∠=时,空间位置关系如下图所示:过C 作CE AB ∥,且EB AB ⊥则1C BE ∠即为二面角1C AB C --的平面角 所以160C BE ∠= 由题意可知132333C B AB ==,332BE BC ==在1C BE ∆中,由余弦定理可知22211112cos C E C B BE C B BE C BE =+-⨯∠ 代入可得2142373236033C E =+-= 而190C EC ∠=所以2211730133C C C E CE =+=+=(2)当1130,90AC B C BA ∠=∠=时,空间位置关系如下图所示:过C 作CF AB ∥,且FB AB ⊥则1C BF ∠即为二面角1C AB C --的平面角 所以160C BF ∠=由题意可知1323C B AB ==,33BF BC == 在1C BF ∆中,由余弦定理可知22211112cos C F C B BF C B BF C BF =+-⨯∠ 代入可得211232233cos609C F =+-⨯⨯= 而190C FC ∠=所以22119110C C C F CF =+=+=(3) 当1130,90C AB AC B ∠=∠=时,空间位置关系如下图所示:过1C 作1C G AB ⊥交AB 于G .过C 作CH AB ∥,且GH AB ⊥ 则1C GH ∠即为二面角1C AB C --的平面角 所以160C GH ∠= 由题意可知111,2C B AB ==1133C G B ==,33GH BC ==1142CH AB ==在1C GH ∆中,由余弦定理可知22211112cos C H C G GH C G GH C GH =+-⨯∠代入可得21393260424C H =+-⨯=所以12C C===综上可知,线段1CC的取值为3和2,在四个选项中,不能取的值为3故选:D5.函数()()()2sin 0,0fx x ωϕωϕπ=+><<,8f π⎛⎫= ⎪⎝⎭02f ⎛⎫= ⎪⎝⎭π,且()f x 在()0,π上单调,则下列说法正确的是() A .12ω=B .82f π⎛⎫-= ⎪⎝⎭C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递增D .函数()y f x =的图象关于点3,04π⎛⎫⎪⎝⎭对称 【答案】C【解析】由题意得函数()f x 的最小正周期为2T πω=,∵()f x 在()0,π上单调,∴2T ππω=≥,解得01ω<≤. ∵8f π⎛⎫=⎪⎝⎭02f π⎛⎫= ⎪⎝⎭, ∴3842ωππϕωπϕπ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2323ωπϕ⎧=⎪⎪⎨⎪=⎪⎩,∴22()2sin 33f x x π⎛⎫=+ ⎪⎝⎭.对于选项A ,显然不正确.对于选项B ,227()2sin 2sin 838312f ππππ⎛⎫-=-⨯+== ⎪⎝⎭,故B 不正确.对于选项C ,当2x ππ-≤≤-时,220333x ππ≤+≤,所以函数()f x 单调递增,故C 正确. 对于选项D ,32327()2sin 2sin 043436f ππππ⎛⎫=⨯+=≠ ⎪⎝⎭,所以点3,04π⎛⎫⎪⎝⎭不是函数()f x 图象的对称中心,故D 不正确.综上选C . 6.已知函数 f (x ) = 1sin()+062x πωω-(),且 11(),()22f f αβ=-=.若 α − β 的最小值为34π,则函数的单调递增区间为( ) A .2,2,2k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .3,3,2k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ C .52,2,2k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .53,3,2k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】B【解析】解:函数1()sin()(0)62f x x πωω=-+>,且()12f α=-,1()2f β=,11()sin()622f παωα∴=-+=-,可得1262k ππωαπ-=-,1k Z ∈,解得:123k ππαω-=,1k Z ∈;11()sin()622f πβωβ=-+=,可得26k πωβπ-=,2k Z ∈,解得:26k ππβω+=,2k Z ∈;||αβ-的最小值为34π, 12122132|||||2|24k k k k πππππαβωω--∴-==--,1k Z ∈,2k Z ∈,可解得:1241|2|32k k ω--,1k Z ∈,2k Z ∈, 取11k =.22k =,可得23ω=; 21()sin()362f x x π∴=-+,由2222362k x k πππππ--+,k Z ∈, 解得332k x k ππππ-+,k Z ∈;∴函数()f x 的单调递增区间为:[32k ππ-,3]k ππ+,k Z ∈.故选:B .7.如图,ABC 中,ACB ∠为钝角,10AC =,6BC =,过点B 向ACB ∠的角平分线引垂线交于点P ,若62AP =,则ABP △的面积为( )A .4B .2C .6D .43【答案】B【解析】设,CP x ACP BCP θ=∠=∠=,则在三角形BCP 中,cos 6CP xBC θ== 在三角形ACP 中,由余弦定理可知2222cos AP CP CA CP CA θ=+-⨯ 代入可得(22262102106xx x =+-⨯⨯化简可得212x =,解得23x =所以3cos 63x θ==,则236sin 13θ⎛⎫=-= ⎪ ⎪⎝⎭由二倍角公式可得3622sin sin 223ACB θ∠===由三角形面积公式可得1122sin 210620222ACB S CA CB θ∆=⨯⨯⨯=⨯⨯=116sin 102310222ACP S CA CP θ∆=⨯⨯⨯=⨯⨯=116sin 62362223BCP S CB CP θ∆=⨯⨯⨯=⨯⨯=则2021026242ABP ABC ACP BCP S S S S ∆∆∆∆=--==故选:B8.某港口某天0时至24时的水深y (米)随时间x (时)变化曲线近似满足如下函数模型0.5sin 3.246y x πωπ⎛⎫=++ ⎪⎝⎭(0>ω).若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( ) A .16时 B .17时C .18时D .19时【答案】D【解析】解:由题意可知,0x =时,0.5sin 0 3.24 3.496y πωπ⎛⎫=⨯++= ⎪⎝⎭,由五点法作图可知:如果当16x =时,函数取得最小值可得:51662ππωπ+=,可得748ω=, 此时函数70.5sin 3.24486y x ππ⎛⎫=++ ⎪⎝⎭,函数的周期为:296147748T ππ==≈, 该港口在该天0时至24时内,有且只有3个时刻水深为3米,满足,如果当19x =时,函数取得最小值可得:51962ππωπ+=,可得757ω=,此时函数70.5sin 3.24576y x ππ⎛⎫=++ ⎪⎝⎭,函数的周期为:21147757T ππ==, 24x =时,70.5sin 24 3.243576y ππ⎛⎫=⨯++> ⎪⎝⎭,如图:该港口在该天0时至24时内,有且只有3个时刻水深为3米,不满足, 故选:D .9.如图,矩形ABCD 中,1AB =,3BC =,F 是线段BC 上一点且满足1BF =,E 是线段FC 上一动点,把ABE △沿AE 折起得到1AB E △,使得平面1⊥B AC 平面ADC ,分别记1B A ,1B E 与平面ADC 所成角为α,β,平面1B AE 与平面ADC 所成锐角为θ,则:( )⇒A .θαβ>>B .θβα>>C .αθβ>>D .βθα>>【答案】A 【解析】如图,过B 作BO AC ⊥,在Rt ABC 中,由13AB BC ==,,可得2AC =.由等积法可得3BO =,则12AO =平面1⊥B AC 平面ADC ,且1B O AC ⊥,可得1B O ⊥平面ABCD∴ 11tan 3B OB AO AOαα∠==,=. 画出底面ABCD 平面图:在BOF ,由余弦定理可得:2222cos OF OB BF OB BF OBF =+-⋅⋅∠22233121cos 60OF ︒=+-⋅⎝⎭ ∴ 2723OF -=214OA=,故OF OA>,结合图像可知:OE OF>∴OE OF OA>>,可得:OE OA>11tanB OB EOEOββ∠==,,1tanB OAOα=∴可得tan tanαβ>┄①过O作OG AE⊥,垂足为G,连接1B G,则1∠B GO为平面1B AE与平面ADC所成的锐角θ.O到AB的距离14BC=,由底面图像可知:144BO CG=<∴1tan2B OOGθ=>=,即tan tanθα>┄②由①②可得: tan tan tanθαβ>>,,θαβ都是锐角,根据正切函数单调性可知: θαβ>>故选:A.10.已知A是函数()sin2018cos201863f x x xππ⎛⎫⎛⎫=++-⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数12,x x使得对任意实数x 总有12()()()f x f x f x≤≤成立,则12||A x x⋅-的最小值为A.π2018B.π1009C.2π1009D.π4036【答案】B【解析】()2018cos201863f x sin x xππ⎛⎫⎛⎫=++-⎪ ⎪⎝⎭⎝⎭112014cos2018cos2018201822x x x x=++2018cos2018x x=+220186sin xπ⎛⎫=+⎪⎝⎭,()max 2A f x ∴==,周期220181009T ππ==, 又存在实数12,x x ,对任意实数x 总有()()()12f x f x f x ≤≤成立,()()()()21max min 2,2f x f x f x f x ∴====-,12A x x ⋅-的最小值为121009A T π⨯=,故选B.11.如图,已知函数()sin()(0,||)2f x x πωϕωϕ=+><的图象与坐标轴交于点1,,(,0)2-A B C ,直线BC交()f x 的图象于另一点D ,O 是ABD ∆的重心.则ACD ∆的外接圆的半径为A .2B 57C 57D .8【答案】B【解析】∵O 是ABD ∆的重心,1,02C ⎛⎫-⎪⎝⎭, ∴21OA OC ==,∴点A 的坐标为()1,0, ∴函数()f x 的最小正周期为3T 232=⨯=,∴23πω=,∴()2sin 3f x x πϕ⎛⎫=+⎪⎝⎭. 由题意得121sin sin 02323f ππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又2πϕ<,∴3πϕ=,∴()2sin 33f x x ππ⎛⎫=+ ⎪⎝⎭,令0x =得()30sin 32f π==, ∴点B 的坐标为30,2⎛ ⎝⎭,∴tan 3BCO ∠=3BCO π∠=,∴23ACD π∠=. 又点1,02C ⎛⎫-⎪⎝⎭是BD 的中点,∴点D 的坐标为31,⎛- ⎝⎭,∴AD ==. 设ACD ∆的外接圆的半径为R,则222sin sin 3AD R ACD π∠===,∴R =.故选B . 12.关于函数()cos sin f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 的最大值为2; ③()f x 在[],ππ-有3个零点;④()f x 在区间0,4π⎛⎫⎪⎝⎭单调递增. 其中所有正确结论的编号是( ) A .①② B .①③C .②④D .①④【答案】D【解析】对于命题①,函数()y f x =的定义域为R ,关于原点对称,且()()cos sin f x x x -=-+-()cos sin cos sin x x x x f x =+-=+=,该函数的为偶函数,命题①正确;对于命题②,当函数()y f x =取最大值时,cos 0x ≥,则()2222k x k k Z ππππ-≤≤+∈.当()222k x k k Z πππ-≤≤∈时,()cos sin 4x x x f x π⎛⎫=-=+ ⎪⎝⎭,此时,()22444k x k k Z πππππ-≤+≤+∈,当()24x k k Z ππ+=∈,函数()y f x =.当()222k x k k Z πππ<≤+∈时,()cos sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,此时,()32244k x k k Z ππππ+<≤+∈,当()242x k k Z πππ+=+∈,函数()y f x =. 所以,函数()y f x =,命题②错误;对于命题③,当0x π-≤≤时,令()cos sin 0f x x x =-=,则tan 1x =,此时34x π=-; 当0x π<≤时,令()cos sin 0f x x x =+=,则tan 1x =-,此时34x π=.所以,函数()y f x =在区间[],ππ-上有且只有两个零点,命题③错误;对于命题④,当04x π<<时,()cos sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,则442x πππ<+<.所以,函数()y f x =在区间0,4π⎛⎫⎪⎝⎭上单调递增,命题④错误.因此,正确的命题序号为①④.故选D.13.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的一条对称轴为3x π=,一个对称中心为5,06π⎛⎫⎪⎝⎭,且在3,25ππ⎛⎫⎪⎝⎭上单调,则ω的最大值( ) A .5B .6C .7D .8【答案】C【解析】由于函数()()()2sin 0f x x ωϕω=+>的一条对称轴为3x π=,一个对称中心为5,06π⎛⎫⎪⎝⎭,所以12πππ325ππ6k k ωϕωϕ⎧+=+⎪⎪⎨⎪+=⎪⎩,两式相减并化简得()2121k k ω=--为奇数,排除B,D 选项.由于()f x 在3,25ππ⎛⎫ ⎪⎝⎭上单调,所以π3πππ25210T ω=≥-=,所以10ω≤.当9ω=时,由1πππ32k ωϕ+=+得()115ππ2k k Z ϕ=-∈,由于π2ϕ<,故9ω=时不合题意. 当7ω=时,由1πππ32k ωϕ+=+得()1111ππ6k k Z ϕ=-∈,由于π2ϕ<,所以取12k =,π6ϕ=,此时()π2sin 76f x x ⎛⎫=+ ⎪⎝⎭.由272262k x k πππππ-≤+≤+,解得222721721k k x ππππ-≤≤+,令2k =得1013,2121x ππ⎡⎤∈⎢⎥⎣⎦为()f x 的递增区间,满足31013,,252121ππππ⎛⎫⎡⎤⊆ ⎪⎢⎥⎝⎭⎣⎦.所以ω的最大值为7.故选:C. 14.已知长方形的四个顶点是()0,0A ,()2,0B ,()2,1C ,()0,1D ,一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的1P 后,依次反射到CD ,DA 和AB 上的2P ,3P ,和4P (入射角等于反射角).设4P 的坐标是(),0x ,若12x <<,则tan θ的取值范围是( )A .13,55⎛⎫⎪⎝⎭B .11,52⎛⎫ ⎪⎝⎭C .21,52⎛⎫⎪⎝⎭D .13,25⎛⎫⎪⎝⎭【答案】C【解析】设1PB a =,10PP B θ∠=,则11CP a =-,123243PP C P P D AP P θ∠=∠=∠= 所以10tan PB a P B θ==,又1221tan CP a a CP CP θ-===,所以2111a CP a a-==-; 而32tan P D P D θ=312(1)P D a =--a = 所以31(3)31P D a a a=-=-;又34tan AP AP θ=41(31)a AP --=a = 所以423AP a =-,根据题设412AP <<,即2132a <-< 所以2512a <<,即21tan 52θ<<,故选:C15.在ΔABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =c ,且满足sin 1cos sin cos B BA A-=.若点O 是ΔABC 外一点,∠AOB =θ(0θπ<<),OA =2,OB =4,则平面四边形OACB 面积的最大值( ) A.2+B.4+C.6+D.8+【答案】D 【解析】 因为sin 1cos sin cos B BA A-=,可得()sin sin cos cos sin sin sin A B A B A A B C =+=+=,所以a c =又b c =,所以ΔABC 为等边三角形.在OAB 中,22224224cos 2016cos AB θθ=+-⨯⨯⨯=- ,)213sin 602016cos 24ABCSAB θθ==-=.124sin4sin 2OABSθθ=⨯⨯=, 所以4sin 8sin 3OACB ABCOABS SSπθθθ⎛⎫=+=+=- ⎪⎝⎭,因为0θπ<<,所以当56πθ=时,平面四边形OACB面积的最大,最大值为8+. 故选:D .16.已知ABC 的三边a ,b ,c 满足:333a b c +=,则此三角形是( ) A .锐角三角形 B .钝角三角形C .直角三角形D .等腰直角三角形【答案】A【解析】333a b c +=可知,∠C 为三角形ABC 中的最大角,且331a b c c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以01a c <<,01b c << 亦即32a a c c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,32b bc c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<将两式相加得:22331a b a b c c c c ⎛⎫⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+> 所以∠C 为锐角,三角形ABC 为锐角三角形,故选:A17.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设△ABC 的面积为S,若222c a b S --=b a 的取值范围为( ) A .(0,+∞) B .(1,+∞)C.(0D.)+∞【答案】A【解析】由2223c a b S --=,得2221sin 32a b c ab C +-=- ,所以2222a b c C ab +-=,所以cos 3C C =-,所以tan C =又0C π<<,所以23C π=, 所以sin()sin cos cos sin )sin 333sin sin sin A A A b B a A A A πππ--===1sin 122sin 2tan 2A AA A -==-, 因为03A π<<,所以0tan A <<所以13tan A >,所以33102b a >⨯-=,所以b a 的取值范围为(0,)+∞.故选:A18.已知腰长为2的等腰直角ΔABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值为( )A .24162-B .24162+C .48322-D .48322+【答案】C【解析】以,CA CB 为,x y 轴建立平面直角坐标系,则(0,0),(2,0),(0,2),(1,1)C A B M ,设(,)P x y ,则(2,),(,2)PA x y PB x y =--=--,(,),(1,1)PC x y PM x y =--=--,(2)(2)PA PB x x y y ⋅=----2222x x y y =-+-,PC PM ⋅=22(1)(1)x x y y x x y y ----=-+-,∵2PC =,∴224x y +=,设2cos ,2sin x y θθ==,则2cos 2sin 22)4x y πθθθ+=+=+,∴2222x y -+≤()()4PA PB PC PM ⋅+⋅⋅2(4224)(4)2(4)x y x y x y =--+--=+-,∴22x y +=()()4PA PB PC PM ⋅+⋅⋅取得最小值22(224)482=-故选:C 。
最新高中文科数学绝杀80题 三角函数与解三角形满分冲刺篇学生版
4
,
2
,且
sin
4
3 10 10
,则
tan ( )
A.2
B.
4 3
C.3
D.
12 5
5.(2020·江西省名师联盟高三第二次大联考(文))若
sin
4
1 4
,则
sin
2
(
)
A. 7 8
B. 7 8
C. 3 4
D. 3 4
6.(2020·江西省名师联盟高三调研(文)) ABC 的内角 A, B,C 的对边分别为 a,b, c ,已知
2b
a cosC
0 , sin
A
3sin( A C)
,则
bc a2
(
)
A. 7 4
B. 14 9
C. 2 3
D. 6 9
3.(2020·吉林省实验中学高三第一次检测(文))若函数
f
x
cos x
3
0
的最小正
周期为 ,则 ( ) 2
A.2
B.3
C.4
D.8
4.(2020·吉林省实验中学高三第一次检测(文))已知
14.(2020·河南省鹤壁市高级中学高三二模(文))在 ABC 中,三边 a ,b ,c 的对角分别为 A ,
B , C ,已知 a 3, cos B cos Acos C 3a .
sin B cos C
b
(1)若 c 2 3 ,求 sin A ;
(2)若 AB 边上的中线长为 37 ,求 ABC 的面积. 2
(1)求角 A 的大小; (2)若 a 3 , O 为 ABC 的内心,求 OB OC 的最大值. 19.(2020·江西省名师联盟高三第二次大联考(文))在 ABC 中,角 A , B ,C 的对边分别为
三角函数及解三角形高考模拟考试题精选(含详细答案)
三角函数与解三角形高考试题精选一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC 的面积为,求cosA与a的值.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.三角函数与解三角形高考试题精选参考答案与试题解析一.解答题(共31小题)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2).(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.【解答】(Ⅰ)解:由,得asinB=bsinA,又asinA=4bsinB,得4bsinB=asinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.3.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.4.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.【解答】解:(1)∵A为三角形的内角,cosA=,∴sinA==,又cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=cosC+sinC,整理得:cosC=sinC,则tanC=;(2)由tanC=得:cosC====,∴sinC==,∴sinB=cosC=,∵a=,∴由正弦定理=得:c===,则S=acsinB=×××=.△ABC5.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整理可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3,b﹣c=2,cosA=﹣.(Ⅰ)求a和sinC的值;(Ⅱ)求cos(2A+)的值.【解答】解:(Ⅰ)在三角形ABC中,由cosA=﹣,可得sinA=,△ABC的面积为3,可得:,可得bc=24,又b﹣c=2,解得b=6,c=4,由a2=b2+c2﹣2bccosA,可得a=8,,解得sinC=;(Ⅱ)cos(2A+)=cos2Acos﹣sin2Asin==.8.△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.【解答】解:(Ⅰ)因为向量=(a,b)与=(cosA,sinB)平行,所以asinB﹣=0,由正弦定理可知:sinAsinB﹣sinBcosA=0,因为sinB≠0,所以tanA=,可得A=;(Ⅱ)a=,b=2,由余弦定理可得:a2=b2+c2﹣2bccosA,可得7=4+c2﹣2c,解得c=3,△ABC的面积为:=.9.设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC 的面积为,求cosA与a的值.【解答】解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.10.如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.【解答】解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴sinC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.或由A=,b2﹣a2=c2.可得:sin2B﹣sin2A=sin2C,∴sin2B﹣=sin2C,∴﹣cos2B=sin2C,∴﹣sin=sin2C,∴﹣sin=sin2C,∴sin2C=sin2C,∴tanC=2.(2)∵=×=3,解得c=2.∴=3.13.在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.14.△ABC的内角A,B,C所对应的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴2b=a+c,利用正弦定理化简得:2sinB=sinA+sinC,∵sinB=sin[π﹣(A+C)]=sin(A+C),∴sinA+sinC=2sinB=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,∴cosB==≥=,当且仅当a=c时等号成立,∴cosB的最小值为.15.△ABC的内角A、B、C所对的边分别为a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.【解答】解:(Ⅰ)∵a,b,c成等差数列,∴a+c=2b,由正弦定理得:sinA+sinC=2sinB,∵sinB=sin[π﹣(A+C)]=sin(A+C),则sinA+sinC=2sin(A+C);(Ⅱ)∵a,b,c成等比数列,∴b2=ac,将c=2a代入得:b2=2a2,即b=a,∴由余弦定理得:cosB===.16.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]20.△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.【解答】解:①因为△ABC中,角A,B,C所对的边分别为a,b,c已知cosB=,sin(A+B)=,ac=2,所以sinB=,sinAcosB+cosAsinB=,所以sinA+cosA=①,结合平方关系sin2A+cos2A=1②,由①②解得27sin2A﹣6sinA﹣16=0,解得sinA=或者sinA=﹣(舍去);②由正弦定理,由①可知sin(A+B)=sinC=,sinA=,所以a=2c,又ac=2,所以c=1.21.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.==1.∴S△ABC24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.【解答】解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.26.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.27.在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.【解答】解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=28.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值(2)若a=1,cosB+cosC=,求边c的值.【解答】解:(1)由余弦定理可知2accosB=a2+c2﹣b2;2abcosc=a2+b2﹣c2;代入3acosA=ccosB+bcosC;得cosA=;(2)∵cosA=∴sinA=cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣cosC+sinC ③又已知 cosB+cosC=代入③cosC+sinC=,与cos2C+sin2C=1联立解得 sinC=已知 a=1正弦定理:c===29.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.30.在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cosA的值;(Ⅱ)求c的值.【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cosA=.(Ⅱ)由余弦定理可得 a2=b2+c2﹣2bc•cosA,即 9=+c2﹣2×2×c×,即 c2﹣8c+15=0.解方程求得 c=5,或 c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cosB==,cosA==,∴cos2A=2cos2A﹣1==cosB,∴B=2A,满足条件.综上,c=5.。
最新高中理科数学绝杀80题 不等式模拟篇学生版
4
15.(2020·江西省名高三第二次大联考(理))若函数
f
(x)
x2
ax2 2x 1
为奇函数,则
a
_______.
y x
16.(2020·陕西省西安中学高三三模(理))若实数
x,
y
满足不等式组
x
2
2x
y y
3 6
,则
z
1
x
y
的最大值为__________.
17.【2019 届河南省名校联盟尖子生期中】已知命题 p:4 > 3ln2;命题 q:∀a,b ∈ (0, + ∞),
x
,
y
满足
y
2
x
1,如果目标函数
z
x
y
的最
x y m
小值为 2 ,则 y 的最小值为_______. x
3x y 2 0 14.(2020·江西省名高三第二次大联考(理))若实数 x,y 满足约束条件 x y 2 0 ,则
x 4y 4 0
z x 2y 的最大值为________.
(2a
+
b)(
1 a
+
2 b
)
≥
16,则下列命题中的真命题是(
)
A.q B.p ∧ q C.(¬p) ∨ q D.p ∧ (¬q)[:ZXXK]
5x + 4y − 6 ≥ 6 18.【2019 届吉林省高中期末】设 x,y 满足约束条件 2x − y − 5 ≤ 0 ,则 z = y − x 的最小值
x
的最大值是( )
A.-1
B.0
C. 1 2
D.2
3.(2020·江西省名高三第二次大联考(理))已知函数 f (x) memx ln x ,当 x 0 时,f (x) 0
最新高中理科数学绝杀80题 导数及其应用满分冲刺篇学生版
(1)若 a R ,求函数 f (x) 的极值点个数;
(2)若函数
f
(x)
在区间 (1,1+ea ) 上不单调,证明:
1 a
1 a 1
a
.
15.已知函数 f x x 1ln x ax , a 是实数.
(1)当 a 2 时,求证: f x 在定义域内是增函数;
(2)讨论函数 f x 的零点个数.
19.已知函数 f x ax ln x .
(Ⅰ)求 f x 的极值;
(Ⅱ)若 a 1, b 1, g x f x bex ,求证: g x 0 .
20.(1)证明函数 y ex 2sin x 2x cos x 在区间 ( , ) 上单调递增; 2
(2)证明函数
f
(x)
17.已知函数 f (x) ex ax 2 bx 1 ,其中 a,b R ,e 2.71828为自然对数的底
数. (Ⅰ)设 g(x) 是函数 f (x) 的导函数,求函数 g(x) 在区间[0,1] 上的最小值; (Ⅱ)若 f (1) 0 ,函数 f (x) 在区间 (0,1) 内有零点,求 a 的取值范围 18.已知函数 f (x) me x ln x 1 . (1)当 m 1时,求曲线 y f (x) 在点 (1, f (1)) 处的切线方程; (2)若 m (1, ) ,求证: f (x) 1.
11.已知函数 f(x)=-2xlnx+x2-2ax+a2,其中 a>0.
(Ⅰ)设 g(x)为 f(x)的导函数,讨论 g(x)的单调性;
(Ⅱ)证明:存在 a∈(0,1),使得 f(x)≥0 恒成立,且 f(x)=0 在区间(1,+∞)
内有唯一解.
12.已知函数 f (x) lnx ax 1有两ห้องสมุดไป่ตู้零点 x1, x2 .
三角函数--2024年数学高考真题和模拟好题分类汇编(解析版)
专题三角函数1(新课标全国Ⅰ卷)已知cos(α+β)=m,tanαtanβ=2,则cos(α-β)=()A.-3mB.-m3C.m3D.3m【答案】A【分析】根据两角和的余弦可求cosαcosβ,sinαsinβ的关系,结合tanαtanβ的值可求前者,故可求cosα-β的值.【详解】因为cosα+β=m,所以cosαcosβ-sinαsinβ=m,而tanαtanβ=2,所以=12×2b×kb×sin A2+12×kb×b×sin A2,故cosαcosβ-2cosαcosβ=m即cosαcosβ=-m,从而sinαsinβ=-2m,故cosα-β=-3m,故选:A.2(新课标全国Ⅰ卷)当x∈[0,2π]时,曲线y=sin x与y=2sin3x-π6的交点个数为() A.3 B.4 C.6 D.8【答案】C【分析】画出两函数在0,2π上的图象,根据图象即可求解【详解】因为函数y=sin x的的最小正周期为T=2π,函数y=2sin3x-π6的最小正周期为T=2π3,所以在x∈0,2π上函数y=2sin3x-π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f(x)=a(x+1)2-1,g(x)=cos x+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=()A.-1B.12C.1D.2【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A:当x∈-π8 ,π3时,2x-π3∈-7π12,π3,由函数y=sin x在-7π12,π3上不为单调递增,故f x 在区间-π8 ,π3上不为单调递增,故A错误;对B:当x=5π6时,2x-π3=4π3,由x=4π3不是函数y=sin x的对称轴,故x=5π6不是f x 图象的对称轴,故B错误;对C:当x∈-π6 ,π4时,2x-π3∈-2π3,π6,则f x ∈-1,1 2,故C错误;对D:将f x 图象上的所有点向左平移5π12个长度单位后,可得y=sin2x+2×5π12-π3=sin2x+π2=cos2x,该函数关于y轴对称,故D正确.故选:D.8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由fπ4=1,得sinπ4ω+φ=22,又点π4,1及附近点从左到右是上升的,则π4ω+φ=π4+2kπ,k∈Z,由f5π8=0,点5π8,0及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2kπ,k∈Z,联立解得ω=2,φ=-π4+2kπ,k∈Z,而|φ|<π2,于是φ=-π4,f(x)=2sin2x-π4,若将函数f(x)的图像向右平移θ(θ>0)个单位后,得到y=sin2x-2θ-π4,则-2θ-π4=π2-kπ,k∈Z,而θ>0,因此θ=-3π8+kπ2,k∈N,所以当k=1时,θ取得最小值为π8 .故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
压轴题05 三角函数与解三角形范围与最值问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题05三角函数与解三角形范围与最值问题三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.考向一:ω取值与范围问题考向二:面积与周长的最值与范围问题考向三:长度的范围与最值问题1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.一、单选题1.(2023·浙江金华·模拟预测)已知函数π()sin cos (0)6f x x x ωωω⎛⎫=-+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围是()A .131,6⎡⎤⎢⎥⎣⎦B .713,66⎡⎫⎪⎢⎣⎭C .7,26⎡⎫⎪⎢⎣⎭D .131,6⎡⎫⎪⎢⎣⎭【答案】B【解析】π1()sin cos sin sin 62f x x x x x x ωωωωω⎫⎛⎫=-+=--⎪ ⎪⎪⎝⎭⎝⎭3sin cos 22x x ωω=-1sin cos 22x x ωω⎫=-⎪⎪⎭π6x ω⎛⎫=- ⎪⎝⎭因为()f x 在 [0,π]上仅有2个零点,当 [0,π]x ∈时,πππ,π666x ωω⎡⎤-∈--⎢⎥⎣⎦(0ω>),所以πππ6ππ2π6ωω⎧-≥⎪⎪⎨⎪-<⎪⎩,解得71366ω≤<.故选:B.2.(2023·吉林长春·统考三模)已知函数()π2cos 13f x x ω⎛⎫=-+ ⎪⎝⎭,(0ω>)的图象在区间()0,2π内至多存在3条对称轴,则ω的取值范围是()A .50,3⎛⎤ ⎥⎝⎦B .25,33⎛⎤ ⎥⎝⎦C .57,36⎡⎫⎪⎢⎣⎭D .5,3⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()0,2πx ∈,0ω>,所以πππ,2π333x ωω⎛⎫-∈-- ⎪⎝⎭,画出2cos 1y z =+的图象,要想图象在区间()0,2π内至多存在3条对称轴,则ππ2π,3π33ω⎛⎤-∈- ⎥⎝⎦,解得50,3ω⎛⎤∈ ⎥⎝⎦.故选:A3.(2023·河南·许昌实验中学校联考二模)已知函数())π2sin 06f x x ωω⎛⎫=-> ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个零点,则ω的取值范围是()A .75,93⎛⎤⎥⎝⎦B .75,93⎡⎫⎪⎢⎣⎭C .1010,93⎡⎫⎪⎢⎣⎭D .1010,93⎛⎤⎥⎝⎦【答案】C【解析】由题意知π3sin 62x ω⎛⎫-= ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个解.因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以ππ3ππ,6646x ωω⎡⎤-∈--⎢⎥⎣⎦,则需2π3ππ7π3463ω≤-<,解得101093ω≤<.故选:C4.(2023·广西·统考一模)定义平面凸四边形为平面上每个内角度数都小于180︒的四边形.已知在平面凸四边形ABCD 中,30,105,2A B AB AD ∠=︒==︒∠=,则CD 的取值范围是()A .⎫⎪⎪⎣⎭B .⎣⎭C .⎣⎭D .212⎫⎪⎢⎪⎣⎭【答案】A【解析】在ABD △中,由余弦定理得:2222cos 3422cos301BD AB AD AB AD A =+-⋅=+-⨯=,显然2224AB BD AD +==,即90ABD ∠=o ,60ADB ∠=o ,在BCD △中,1BD =,15CBD ∠= ,因为ABCD 为平面凸四边形,则有0120BDC <∠< ,因此45165BCD <∠< ,而62sin165sin15sin(4530)sin 45cos30cos 45sin 302==-=-=,由正弦定理sin sin CD BD CBD BCD =∠∠得:sin 62sin 4sin BD CBD CD BCD BCD∠==∠∠,当4590BCD <∠≤ 时,sin 12BCD <∠≤,当90165BCD <∠< 时,sin 1BCD <∠<,sin 1BCD <∠≤,11sin BCD ≤<∠1CD ≤<,所以CD 的取值范围是62[4.故选:A5.(2023·全国·校联考二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b =,若2222b a c =+,则△ABC 面积的最大值为()A .2B .34C .1D .32【答案】D【解析】因为2222b a c =+,所以()222cos ,0,π22a c b aB B ac c+-==-∈,所以sin B =42c=,所以△ABC 的面积14sin 24ABCS ac B == =222194122a c a +-⨯()22421122a c +=⨯32=,当且仅当22249c a a -=,即a c ==ABC 面积的最大值为32.故选:D6.(2023·广西柳州·柳州高级中学校联考模拟预测)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知60B = ,4b =,则ABC 面积的最大值为()A .B .C .D .6【答案】B【解析】由余弦定理可得22222162cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,即16ac ≤,当且仅当4a c ==时,等号成立,故1sin 162ABC S ac B ac =⨯= .因此,ABC面积的最大值为故选:B.7.(2023·全国·模拟预测)已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .8【答案】C【解析】因为函数()()sin f x x ωϕ=+的图象关于直线π36x =-对称,所以πππ362n ωϕ-⋅+=+,n ∈Z ,所以ϕ=1π236n ω⎛⎫++ ⎪⎝⎭,n ∈Z ,根据π5π1836x <<,则π5π1836x ωωω<<,所以π5π1836x ωωϕωϕϕ+<+<+,因为()()sin f x x ωϕ=+是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数.所以ππ2π,1825π3π2π,362k k k k ωϕωϕ⎧+≥+∈⎪⎪⎨⎪+≤+∈⎪⎩Z Z ,所以π1ππ2π,,1823625π13ππ2π,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,即112,,1823625132,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,解得()()122621k n k n ω-≤≤-+,n ∈Z ,k ∈Z ,因为0ω>,所以20k n -=或21k n -=,当20k n -=时,06ω<≤,当21k n -=时,1212ω≤≤;由于π7π5π187236<<,且f (x )的一个零点是7π72x =,所以()7π21π72m ωϕ⨯+=+,m ∈Z ,所以()7π1π21π72236n m ωω⎛⎫⨯+++=+ ⎪⎝⎭,m ∈Z ,n ∈Z ,即()824m n ω=-+,m ∈Z ,n ∈Z .根据06ω<≤或1212ω≤≤,可得4ω=,或12ω=,所以ω的最小值为4.故选:C.二、多选题8.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D正确;故选:ABD三、填空题9.(2023·青海·校联考模拟预测)在锐角ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且()2sin 2sin cos sin 2c B A a A B b A -=+,则ca的取值范围是______.【答案】()1,2【解析】由正弦定理和正弦二倍角公式可得()2sin sin 2sin sin cos sin sin 2C B A A A B B A-=+()2sin sin cos 2sin sin cos 2sin sin cos sin cos A A B B A A A A B B A =+=+()2sin sin A A B =+,因为π0<<,π2C C A B -=+,所以()()0s s in s in πin C A C B =-=≠+,可得()sin sin B A A -=,因为ππ0022A B <<<<,,所以ππ22B A -<-<,所以2B A =,π3C A =-,由202πB A <=<,203ππC A <<=-可得ππ64A <<,cos 22A <<,213cos 24A <<,由正弦定理得()sin 2sin sin 3sin 2cos cos 2sin sin sin sin sin A A c C A A A A Aa A A A A++====()222cos cos 24cos 11,2A A A =+=-∈.故答案为:()1,2.10.(2023·上海金山·统考二模)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.【答案】506ω<≤【解析】因为0ω>,()0,πx ∈,所以ππππ333x ωω-<-<-,又因为函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,所以πππ32ω-≤,解得506ω<≤,所以ω的取值范围是506ω<≤故答案为:506ω<≤.11.(2023·全国·校联考二模)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin b B a A a C =+,则3b ca-的取值范围是______.【答案】132,]4【解析】由sin sin sin b B a A a C =+,得22b a ac =+,由余弦定理得2222cos 222b c a c ac a cA bc bc b+-++===,由正弦定理得sin sin cos 22sin a c A C A b B++==,即s sin 2sin c i o n s C B A A +=,又()sin sin C A B =+,所以sin sin cos cos sin 2cos sin A A B A B A B ++=,即sin sin os sin cos A Bc A A B =-,所以()sin sin A B A =-,因为,A B 为ABC 的内角,所以πB A A -+=(舍去)或B A A -=,所以2B A =.由正弦定理得33sin sin 3sin 2sin()3sin 2sin 3sin sin sin b c B C A B A A Aa A A A---+-===因为()2sin 3sin 2sin 2cos cos 2sin 2sin cos cos 2sin A A A A A A A A A A A =+=+=+,又(0,π),sin 0A A ∈≠,所以236sin cos 2sin cos cos 2sin sin b c A A A A A Aa A---=2226cos 2cos cos 26cos 2cos 2cos 1A A A A A A =--=--+223134cos 6cos 14(cos )44A A A =-++=--+,由于π2(0,)2B A =∈得π(0,)4A ∈,由πππ3(0,)2C A B A =--=-∈,得ππ(,)63A ∈,则ππ(,)64A ∈,所以2cos 2A ∈,当3cos 4A =时,23134(cos )44A --+取最大值134,当cos A =23134(cos )44A --+等于2,当cos A =23134(cos )44A --+等于1,而21>,所以3b ca -取值范围是132,]4,故答案为:132,]412.(2023·上海嘉定·统考二模)如图,线段AB 的长为8,点C 在线段AB 上,2AC =.点P 为线段CB 上任意一点,点A 绕着点C 顺时针旋转,点B 绕着点P 逆时针旋转.若它们恰重合于点D ,则CDP △的面积的最大值为__________.【答案】【解析】由题意可知,6C AB C B A =-=,即6PC PB +=.在CDP △中,有CD AC 2==,DP PB =,所以6PC DP +=.由余弦定理可得,()222224cos 22PC DP PC DP PC DP CD CPD PC DP PC DP+-⋅-+-∠==⋅⋅3624162PC DP PC DP PC DP PC DP-⋅--⋅==⋅⋅,所以22sin 1cos CPD CPD ∠=-∠2161PC DP PC DP -⋅⎛⎫=- ⎪⋅⎝⎭2221632PC DP PC DP -+⋅=⋅,所以有221sin 2CDPS PC PD CPD ⎛⎫=⋅∠ ⎪⎝⎭△22221256324PC DPPC DP PC DP -+⋅=⋅⋅⋅⋅864PC DP =⋅-2864896482PC DP +⎛⎫≤-=⨯-= ⎪⎝⎭,当且仅当3PC PB ==时,等号成立.所以,28CDP S ≤△,所以,CDP S ≤△CDP △的面积的最大值为故答案为:四、解答题13.(2023·湖南益阳·统考模拟预测)ABC 中,角,,A B C 的对边分别为,,a b c ,从下列三个条件中任选一个作为已知条件,并解答问题.①sin sin 2B Cc a C +=;②sin 1cos a C A=-;③ABC )222b c a +-.(1)求角A 的大小;(2)求sin sin B C 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)选择①:由正弦定理可得,sin cossin sin 2AC A C =,因为(0,π),sin 0C C ∈>,所以cossin 2A A =,即cos 2sin cos 222A A A =,因为π022A <<,所以cos 02A >,所以1sin 22A =,所以π26A =,即π3A =;选择②sin 1cos a CA=-,则sin cos a C A =,由正弦定理得sin sin cos A C C C A =-,因为(0,π),sin 0C C ∈>,所以sin A A =,即π3sin 32A ⎛⎫+= ⎪⎝⎭,因为0πA <<,所以ππ4π333A <+<,所以π2π33A +=,即π3A =;选择③:由()2221sin 42ABC S b c a bc A =+-= ,222sin 2b c a A bc+-=sin A A =,所以tan A =0πA <<,故π3A =.(2)方法一:πsin sin sin sin 3B C B B ⎛⎫=⋅+ ⎪⎝⎭1sin sin cos 22B B B ⎛⎫=+ ⎪ ⎪⎝⎭21sin sin cos 22B B B =+11cos244B B =-11πsin 2426B ⎛⎫=+- ⎪⎝⎭因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以11π3024264B ⎛⎫<+-≤ ⎪⎝⎭,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.方法二:由余弦定理,222222cos a b c bc A b c bc =+-=+-,再由正弦定理,222sin sin sin sin sin A B C B C =+-,因为π3A =,所以223sin sin sin sin 2sin sin sin sin 4B C B C B C B C =+-≥-,即3sin sin 4B C ≥,当且仅当sin sin 2B C ==时“=”成立.又因为sin 0B >,sin 0C >,所以30sin sin 4B C <≤,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.14.(2023·陕西榆林·统考三模)已知,,a b c 分别为ABC 的内角,,A B C 所对的边,4AB AC ⋅=,且sin 8sin ac B A =.(1)求A ;(2)求sin sin sin A B C 的取值范围.【解析】(1)cos 4AB AC bc A ⋅==,由sin 8sin ac B A =及正弦定理,得8abc a =,得8bc =,代入cos 4bc A =得1cos 2A =,又因为(0,π)A ∈,所以π3A =.(2)由(1)知π3A =,所以2ππ3C A B B =--=-.所以2ππsin sin sin sin sin 33A B C B B B B ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭213cos sin sin cos sin 22244B B B B B B ⎛⎫=+=+ ⎪ ⎪⎝⎭3sin 228B B =+π2468B ⎛⎫=-+ ⎪⎝⎭,因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以3π333024688B ⎛⎫<-+ ⎪⎝⎭,故sin sin sin A B C 的取值范围是⎛ ⎝⎦.15.(2023·上海浦东新·统考二模)已知,0R ωω∈>,函数cos y x x ωω-在区间[0,2]上有唯一的最小值-2,则ω的取值范围为______________.【解析】πcos 2sin 6y x x x ωωω⎛⎫=-=- ⎪⎝⎭,因为[]0,2x ∈,0ω>,所以πππ,2666x ωω⎡⎤-∈--⎢⎥⎣⎦,因为函数π2sin 6y x ω⎛⎫=- ⎪⎝⎭在[]0,2x ∈上有唯一的最小值-2,所以π3π7π2,622ω⎡⎫-∈⎪⎢⎣⎭,解得5π11π,66ω⎡⎫∈⎪⎢⎣⎭,故ω的取值范围是5π11π,66⎡⎫⎪⎢⎣⎭.故答案为:5π11π,66⎡⎫⎪⎢⎣⎭16.(2023·浙江金华·模拟预测)在ABC 中,角A ,B ,C 所对应的边为a ,b ,c .已知ABC 的面积4ac S =,其外接圆半径2R =,且()224cos cos ()sin A B b B -=.(1)求sin A ;(2)若A 为钝角,P 为ABC 外接圆上的一点,求PA PB PB PC PC PA ⋅+⋅+⋅的取值范围.【解析】(1)由1sin 42ac S ac B ==,得1sin 2B =,()()()()2222224cos cos 41sin 1sin 4sin sin A B A B B A ⎡⎤-=---=-⎣⎦,由正弦定理24sin sin a bR A B===,4sin ,4sin a A b B ==,则2()sin 4sin 4sin b B B A B =-,由()224cos cos ()sin A B b B -=,得()2224sin sin 4sin 4sin B A B A B -=-,化简得2sin sin A A B =,由()0,πA ∈,sin 0A ≠,解得sin A B =,因此sin A =.(2)由(1)得,若A 为钝角,则120A =o ,则3030B C == ,,如图建立平面直角坐标系,则(0,2),(A B C ,设(2cos ,2sin )P θθ.则(2cos ,22sin )PA θθ=-- ,(2cos ,12sin )PB θθ=- ,2cos ,12sin )PC θθ=-,有66sin PA PB θθ⋅=-+ ,66sin PA PC θθ⋅=-- ,24sin PB PC θ⋅=-,则1416sin PA PB PA PC PB PC ⋅+⋅+⋅=-θ.由sin [1,1]θ∈-,则1416sin [2,30]-∈-θ,所以PA PB PB PC PC PA ⋅+⋅+⋅的取值范围为[2,30]-.17.(2023·山西·校联考模拟预测)已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象是由π2sin 6y x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度得到的.(1)若()f x 的最小正周期为π,求()f x 的图象与y 轴距离最近的对称轴方程;(2)若()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,求ω的取值范围.【解析】(1)由2ππω=,得2ω=,所以()πππ2sin 22sin 2666f x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令ππ2π62x k -=+,k ∈Z ,解得ππ23k x =+,k ∈Z ,取0k =,得π3x =,取1k =-,得π6x =-,因为ππ63-<,所以与y 轴距离最近的对称轴方程为π6x =-.(2)由已知得()()1πππ2sin 2sin666f x x x ωωω-⎡⎤⎡⎤⎛⎫=-+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦,令()1ππ6x k ωω-+=,k ∈Z ,解得61π6k x ωω+-=,k ∈Z .因为()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,所以π613ππ26267ππ<62653ππ>62k k k ωωωωωω+-⎧≤≤⎪⎪+-⎪⎨⎪++⎪⎪⎩()k ∈Z 所以616182676528k k k k ωω--⎧≤≤⎪⎪⎨-+⎪<<⎪⎩.因为0ω>,所以616102861026567082k k k k k --⎧-≥⎪⎪⎪->⎨⎪⎪+-->⎪⎩,解得133618k <<,k ∈Z ,所以1k =,解得51188ω≤<,即ω的取值范围为511,88⎡⎫⎪⎢⎣⎭.18.(2023·山东德州·统考一模)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos c b A b -=.(1)求证:2A B =;(2)若A 的角平分线交BC 于D ,且2c =,求ABD △面积的取值范围.【解析】(1)因为2cos c b A b -=,由正弦定理得sin 2sin cos sin C B A B -=又πA B C ++=,所以()()sin 2sin cos sin cos cos sin sin sin A B B A A B A B A B B+-=-=-=因为ABC 为锐角三角形,所以π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭,ππ,22A B ⎛⎫-∈- ⎪⎝⎭又sin y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以A B B -=,即2A B =;(2)由(1)可知,2A B =,所以在ABD △中,ABC BAD ∠=∠,由正弦定理得:()2sin sin π2sin2AD AB B B B ==-,所以1cos AD BD B==,所以1sin sin tan 2cos ABD BS AB AD B B B=⨯⨯⨯== .又因为ABC 为锐角三角形,所以π02B <<,0π22B <<,0π3π2B <-<,解得π6π4B <<,所以tan B ⎫∈⎪⎪⎝⎭,即ABD △面积的取值范围为⎫⎪⎪⎝⎭.19.(2023·江西吉安·统考一模)在直角坐标系xOy 中,M 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭(1)求M 的普通方程;(2)若D 为M 上一动点,求D 到l 距离的取值范围.【解析】(1)由22sin cos 1θθ+=得M 的普通方程为2214y x +=.(2)直线l 即sin cos 4ρθρθ+=,由cos ,sin x y ρθρθ==得直线l 的普通方程为40x y +-=,设(cos ,2sin )D θθ,则d =其中cos ϕϕ==因为cos()[1,1]θϕ-∈-,⎤⎥⎣⎦,所以D 到l 距离的取值范围为4210421022⎡⎢⎣⎦.20.(2023·江西九江·统考二模)在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知()()0a b c a b c ab -+--+=,sin 3cos 3cos bc C c A a C =+.(1)求c ;(2)求a b +的取值范围.【解析】(1)()()0a b c a b c ab -+--+= ,222a b c ab ∴+-=,即222122a b c ab +-=,1cos 2C ∴=,又0πC << ,π3C ∴=,sin C ∴=,sin 3cos 3cos bc C c A a C =+,sin C=sin 3(sin cos sin cos )3sin()3sin 2B cC A A C A C B∴⋅⋅=+=+=,0πB << ,即sin 0B ≠,32c =,解得c =.(2)由正弦定理得,4sin sin sin a b c A B C ===,∴4sin a A =,4sin b B =,∴4sin 4sin a b A B +=+,πA B C ++=,π3C =,∴2π3B A =-则2π4sin 4sin 3a b A A ⎛⎫+=+-⎪⎝⎭14(sin cos sin )2A A A =+6sin A A=+π6A ⎛⎫=+ ⎪⎝⎭,ABC 为锐角三角形,∴π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭∴ππ,62A ⎛⎫∈ ⎪⎝⎭∴ππ2π,633A ⎛⎫+∈ ⎪⎝⎭,∴πsin ,162A ⎛⎤⎛⎫+∈⎥ ⎪ ⎝⎭⎝⎦,∴(π6,6A ⎛⎫+∈ ⎪⎝⎭,即(6,a b +∈.21.(2023·广东汕头·金山中学校考模拟预测)在锐角ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin sin sin B A Cb c b a-=-+.(1)求角A 的值;(2)若2c =,求a b +的取值范围.【解析】(1)由正弦定理sin sin sin a b cA B C==得:b a cb c b a-=-+,整理得:222b c a bc +-=,由余弦定理得:2221cos 222b c a bc A bc bc +-===,∵(0,π)A ∈,则π3A =.(2)由(1)可得:π3A =,且2c =,锐角ABC 中,由正弦定理得:sin sin sin a b cA B C==,可得π2sin sin sin 31sin sin sin C c A c B a b C C C ⎛⎫+ ⎪⋅⋅⎝⎭====则)21cos 21111sin 2sin cos tan 222CC a b C C C C ++=++=+=+∵ABC 锐角三角形,且π3A =,则π02π02C B ⎧<<⎪⎪⎨⎪<<⎪⎩,即π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62C <<,即ππ1224C <<,且ππtantanπππ34tan tan 2ππ12341tan tan 34-⎛⎫=-==- ⎪⎝⎭+⋅可得()tan 22C ∈,则(114tan 2C++,故a b +的范围是(14+.22.(2023·湖南长沙·湖南师大附中校考一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知7b =,且sin sin sin sin a b A Cc A B+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【解析】(1)由正弦定理,sin sin sin sin a b A C a cc A B a b+--==--,可得222,b a c ac =+-再由余弦定理,1cos 2B =,又()0,πB ∈,所以π3B =.因为2sin3bRB==,所以3R=.(2)由(1)可知:2249a c ac+-=,则2()493a c ac+=+.()11sin22ABCS ac B a b c r==++⋅则)23()497277ac a cr a ca c a c+-===+-++++.在ABC中,由正弦定理,sin sin sina c bA C B===,sina A c C,则)1431432πsin sin sin sin333a c A C A A⎡⎤⎛⎫+=+=+-⎪⎢⎥⎝⎭⎣⎦14331sin cos sin322A A A⎛⎫=+⎪⎪⎝⎭31πsin cos14sin cos14sin226A A A A A⎫⎛⎫⎛⎫==+⋅=+⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,又ππ2π0,,333A⎛⎫⎛⎫∈⋃⎪ ⎪⎝⎭⎝⎭,所以ππππ5π,,66226A⎛⎫⎛⎫+∈⋃⎪⎝⎭⎝⎭,所以π1sin,162A⎛⎫⎛⎫+∈⎪ ⎪⎝⎭⎝⎭,()π14sin7,146A⎛⎫+∈⎪⎝⎭,所以r⎛∈⎝⎭.23.(2023·黑龙江哈尔滨·哈尔滨市第六中学校校考一模)在锐角ABC中,设边,,a b c 所对的角分别为,,A B C,且22a b bc-=.(1)求角B的取值范围;(2)若4c=,求ABC中AB边上的高h的取值范围.【解析】(1)因为22a b bc-=,所以2222cos 222b c a c bc c bA bc bc b+---===,所以2cos c b b A -=,sin sin 2sin cos C B B A -=,又()πC A B =-+,所以()sin sin 2sin cos A B B B A =+-,整理可得()sin sin A B B -=,所以A B B -=或πA B B -+=(舍去),所以2A B =,又ABC 为锐角三角形,所以π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,所以64ππ,B ⎛⎫∈ ⎪⎝⎭;(2)由题可知11sin 22S ch ac B ==,即sin h a B =,又()sin 2sin sin π3a b cB B B ==-,所以4sin 2sin 3Ba B=,所以4sin 2sin 4sin 2sin sin sin 3sin 2cos cos 2sin B B B Bh a B B B B B B===+248tan 81133tan tan tan tan 2tan B B B B B B===-+-,由64ππ,B ⎛⎫∈ ⎪⎝⎭,可得tan B ⎫∈⎪⎪⎝⎭,所以3tan tan B B ⎛-∈ ⎝⎭,所以)4h ∈,即ABC 中AB 边上的高h 的取值范围是)4.24.(2023·辽宁鞍山·统考二模)请从①2sin cos cos cos a B B C B =;②()22sin sin sin sin sin A C B A C -=-;③sin 1cos Aa B=+这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若___________,(1)求角B 的大小;(2)若△ABC 为锐角三角形,1c =,求22a b +的取值范围.【解析】(1)若选①因为2sin cos cos cos a B B C B =,由正弦定理得2sin sin cos cos cos A B B B C C B =,即sin sin (sin cos sin cos )A B B B C C B +sin()B B C =+,所以sin sin sin A B B A =,由(0,π)A ∈,得sin 0A ≠,所以sin B B =,即tan B =因为(0,π)B ∈,所以π3B =.若选②由22(sin sin )sin sin sin A C B A C -=-,化简得222sin sin sin sin sin A C B A C +-=.由正弦定理得:222a cb ac +-=,即222122a cb ac +-=,所以1cos 2B =.因为(0,π)B ∈,所以π3B =.若选③sin A =sin sin (1cos )B A A B =+,因为0πA <<,所以sin 0A ≠,1cos B B =+,所以π1sin 62B ⎛⎫-= ⎪⎝⎭,又因为ππ5π666B -<-<,所以π3B =.(2)在ABC 中,由正弦定理sin sin a c A C =,得sin sin c A a C =,sin sin 2sin c B b C C ==由(1)知:π3B =,又с=1代入上式得:222223sin 3sin 3sin()22cos 12()cos 1cos 1cos sin sin sin sin A A B C a b c ab C C C CC C C C ++=+=+⨯=+=+22π1sin()3321cos 1cos 1sin 2tan C C C C C +=+==+因为ABC 为锐角三角形,所以π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ,62C ⎛⎫∈ ⎪⎝⎭,所以tan C1tan C ∴∈,所以()2222331711,72tan 2tan 2tan 68a b C C C ⎛+=++=++∈ ⎝⎭.25.(2023·福建·统考模拟预测)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅=,求四边形ABCD 面积的最大值.【解析】(1)因为π2sin 6b c A ⎛⎫=+ ⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B AC ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 122A C A C C A A ⎫+=+⎪⎪⎝⎭,即sin cos 0n sin A C C A =,因为sin 0A ≠,故cos C C =,即tan C =又因为()0,πC ∈,所以π6C =.(2)解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△111222AB BC xyAD CD =+⋅=⋅22112222x y +≤+⋅=,当且仅当x y ==时,等号成立.所以四边形ABCD1+.解法二:如图1设ABC 的外接圆的圆心为O ,半径为R ,BD 在BA上的投影向量为BA λ ,所以()2BA BD BA BA BA λλ⋅=⋅= .又22BA BD BA BA ⋅== ,所以1λ=,所以BD 在BA 上的投影向量为BA ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =,在ABD △中,AD =.设四边形ABCD 的面积为S ,CBD θ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cos CB θ=,2sin CD θ=,所以ABD CBD S S S =+△△1122B AD CD AB C =⋅⋅+sin 22θ=+,当π22θ=时,S 最大,所以四边形ABCD1.解法三:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=2h =+,当1h R ==时,S 最大,所以四边形ABCD1.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则12A ⎛ ⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以122BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得11cos 122ββ-+=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则11sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为12+.26.(2023·山西·校联考模拟预测)如图,在四边形ABCD 中,已知2π3ABC ∠=,π3BDC ∠=,AB BC ==(1)若BD =AD 的长;(2)求ABD △面积的最大值.【解析】(1)在BCD △中,由余弦定理,得2222cos BC BD DC BD DC BDC =+-⋅⋅∠,∴222π2cos 3CD CD =+-⨯⋅,整理得2720CD --=,解得CD =CD =-∴2222221c os27BD BC CD DBC BD BC +-∠===⋅,而2π(0,)3DBC ∠∈,故sin DBC ∠=,∴2π1311cos cos cos sin 32214ABD DBC DBC DBC ⎛⎫∠=-∠=-∠+∠= ⎪⎝⎭,故在ABD △中,2222cos AD AB BD AB BD ABD=+-⋅⋅∠221125714=+-⨯=,∴AD =(2)设,2π(0,)3CBD θθ∠=∈,则在BCD △中,sin sin BC BD BDC BCD=∠∠,则2πsin()sin π314sin()2πsin 3sin 3BC BCD BD BDCθθ-∠===+∠,所以π2π11sin sin 2214sin()()33ABD S AB BD ABD θθ=+=⨯⨯∠-⋅△2π34()θ=+,当2πsin (13θ+=,即π6θ=时,ABD △面积取到最大值27.(2023·湖南·校联考二模)在ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足236sin02A Ba b b +-+=.(1)求证:3cos 0a b C +=;(2)求tan A 的最大值.【解析】(1)∵236sin02A Ba b b +-+=,∴22π36sin36cos 022C Ca b b a b b --+=-+=,∴1cos 3602Ca b b +-+⋅=,∴3cos 0a b C +=.(2)由(1)可得:sin 3sin cos 0A B C +=,且C 为钝角,即4sin cos cos sin 0B C B C +=,即4tan tan 0B C +=,tan 4tan C B =-,()2tan tan 3tan 3tan tan 11tan tan 4tan 14tan tan B C B A B C B C B B B+=-+=-==-++34=,当且仅当14tan tan B B =,即1tan 2B =时取等号.故tan A 的最大值为34.28.(2023·黑龙江大庆·铁人中学校考二模)在ABC 中,a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,且sin sin sin sin b a c A C B C-=+-.(1)求角A 的大小;(2)记ABC 的面积为S ,若12BM MC = ,求2AMS的最小值.【解析】(1)因为sin sin sin sin b a c A C B C -=+-,即sin sin sin sin B C a cA C b--=+由正弦定理可得,b c a ca c b--=+,化简可得222a b c bc =+-,且由余弦定理可得,2222cos a b c bc A =+-,所以1cos 2A =,且()0,πA ∈,所以π3A =.(2)因为12BM MC = ,则可得1233AM AC AB =+ ,所以222212144cos 33999AM AC AB AC AC AB A AB ⎛⎫=+=+⋅+ ⎪⎝⎭22142999b c =++且1sin 2S bc A ==,即2221424299999b c bc bc bcAM S+++= 当且仅当1233b c =,即2b c =时,等号成立.所以2minAM S ⎛⎫ ⎪=⎪ ⎪⎝⎭ 29.(2023·云南·统考二模)ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,π3A =.(1)若2b =,3c =.求证:tan sin a bA B+=(2)若D 为BC 边的中点,且ABC的面积为AD 长的最小值.【解析】(1)证明:π3A =Q ,2b =,3c =,由余弦定理可得22212cos 4922372a b c bc A =+-=+-⨯⨯⨯=,a ∴=ππtan sin tan sin tan sin 33a b a a A B A A ∴+=+.(2)由1sin 24ABC S bc A bc ===V 24bc =.D 为边BC 的中点,则0DB DC +=,()()2AB AC AD DB AD DC AD ∴+=+++=,所以,()222222π422cos3AD AB ACAB AC AB AC c b cb =+=++⋅=++222372b c bc bc bc bc =++≥+==,即AD ≥当且仅当b c ==AD 长的最小值为30.(2023·广西·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足(2)cos cos 0b a C c B ++=.(1)求C ;(2)若角C 的平分线交AB 于点D ,且2CD =,求2a b +的最小值.【解析】(1)因为(2)cos cos 0b a C c B ++=,由正弦定理得(sin 2sin )cos sin cos 0B A C C B ++=,即sin cos sin cos 2sin cos B C C B A C +=-,所以()sin sin 2sin cos B C A A C +==-,又()0,πA ∈,则sin 0A >,所以1cos 2C =-,又因()0,πC ∈,所以2π3C =;(2)因为角C 的平分线交AB 于点D ,所以π3ACD BCD ∠=∠=,由ABC ACD BCD S S S =+△△△,得12π1π1πsinsin sin 232323ab CD b CD a =⋅+⋅,即22a b ab +=,所以221ab+=,则()222422666b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭当且仅当24b a a b=,即2b ==时取等号,所以2a b +的最小值为6+.31.(2023·安徽宣城·统考二模)设ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B--=.(1)判断ABC 的形状,并说明理由;(2)求2254cos a a c c B-的最小值.【解析】(1)ABC 为钝角三角形,证明如下:由21sin 1cos 22sin sin cos sin 22sin cos cos A B B B A B B B B--===,则有cos sin cos sin cos B A B B A -=,所以cos sin()B A B =+,因为()0,πA B +∈,所以()cos sin 0B A B =+>,则B 为锐角.所以()cos sin sin 2πB B A B ⎛⎫=-=+⎪⎝⎭,所以π2B A B -=+或()2πB A B π⎛⎫-++= ⎪⎝⎭,则22πA B +=或π2A =,由题意知cos 0A ≠,所以π2A ≠,所以22πA B +=,所以,22C πA B B πππ⎛⎫=--=+∈ ⎪⎝⎭,故ABC 为钝角三角形.(2)由(1)知22πA B +=,π2C B =+,由正弦定理,有22225sin 5sin 4cos sin 4sin cos a a A Ac c B C C B-=-22sin 25sin 222sin 4sin cos 22B B B B B ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭222cos 25cos 2cos 4cos B B B B =-222222cos 15(2cos 1)cos 4c ()os B B B B --=-42224cos 4cos 155cos 4cos 2B B B B -+=+-229134cos 4cos 2B B =+-132≥12=-当且仅当2294cos 4cos B B=时等号成立,由B 为锐角,则cos 2B =,所以当π6B =时取最小值12-.32.(2023·全国·模拟预测)已知ABC 是斜三角形,角A ,B ,C 满足cos(2)cos sin 2A B A B ++=.(1)求证:cos sin 0C B +=;(2)若角A ,B ,C 的对边分别是边a ,b ,c ,求22245a b c+的最小值,并求此时ABC 的各个内角的大小.【解析】(1)由()cos 2cos sin2A B A B ++=得cos cos2sin sin2cos sin2A B A B A B -+=,所以()()cos 1cos21sin sin2A B A B +=+,所以()22cos cos 21sin sin cos A B A B B =+.因为ABC 是斜三角形,所以cos 0B ≠,所以()cos cos 1sin sin A B A B =+,所以cos cos sin sin sin 0A B A B B --=,所以()cos sin 0A B B +-=,又A B C π++=,所以cos sin 0C B +=.(2)在ABC 中,有sin 0B >,由(1)知cos sin 0C B +=,所以cos 0C <,于是角C 为钝角,角B 为锐角,根据cos cos 2C B π⎛⎫=+⎪⎝⎭,所以2C B π=+.由正弦定理,得()2222222222224sin 25sin 4sin 5sin 454sin 5sin 22sin sin sin C C B C B a b A B c C C Cππ⎛⎫⎛⎫-+- ⎪ ⎪++++⎝⎭⎝⎭===()()2222242222412sin 55sin 4cos 25cos 16sin 21sin 9sin sin sin CCC CC C CCC-+-+-+===,22916sin 21213sin C C=+-≥=,当且仅当22916sin sin C C =,即23sin 4C =,sin 2C =时等号成立,又角C 为钝角,所以120C =︒时,等号成立,由2C B π=+,得30B =︒,由180A B C ++=︒,得30A =︒,因此22245a b c +的最小值为3,此时三角形ABC 的各个内角为30A =︒,30B =︒,120C =︒.33.(2023·吉林·统考三模)如图,圆O 为ABC 的外接圆,且O 在ABC 内部,1OA =,2π3BOC ∠=.(1)当π2AOB ∠=时,求AC ;(2)求图中阴影部分面积的最小值.【解析】(1)法一:由题意可知,π2π5π2π236AOC ∠=--=,在AOC 中,由余弦定理得2222311211cos 22AC OA OC OA O AOC C ⎛∠=+-⨯⨯⨯-=+⎭-⎝=+⋅∴622AC =.法二:在ABC 中,π2π5π2π236AOC ∠=--=,1OA =,1π24ACB AOB ∠=∠=,15π212ABC AOC ∠=∠=,AB =由正弦定理得sin sin AB ACACB ABC=∠∠,∴π5πsin sin 412AC=,5πππππππsin sin()sin cos cos sin 124646464=+=+=,∴2AC =.(2)设AOB θ∠=,则4π3AOC θ∠=-114π1π11sin 11sin sin sin 22323AOB AOC S S θθθθ⎡⎤⎛⎫⎛⎫+=⨯⨯⨯+⨯⨯⨯-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△△13πsin sin 22226θθθ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,设阴影部分面积为S ,优弧 BC所对的扇形BOC 面积为S 扇形,则212π2π12π233S ⎛⎫=⨯⨯-= ⎪⎝⎭扇形,∴()π2πsin 263AOB AOC S S S S θ⎛⎫=-+=-+ ⎪⎝⎭扇形△△,∵点O 在ABC 内部,∴ππ3θ<<,∴ππ5π666θ<-<,当ππ62θ-=时,即2π3θ=时,min 2π3S =-。
高考数学模拟试卷复习试题三角函数和解三角形正弦定理和余弦定理的应用
高考数学模拟试卷复习试题三角函数和解三角形正弦定理和余弦定理的应用一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为()A.1762海里/小时B .346海里/小时C.1722海里/小时 D .342海里/小时2.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时()A .5海里B .53海里C .10海里D .103海里3.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D ,测得塔顶A 的仰角为30°,则塔高为()A .15米B .5米C .10米D .12米4.如图所示,要测量河对岸A ,B 两点间的距离,今沿河对岸选取相距40米的C ,D 两点,测得∠ACB =60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,则AB 的距离是() A .402米B .202米C .203米D .206米5.已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与B 的距离为()A .a kmB .3a km C.2a km D .2a km6.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站的南偏东60°,则灯塔A 在灯塔B 的()A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°7.如图所示,设A 、B 两点在河的两岸,一测量者在A 所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为 ()A .502mB .503mC .252m D.2522m8.已知A 、B 两地间的距离为10km ,B 、C 两地间的距离为20km ,现测得∠ABC =120°,则A 、C 两地间的距离为()A .10km B.3km C .105kmD .107km9.一船向正北航行,看见正西方向有相距10n mile 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这只船的速度是每小时()A .5n mileB .53n mileC .10n mileD .103n mile10.为测量某塔AB 的高度,在一幢与塔AB 相距20m 的楼顶D 处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是()A .20⎝⎛⎭⎫1+33m B .20⎝⎛⎭⎫1+32mC .20(1+3)m D .30m11.已知A 船在灯塔C 北偏东80°处,且A 到C 距离为2km ,B 船在灯塔C 北偏西40°,A B 两船距离为3km ,则B 到C 的距离为()A.19km B .(6-1)km C .(6+1)kmD.7km12.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为()A.1762n mile/hB .346n mile/h C.1722n mile/hD .342n mile/h二、填空题(本大题共4小题,每小题5分,共20分。
高中数学模拟汇编 三角函数与解三角形解答题专项训练(有答案)
高中数学模拟汇编三角函数与解三角形解答题专项训练(有答案)高中数学模拟汇编---三角函数与解三角形解答题专项训练(有答案)高中数学模拟的编写——三角函数和解决三角问题的专项训练一.解答题(共30小题)1.(2022年?河南省第二次模拟考试)已知函数f(x)=sin(ωx)(ω>0)任意两个零点之间的最小距离为.(ⅰ)若f(α)=,α∈[π,π],求α的取值集合;(ⅱ)求函数y=f(x)cos (ωx+2.(2022?泸州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)数字f(x)的图像向左移动个单位后图象关于y轴对称.)图像的两个相邻对称轴之间的距离为,若将函)单调递增区间(ⅰ)求使f(x)≥成立的x的取值范围;(ⅱ)设g(x)=求cos2x的值.3.(2022?泸州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)数字f(x)的图像向左移动个单位后图象关于y轴对称.)图像的两个相邻对称轴之间的距离为,若将函cosωx,其中G'(x)是G(x)的导数,如果G(x)=,和,(一)找到构成f(X)的X的值范围≥ 建立;(二) set=,和,求cosx的值.其中G'(x)是G(x)的导数,如果G(x)4.(2021?泸州模拟)在△abc中,角a,b,c的对边分别是a,b,c,若(ⅰ)求角c的大小;(ⅱ)若a=3,△abc的面积为5.(2022年?重庆第一次模拟考试)已知向量=(cosax,sinax),=(,求价值acosc=csina.Cosax,Cosax),其中a>0,如果函数f(x)=0图象与直线y=m(m>0)相切,且切点横坐标成公差为π的等差数列.(1)求a和m的值;(2)在△ ABC、a、B和C分别是角a、B和C的对边。
如果C的值6.(2021?资阳模拟)已知函数f(x)=(ⅰ)求函数f(x)的单调递增区间;Msinxcosx+mcosx+n(m,n∈ R)在区间[0,2,a=4,求出△ ABC区和B区]上的值域为[1,2].(二)在△ ABC,角a、B和C的边长分别为a、B和C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.π3
B.π2
C.34π
D.54π
6.【2019
届云南省昆明市
1
月诊测】将函数
y
=
sin(2x
+
π 3
)的图象向右平移π6个单位长度,则
所得图象的对称轴可以为( )
A.x
=−
π 6
B.x
=
π 4
C.x
=
π 3
D.x
=
π 2
7【. 2019 届云南省昆明市 1 月诊测】在平面四边形 ABCD 中,∠D = 90°,∠BAD = 120°,AD = 1,
则
的值为( )
,
,
A.
B.
C.
D.
17. 【河北省衡水中学 2018 届高三高考押题(一)理数试题试卷】已知 函数
f x Asin x (A 0. 0, ) 的部分图象如图所示,则函数 g x Acosx 图象
的一个对称中心可能为( )
4
A.
5 2
,
0
B.
1 6
,
0
A. 3 3
B. 2 3 3
C. 3
D. 4 3 3
14. 【河北省衡水中学 2018 届高三第十六次模拟考试数学(理)试题】已知 满足 sin 1 ,
3
则
cos
4
cos
4
(
)
A. 7 18
B. 25 18
C. 7 18
D. 25 18
15. 【河北省衡水中学 2018 届高三第十六次模拟考试数学(理)试题】已知函数
12. 【河北省衡水中学 2018 届高三毕业班模拟演练一】已知函数
,
将 的图象向右平移
个单位,所得函数 的部分图象如图所示,则 的值为( )
3
A.
B.
C.
D.
13. 【河北省衡水中学 2018 届高三第十次模拟考试数学(理)试题】已知 ABC 中, sinA 2sinBcosC 0 ,则 tanA 的最大值是( )
D. f x 的最小正周期为 2π ,最大值为 4
5.【2019 届福建省福州市上学期质测】已知函数 f(x) = 3sin2x − 2cos2x + 1,将 f(x)的图 像
上的所有点的横坐标缩短到原来的1,纵坐标保持不变;再把所得图像向上平移
2
1
个单位长度,
得到函数 y = g(x)的图像,若 g(x1) ⋅ g(x2) = 9,则|x1 − x2|的值可能为( )
f
x
2sin
2x
6
,现将
y
f
x 的图象向左平移 个单位,再将所得图象上各点的横坐
12
标缩短为原来的
1 2
倍,纵坐标不变,得到函数
y
g
x
的图象,则
g
x
在
0,
5 24
的值域为(
)
A.1, 2 B.0,1 C .0, 2 D.1,0
16. 【河北省衡水中学 2018 届高三第十七次模拟考试数学(理)试题】已知
AC = 2,AB = 3,则 BC =( )
A. 5 B. 6 C. 7 D.2 2
2
8.【2019 届河南省开封市一模】已知函数 f(x) = sin4x − cos4x,则下列说 法正确的是
A.f(x)的最小正周期为 2π B.f(x)的最大值为 2[:]
C.f(x)的图像关于 y 轴对称
D.f(x)在区间[
C.向右平移π6个单位长度
D.向左平移1π2个单位长度
10.【2019 届山西一中大同期末】将函数 y = sin2x −
3cos2x
的图象向左平移φ(0
<
φ
≤
π 2
)
个单位长度后得到 f
x
的图象,若 f
x
在
π 4
,
π 2
上单调递减,则φ的取值范围为(
)
A.
π 3
,
π 2
]
B.
π 6
,
π 2
C.
π 3
高中理科数学(学生版)
最新高考绝杀 80 题
最 新 讲 义
1
1.【2019
届广东省佛山市质检(一)】已知
sin2α
=
1,则cos2(α
3
−
π 4
)
=(
)
A.16
B.13
C.23
D.56
2.【2019 届云南省昆明市 1 月诊测】在平面直角坐标系 xOy 中,角α的终边与单位圆交点的横
坐标为-
3,则
,
5π 12
D.
π 6
,
5π 12
11.【2019 届湖南师范大学附中月考(五)】若函数 f x =asinωx+bcosωx (0 < ω < 5,ab ≠ 0)
的图象的一条对称轴方程是
x
=
π ,函数
4ω
f'
x
的图象的一个对称中心是
π ,0
4
,则 f
x
的最小
正周期是( )
A.π
B.2π
C.π2
D.π4
A.120 2m B.480m C.240 2m D.600m
4.【2019 届湖南衡阳一中期中】已知函数 f x 2cos2x sin2x 2 ,则
A. f x 的最小正周期为π,最大值为 3
B. f x 的最小正周期为π,最大值为 4
C. f x 的最小正周期为 2π ,最大值为 3
π 4
,
π 2
]上单调递减
9.【2019 届四川省达州市高三上期末】函数,f(x)=Acos(wx+φ)(A>0,w>0,-π<
φ<0)的部分图象如图所示,为了得到 g(x)=Asinwx 的图象,只需将函数 y=f(x)的图
象( )
A.向左平移π6个单位长度
B.向右平移1π2个单位长 度[:Z&X&X&K]
图象向左平移 个单位,再将所得图象上各点的横坐标缩短为原来的 1 倍,纵坐标不变,得
12
2
到函数
y
g
x
的图象,则
g
x
在
0,
5 24
的值域为(
)
A.1, 2 B.0,1 C.0, 2 D.1,0
20【. 2019 届广东省佛山市质检(一)】将偶函数 ( ) = 3sin(2 + ) − cos(2 + )(0 < < )
2
cos2α
=(
)[:ZXXK]
A.-
3 2
B. 3
2
C.- 1
2
D.1
2
3.【2019 届陕西省咸阳一中期中】如图,要测量底部不能到达的某铁塔 AB 的高度,在塔的同
一侧选择 C,D 两观测点,且在 C,D 两点测得塔顶的仰角分别为45∘,30∘.在水平面上测得
∠BCD = 120∘,C,D 两地相距 600m,则铁塔 AB 的高度是( )
C.
1 2
,
0
D.
11 6
,
0
18.
【河北省衡水中学
2018
届高三十六模】已知
满足
sin
1 3
,则
cos
4
cos4Βιβλιοθήκη ()A. 7 18
B. 25 18
C. 7 18
D. 25 18
19.
【河北省衡水中学 2018 届高三十六模】已知函数
f
x
2sin
2x
6
,现将
y
f
x 的
的图象向右平移 个单位,得到
6
= ( )的图象,则 ( )的一个单调递增区间为(
)
A.( − 3 , 6 )
B.(
12
,
7 12
)
C.( 6
,
2 3
)
D.(
3
,
5 6
)
一、 填空题
21.【2019 届江西省赣州市上学期期中】已知