2014年广东省中考数学试题及参考答案(word解析版)

合集下载

2014年广东省中考化学试题及参考答案(word解析版)

2014年广东省中考化学试题及参考答案(word解析版)

2014年广东省中考化学试题及参考答案与解析一、选择题(本大题包括14小题,每题2分,共28分,每小题只有一个正确选项)1.下列资源的利用过程中发生了化学变化的是()A.铁矿炼铁B.干冰制冷C.海水晒盐D.风能发电2.下列场所挂的图标与“消防安全”不相符的是()A.B.C.D.液化气站煤矿的井下通道农产品批发市场电影院等娱乐场所3.下列说法正确的是()A.玻璃钢和碳纤维是天然材料B.钢铁在海水中不易锈蚀C.白色物质造成的污染称为白色污染D.用灼烧的方法区别棉花和羊毛4.下列物质的名称和俗名相对应的是()A.碳酸钙﹣纯碱B.氯化钠﹣食盐C.碳酸钙﹣小苏打D.氧化钙﹣熟石灰5.氨气密度比空气小,极易溶于水,以下收集氨气的方法正确的是()A.B.C.D.6.下列分类正确的是()A.蒸馏水和矿泉水:硬水B.生铁和塑料:合成材料C.金刚石和石墨:碳单质D.氧化钾和碳酸钾:盐类7.下列验证实验不能成功的是()A.B.C.D.A.CO2能与烧碱溶液反应B.不同物质的着火点不同C.分子在不断运动D.质量守恒定律8.下列说法正确的是()A.酒精、天然气和石油是化石燃料B.海洋有大量的水,所以不必珍惜水资源C.施用农药造成污染,应禁止使用D.少食蔬菜水果的同学会缺维生素C,有可能引起坏血病9.如图是芝麻酱说明书,下列关于芝麻酱判断正确的是()A.不含微量元素B.不含糖类和油脂C.婴儿要慎用D.钙含量高于蛋白质10.下列实验操作、现象与结论对应关系不正确的是()选项实验操作现象结论A 向食醋中加入氢氧化钠溶液无明显现象二者之间不发生反应B 向红墨水中加入活性炭,过滤红墨水变无色活性炭具有吸附性C 用黄铜片在铜上刻划铜片上有划痕黄铜的硬度比铜大D 电解水电极上有气泡产生水电解有气体生成11.如图是R原子结构示意图和磷元素的相关信息,下列说法错误的是()A.X=8 B.磷元素的相对原子量为15C.两种元素可形成化学式为P2R5的化合物D.磷可在R中的单质中剧烈燃烧12.KCl与KNO3在不同温度的溶解度数据如表.则下列说法正确的是()温度/℃10 20 30 40 50KCl 30g 33g 35g 38g 41gKNO321g 31g 45g 65g 88gA.KNO3比KCl的溶解度大B.两物质的溶解度相等的温度在20~30℃之间C.在20℃时,10g水中加入5g KCl可得到33.3%的KCl溶液D.在50℃时,两物质各5g分别加入10g水中,充分溶解,均有固体剩余13.下列除去杂质(括号内)的方法正确的是()A.CO(CO2):通过灼热的氧化铜B.NaOH溶液(Na2CO3):加适量稀盐酸C.NaCl溶液(盐酸):加热蒸发D.铁粉(氧化铜粉末):加入足量稀盐酸14.下列图象能正确反映对应的实验操作的是()A.B.C.D.A.向一定的饱和石灰水加入氧化钙B.加热一定量高锰酸钾固体产生氧气C.用一定量的双氧水制取氧气D.向一定量的硝酸银溶液中插入铜丝二、填空题(本大题包括5小题,共21分)15.(4分)用化学式填空:最轻的气体:;地壳中含量最高的金属元素:;氧化亚铁中铁元素显正二价:;2个硝酸根离子:.16.(2分)某反应的微观示意如图.请回答:反应前后的物质中属于单质的名称是:;该反应的化学方程式为:.17.(4分)以柴油为燃料的汽车加装尿素箱可使尾气排放达“国四”标准.其工作原理是:(1)将尿素溶液均匀喷入热的尾气中,并释放出氨气,其反应方程式为:CO(NH2)2+X═CO2+2NH3,则X的化学式为(2)在催化剂的作用下,氨气使尾气中的氮氧化物快速转化成无害的氮气和水蒸气,水蒸气可吸收尾气中的烟尘,减少PM2.5排放.请写出氨气和N2O反应的化学方程式:(3)尿素与熟石灰研磨(填“能”或“不能”)产生氨气.18.(6分)“烧碱同学”要穿过迷宫,从进口顺利地走到出口,途中遇到不反应的物质才能通,如图.(1)请你在答题卡中用“连续线”画出烧碱应走的路线(2)烧碱在刚进迷宫时,碰到了两种阻止他前进的物质,请写出化学反应的方程式:,.19.(5分)点燃不纯的可燃性气体可能发生爆炸,如图是某同学的改进装置.请回答.(1)图1是可燃性气体的洗气改进装置,检查它的气密性的方法是向导管a处,若则气密性好,若在导管a处通入可燃性气体,在导管b处连上尖嘴管并松开止水夹,点燃,即使气体不纯也不会爆炸,可见此装置的作用是(2)用图2尖嘴管导出可燃性气体并点燃,也不会使管中气体爆炸,其原理是铜丝或水可以.三、解答题(本大题包括2小题,共15分)20.(7分)A﹣E是五种不同类别的常见物质:铁、二氧化碳、氢氧化钙、氯化铜、硫酸中的某一种,B常用于中和酸性土壤,E属于酸类.他们之间的关系如图,(其中实线表示物质间可以相互反应,虚线表示物质间不能相互反应).请回答下列问题:(1)E的化学式为,B与E反应的化学方程式为:,该反应的类型是反应.(2)C与D反应的化学方程式为.(3)虚线相邻物质间存在转化关系的是→(填化学式)21.(8分)Na2SO4是制造纸浆、染料稀释剂、医药品等的重要原料.某Na2SO4样品中含有少量CaCl2和MgCl2,实验室提纯Na2SO4的流程如图1(1)加入NaOH溶液可除去的阳离子是(填离子符号),其反应的化学方程式为:.若添加的NaOH和Na2CO3添加过量,可加入适量(填名称)除去.(2)操作a的名称是,该操作中用到的有烧杯,玻璃棒、.(3)溶液M中的溶质是Na2SO4和杂质NaCl,观察图2的溶解度曲线,则操作b是:先将溶液M 蒸发浓缩,在降温结晶、过滤,降温结晶的最佳温度范围是℃以下,因为Na2SO4的溶解度.四、实验题(本题包括2小题,共21分)22.(12分)请根据图1回答相关问题:(1)仪器a的名称是(2)A图称量前,要将天平调平衡,首先要把,然后才调节平衡螺丝;称量粉末状固体时若药品量不足,此时用一只手用药匙取药品移至天平左盘上方,另一只手应使少量药品落入盘中.(3)图1有明显错误的是B(填序号);C中的玻璃棒作用时:搅拌,防止.(4)图1中D的装置可用来制取的气体是(写一种),制取该气体的化学方程式为,该装置的优点是.(5)图2是利用CO还原Fe2O3的实验装置图,玻璃管中固体的颜色变化是:,集气瓶中的溶液用于检验和除去产生的CO2,请把虚线框中的图补充完整,处理尾气的方法是.23.(9分)某兴趣小组在做完碳还原氧化铜试验后,进行了如图的探究【猜想】把氧化铜还原成铜的物质是:Ⅰ石墨;Ⅱ.【实验】用天平称量1.5g氧化铜粉末,直接用铝箔纸包裹.按上述操作步骤实验,黑色粉末,那么猜想Ⅱ不成立.【结论】石墨棒能使氧化铜还原成铜,该反应的化学方程式为【改进】把石墨棒换成铝粉重复上述操作,又获成功.那么称取等量的铝粉并进行同样的操作,其目的是.改进后的实验证明,金属铝与铜活动顺序是,该反应的化学方程式为【拓展】如果使用复印机的“碳粉”代替石墨棒还原氧化铜,效果更好.联想在空气中灼烧的铁丝不能燃烧,而铁粉能燃烧能燃烧,其原因是.五、实验题(本大题包括2小题,共15分)24.(4分)我国民间有端午节挂艾草的习俗.艾草含有丰富的黄酮素(化学方程式为:C15H10O2)有很高的药用价值.请回答(1)黄酮素属于化合物(填“有机”或“无机”)(2)黄酮素含有种元素,碳、氢的原子个数比为(填最简化)(3)黄酮素分子中碳元素的质量分数为(结果精确到0.1%)25.(11分)同学们做甲、乙两个中和反应实验的探究,如图所示:(1)甲实验恰好中和,则该溶液中的溶质是(填化学式).(2)取乙反应后的溶液60.0g,滴加质量分数26.5%的Na2CO3溶液,如图丙,溶液pH的变化如图丁,则与CaCl2反应的碳酸钠溶液的质量为g;请计算该溶液中CaCl2的溶质质量分数为(写出计算过程,精确到0.1%).(3)根据计算所得数据在图戌中画出产生沉淀的曲线.(4)已组的中和反应试验设计存在的不足是.参考答案与解析一、选择题(本大题包括14小题,每题2分,共28分,每小题只有一个正确选项)1.下列资源的利用过程中发生了化学变化的是()A.铁矿炼铁B.干冰制冷C.海水晒盐D.风能发电【知识考点】化学变化和物理变化的判别.【思路分析】本题考查学生对物理变化和化学变化的确定.判断一个变化是物理变化还是化学变化,要依据在变化过程中有没有生成其他物质,生成其他物质的是化学变化,没有生成其他物质的是物理变化.【解答过程】解:A、铁矿炼铁是利用还原剂与铁的化合物发生反应,还原出铁来,属于化学变化,故A正确;B、干冰制冷是利用干冰升华吸热,使周围温度降低,没有新物质生成,属于物理变化,故B错误;C、海水晒盐是水分蒸发过程,没有新物质生成,属于物理变化,故C错误;D、风能发电是利用风力使轮子转动做功发电,没有新物质生成,属于物理变化,故D错误。

2014年南京市中考数学试卷及答案(word详细解析版)

2014年南京市中考数学试卷及答案(word详细解析版)

2014年江苏省南京市中考数学试卷及详细解析一、选择题(本大题共6小题,每小题2分,共12分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D..解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选C.点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解:原式=﹣a2×3=﹣a6.故选:D.点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.3.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.4.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.分析:根据无理数的定义进行估算解答即可.解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为B.点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.5.(2014年江苏南京)8的平方根是()A.4 B.±4 C.2D.分析:直接根据平方根的定义进行解答即可解决问题.解:∵,∴8的平方根是.故选D.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4) D.(,)、(﹣,4)分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(本大题共10小题,每小题2分,共20分)7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.分析:根据相反数的定义和绝对值定义求解即可.解:﹣2的相反数是2,﹣2的绝对值是2.点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将11000用科学记数法表示为:1.1×104.故答案为:1.1×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2014年江苏南京)使式子1+有意义的x的取值范围是.分析:根据被开方数大于等于0列式即可.解:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°,故答案是:72°.点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,解得R=6.故答案为:6.点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如的取值范围是.分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2014年江苏南京)解不等式组:.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.解:,解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.解:原式=﹣==﹣,当a=1时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.解:(1)他们的抽样都不合理;因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;(2)根据题意得:×120000=72000(名),该市120000名初中学生视力不良的人数是72000名.点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 2.6(1+x)2万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.分析(1)根据增长率问题由第1年的可变成本为2.6万元就可以表示出第二年的可变成本为2.6(1+x),则第三年的可变成本为2.6(1+x)2,故得出答案;(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD 位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?分析:(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15﹣5=10,小明骑车在上坡路的速度为:15+5=20.∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意,得,解得:,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2+b2,由题意,得,解得:,∴y=﹣20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC 的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.在Rt△OPH中,由勾股定理,,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,在Rt△OPM中,由勾股定理,,解得t=2.综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.27.(2014年江苏南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.分析:(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.。

2014年广东省中考数学真题(word版,含答案)

2014年广东省中考数学真题(word版,含答案)

2014年广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A 、B 、C 、D 、 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( ) A 、10 B 、9 C 、8 D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A 、47 B 、37 C 、34 D 、137、如图7图,□ABCD 中,下列说法一定正确的是(A 、AC=BDB 、AC ⊥BDC 、AB=CD D 、AB=BC题7图 8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( ) A 、17 B 、15 C 、13 D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A 、函数有最小值B 、对称轴是直线x =21DC 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ; 13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 。

广东省2014年中考数学试卷(含解析)

广东省2014年中考数学试卷(含解析)

2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)(2014?广东)在1,0,2,﹣3这四个数中,最大的数是()A.1B.0C.2D.﹣3考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣3<0<1<2,故选:C.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014?广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,不是中心对称图形.故此选项错误.故选C.点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2014?广东)计算3a﹣2a的结果正确的是()A.1B.a C.﹣a D.﹣5a考点:合并同类项.分析:根据合并同类项的法则,可得答案.解答:解:原式=(3﹣2)a=a,故选:B.点评:本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)(2014?广东)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)(2014?广东)一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据多边形的外角和公式(n﹣2)?180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)?180°=900°,解得n=7.故选D.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)(2014?广东)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.考点:概率公式.分析:直接根据概率公式求解即可.解答:解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选B.点评:本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)(2014?广东)如图,?ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)(2014?广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.考点:根的判别式.专题:计算题.分析:先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)(2014?广东)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17考点:等腰三角形的性质;三角形三边关系.分析:由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.解答:解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.点评:本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)(2014?广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x=,正确,故本选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)(2014?广东)计算2x3÷x=2x2.考点:整式的除法.分析:直接利用整式的除法运算法则求出即可.解答:解:2x3÷x=2x2.故答案为:2x2.点评:此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)(2014?广东)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将618 000 000用科学记数法表示为: 6.18×108.故答案为: 6.18×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2014?广东)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)(2014?广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)(2014?广东)不等式组的解集是1<x<4.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)(2014?广东)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2014?广东)计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)(2014?广东)先化简,再求值:(+)?(x2﹣1),其中x=.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=?(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(2014?广东)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图—基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDE,再根据同位角相等两直线平行可得结论.解答:解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2014?广东)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠ABC的度数,得到BC的长度,然后在直角△BDC 中,利用三角函数即可求解.解答:解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC?sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)(2014?广东)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?考点:分式方程的应用.分析:(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.解答:解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.点评:本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)(2014?广东)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014?广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)(2014?广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB 于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.考点:切线的判定;弧长的计算.分析:(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.解答:(1)解:∵AC=12,∴CO=6,∴==2π;(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(1)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.点评:本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)(2014?广东)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF?DH=(10﹣t)?2t=﹣t2+10t=﹣(t﹣2)2+10∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。

2008年广东省中考数学试卷及答案(word版)

2008年广东省中考数学试卷及答案(word版)

2008年广东省初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.21-的值是 A .21- B .21 C .2- D .22.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2102.408⨯米 B .31082.40⨯米 C .410082.4⨯米 D .5104082.0⨯米 3.下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 4.下列图形中是轴对称图形的是5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位 数是A .28B .28.5C .29D .29.5二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.2- 的相反数是__________;7.经过点A (1,2)的反比例函数解析式是_____ _____; 8.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是____________;9.如图1,在ΔABC 中,M 、N 分别是AB 、AC 的中点,且∠A +∠B=120°, 则∠AN M= °;10.如图2,已知AB 是⊙O 的直径,BC 为弦,∠A BC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB= °.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算 :01)2008(260cos π-++-.12.(本题满分6分)解不等式x x <-64,并将不等式的解集表示在数轴上.13.(本题满分6分)如图3,在ΔABC 中,AB=AC=10,BC=8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.14.(本题满分6分)已知直线1l :54+-=x y 和直线2l ::421-=x y ,求两条直线1l 和2l 的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15.(本题满分6分)如图4,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。

2019年广东省广州市中考数学试卷(word版,含答案解析)

2019年广东省广州市中考数学试卷(word版,含答案解析)

2019年广东省广州市中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分) 1. |−6|=( )A. −6B. 6C. −16D. 162. 广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( ) A. 5 B. 5.2 C. 6 D. 6.4 3. 如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan∠BAC =25,则此斜坡的水平距离AC 为( )A. 75mB. 50mC. 30mD. 12m4. 下列运算正确的是( )A. −3−2=−1B. 3×(−13)2=−13 C. x 3⋅x 5=x 15D. √a ⋅√ab =a √b5. 平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( )A. 0条B. 1条C. 2条D. 无数条6. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A.120x=150x−8B. 120x+8=150xC. 120x−8=150xD.120x=150x+87. 如图,▱ABCD 中,AB =2,AD =4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是( )A. EH =HGB. 四边形EFGH 是平行四边形C. AC ⊥BDD. △ABO 的面积是△EFO 的面积的2倍8. 若点A(−1,y 1),B(2,y 2),C(3,y 3)在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系是( )A. y 3<y 2<y 1B. y 2<y 1<y 3C. y 1<y 3<y 2D. y 1<y 2<y 39. 如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A. 4√5B. 4√3C. 10D. 810. 关于x 的一元二次方程x 2−(k −1)x −k +2=0有两个实数根x 1,x 2,若(x 1−x 2+2)(x 1−x 2−2)+2x 1x 2=−3,则k 的值( ) A. 0或2 B. −2或2 C. −2 D. 2 二、填空题(本大题共6小题,共18.0分)11. 如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA =6cm ,PB =5cm ,PC =7cm ,则点P 到直线l 的距离是______cm . 12. 代数式1√x−8有意义时,x 应满足的条件是 . 13. 分解因式:x 2y +2xy +y =______.14. 一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.15. 如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为______.(结果保留π)16. 如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论: ①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值18a 2. 其中正确的结论是______.(填写所有正确结论的序号)三、解答题(本大题共9小题,共102.0分)17. 解方程组:{x −y =1x +3y =9.18.如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,求证:△ADE≌CFE.19.已知P=2aa2−b2−1a+b(a≠±b).(1)化简P;(2)若点(a,b)在一次函数y=x−√2的图象上,求P的值.20.某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(−1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=n−3的图象相交于A,xP两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF//AB;(2)设△ABC的面积为S1,△ABF的面积为S2,记S=S1−S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.已知抛物线G:y=mx2−2mx−3有最低点.(1)求二次函数y=mx2−2mx−3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 根据负数的绝对值等于它的相反数解答. 【解答】解:−6的绝对值是|−6|=6. 故选:B . 2.【答案】A【解析】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A .众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 本题主要考查众数的定义,是需要熟练掌握的概念. 3.【答案】A【解析】【分析】本题考查解直角三角形的应用−坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解决. 【解答】解:∵∠BCA =90°,tan∠BAC =25,BC =30m , ∴tan∠BAC =25=BCAC =30AC , 解得,AC =75(m), 故选A . 4.【答案】D【解析】解:A 、−3−2=−5,故此选项错误; B 、3×(−13)2=13,故此选项错误; C 、x 3⋅x 5=x 8,故此选项错误; D 、√a ⋅√ab =a √b ,正确. 故选:D .直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】C【解析】解:∵⊙O 的半径为1,点P 到圆心O 的距离为2, ∴d >r ,∴点P 与⊙O 的位置关系是:P 在⊙O 外, ∵过圆外一点可以作圆的2条切线, 故选:C .先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.【答案】D【解析】解:设甲每小时做x个零件,可得:120x =150x+8,故选:D.设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.【答案】B【解析】【分析】本题考查平行四边形的面积、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=12AD=2,HG=12CD=12AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=12AD=12BC=FG,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF//AB,,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.8.【答案】C【解析】解:∵点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,∴y1=6−1=−6,y2=62=3,y3=63=2,又∵−6<2<3,∴y1<y3<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.【答案】A【解析】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD//BC,∴∠OAF=∠OCE,在△AOF和△COE中,{∠AOF=∠COEOA=OC∠OAF=∠OCE,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB=√AE2−BE2=√52−32=4,∴AC=√AB2+BC2=√42+82=4√5;故选:A.连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=√AE2−BE2=4,再由勾股定理求出AC即可.本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.【答案】D【解析】解:∵关于x的一元二次方程x2−(k−1)x−k+2=0的两个实数根为x1,x2,∴x1+x2=k−1,x1x2=−k+2.∵(x1−x2+2)(x1−x2−2)+2x1x2=−3,即(x1+x2)2−2x1x2−4=−3,∴(k−1)2+2k−4−4=−3,解得:k=±2.∵关于x的一元二次方程x2−(k−1)x−k+2=0有实数根,∴Δ=[−(k−1)]2−4×1×(−k+2)≥0,解得:k≥2√2−1或k≤−2√2−1,∴k=2.故选:D.由根与系数的关系可得出x1+x2=k−1,x1x2=−k+2,结合(x1−x2+2)(x1−x2−2)+2x1x2=−3可求出k的值,根据方程的系数结合根的判别式Δ≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1−x2+2)(x1−x2−2)+2x1x2=−3,求出k的值.11.【答案】5【解析】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.【答案】x>8【解析】【分析】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,属于基础题.直接利用分式、二次根式的定义求出x的取值范围.【解答】有意义时,解:代数式√x−8x−8>0,解得:x>8.故答案为:x>8.13.【答案】y(x+1)2【解析】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.首先提取公因式y,再利用完全平方进行二次分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】15°或60°【解析】【分析】分情况讨论:①DE⊥BC;②AD⊥BC.本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°−∠BAD=15°;②当AD⊥BC时,∠BAD=30°,即α=60°.故答案为15°或60°.15.【答案】2√2π【解析】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2√2,则底面圆的周长为2√2π,∴该圆锥侧面展开扇形的弧长为2√2π,故答案为2√2π.根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】①④【解析】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM =∠EHB =45°,∠BAD =90°, ∴∠FAE =∠EHC =135°, ∵BA =BC ,BE =BH , ∴AE =HC ,∴△FAE≌△EHC(SAS),∴EF =EC ,∠AEF =∠ECH , ∵∠ECH +∠CEB =90°, ∴∠AEF +∠CEB =90°, ∴∠FEC =90°,∴∠ECF =∠EFC =45°,故①正确,如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),∴∠ECB =∠DCH ,∴∠ECH =∠BCD =90°, ∴∠ECG =∠GCH =45°, ∵CG =CG ,CE =CH , ∴△GCE≌△GCH(SAS), ∴EG =GH ,∵GH =DG +DH ,DH =BE , ∴EG =BE +DG ,故③错误,∴△AEG 的周长=AE +EG +AG =AG +GH =AD +DH +AE =AE +EB +AD =AB +AD =2a ,故②错误,设BE =x ,则AE =a −x ,AF =√2x ,∴S △AEF =12⋅(a −x)×x =−12x 2+12ax =−12(x 2−ax +14a 2−14a 2)=−12(x −12a)2+18a 2,∵−12<0,∴x =12a 时,△AEF 的面积的最大值为18a 2.故④正确,故答案为①④.①正确.如图1中,在BC 上截取BH =BE ,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE =x ,则AE =a −x ,AF =√2x ,构建二次函数,利用二次函数的性质解决最值问题.本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题. 17.【答案】解:{x −y =1 ①x +3y =9 ②,②−①得,4y =8,解得y =2,把y =2代入①得,x −2=1,解得x =3,故原方程组的解为{x =3y =2.【解析】运用加减消元解答即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】证明:∵FC//AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵{∠A=∠FCF ∠ADE=∠F DE=EF,∴△ADE≌△CFE(AAS).【解析】利用AAS证明:△ADE≌CFE.本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.【答案】解:(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)∵点(a,b)在一次函数y=x−√2的图象上,∴b=a−√2,∴a−b=√2,∴P=√22;【解析】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)将点(a,b)代入y=x−√2得到a−b=√2,再将a−b=√2代入化简后的P,即可求解;20.【答案】解:(1)m=40−2−10−12−7−4=5;(2)B组的圆心角=360°×540=45°,C组的圆心角=360°×1040=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为612=12.【解析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.【答案】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G 基站的数量是6万座.(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,依题意,得:6(1+x)2=17.34,解得:x 1=0.7=70%,x 2=−2.7(舍去).答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)2020年全省5G 基站的数量=目前广东5G 基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,根据2020年底及2022年底全省5G 基站数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.22.【答案】(1)解:将点P(−1,2)代入y =mx ,得:2=−m ,解得:m =−2,∴正比例函数解析式为y =−2x ;将点P(−1,2)代入y =n−3x ,得:2=−(n −3), 解得:n =1,∴反比例函数解析式为y =−2x .联立正、反比例函数解析式成方程组,得:{y =−2xy =−2x, 解得:{x 1=−1y 1=2,{x 2=1y 2=−2, ∴点A 的坐标为(1,−2).(2)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AB//CD ,∴∠DCP =∠BAP ,即∠DCP =∠OAE .∵AB ⊥x 轴,∴∠AEO =∠CPD =90°,∴△CPD∽△AEO .(3)解:∵点A 的坐标为(1,−2),∴AE =2,OE =1,AO =√AE 2+OE 2=√5.∵△CPD∽△AEO ,∴∠CDP =∠AOE ,∴sin∠CDB =sin∠AOE =AEAO =√5=2√55.【解析】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m ,n 的值;(2)利用菱形的性质,找出∠DCP =∠OAE ,∠AEO =∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP =∠AOE .(1)根据点P 的坐标,利用待定系数法可求出m ,n 的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A 的坐标(利用正、反比例函数图象的对称性结合点P 的坐标找出点A 的坐标亦可);(2)由菱形的性质可得出AC ⊥BD ,AB//CD ,利用平行线的性质可得出∠DCP =∠OAE ,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.23.【答案】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC=√AB2−AC2=√102−82=6,∵BC=CD,∴BC⏜=CD⏜,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2−EC2=OB2−OE2,∴62−(5−x)2=52−x2,解得x=75,∵BE=DE,BO=OA,∴AD=2OE=145,∴四边形ABCD的周长=6+6+10+145=1245.【解析】本题考查作图−复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.24.【答案】证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,由折叠可知:DF=DC,当点F在AC上时,有∠DFC=∠C=60°,∴∠DFC=∠A,∴DF//AB;解:(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2,∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°,∴MD=2√3,∴S△ABF的最小值=12×6×(2√3−2)=6√3−6,∴S最大值=√34×62−(6√3−6)=3√3+6;(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC=2,∠EFD=∠C=60°,∵GD⊥EF,∠EFD=60°,∴FG=1,DG=√3FG=√3,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=√13−1,∴BG=√13,∵EH⊥BC,∠C=60°,∴CH=EC2,EH=√3HC=√32EC,∵∠GBD=∠EBH,∠BGD=∠BHE=90°,∴△BGD∽△BHE,∴DGBG =EHBH,∴√3√13=√32EC6−EC2,∴EC=√13−1,∴AE=AC−EC=7−√13.【解析】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(1)由折叠的性质和等边三角形的性质可得∠DFC =∠A ,可证DF//AB ;(2)过点D 作DM ⊥AB 交AB 于点M ,由题意可得点F 在以D 为圆心,DF 为半径的圆上,由△ABC 的面积为S 1的值是定值,则当点F 在DM 上时,S △ABF 最小时,S 最大;(3)过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,由勾股定理可求BG 的长,通过证明△BGD∽△BHE ,可求EC 的长,即可求AE 的长.25.【答案】解:(1)∵y =mx 2−2mx −3=m(x −1)2−m −3,抛物线有最低点, ∴二次函数y =mx 2−2mx −3的最小值为−m −3;(2)∵抛物线G :y =m(x −1)2−m −3∴平移后的抛物线G 1:y =m(x −1−m)2−m −3∴抛物线G 1顶点坐标为(m +1,−m −3)∴x =m +1,y =−m −3∴x +y =m +1−m −3=−2即x +y =−2,变形得y =−x −2∵m >0,m =x −1∴x −1>0∴x >1∴y 与x 的函数关系式为y =−x −2(x >1);(3)法一:如图,函数H :y =−x −2(x >1)图象为射线x =1时,y =−1−2=−3;x =2时,y =−2−2=−4∴函数H 的图象恒过点B(2,−4)∵抛物线G :y =m(x −1)2−m −3x =1时,y =−m −3;x =2时,y =m −m −3=−3∴抛物线G 恒过点A(2,−3)由图象可知,若抛物线与函数H 的图象有交点P ,则y B <y P <y A ,∴点P 纵坐标的取值范围为−4<y P <−3;法二:{y =−x −2y =mx 2−2mx −3整理的:m(x 2−2x)=1−x∵x >1,且x =2时,方程为0=−1不成立∴x ≠2,即x 2−2x =x(x −2)≠0∴m =1−x x(x −2)>0 ∵x >1∴1−x <0∴x(x −2)<0∴x −2<0∴x <2即1<x <2∵y P =−x −2∴−4<y P <−3.【解析】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.(1)抛物线有最低点即开口向上,m >0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G 的顶点式,根据平移规律即得到抛物线G 1的顶点式,进而得到抛物线G 1顶点坐标(m+1,−m−3),即x=m+1,y=−m−3,x+y=−2即消去m,得到y 与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,−4),函数H图象恒过点A(2,−3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.。

2014广东省中考数学卷(含标准答案)

2014广东省中考数学卷(含标准答案)

2014年广东数学中考试卷年级姓名一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-a D、-5a4、把39x x-分解因式,结果正确的是()A、()29x x-B、()23x x-C、()23x x+D、()()33x x x+-5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A、47B、37C、34D、137、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BD B、AC⊥BDC、AB=CDD、AB=BC题7图8、关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为()A、94m>B、94m<C、94m=D、9-4m<9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A、17 B、15 C、13D、13或1710、二次函数()20y ax bx c a=++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是()ABD题10图A 、函数有最小值 B、对称轴是直线x =21 C 、当x <21,y 随x 的增大而减小 D、当 -1 < x < 2时,y>0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB,AC 的中点,若BC=6,则DE= ;题13图 题14图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ; 16、如题16图,△AB C绕点A 顺时针旋转45° 得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图则图中阴影部分的面积等于 。

广东省深圳市2014年中考数学试题及答案【word版】

广东省深圳市2014年中考数学试题及答案【word版】

2014年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014年广东深圳)9的相反数是()A.﹣9 B.9 C.±9 D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2014年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2014年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2014年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2014年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2014年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.A C=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2014年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2014年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2014年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2014•怀化)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3.考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.15.(3分)(2014年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=8.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2014年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2014年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2014年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a=200,b=0.4,c=60.(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2014年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2014年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊥x 轴于H,设MC 与x 轴交于K,则△ACK∽△ADH,又∵DC=4AC,故DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。

广东省广州市2014年中考数学真题试题(含答案解析)

广东省广州市2014年中考数学真题试题(含答案解析)

秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2 •选择题每小题选出答案后,用2B铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3•非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图•答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域•不准使用铅笔、圆珠笔和涂改液•不按以上要求作答的答案无效.4 •考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. .;■(二二「)的相反数是( ).1(A)一盘(B) (C) ( D)-边【考点】相反数的概念【分析】任何一个数诃的相反数为-.【答案】A2.下列图形是中心对称图形的是( ).(A) (B) (C) (D)【考点】轴对称图形和中心对称图形.【分析】旋转180。

后能与完全重合的图形为中心对称图形.【答案】D5.已知和[:「.的半径分别为2cm 和3cm,若-i ,则匚「和 「的位置关系是().(A )外离(B )外切(C )内切(D )相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离. 【答案】A宀46 .计算,结果是().n n2-4 2(A ;:_ _(B )工一一(C )(D ) ——i工【考点】分式、因式分解- 4 仗+2)仃-2]【分析】一j-2x- 2【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是: 7, 10, 9, 8, 7 , 9, 9,、3 、4、3 (A )(B )(C)554【考点】正切的定义.【分析】 BC 4.AB 3【答案】D4 .卜列运算正确的是().(A )匚工:一土:=二(B ) 1 1 2—十一=----------a b d + b【考点】整式的加减乘除运算.【分析】5.7^? - L ;.-: = 4;;:: , A 错误;_ J 'aal.<■ .;■ 一丿,C正确;」r L,3.如图1,在边长为1的小正方形组成的网格中,,B 错误;D 错误.【答案】C的三个顶点均在格点上,贝上二上=(&对这组数据,下列说法正确的是( ).(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7【考点】数据【分析】中位数是 8.5 ;众数是9;平均数是8.375 ;极差是3. 【答案】B&将四根长度相等的细木条首尾相接,用钉子钉成四边形.咗:二,转动这个四边形,使它形状改变,当:时,如图.:_:,测得小二=:,当二 -.j=时,如图.二、,上().对角线等于边长,故答案为 .【答案】A9 •已知正比例函数j -(:-[)的图象上两点上(:〔i ,山)等式中恒成立的是()•【考点】反比例函数的增减性【分析】反比例函数:- 中「:;:[,所以在每一象限内F 随:「的增大而减小,且当工二〕时八 -,:;匸 r 时J •」,•••当时,二心,故答案为二-.1【答案】C10 •如图3,四边形丘二、二Ed 都是正方形,点 匸在线段:二C 上,连接弓m 三丘,和口]相交于 点匸•设 兰f(二门:)•下列结论:①./ J1-'“二:②已丁丄三耳;③{.trC GE④I- <■- •其中结论正确的个数是( )•【考点】三角形全等、相似三角形(B )2【考点】正方形、有 工二内角的菱形的对角线与边长的关系 【分析】由正方形的对角线长为 2可知正方形和菱形的边长为、三(工1 , ),且则下列不(A ) 4 个(B ) 3 个(C ) 2 个 (D ) 1 个图2-① (C )<■.图2-②「.,当—三=60°时,菱形较短的【分析】①由一__ _i可证故①正确;②延长BG交DE于点H由①可得_叮芒三=二:匸二:,二二三上1上疋芒(对顶角)•••三二—匸;GL=90 °,故②正确;③由'■■._■■■.- ■ 可得. ',故③不正确;■" DC CE£S EF iz1④'-55? 等于相似比的平方,即: .、血8兀記DG O—» -「二上,故④正确.【答案】B第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11. 3C中,已知厶=册,公二卿,则上C的外角的度数是____________________ •【考点】三角形外角【分析】本题主要考察三角形外角的计算,_二-』,则」厂的外角为/::-4?3 = :4?=【答案】:4::12.已知 g 是/ AOB的平分线,点P在OCh, PDL OA PEI OB垂足分别为点◎ 童,PD=10,贝U PE的长度为_____ .【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】10113.代数式一有意义时,忑应满足的条件为____________ .r —1【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即忖二,则工=±:【答案】?. = +:14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为______________ (结果保留卅).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:侧面积为扇形的面积- ,首先应该先求出扇形的半径R由勾股定理得,—“十,则2侧面积一・■ 1^- ■■- T|,全面积1匕一」:7=;二匚.2【答案】>715•已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ________ 该逆命题是____ 命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等•假命题.16.若关于X的方程『+亦工+护+加一2二(]有两个实数根两、心,则珀遍+石)+谥的最小值为.【考点】一元二次方程根与系数的关系,最值的求法【分析】该题主要是考察方程思想与函数思想的结合,由根与系数的关系得到:二」川.,- … •,原式化简一弋•因为方程有实数根,2 25•••「二|一,厂.当'■-,时,_血亠| .最小值为:.【答案】斗三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤).17.(本小题满分9分)解不等式:% - H二,并在数轴上表示解集•【考点】不等式解法【分析】利用不等式的基本性质,将两边不等式同时减去]上,再同时加上],再除以2 ,不等号的方向不变.注意在数轴上表示时,此题是小于等于号,应是实心点且方向向左【答案】解:移项得,:心-以三2!,合并同类项得,m系数化为i得,工乞:,在数轴上表示为:18.(本小题满分9分)如图5,平行四边形七匚二的对角线e二E二相交于点匚,过点二且与■三、二二分别交于点5. 5,求证:丄1匚W .B C图5 【考点】全等三角形的性质与判定、平行四边形的性质【分析】根据平行四边形的性质可知,去匚=「「,二.工^<7,又根据对顶角相等可知,—丄,再根据全等三角形判定法则一心,’•」丄,得证.【答案】证明:•••平行四边形止二的对角线上;三匸相交于点二•••上亠/,•••」「—一二’在、[丄和■ ■ J.?中,皿二力AAOE^^COF"0E 二"OF19 .(本小题满分10分)已知多项式' 'I ' ■- I r | ;.(1 )化简多项式上;(2)若-I I r,,求上的值.【考点】(1)整式乘除(2)开方,正负平方根【分析】(1)没有公因式,直接去括号,合并同类型化简(2)由第一问答案,对照第二问条件,只需求出---,注意开方后有正负【答案】解:(1)一 - I •「-=x2十4兀十4+ 2—2尤+工-;? —了——X s)+ (4工—2x+工)+@ + 2- 3)=強+3(2——冇,则工■ 一二”「£=3尤十3二?0 + 1) = 土$&20 .(本小题满分10分)某校初三(1 )班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1 )求「勺的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽「取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.【考点】(1)频率(2)①频率与圆心角;②树状图,概率【分析】(1)各项人数之和等于总人数50 ;各项频率之和为1 (2)所占圆心角=频率*360 (3)画出列表图,至多有一名女生包括有一个女生和一个女生都没有两种情况.【答案】(1)|1: + ' -F _I ■ ii>=l-(C 18+0.1(54 0.324 0 10)= 0.24 (2)“ 一分钟跳绳”所占圆心角(3)至多有一名女生包括两种情况有1个或者0个女生列表图:男A 男B 男c 女D 女E男A (A, B) (A C) (A, D (A,日男B (B, A(B, C) (B, D (B,日男C (c, A(C, B) (C, D (C,日女D (D A(D, B) (D C) (D日女E (E, A(E, B) (E, C) (E, D有1个女生的情况:12种有0个女生的情况:6种至多有一名女生包括两种情况18种13 9至多有一名女生包括两种情况二一==0.90卯1U21.(本小题满分12分)2片已知一次函数r」-的图像与反比例函数’的图像交于二三两点,点上的横坐标为2.I(1 )求I的值和点上的坐标;(2)判断点弓的象限,并说明理由.【考点】1 一次函数;2反比例函数;3函数图象求交点坐标【分析】第(1 )问根据一点是两个图象的交点,将一代入联立之后的方程可求出[,再将一点的横坐标代入函数表达式求出纵坐标;第( 2 )问根据一次函数与反比例函数的解析式分析两图像经过的象限,得出两图像交点所在象限•此题主要考查反比例函数与一次函数的性质【答案】解:(1 )将.* -与『一—'联立得:2k y-—2ky~-一T__点是两个函数图象交点,将工=1带入1式得:“, 2k解得:--故一次函数解析式为」•| ,反比例函数解析式为丁 -'将工二2代入| ■''得,/—- ' 1■.丄|的坐标为广=»-2)-(2)三点在第四象限,理由如下:一次函数j ■.经过第一、三、四象限,反比例函数经过第二、四象限,因此它们的交点都是在第四象限•22、(本小题满分12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度X时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400X 1.3=520 (千米)(2)设普通列车的平均速度为二千米/时,则高铁平均速度为】士:千米/时.依题意有:可得:耳=1::r 2.5工答:高铁平均速度为2.5 X 120=300千米/时.23、(本小题满分12分)如图6, ^5:中,—.f 二(1)动手操作:利用尺规作以二匚为直径的、一「,并标出与二三的交点匸•,与巫二的交点E (保留作图痕迹,不写作法):(2 )综合应用:在你所作的圆中,①求证:亠;②求点匚到王的距离.【考点】(1)尺规作图;(2)①圆周角、圆心角定理;②勾股定理,等面积法【分析】(1)先做出中点0,再以O为圆心,创为半径画圆.(2)①要求爾=丽,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出37= 即可,再根据等腰三角形中的边角关系转化②首先根据已知条件可求出EC = ^,依题意作出高OH 求高则用勾股定理或面积法,注意到上匚•为直径,所以想到连接二二,构造直角三角形,进而用勾股定理可求出 M二,二3的长度,那么在一V;T中,求其高,就只需用面积法即可求出高二石.【答案】(1)如图所示,圆匸为所求(2)①如图连接「匚二匚,设二卫=二,又」—丄豆 _J-Z.OEC=AC = ZB=a = -2a则—丄「一■ '■ L r - . ■ I I ' ■;I I : r. -I ■ I ■.ZSCC= :_耘=纭②连接1二,过三作以f _ F T于」丫 ,过匸作LU「于H又二匚为直径ZADC = ^BDU=^设王匸;》,贝则二」_二十_严在.勺丄F3C和兄_七£二中,有厂『丄:丄」丄即| ■ . :'•••:;':解得:---]即:- [又二—' '又"一_!日J史口口1 8^5血即•■■■2 1 5 5r.;D^=24 .(本小题满分14分)已知平面直角坐标系中两定点A ( -1 , 0), B( 4, 0),抛物线-(二=[)过点A B,顶点为C.点P ( m n )( n <0)为抛物线上一点.(1) 求抛物线的解析式与顶点 C 的坐标.(2) 当/ APB 为钝角时,求 m 的取值范围.3S(3)若7 •,当/ APB 为直角时,将该抛物线向左或向右平移t)个单位,点 P 、C 移动后对2 2应的点分别记为匸、:二,是否存在t ,使得首尾依次连接 A B 匸、T 所构成的多边形的周长最 短?若存在,求t 值并说明抛物线平移的方向;若不存在,请说明理由. 【考点】动点问题.(1)二次函数待定系数法;(2) 存在性问题,相似三角形;(3) 最终问题,轴对称,两点之间线段最短a-b-2 = 016^ + 43-4=0;解得:"1 3 36■-抛物线解析式为.■■■ . T-:■-顶点横坐标_ -一,将「_代入抛物线得;■■'2a i2⑵如图,当_」亠:;.时,设r... .则 ED=坷 +1 DF= 4-^,2?^ = -2过二作直线.■轴,一A'—"」—•:.MED-^BFD .AE _DF(注意用整体代入法)【答案】(1)解:依题意把占,占的坐标代入得:£ 2b = -~2当二在门.厂之间时,_」二.■::- u < :或3 :::记C 」时,—'!?三为钝角. ⑶ 依题意:二:::3 ,且_」匚.-,■:设「移动f (「:向右,:处向左)-P (3+Q -2)C G+:-£)io连接 则干— 又」』的长度不变四边形周长最小,只需上一 -_[[最小即可 将八4沿二轴向右平移5各单位到二「处 丁沿廿轴对称为f1325 •••当且仅当「、B 、丁三点共线时,丄「I最小,且最小为,此时LL8—41 _284141〔如〕① L 41(3+;) 尸 屈 28b - - - +2 L 28将丄.…」代入,得:’,解得:'2S2S4115•当,P 、C 向左移动二7单位时,此时四边形 ABP C'周长最小。

2020年广东省中考数学试卷及答案(word解析版)

2020年广东省中考数学试卷及答案(word解析版)

2020年广东省初中毕业生学业考试数 学说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。

2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

题序一二三四五六七八总分得分说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B 铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21B. 21C.-2D.2 答案:C解析:2的相反数为-2,选C ,本题较简单。

2.下列几何体中,俯视图为四边形的是答案:D解析:A 、B 、C 的俯视图分别为五边形、三角形、圆,只有D 符合。

3.据报道,2020年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 答案:B解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 1 260 000 000 000=1.26×1012元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 A.55-<-b a B.b a +<+22 C.33ba < D.b a 33> 答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误,选D 。

2014年广东省中考数学试卷及答案

2014年广东省中考数学试卷及答案

2014年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2014•广东)若二次根式有意义,则x 的取值范围是( )2.(3分)(2014•广东)下列标志中,可以看作是中心对称图形的是( )A B C D 3.(根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(3分)(2014•广东)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(3分)(2014•广东)圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是( ) A. 320° B. 40° C. 160° D. 80° 6.(3分)(2014•广东)下列四个几何体中,俯视图为四边形的是( )A B C D7.(3分)(2014•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D.12.6×1011元 8.(3分)(2014•广东)已知实数a 、b ,若a >b ,则下列结论正确的是( )A. a ﹣5<b ﹣5B. 2+a <2+bC.D. 3a >3b9.(3分)(2014•广东)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A.30°B.40° C .50° D.60°10.(3分)(2014•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A B C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上. 11.(4分)(2014•广东).计算:2()a a-÷=.12.(4分)(2014•广东)如图1,在O⊙中,20ACB∠=°,则AOB∠=_______度.13.(4分)(2014•广东)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.14.(4分)(2014•广东)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是.15.(4分)(2014•广东)如图4,把一个长方形纸片沿EF折叠后,点D C、分别落在11D C、的位置.若65EFB∠=°,则1AED∠等于_______度.16.(4分)(2014•广东)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.C图1……第1幅第2幅第3幅第n幅图5图3A E DCFBD1C1图4三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2014•广东)如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度; (2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC △的面积等于_________(面积单位). 18.(5分)(2014•广东):1012)4cos30|3-⎛⎫++- ⎪⎝⎭°19.(5分)(2014•广东)先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.四、解答题(二)(本大题3小题,每小题8分,共24分) 20.(8分)(2014•广东)如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.CBDA 图6D C F EA G图821.(8分)(2014•广东)“五·一”假期,某公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?22.(8分)(2014•广东)如图10,已知抛物线233y x x=-+x轴的两个交点为A B、,与y轴交于点C.(1)求A B C,,三点的坐标;(2)求证:ABC△是直角三角形;(3)若坐标平面内的点M,使得以点M和三点A B C、、为顶点的四边形是平行四边形,求点M的坐标.(直接写出点的坐标,不必写求解过程)x四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.24.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.25.(9分)(2014•广东)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.部分答案:解:(1)30;20. ·················································································································· 2 分 (2)12. ·································································································································· 4 分 (3)可能出现的所有结果列表如下:或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. 8 分22. (1)解:令0x =,得y =(0C . ··················································· 1分 令0y =,得20x =,解得1213x x =-=,, ∴(10)(30)A B -,,,. ······································································································ 3分(2)法一:证明:因为22214AC =+=, 222231216BC AB =+==,, ·························· 4分 ∴222AB AC BC =+, ················································· 5分 ∴ABC △是直角三角形. ············································ 6分 法二:因为13OC OA OB ===,,∴2OC OA OB =, ··················································································································· 4分1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 44开始小张 小李 x21题图M 1 3∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ···································································································· 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ······················································· 6 分(3)1(4M ,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) 8分sinC=求出sinA=sinC===,即可求出半径.sinC=sinA=sinC=,sinA==,r=,的半径是,OP=,)的坐标代入,得k,y=x×﹣,(,DE= AC===∴,,,3+)或(﹣。

2014年广州市数学中考真题(含答案)

2014年广州市数学中考真题(含答案)

5
23. (本小题满分 12 分) 如图 6, ABC 中,
AB AC 4 5 , cos C
5 5

(1)动手操作:利用尺规作以
AC 为直径的 O ,并标出 O 与 AB 的交点 D ,与 BC 的交点 E ;
(保留作图痕迹,不写作法) (2)综合应用:在你所作的图中, ① 求证: DE
2
(1)化简多项式 A; (2)若 ( x 1)
6 ,求 A 的值。
20. (本小题满分 10 分) 某校初三(1)班 50 名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:
(1)求 a,b 的值; (2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数; (3)在选报“推铅球”的学生中,有 3 名男生,2 名女生。为了了解学生的训练效果,从这 5 名学生中随机抽取两名学 生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率。
7
25. (本小题满分 14 分) 如图 7,梯形
ABCD 中, AB ∥ CD ,ABC 90 , AB 3 , BC 4 , CD 5 ,点 E 为线段 CD 上一动点(不
x , BCF 的面积为 S1 , CEF
与点 C 重合) , BCE 关于 BE 的轴对称图形为 BFE ,连接 CF ,设 CE 的面积为 S 2 。 (1)当点 F 落在梯形 (2)试用 x 表示
B、众数是 9
8、将四根长度相等的细木条首尾相接,用钉子钉成四边形 如图 2 ①,测得 A、
ABCD ,转动这个四边形,使它形状改变。当 B 90 时,

AC 2 。当 B 60 时,如图 2 ②, AC (

2014年广东省广州市中考数学试卷(附答案与解析)

2014年广东省广州市中考数学试卷(附答案与解析)

数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前广东省广州市2014年初中毕业生学业考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(0)a a ≠的相反数是( ) A .a -B .2aC .||aD .1a 2.下列图形中,是中心对称图形的是( )AB C D3.如图,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .43 4.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+ C .624a a a ÷= D .2353()a b a b =5.已知1O 和2O 的半径分别为2 cm 和3 cm ,若12O O =7 cm ,则1O 和2O 的位置关系是( ) A .外离B .外切C .内切D .相交6.计算242x x --,结果是( )A .2x -B .2x +C .42x - D .2x x+ 7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( ) A .中位数是8B .众数是9C .平均数是8D .极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=时,如图1,测得2AC =.当60B ∠=时,如图2,AC =( )AB .2CD.9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y ,22(,)B x y ,且12x x <,则下列不等式中恒成立的是( ) A .120y y +> B .120y y +< C .120y y ->D .120y y -<10.如图,四边形ABCD ,CEFG 都是正方形,点G 在线段CD 上,连接BG ,DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ≅△△;②BG DE ⊥;③DG GOGC CE=; ④22()EFO DGO a b S b S -=△△.1cm其中结论正确的个数是()毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)11.已知ABC △中,60A ∠=,80B ∠=,则C ∠的外角的度数是.12.已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D ,E ,10PD =,则PE 的长度为 .13.代数式1|1|x -有意义时,x 应满足的条件为 .14.一个几何体的三视图如图所示,根据图示的数据计算该几何体的全面积...为 (结果保留π).15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”.写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16.若关于x 的方程222320x mx m m +++-=有两个实数根1x ,2x ,则21212()x x x x ++的最小值为 .三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图,□ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别交于点E ,F ,求证:AOE COF ≅△△.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-. (1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.21.(本小题满分12分)数学试卷 第5页(共46页) 数学试卷 第6页(共46页)已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A ,B 两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍. (1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图,ABC △中,AB AC ==cos C =(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法); (2)综合应用:在你所作的图中, ①求证:DE CE =; ②求点D 到BC 的距离.24.(本小题满分14分)已知平面直角坐标系中两定点(1,0)A -,(40)B ,,抛物线22(0)y ax bx a =+-≠过点,,A B 顶点为C ,点(,)(0)P m n n <为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标; (2)当APB ∠为钝角时,求m 的取值范围;(3)若3,2m >当APB ∠为直角时,将该抛物线向左或向右平移5(0)2t t <<个单位,点C ,P 平移后对应的点分别记为,C P '',是否存在t ,使得首尾依次连接,,,A B P C ''所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.25.(本小题满分14分)如图,梯形ABCD 中,AB CD ∥,90ABC ∠=,3AB =,4BC =,5CD =,点E 为线段CD 上一动点(不与点C 重合),BCE △关于BE 的轴对称图形为BFE △,连接CF ,设CE x =,BCF △的面积为1S ,CEF △的面积为2S . (1)当点F 落在梯形ABCD 的中位线上时,求x 的值;(2)试用x 表示21SS ,并写出x 的取值范围;(3)当BFE △的外接圆与AD 相切时,求21S S 的值.数学试卷 第7页(共46页)数学试卷 第8页(共46页)广东省广州市2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为任何一个数a 的相反数都为a -,故选A . 2.【答案】D 【考点】相反数.【解析】判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是寻找对称中心,旋转180度后与原图重合.选项A ,B 既不是轴对称图形也不是中心对称图形;选项C 是轴对称图形,不是中心对称图形;选项D 是中心对称图形不是轴对称图形,故选D. 【考点】轴对称图形,中心对称图形. 3.【答案】D【解析】由图可知,在Rt ABC △中,4tan 3BC A AB ==,故选D. 【考点】正切 4.【答案】C【解析】因为54ab ab ab -=,A 错误;11a ba b ab++=,B 错误;62624a a a a -÷==,C 正确;2363()a b a b =,D 错误,故选C. 【考点】整式运算 5.【答案】A【解析】因为2357+=<,根据两圆圆心距大于两半径之和,两圆外离,故选A. 【考点】圆,圆的位置关系. 6.【答案】B【解析】先将分式的分子因式分解,再约分,即原式(2)(2)22x x x x +-==+-,故选B.【考点】分式的化简. 7.【答案】B【解析】中位数是将一组数据按从大到小或从小到大的顺序排列后,最中间的一个数据或中间两个数据的平均数;众数是一组数据中出现次数最多的数;求平均数的方法是将这组数据的总和除以这组数据的5 / 23个数;求极差的方法是用最大值减去最小值.故这组数据的中位数是8.5;众数是9;平均数是8.375;极差是3,故选B.【考点】中位数,众数,平均数,极差. 8.【答案】A【解析】由正方形的对角线长为2可知正方形和菱形的边长为AB 当60B ∠=°时,ABC △是等边三角形,所以AC AB == A.【考点】正方形,有60°内角的菱形的对角线与边长的关系. 9.【答案】C【解析】正比例函数y kx =,当0k <时,y 随x 的增大而减小,因为12x x <,故12y y >,所以120y y ->,故选C.【考点】正比例函数. 10.【答案】B【解析】①由BC DC =,CG CE =,BCG DCE ∠=∠可证(SAS)BCG DCG △≌△,故①正确;②延长BG交DE 于点H ,由①可得CDE CBG ∠=∠,DGH BGC ∠=∠(对顶角相等),∴90BCG DHG ∠=∠=°,即BG DE ⊥,故②正确;③由DGO DCE △∽△可得DG GODC CE=,故③不正确;④EFO DGO △∽△,∴222()()EFO DGO S EF b S DG a b ==-△△,∴22()EFO DGO a b S b S -=△△,故④正确.所以正确的结论有3个,故选B. 【考点】正方形的性质,全等三角形,相似三角形.第Ⅱ卷二、填空题 11.【答案】140°【解析】根据三角形的一个外角等于它不相邻的两个内角的和,因此C ∠的外角6080=140A B =∠+∠=+°°°,故答案是140°. 【考点】三角形外角的计算. 12.【答案】10【解析】根据角平分线的点到角的两边距离相等,所以10PE PD ==,故答案是10. 【考点】角平分线的性质. 13.【答案】1x ≠±数学试卷 第11页(共46页)数学试卷 第12页(共46页)【解析】由题意知分母不能为0,即||10x -≠,解得1x ≠±,故答案是1x ≠±. 【考点】绝对值,分式成立的意义. 14.【答案】24π【解析】从三视图得到该几何体为圆锥,全面积=侧面积+底面积,由三视图得圆锥的底面半径3r =,底面周长2π6πl r ==,圆锥的母线长为R ,根据勾股定理5R ==,底面积为圆的面积22ππ39πr ==g ,侧面积为扇形的面积116π515π22lR =⨯⨯=,全面积为9π15π24π+=,故答案是24π.【考点】三视图,圆锥面积的计算.15.【答案】如果两个三角形的面积相等,那么这两个三角形全等; 假【解析】将命题的条件与结论互换可得到它的逆命题;判断该逆命题的真假可举一个反例,如同底等高的三角形面积相等,却不一定全等. 【考点】命题与逆命题的转换,判断真假命题. 16.【答案】54【解析】由根与系数的关系得122x x m +=-,21232x x m m =+-,原式222212121212121212()2()x x x x x x x x x x x x x x =++=++-=+-, 代入得原式222215(2)(32)3323()24m m m m m m =--+-=-+=-+, 因为方程有实数根,∴0∆≥,即22(2)4(32)0m m m -+-≥,解得23m ≤,因为1223<,所以当12m =时,2153()24m -+取到最小值,最小值是54.【考点】一元二次方程根与系数的关系,最值的求法.【提示】本题应利用根与系数的关系解题,利用根的判别式求最值;不少考生找不到解题思路,另外计算也易错误. 三、解答题17.【答案】移项得532x x -≤. 合并同类项得22x ≤. ∴ 1x ≤解集在数轴上表示如下:7 / 23【考点】一元一次不等式的解法,数轴,代数运算能力. 18.【答案】证法一:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠,AEO CFO ∠=∠.∵EAO FCO ∠=∠,AEO CFO ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法二:在平行四边形ABCD 中,AB CD ∥, ∴AEO CFO ∠=∠.∵AEO CFO ∠=∠,AOE COF ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法三:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠.∵EAO FCO ∠=∠,AO CO =,AOE COF ∠=∠. ∴(AAS)AOE COF △≌△.【考点】平行四边形的性质,全等三角形的判定,考查几何推理能力和空间观念.19.【答案】(1)解法一:2(2)(1)(2)3A x x x =++-+-2244223x x x x x =++++---33x =+.解法二:2(2)(1)(2)3A x x x =++-+-(2)(21)3x x x =+++-- 3(2)3x =+-33x =+(2)解法一:∵2(1)6x +=,∴1x +=∴333(1)A x x =+=+=±解法二:∵2(1)6x +=,∴1x =-±,数学试卷 第15页(共46页)数学试卷 第16页(共46页)∴333(13A x =+=-+=±.【考点】整式的运算,完全平方公式,一元二次方程解法等.20.【答案】(1)解法一:10.180.160.320.100.24a =----=,501285916b =----=. 解法二:∵9120.18a=, ∴0.24a =, ∵90.180.32b =, ∴16b =.(2)“一分钟跳绳”对应的扇形的圆心角度数为3600.1657.6°°⨯=. (3)解法一:分别用男1、男2、男3、女1、女2表示这5位同学.从中抽取2名,所有可能出现的结果有(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共有10种,它们出现的可能性相同.所有的结果中,满足抽取两名,至多有一名女生的结果有9种. ∴9()=10P 至多有一名女生.由表知所有出现等可能的结果有20种,其中满足条件的结果有8种. ∴9()=10P 至多有一名女生 【考点】统计,概率等.21.【答案】(1)解法一:∵两个函数图像相交于A ,B ,且点A 的横坐标为2, ∴把2x =分别代入两个函数解析式,得26,2,2y k k y =-⎧⎪⎨=-⎪⎩9 / 23解得2,2,k y =⎧⎨=-⎩∴k 的值为2,点A 坐标为(2,2)-. 解法二:依题意,得2262kk -=-, 解得2k =,∴一次函数的解析式为26y x =-. 再将2x =代入得2y =-, ∴点A 坐标为(2,2)-.(2)由(1)得,一次函数的解析式为26y x =-,反比例函数的解析式为4y x=-,判断点B 所在象限有以下两种解法:解法一:∵一次函数26y x =-的图像经过第一、三、四象限,反比例函数4y x=-的图像经过第二、四象限,∴它们的交点只能在第四象限,即点B 在第四象限.解法二:解方程组26,4,y x y x =-⎧⎪⎨=-⎪⎩,得112,2,x y =⎧⎨=-⎩221,4,x y =⎧⎨=-⎩ ∴点B 坐标为(1,4)-. ∴交点B 在第四象限.【考点】一次函数,反比例函数的图像及性质等,待定系数法,数形结合. 22.【答案】(1)400 1.3520⨯=, 答:普通列车的行驶路程是520千米.(2)解法一:设普通列车的平均速度为/x 千米时,则高铁的平均速度为2.5/x 千米时,根据题意列方程得52040032.5x x-=, 解得120x =.经检验,120x =是原方程的解且符合题意, 所以2.5300x =.答:高铁的平均速度为300/千米时. 解法二:设普通列车的行驶时间为y 小时,数学试卷 第19页(共46页)数学试卷 第20页(共46页)则高铁的行驶时间为(3)y -小时,根据题意列方程得5204002.53y y ⨯=-, 解得143y =.经检验,143y =是原方程的解且符合题意, 所以4003003y =-. 答:高铁的平均速度为300/千米时. 解法三:设高铁的平均速度为/z 千米时,依题意,得52040032.5z z-=, 解得300z =.经检验,300z =是原方程的解且符合题意. 答:高铁的平均速度为300/千米时. 【考点】行程问题,解分式方程. 23.【答案】(1)如图1,⊙O 为所求.图1(2)①证明:如图2,连接AE ,图2∵AC 为⊙O 的直径,点E 在⊙O 上,∴90AEC ∠=°,∵AB AC =,∴BAE CAE ∠=∠,∴DE CE =.②如图3,过点D 作DF BC ⊥,垂足为F ,连接CD ,图3∵在Rt ACE △中,cos CE ACB AC ∠==,AC =∴cos 45CE AC ACB =∠==g . ∵AB AC =,90AEC ∠=°,∴4BE CE ==,B ACB ∠=∠,∵AC 为⊙O 的直径,点D 在⊙O 上,∴90ADC ∠=°. 求点D 到BC 的距离DF 有以下两种解法:解法一:在Rt BCD △中,cos BD B BC ∠=,∵cos cos B ACB ∠=∠=,8BC =,数学试卷 第23页(共46页)∴cos 8BD BC B =∠==g ∵在Rt BDF △中,cos BF B BD ∠=,∴8cos 5BF BD B =∠==g ,∴165DF ==. 解法二:∵90BDC AEC ∠=∠=°,=B ACB ∠∠,∴CDB AEC △∽△. ∴BD CB CD CE AC AE==,即4BD ==,∴BD =,CD . 在Rt BCD △中,利用面积法可得1122BD CD BC DF =g g ,8DF =g , 解得165DF =. 【考点】尺规作图,等腰三角形性质,圆的有关性质,三角函数等基础知识.24.【答案】(1)把(1,0)A -,(4,0)B 分别代入22y ax bx =+-得02,01642,a b a b =--⎧⎨=+-⎩解得1,23.2a b ⎧=⎪⎪⎨⎪=-⎪⎩∴抛物线的解析式为213222y x x =--. 求顶点C 的坐标有以下三种解法: 解法一:∵221313252()22228y x x x =--=--, ∴顶点C 的坐标为325(,)28-. 解法二:由对称性可得,顶点C 的横坐标为14322-+=.当32x =时,2133325()222228y =--=-g g . ∴点C 的坐标为325(,)28-. 解法三:顶点C 的横坐标为33212222b a --=-=⨯. 纵坐标为22134(2)()4252214842ac b a ⨯⨯----==-⨯. ∴点C 的坐标为325(,)28-. (2)解法一:证明DM =半径.如图1,设AB 的中点为点M ,图1∵5AB =, ∴52AM =, ∴点M 的坐标为3(,0)2. ∵抛物线213222y x x =--与y 轴交于点(0,2)D -,连接DM ,AD ,BD , ∴在Rt ODM △中,52DM AM ===, ∴点D 在以AB 为直径的⊙M 上,这时90ADB ∠=°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M数学试卷 第27页(共46页)上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上.∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.解法二:证明ADB △是直角三角形.如图2,∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD ,又∵x 轴y ⊥轴,∴22222125AD OA OD =+=+=,222224220BD OB OD =+=+=, 222AB AD BD =+,∴90ADB ∠=°根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上. ∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.图2解法三:证明AOD DOB △∽△是直角三角形.如图2, ∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD , ∴12OA OD =,2142OD OB ==, ∴OA OD OD OB =, 又∵90AOD DOB ∠=∠=°,∴AOD DOB △∽△,∴ADO DBO ∠=∠,又∵ODB DBO ∠=∠,∴90ODB ADO ∠+∠=°,即=90ADB ∠°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上. ∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.(3)存在t .求t 有以下三种解法: 解法一:若32m <,且APB ∠为直角时,3m =, ∴点P 的坐标为(3,2)P -. ① 当抛物线向左平移t 个单位时,得325(,)28C t '--,(3,2)P t '--,连接AC ',C P '',BP ',图3在四边形AC P B ''中,由于线段AB ,C P ''(即CP )都是定值,则当AC P B ''+最短时,该四边形的周长最小.如图3,把线段AC '向右平移1个单位长度得线段OC '',把线段P B '向左平移4个单位长度得线段OP '',则有525(,)28C t ''--,(1,2)P t ''---, 以x 轴为对称轴作点P ''的对称点(1,2)P t '''--,当AC P B ''+最短时,即OC OP ''''+最短,则点C '',O ,P '''三点共线.设正比例函数y kx =经过点C '',O ,P '''三点,数学试卷 第31页(共46页)则分别代入点C '',P '''两点的坐标得255(),822(1),t k t k ⎧-=-⎪⎨⎪=--⎩解得1541t =. ∴当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. ②当抛物线向右平移t 个单位时,得325(,)28C t '+-,(36,2)P '+-, 与①的解法相同,可解得1541t =-, 因为502t <<,所以抛物线向右平移时,t 不存在. 综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. 解法二:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -,所求多边形周长为AB BP P C C A ''''+++,而5AB =,52P C ''==,这两边长均为定值.所以只需BP C A ''+最小时,周长最短.如图4,设将点P '向左平移5个单位长度得到P '',则恒有AP BP '''=.图4反设抛物线不动,将点A 在x 轴上左右平移,由“将军饮马”模型,(2,2)P ''--关于x 轴对称的点(2,2)P '''-,连接CP ''',交x 轴于点F ,过P '''作x 轴于点G ,则可得P G GF CE FE '''=,即225582GF GF =-, 解得5641GF =,1GA GF =<, 所以点F 在点A 的右侧561514141-=处,即,抛物线向左平移1541, 故1541t =,方向向左. 解法三:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -, ①当抛物线向左平移5(0)2t t <<个单位时, 得325(,)28C t '--,(3,2)P t '--, 如图5,连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值,则当AC P B''+最短时,该四边形的周长最小.图5325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-, 则AC AC '''=,由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =+-+, 解得1541t =,符合题意. ②当抛物线向右平移5(0t )2t <<个单位时, 得325(,)28C t '+-,(3,2)P t '+-, 连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值, 则当AC P B ''+最短时,该四边形的周长最小.325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-,则AC AC '''=,数学试卷 第35页(共46页)由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =-++, 解得1541t =-. 因为502t <<, 所以抛物线向右平移时,t 不存在. 综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P '',C '四点构成的多边形的周长最短. 【考点】二次函数的有关知识,图形的平移与坐标的变化,“将军饮马”模型求周长最小值问题. 25.【答案】(1)解法一:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图1∴GF CD ∥,122BG BC ==, ∴90BGF BCD ∠=∠=°, ∴21cos 42BG GBF BF ∠===, ∴60CBF ∠=°,则30CBF ∠=°. ∵在Rt BCE △中,tan CE CBE BC ∠=,即tan304x =°,∴x =. 解法二:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图2 ∴22BC CG BG ===,4BF BC ==.∴GF ===过点F 作FH CD ⊥于点H ,则2FH =,EF x =.在Rt EFH △中,222)2x x +=,解得x =. (2)解法一:如图3,∵点C ,F 关于BE 成对称点, ∴BE CF ⊥,垂足H ,数学试卷 第39页(共46页)图3又∵90BCD ∠=°,∴90BCH ECH CEH ECH ∠+∠=∠+∠=°, ∴BCH CEH ∠=∠,∴BCH CEH △∽△, ∴222()()416CEH BCH S CE x x S BC ===△△, 由对称性可知22CEH S S =△,12BCH S S =△, ∴221(05)16S x x S =<≤. 解法二:设CF 与BE 的交点为H ,由对称性可得21CEH CBH S S EH S S HB ==△△,90EHC ∠=°. ∵222216BE BC CE x =+=+,BC CE CH BE ==g ∴22222221625641616x BH BC HC x x =-=-=++, ∴24222222161616x x HE CE CH x x x =-=-=++.∴221(0x 5)16S EH x S HB ===<≤. (3)解法一:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图4,作OP AD ⊥,垂足为P ,连接OA ,OD ,21 / 23图4设⊙O 半径为r ,则有OB OE OP r ===,∴在Rt BCE △中,222BE BC CE =+,即222(2)4r x =+, 化简得2244x r =+,① 过点D 作DQ AB ⊥,交AB 的延长线于点Q ,∴4QD BC ==,5BQ CD ==,∴532AQ BQ AB =-=-=,∴在Rt ADQ △中,AD =∵OAD BCE OAB ODE ABCD S S S S S =---△△△△梯形,∴11111(35)4432(5)222222r x x ⨯=⨯+⨯-⨯-⨯⨯--⨯g g g ,化简得8x =-,②把②代入①得2641760x x +-=,解得132x =-+232x =--.∴22113916S x S ===-解法二:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图5,中位线长35422AB CD MN ++===.数学试卷 第43页(共46页)数学试卷 第44页(共46页)图5 ∴42x ON MN MO =-=-. 过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴12OR BE =. 2sin 42OR RNO x ON ∠===-,sin BC D AD ∠==, 易知RNO D ∠=∠,则85x =-, 化简得2641760x x +-=.解得132x =-+232x =--.∴2221(321391616S x S -+===-解法三:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图6,中位线长35422AB CD MN ++===.23 / 23图6 ∴42x ON MN MO =-=-. 过点A 作AK NO ⊥于点K ,则2AK =,过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴OR r =,12AN AD =22ANO AK NO OR AN S ==△g g .∴2(4)2x -g ,化简得8x =-.在Rt CBE △中,222(2)4x r =-,(*)将8x =代入(*)得22(8)416r =-.解得1r =2r =.将1r =8x =-得832x ==-+∴22113916S x S ===-【考点】梯形的概念,轴对称,直线与圆相切,三角形相似,勾股定理.。

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案

2014年广州市中考数学试题及答案2014年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上( )A . 外离B .外切C .内切D .相交6.计算242x x --,结果是 ( )A .2x -B .2x +C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )A 2B .2C 6D .229.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 图2-①图2-②相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE=;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( ) A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒.12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PEOB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______. (结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分) 如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOECOF ∆≅∆.19.(本小题满分10分) 已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数; (3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分) 已知一次函数6y kx =-的图象与反比例函数2ky x=-的图象交于A B 、两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,45AB AC ==,5cos 5C =.(1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法); (2)综合应用:在你所作的图中,①求证:DECE =;②求点D 到BC 的距离。

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省中考数学试题及参考答案(word解析版)

2020年广东省初中学业水平考试数学(满分为120分,考试用时为90分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.75.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣26.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.47.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣38.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤19.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.210.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.若+|b+1|=0,则(a+b)2020=.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣【知识考点】相反数.【思路分析】根据相反数的定义即可求解.【解题过程】解:9的相反数是﹣9,故选:A.【总结归纳】此题主要考查相反数的定义,比较简单.2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.5【知识考点】中位数.【思路分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解题过程】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.【总结归纳】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解题过程】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.7【知识考点】多边形内角与外角.【思路分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解题过程】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【总结归纳】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣2【知识考点】二次根式有意义的条件.【思路分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解题过程】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【总结归纳】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.4【知识考点】三角形中位线定理.【思路分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解题过程】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.【总结归纳】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3【知识考点】二次函数图象与几何变换.【思路分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解题过程】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.【总结归纳】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤1【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.2【知识考点】正方形的性质;翻折变换(折叠问题).【思路分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解题过程】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【总结归纳】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解题过程】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【总结归纳】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=x(y﹣1).【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式得出答案.【解题过程】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【知识考点】34:同类项.【思路分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解题过程】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.【总结归纳】本题考查同类项的定义,正确根据同类项的定义得到m,n的值是解题的关键.13.若+|b+1|=0,则(a+b)2020=1.【知识考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【思路分析】根据非负数的意义,求出a、b的值,代入计算即可.【解题过程】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.【总结归纳】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【知识考点】33:代数式求值.【思路分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解题过程】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.【总结归纳】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【知识考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【思路分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解题过程】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.【总结归纳】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【知识考点】M5:圆周角定理;MP:圆锥的计算.【思路分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解题过程】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.【总结归纳】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【知识考点】KP:直角三角形斜边上的中线;M8:点与圆的位置关系.【思路分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解题过程】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.【总结归纳】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【知识考点】4J:整式的混合运算—化简求值.【思路分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解题过程】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【知识考点】用样本估计总体.【思路分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解题过程】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【总结归纳】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【知识考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【思路分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解题过程】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【总结归纳】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【知识考点】二元一次方程组的解;解二元一次方程组;一元二次方程的解;根与系数的关系.【思路分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解题过程】解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.【总结归纳】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【知识考点】直角梯形;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解题过程】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.【总结归纳】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【知识考点】B7:分式方程的应用;C9:一元一次不等式的应用.【思路分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解题过程】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【知识考点】GB:反比例函数综合题.【思路分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解题过程】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.【总结归纳】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【知识考点】HF:二次函数综合题.【思路分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解题过程】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).【总结归纳】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

2022年广东省中考数学试卷真题及解析word版(完美版可编辑)

2022年广东省中考数学试卷真题及解析word版(完美版可编辑)

2022年广东省初中学业水平考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.|2|-=( )A .﹣2B .2C .12-D .122.计算22( )A .1B .2C .2D .43.下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形4.如题4图,直线a//b ,∠1=40°,则∠2=( )A .30°B .40°C .50°D .60°5.如题5图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .14B .12C .1D .26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A .(3,1)B .(﹣1,1)C .(1,3)D .(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A .14B .13C .12D .238.如题8图,在▱ABCD 中,一定正确的是( )A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( ) A .2是变量B .π是变量C .r 是变量D .C 是常量二、填空题(本大题共有5小题,每小题3分,共15分) 11.sin30°=12.单项式3xy 的系数为13.菱形的边长为5,则它的周长为14.若x =1是方程022=+-a x x 的根,则a =15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为三、解答题(一)(本大题共有3小题,每小题8分,共24分)16.解不等式:⎩⎨⎧<+>-31123x x17.先化简,再求值:112--+a a a ,其中5=a18.如题18图,已知∠AOC=∠BOC ,点P 在OC 上,PD 上OA ,PE ⊥OB ,垂足分别为D ,E .求证:△OPD ≌△OPE.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本,若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 3y15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?22.如题22图,四边形ABCD 内接于⊙O ,AC 为OO 的直径,∠ADB=∠CDB . (1)试判断△ABC 的形状,并给出证明;(2)若AB=2,AD=1,求CD 的长度.23.如题23图,抛物线c bx x y ++=2(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点, A(1,0),AB=4,点P 为线段AB 上的动点,过P 作PQ ∥/BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标.2022年广东省初中学业水平考试数学参考答案一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10 答案B D A B D A BCDC二、填空题:本大题共5小题,每小题3分,共15分. 参考答案:题号11 12 13 14 15 答案1/2 3 20 1 π三、解答题(二):本大题共3小题,每小题8分,共24分 16.参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x < ∴不等式组的解集:12x <<17.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+- 将a =5代入得,2111a +=18.参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨==, ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分. 19.参考答案: 设学生人数为x 人8374x x -=+7x = 则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15, 解得:2k =∴y 与x 的函数关系式:y =2x +15(2)将20y =代入y =2x +15得20=2x +15, 解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg . 21.参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分. 22.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90° ∴△ABC 是等腰直角三角形(2)在Rt △ABC 中 222AC AB BC =+,可得:2AC =∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中222AC AD DC =+可得:3DC = ∴CD 的长度是323.参考答案:(1)∵A (1,0),AB =4 ∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得01093b c b c =++⎧⎨=-+⎩ 解得:23b c =⎧⎨=-⎩∴该抛物线的解析式:223y x x =+-(2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得04k b k b =+⎧⎨-=-+⎩ 解得:22k b =⎧⎨=-⎩, ∴AC 解析式:22y x =- 将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩ 解得:26k b =-⎧⎨=-⎩, ∴BC 解析式:26y x =-- ∵PQ //BC ∴PQ 解析式:22y x m =-+2222y x m y x =-+⎧⎨=-⎩ 解得:121mx y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△ 21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年广东省中考数学试题及参考答案
一、选择题(本大题共10小题,每小题3分,共30分) 1.在1,0,2,﹣3这四个数中,最大的数是( ) A .1 B .0 C .2 D .﹣3
2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
3.计算3a ﹣2a 的结果正确的是( ) A .1 B .a C .﹣a D .﹣5a
4.把x 3﹣9x 分解因式,结果正确的是( )
A .x (x 2﹣9)
B .x (x ﹣3)2
C .x (x+3)2
D .x (x+3)(x ﹣3) 5.一个多边形的内角和是900°,这个多边形的边数是( ) A .4 B .5 C .6 D .7
6.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A .
47
B .
37
C .
34
D .1
3
7.如图,▱ABCD 中,下列说法一定正确的是( )
A .AC=BD
B .A
C ⊥B
D C .AB=CD D .AB=BC
8.关于x 的一元二次方程x 2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围为( ) A .94
m >
B .94
m <
C .94
m
=
D .94
m -

9.一个等腰三角形的两边长分别是3和7,则它的周长为( ) A .17 B .15 C .13 D .13或17
10.二次函数y=ax 2+bx+c (a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )
A .函数有最小值
B .对称轴是直线x=
12
C .当x <
12
,y 随x 的增大而减小 D .当﹣1<x <2时,y >0
二、填空题(本大题共6小题,每小题4分,共24分) 11.计算2x 3÷x= .
12.据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 .
13.如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC=6,则DE= .
14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .
15.不等式组28412
x x x ⎧⎨
-+⎩<>的解集是 .
16.如图,△ABC 绕点A 顺时针旋转45°得到△A′B′C′,若∠BAC=90°,,则图中阴影
部分的面积等于 .
三、解答题(一)(本大题共3小题,每小题6分,共18分)
17.(6()
1
1|4|12-⎛⎫
-+-- ⎪⎝⎭

18.(6分)先化简,再求值:()2
2
1
11
1x x x ⎛⎫+
⋅-
⎪-+⎝⎭
,其中3
x
=

19.(6分)如图,点D 在△ABC 的AB 边上,且∠ACD=∠A .
(1)作∠BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).
四、解答题(二)(本大题共3小题,每小题7分,共21分) 20.(7分)如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A 、B 、D 三点
在同一直线上).请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m ).
≈1.414≈1.732)
21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.
(1)求这款空调每台的进价(利润率=
-=
利润售价进价
进价
进价
).
(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?
22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 名; (2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐? 五、解答题(三)(本大题共3小题,每小题9分,共27分)
23.(9分)如图,已知A(﹣4,1
2),B(﹣1,2)是一次函数y=kx+b与反比例函数m
y
x
(m≠0,
m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O 于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.
(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)
(2)求证:OD=OE;
(3)求证:PF是⊙O的切线.
25.(9分)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC 出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).
(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;
(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP 的长;
(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.
参考答案与解析
一、选择题(本大题共10小题,每小题3分,共30分)
1.在1,0,2,﹣3这四个数中,最大的数是()
A.1 B.0 C.2 D.﹣3
【知识考点】有理数大小比较.
【思路分析】根据正数大于0,0大于负数,可得答案.
【解答过程】解:﹣3<0<1<2,
故选:C.
【总结归纳】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.
2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是()
A.B.C.D.
【知识考点】中心对称图形;轴对称图形.
【思路分析】根据轴对称图形与中心对称图形的概念求解.
【解答过程】解:A、不是轴对称图形,不是中心对称图形.故此选项错误;
B、不是轴对称图形,也不是中心对称图形.故此选项错误;
C、是轴对称图形,也是中心对称图形.故此选项正确;
D、是轴对称图形,不是中心对称图形.故此选项错误.
故选C.
【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.计算3a﹣2a的结果正确的是()
A.1 B.a C.﹣a D.﹣5a
【知识考点】合并同类项.
【思路分析】根据合并同类项的法则,可得答案.
【解答过程】解:原式=(3﹣2)a=a,
故选:B.
【总结归纳】本题考查了合并同类项,系数相加字母部分不变是解题关键.
4.把x3﹣9x分解因式,结果正确的是()
A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)
【知识考点】提公因式法与公式法的综合运用.
【思路分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.
【解答过程】解:x3﹣9x=x(x2﹣9),=x(x+3)(x﹣3).
故选D.
【总结归纳】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
5.一个多边形的内角和是900°,这个多边形的边数是()
A.4 B.5 C.6 D.7
【知识考点】多边形内角与外角.
【思路分析】根据多边形的外角和公式(n﹣2)•180°,列式求解即可.
【解答过程】解:设这个多边形是n边形,根据题意得,。

相关文档
最新文档