北师大版八年级下册数学1.2《直角三角形》课件(共2课时)
最新北师大版八年级数学下册《直角三角形》精品教学课件
∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?
北师大版八年级下册数学《1.2第2课时直角三角形全等的判定》说课稿
北师大版八年级下册数学《1.2 第2课时直角三角形全等的判定》说课稿一. 教材分析北师大版八年级下册数学《1.2 第2课时直角三角形全等的判定》这一节的内容是在学生已经掌握了全等图形的概念和性质的基础上进行讲解的。
在全等图形的概念和性质的学习过程中,学生已经了解了全等图形的大小、形状、位置关系是相同的,而且已经学会了使用SSS、SAS、ASA、AAS等方法来判定两个图形是否全等。
本节课的内容是让学生学习直角三角形全等的判定方法,主要包括HL和RHS两种方法。
这两种方法是判定直角三角形全等的基本方法,对于学生理解和掌握全等图形的判定方法有重要的意义。
二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念和性质,也已经学习了判定两个图形全等的方法。
但是,对于直角三角形全等的判定方法,学生可能还不是很熟悉,需要通过本节课的学习来进一步理解和掌握。
此外,学生在学习过程中可能存在对于全等图形判定方法的混淆,需要教师在教学过程中进行引导和纠正。
三. 说教学目标1.知识与技能目标:让学生理解和掌握直角三角形全等的判定方法HL和RHS,能够运用这两种方法判定两个直角三角形是否全等。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的观察能力、动手能力、思维能力和交流能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:直角三角形全等的判定方法HL和RHS。
2.教学难点:对于不同情况下直角三角形全等的判定方法的灵活运用。
五. 说教学方法与手段本节课采用讲授法、示范法、练习法、小组合作法等教学方法,结合多媒体课件、几何画板等教学手段,以学生为主体,教师为指导,引导学生通过观察、操作、思考、交流等过程,掌握直角三角形全等的判定方法。
六. 说教学过程1.导入:通过复习全等图形的概念和性质,引导学生进入本节课的学习。
2.讲解:讲解直角三角形全等的判定方法HL和RHS,并通过示例进行说明。
北师大版八年级数学下册1.2《直角三角形》课件(共14张PPT)
观察下面三组命题: 如果两个角是对顶角,那么它们相等; 如果两个角相等,那么它们是对顶角。 如果小明患了肺炎,那么他一定会发烧; 如果小明发烧,那么他一定患了肺炎。 一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等。
思考:上面每组中两个命题的条件和结论也有类似的 关系吗?
作业:
1,下列各组数中,是勾股数的是( )
A 2,3,4
B 1.5, 2,3
C 9, 12, 15
D 7, 8, 9
2,在△ABC中,三边长分别是8,15,17,则这个三角形是__
它的面积是__。
3,若三角形的三边长分别为n+1,n+2,n+3,当n=__时,此三 角形是直角三角形。
4, 在△ABC中,BC=6,AC=5,BC边上中线长为4,则S△ABC=____ 5,已知:在△ABC中,AB=15cm,AC=20cm,BC=25cm
角时,那么这两个三角形全等吗?
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°, AB=A′B′,BC=B′C′。 求证:Rt△ABC≌Rt△A′B′C′。
定理:斜边和一条直角边对应相等的两个直角三角形全 等.这一定理可以简单地用“斜边、直角边”或“HL”表 示.
如图所示,有两个长度相等的滑梯,左边滑梯的高度 AC与右边滑梯水平方向的长度DF相等,两个滑梯的 倾斜角∠B和∠F的大小有什么关系?
想一想
思考:两边分别相等且其中一组等边的对角相等的两 个三角形全等吗?如果其中一组等边所对的角是直角 呢?
两个三角形中,如果有两边及其中一边的对角相等,这两个三 角形是不一定全等的.如图所示:
肥西县七中八年级数学下册第1章直角三角形1.2直角三角形的性质和判定Ⅱ第2课时勾股定理的实际应用教
1.2 直角三角形的性质和判定(Ⅱ)第2课时勾股定理的实际应用【知识与技能】1.勾股定理从边的方面进一步刻画直角三角形的特征,学生将在原有的基础上对直角三角形有更深刻的认识和理解.2.掌握直角三角形三边关系——勾股定理及直角三角形的判别条件——勾股定理的逆定理.【过程与方法】1.放手学生从多角度地了解勾股定理.2.提高学生亲自动手的能力.【情感态度】1.学会运用勾股定理来解决一些实际问题,体会数学的应用价值.2.尽可能的给学生提供有关勾股定理的材料,给予交流的机会,并在与他人交流的过程中,敢于发表不同的见解,在交流活动中获得成功的体验.【教学重点】应用勾股定理有关知识解决有关问题.【教学难点】灵活应用勾股定理有关知识解决有关问题.一、创设情境,导入新课问题勾股定理的内容是什么?它揭示了直角三角形三边之间的关系,今后我们来看看这个定理的应用.【教学说明】教师创设问题,有针对性地复习了勾股定理,对本节课的应用勾股定理解决实际的问题打下了坚实的基础.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题勾股定理的应用思考教材第12页“动脑筋”【教学说明】提出问题,提供学生参与数学活动的时间与空间,调动学生的观察能动性,引导学生建立数学模型,提高学生分析问题、解决问题的能力.例:教材第12页例2【教学说明】以古代的数学问题为背景,一方面及时巩固勾股定理的运用,另一方面让学生感受到数学文化.三、运用新知,深化理解1.直角三角形中已知其中的两条边长是4和5,则第三条边等于()A.3B. 41C.3或41D.无法确定2.在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90°.①已知a=5,b=12,求c;②已知a=20,c=29,求b.3.如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所能走的最短路线的长度.【教学说明】由学生独立完成,以加深对知识的理解和运用,便于了解学生掌握情况,给有困难的学生给予指导,及时纠正他们出现的错误,并改正强化,在完成上述题目后,教师引导学生完成练习册中本课时的对应训练部分.答案:1.C3.解:将曲面沿AB展开,如图,过C作CE⊥AB于E,在Rt△ECF中,∠E=90°,EF=18-1-1=16(cm ),CE=1/2×60=30(cm ),由勾股定理,得CF=22CE EF +=223016+=34(cm )四、师生互动,课堂小结通过本节课的学习,给同学们谈谈你的收获是什么?你认为自己还在哪些问题上存在疑问?与大家共同交流.【教学说明】学生自已总结归纳加深印象.引导学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.1.布置作业:习题1.2中的第5、9题.2.完成练习册中本课时练习的作业部分.就练习的情况来看,一方面学生简单机械地套用了a 2+b 2=c 2,没有分析问题的本质所在;另一方面对于曲面转化为平面问题和在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高,以达到全面提高.分式的乘除【课题】分式的乘除【教学目的】熟练地进行分式乘除法的混合运算. 利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,使学生对所做的题目作自我评价, 【教学重难点】重点:熟练地进行分式乘除法的混合运算难点:熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则.【课时安排】1课时 【教学方法】【教学步骤】或【课堂教学设计】 第一步:课堂引入计算:(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷第二步:讲授新课(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式) (2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算)=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x=22--x 第三步:随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(xyx xy y xy x x xy -⋅+-÷-答案:(1)c a 432- (2)485c- (3)3)(4y x - (4)-y第四步:课堂小结本节课主要讲授分式乘除法的混合运算,分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.第五步:课后练习 计算(1))6(4382642z yx yx y x -÷⋅-(2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244yyy y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)( 答案: (1)336y xz (2) 22-b a (3)122y - (4)x1-【作业布置】第十四章整式的乘法与因式分解14.1整式的乘法课时4 整式的除法【知识与技能】(1)掌握同底数幂的除法法则.(2)理解不等于0的数的0次幂的定义.(3)理解单项式除以单项式,多项式除以单项式的法则,并会进行简单的相关运算.【过程与方法】通过探索整式的除法的一般规律,能熟练地进行有关的计算.【情感态度与价值观】让学生自主探索整式的除法法则,体验通过转化构建新知识体系,培养学生大胆猜想、善于思考、归纳的数学思维品质和创新精神.整式的除法法则的运用.整式的除法法则的运用.多媒体课件.师生共同复习回顾:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m,n都是正整数).教师接着出示问题:一张数码照片的文件大小是28 KB,一个存储量为26 MB(1 MB=210 KB)的移动存储器能存储多少张这样的数码照片?学生先思考,再小组内讨论解决:移动存储器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=26 624(KB).所以它能存储这种数码照片的数量为(26 624÷28)张.教师:我们已经学习了整式的加法、减法、乘法运算.在整式的运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来理解和学习整式的除法.(板书课题)探究1:同底数幂的除法教师让学生解决以下问题:1.用你熟悉的方法计算.2.概括.在学生讨论、计算的基础上,教师提问:你们能发现什么?由学生回答,教师板书,发现:你能根据除法的意义来说明这些运算结果是怎么得到的吗?3.分组讨论.各组选出一名代表来回答问题,师生达成共识,除法是乘法的逆运算,所以除法的问题实际上是“已知乘积和一个因数,去求另一个因数”的问题,于是上面的问题可以转化为乘法问题加以解决,即:师生共同总结:一般地,我们有a m÷a n=a m-n,并且m≥n,m,n为正整数,即同底数幂相除,底数不变,指数相减.(教师板书)4.利用除法的意义说明这个法则的算理.让学生仿照问题的解决过程,讲清算理,并请几名学生代表回答,教师加以评析.5.让学生互相讨论.当m=n时,a m÷a n的结果是多少?能总结出什么规律?师生共同总结:当m=n时,a m÷a n=a m-m=a0=1(a≠0),即任何不等于0的数的0次幂都等于1.探究2:单项式除以单项式与多项式除以多项式教师引入:利用同底数幂的除法法则,我们可以计算单项式与单项式的除法,进一步探究多项式与单项式的除法,下面我们先来探讨单项式与单项式的除法.教师出示问题:木星的质量约是1.90×1024吨,地球的质量约是5.98×1021吨.你知道木星的质量约为地球质量的多少倍吗?学生思考后回答:这是除法运算,木星的质量约为地球质量的[(1.90×1024)÷(5.98×1021)]倍.接着教师让学生解决以下问题:1.计算(1.90×1024)÷(5.98×1021),并说说你计算的根据是什么.2.你能利用1中的方法计算下列各式吗?3.你能根据2说说单项式除以单项式的运算法则吗?讨论结果展示:可以从两个思路考虑:(思路一)从乘法与除法互为逆运算的角度去考虑.×1021×( )=1.90×1024÷5.98≈0.318,所求单项式的幂值部分应包含1024÷1021,即103,由此可知 5.98×1021×(0.318×103)≈1.90×1024.所以(1.90×1024)÷(5.98×1021)≈0.318×103.2.可以想象2a·( )=8a3,根据单项式与单项式相乘的运算法则,可以考虑:8÷2=4,a3÷a=a2,即2a·(4a2)=8a3.所以8a3÷2a=4a2.同样的道理可以得出所以(思路二)从除法的意义去考虑.上述两种算法有理有据,所以结果都正确.教师引导学生观察上述几个式子的运算过程,总结出它们的共同特征:(1)都是单项式除以单项式.(2)运算的结果都是把系数、同底数幂分别相除后作为商的因式;对于只在一个被除式中含有的字母,则连同它的指数一起作为商的一个因式.(3)单项式相除是在同底数幂的除法的基础上进行的.教师出示教材P103例7:学生自主解答.教师:那么对于多项式除以单项式,同学们可仿照上述的探究过程,自己尝试.学生小组讨论.师生共同总结:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师出示教材P103例8:教师引导学生共同分析,教师板书(1),请2名学生代表上台板演(2)(3).接着教师让学生完成教材P104练习第1,2,3题.(学生独立完成之后,教师点评) 多项式除以单项式的结果仍然是多项式.。
北师大版数学八年级下册1.2《直角三角形》说课稿
北师大版数学八年级下册1.2《直角三角形》说课稿一. 教材分析《直角三角形》是北师大版数学八年级下册第1章第2节的内容。
本节课主要介绍直角三角形的性质,包括直角三角形的定义、直角三角形的边角关系、直角三角形的应用等。
通过学习本节课,学生能够理解直角三角形的概念,掌握直角三角形的性质,并能运用直角三角形的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了三角形的基本概念和性质,对三角形有一定的认识。
但是,学生可能对直角三角形的性质和应用还不够了解。
因此,在教学过程中,教师需要通过引导学生观察、思考、讨论等方式,帮助学生理解和掌握直角三角形的性质。
三. 说教学目标1.知识与技能目标:学生能够理解直角三角形的概念,掌握直角三角形的性质,并能运用直角三角形的性质解决实际问题。
2.过程与方法目标:学生能够通过观察、思考、讨论等方式,培养自己的观察能力和思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.教学重点:直角三角形的性质及其应用。
2.教学难点:直角三角形的边角关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等。
2.教学手段:利用多媒体课件、几何画板等辅助教学。
六. 说教学过程1.导入:通过复习三角形的基本概念和性质,引出直角三角形的定义。
2.探究直角三角形的性质:引导学生观察、思考直角三角形的性质,并通过几何画板软件进行演示。
3.小组讨论:学生分组讨论直角三角形的应用,分享自己的解题心得。
4.总结直角三角形的性质:引导学生总结直角三角形的性质,并进行解释。
5.练习与拓展:布置一些有关直角三角形的练习题,帮助学生巩固所学知识,并拓展学生的思维。
七. 说板书设计板书设计如下:1.定义:有一个角是直角的三角形a.两个锐角的和为90度b.直角对边最长c.直角三角形的一条直角边等于另一条直角边的平方根乘以斜边d.计算直角三角形的边长e.证明几何命题八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况和课后作业的完成情况进行评估。
北师大版数学八年级下册数学课件:第一章2直角三角形第二课时
AC=DB,则下列结论不正确的是
A. ∠A=∠D
( C)
B. ∠ABC=∠DCB
C. OB=OD
D. OA=OD
课后作业
4. 如图1-2-21,∠A=∠B=90°,E是AB上的一点,且AE=BC, ∠1=∠2. (1)Rt△ADE与Rt△BEC全等吗?并说明理由; (2)△CDE是否为直角三角形?并说明理由.
∴Rt△BDE≌Rt△CDF(HL). ∴∠B=∠C. ∴AB=AC.
课堂讲练
模拟演练
1. 如图1-2-13,AC⊥BC,AD⊥DB,要使△ABC≌△BAD, 还需添加条件__A_C_=_B__D_(__答__案_不__唯__一__)_. (只需写出符合条件 的一种情况)
课堂讲练
2. 如图1-2-15,已知∠A=∠D=90°,E,F在线段BC上, DE与AF交于点O,且AB=DC,BE=CF. 求证:Rt△ABF≌Rt△DCE. 证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE. ∵∠A=∠D=90°, ∴△ABF与△DCE都为直角三角形.
( D) A. AE=DF B. ∠A=∠D C. ∠B=∠C D. AB=DC
课后作业
2.如图1-2-19,O是∠BAC内一点,且点O到AB,AC的 距离OE=OF,则△AEO≌△AFO的根据是
(A ) A. HL B. AAS C. SSS D. ASA
课后作业
3. 如图1-2-20,AB⊥AC于点A,BD⊥CD于点D,若
∴△ACE≌△BDF(AAS). ∴CE=DF.
在Rt△ABF和Rt△DCE中,
∴Rt△ABF≌Rt△DCE(HL).
课堂讲练
3. 如图1-2-17,已知在△ABC中,∠C=90°,AD平分 ∠BAC交BC于点D,DE⊥AB于点E,点F在AC上,且BD=FD, 求证:AE-BE=AF. 证明:∵AD平分∠BAC,DE⊥AB,∠C=90°, ∴Rt△ADC≌Rt△ADE(AAS). ∴DC=DE.
第2课时直角三角形全等的判定课件北师大版数学八年级下册
探究学习
用三角板和圆规,画一个Rt△ABC,使得∠C=90°,一直角边CA=4cm,
斜边AB=5cm.
Step1:画∠MCN=90°;
N
M
C
探究学习
用三角板和圆规,画一个Rt△ABC,使得∠C=90°,一直角边CA=4cm,
斜边AB=5cm.
Step1:画∠MCN=90°;
Step2:在射线CM上截取CA=4cm;
而由条件知在Rt△BDF与Rt△ADC中有BF=AC,DF=DC,故
这两个三角形全等,从而问题得证.
典例
例1 如图,已知AD为△ABC的高,E为AC上一点,BE交AD于点
F,且有BF=AC,FD=CD.求证:BE⊥AC.
证明:∵AD⊥BC,∴∠BDA=∠ADC=90°.
∴∠1+∠2=90°.
在Rt△BDF和Rt△ADC中,ቊ
1.2
第2课时
直角三角形
直角三角形全等的判定
学习目标
1.掌握直角三角形全等的判定方法.
2.会运用“HL”解决一些简单的实际问题.
3.灵活运用三角形全等的判定方法进行证明,注意
“HL”与其它判定方法的区分与联系.
新课引入
如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个
直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无
= ,
= ,
∴Rt△BDF≌Rt△ADC(HL).∴∠2=∠C.
∵∠1+∠2=90°,∴∠1+∠C=90°.
∵∠1+∠C+∠BEC=180°,
典例
例2:如图,AB=CD,AE⊥BC,DF⊥BC,
垂足分别为E、F,CE=BF.
北师大版八年级数学下册直角三角形全等的判定第2课时课件(共21页)
直角三角 形全等的
判定
应用
斜边和一条直角边分别相等的两个直角三 角形全等.(简写成“斜边,直角边”或 “HL”)
1.使用的前提条件是在直角三角形中 2.遇到直角三角形全等问题,优先考虑“HL” 3.使用时只须找除直角外的两个条件即可 (两个条件中至少有一个条件是一对对应边 相等)
∴ Rt△ABC≌Rt△DEF (HL). ∴∠B=∠DEF (全等三角形对应角相等). ∵ ∠DEF+∠F=90°, ∴∠B+∠F=90°.
课程讲授
2 直角三角形全等的应用
归纳:“HL”是判断两个直角三角形全等的简便方 法,对于一般的三角形不成立,在使用时要注意其应用 的范围.同时,利用“HL”还能说明两直线的位置关系, 在实际解题过程中要结合实际灵活运用.
课程讲授
2 直角三角形全等的应用
练一练:如图,在Rt△ABC和Rt△A′B′C′中,
∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC A
和Rt△A′B′C′全等的是( B )
A.AB=A′B′=5,BC=B′C′=3
B.AB=B′C′=5,∠A=∠B′=40°
B
C A'
C.AC=A′C′=5,BC=B′C′=3
D.AC=A′C′=5,∠A=∠A′=40°
B'
C'
随堂练习
1.下列条件:
①两条直角边对应相等;
②斜边和一锐角对应相等;
③斜边和一直角边对应相等;
④直角边和一锐角对应相等.
以上能判定两直角三角形全等的个数有( D )
A.1个
B.2个
C.3个
D.4个
随堂练习
2.如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点 E ,
北师大版数学八年级下册1.2《直角三角形全等的判定》(第2课时)教学设计
北师大版数学八年级下册1.2《直角三角形全等的判定》(第2课时)教学设计一. 教材分析北师大版数学八年级下册1.2《直角三角形全等的判定》是学生在学习了全等图形的概念和性质、全等三角形的判定方法的基础上进行学习的。
本节课主要让学生掌握HL(斜边-直角边)判定两个直角三角形全等,并能够运用这一方法解决实际问题。
教材通过丰富的例题和练习,引导学生探索、发现、验证和应用知识,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念和性质、全等三角形的判定方法。
但部分学生对于如何运用判定方法解决实际问题还不够熟练,特别是对于一些复杂图形的处理能力有待提高。
此外,学生的数学思维能力、观察能力和合作能力也有待进一步提高。
三. 教学目标1.理解HL(斜边-直角边)判定两个直角三角形全等的条件;2.学会运用HL判定方法解决实际问题;3.培养学生的逻辑思维能力、观察能力、合作能力。
四. 教学重难点1.教学重点:掌握HL(斜边-直角边)判定两个直角三角形全等的方法;2.教学难点:如何运用HL判定方法解决实际问题。
五. 教学方法1.情境教学法:通过生活情境导入,激发学生的学习兴趣;2.问题驱动法:引导学生发现并提出问题,培养学生解决问题的能力;3.合作学习法:学生进行小组讨论,培养学生的合作能力;4.实践操作法:让学生动手操作,提高学生的实践能力。
六. 教学准备1.准备相关的教学素材,如PPT、例题、练习题等;2.准备教学课件,以便进行多媒体教学;3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活情境,如建筑工人测量角度,引入直角三角形全等的概念。
提问:如何判断两个直角三角形是否全等?2.呈现(10分钟)展示PPT,引导学生发现并提出问题。
如:如果已知一个直角三角形的斜边和一条直角边,如何求解另一个直角三角形的对应边长?3.操练(10分钟)学生进行小组讨论,让学生通过合作学习,探索并验证HL判定两个直角三角形全等的方法。
北师大版数学八年级下册《直角三角形全等的判定》说课稿1
北师大版数学八年级下册《直角三角形全等的判定》说课稿1一. 教材分析北师大版数学八年级下册《直角三角形全等的判定》这一节的内容,主要介绍了直角三角形全等的判定方法。
在学生已经掌握了三角形全等的判定方法的基础上,通过本节课的学习,让学生能够灵活运用直角三角形的性质和全等的判定方法,解决实际问题。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对三角形全等的判定方法有一定的了解。
但学生在运用这些知识解决实际问题时,可能会遇到一些困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生将理论知识与实际问题相结合。
三. 说教学目标1.知识与技能目标:让学生掌握直角三角形全等的判定方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间观念和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 说教学重难点1.教学重点:直角三角形全等的判定方法。
2.教学难点:如何引导学生将理论知识与实际问题相结合,提高解决问题的能力。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等。
2.教学手段:多媒体课件、实物模型、黑板等。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对直角三角形全等的判定方法的思考。
2.知识讲解:讲解直角三角形全等的判定方法,并结合实例进行说明。
3.课堂互动:学生分组讨论,分享各自的学习心得和解决问题的方法。
4.练习巩固:布置一些相关的练习题,让学生巩固所学知识。
5.总结提升:对本节课的内容进行总结,引导学生思考如何将所学知识应用于实际问题。
七. 说板书设计板书设计要简洁明了,突出本节课的重点内容。
可以设计如下板书:直角三角形全等的判定方法1.两个直角三角形的两个直角相等。
2.两个直角三角形的一条直角边和一条斜边分别相等。
八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、练习成绩等方面进行。
直角三角形 第一课时-八年级数学下册课件(北师大版)
如果两个角相等,那么它们是对顶角. (2)如果小明患了肺炎,那么他一定会发烧;
如果小明发烧,那么他一定患了肺炎.
(3)一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
上面每组中两个命题的条件和结论也有类似的关系 吗?与同伴交流.
5
25
4
4
导引:方法一:
∵∠C=90°,∴AB 2=AC 2+BC 2=92+122=225.
∴AB=15.
过点C 作CD⊥AB 于点D,设AD=x,则BD=15-x.
在Rt△ACD 中,CD 2=AC 2-AD 2=92-x 2.
在Rt△BCD 中,CD 2=BC 2-BD 2=122-(15-x )2.
∴92-x 2=122-(15-x )2,解得x=5.4.
∴CD 2=92-5.42=51.84.
∴CD=7.2=36 , 即点C 到AB 的距离为 36 .
5
5
方法二:过点C 作CD⊥AB 于点D,
则S△ABC=
1 2Leabharlann AC·BC= 1 AB
2
·
CD,
∴AC·BC=AB ·CD.又由方法一知AB=15,
(2)如果a>b,那么a 2>b 2;
(3)如果两个数互为相反数,那么它们的和为零;
(4)如果ab<0,那么a>0,b<0.
导引:根据题目要求,先判断原命题的真假,再将原命题的题 设和结论部分互换,写出原命题的逆命题,最后判断逆 命题的真假.
解:(1)原命题是真命题.逆命题为:如果两条直线只有 一个交点,那么它们相交.逆命题是真命题.
有葛藤自点A 处缠绕而上,绕5周 后其末端恰好到达点B 处.则问
北师大版八年级数学下册第一章《直角三角形》精品课件
w斜边及一个锐角对应相等的两个直角三角形全等;真
w两直角边对应相等的两个直角三角形全等; 真
w一条直角边和另一条直角边上的中线对应相等的
两个直角三角形全等. 真
A
E
C
D
BG
H
F
2、如图,两根长度为12m的绳子,一端系 在旗杆上,另一端分别固定在地面的两个木 桩上,两个木桩离旗杆底部的距离相等吗? 说明理由。 解:相等。
用HL可证Rt△ACD≌Rt△AED; 证明Rt△ACD≌Rt△AED
(3)不能
•
你们得到的三角形全等吗?你能得到什么样的结论呢?
斜边和一条直角边对应相等的两个直角三角形全等 简述为:“斜边、直角边”或“HL”
你能证明它吗?
合作探究
w已知:如图,在△ABC和△A′B′C′中, ∠C=∠C′=900
BC=B′C ′, AB=A′B′
w求证:△ABC≌△A′B′C′.
B
B′
C
A C′
测试评价 l1、已知:如图,D是△ABC的BC边的中点,
DE⊥AC,DF⊥AB,垂足分别是E.F,且DE=DF, 求证:△ABC是等腰三角形
l证明:∵ D是△ABC的BC边的中点
l∴BD=CD
l∵ DE⊥AC,DF⊥AB
l∴∠1=∠2=90° l∵BD=CD,DE=DF
1
2
l∴Rt△BDF≌Rt△CDE (HL)
A′
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,
AB=A′B′B′
C
A C′
A′
证明: ∵在Rt△ABC中,AC2=AB2-BC2(勾股定理). 又∵在Rt△ A' B' C'中,A' C' 2=A'B'2-B'C'2 (勾股定理) ∵ AB=A'B',BC=B'C',∴AC=A'C'. ∴Rt△ABC≌Rt△A'B'C' (SSS).
北师大版数学八年级下册1.2《直角三角形》教案
一、教学内容
本节课选自北师大版数学八年级下册第一单元1.2节《直角三角形》。教学内容主要包括以下方面:
1.直角三角形斜边与直角边的关系,即勾股定理;
4.勾股定理的应用;
5.直角三角形面积的计算。
二、核心素养目标
4.培养学生的团队合作意识,通过小组讨论和合作探究,提高学生的交流表达能力;
5.激发学生的创新思维,鼓励学生在解决问题过程中,探索不同的解题方法和技巧。
三、教学难点与重点
1.教学重点
(1)直角三角形的定义及性质:理解直角三角形的定义,掌握其内角和为180°,其中一个角为90°的性质,并能运用这一性质解决相关问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例:通过实际操作教具或绘制图形,让学生直观感受直角三角形的特征,强调直角三角形内角和为180°,其中一个角为90°。
(2)勾股定理:理解并掌握勾股定理,即直角三角形中,斜边的平方等于两直角边的平方和,并能运用勾股定理解决实际问题。
举例:通过实际操作教具或绘制图形,让学生发现勾股定理,然后给出具体数值,让学生计算验证。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形的基本概念。直角三角形是一种有一个角为直角(90°)的三角形。它在几何学中具有重要地位,广泛应用于建筑、测量等领域。
北师大版 八年级数学下册1.2直角三角形 直角三角形全等的判定(HL)-讲练课件-(共28张PPT)
A.HL
B.SAS
C.ASA
D.SSS
2.如图,在△ABC中,∠C=90°,AD=AC,DE⊥AB于点D.若
∠B=28°,则∠AEC=( B )
A.28°
B.59°
C.60°
D.62°
3.如图,在△ABC中,∠BAC=90°,ED⊥BC于点D,AB=
BD,若AC=8,DE=3,则EC的长为 5 .
B.AB=AB
C.∠ABC=∠ABD
D.∠BAC=∠BAD
3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若
AC=6 cm,则AE+DE等于( C )
A.4 cm
B.5 cm
C.6 cm
D.7 cm
4.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.
( 1 )若以“SAS”为依据,需添加的一个条件为 AB=CD ;
6.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ
=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当
AP= 5或10 时,△ABC和△PQA全等.
7.【教材P35复习题T13变式】如图,AC⊥BC,AD⊥BD,垂足分别
为点C,D,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F.求证:
= ,
∴Rt△ABC≌Rt△BAD(HL).
∴∠ABC=∠BAD.
3.如图,△ABC和△DEF为直角三角形,∠ABC=∠DEF=90°,边
BC,EF在同一条直线上,斜边AC,DF交于点G,且BF=CE,AC=DF.
求证:GF=GC.
证明:∵BF=CE,∴BF+FC=CE+FC.∴BC=EF.
北师大版八年级下册数学《1.2 第1课时 直角三角形的性质与判定》教学设计
北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教学设计一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》教材,主要介绍了直角三角形的性质与判定方法。
内容包括:直角三角形的定义、性质以及直角三角形的判定方法。
通过本节课的学习,使学生掌握直角三角形的性质与判定,为后续学习勾股定理和相似三角形打下基础。
二. 学情分析学生在七年级已经学习了三角形的性质和分类,对三角形有了一定的认识。
但直角三角形的性质和判定较为抽象,需要通过实例和动手操作来加深理解。
此外,学生可能对数学证明过程感到困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.知识与技能:掌握直角三角形的性质与判定方法。
2.过程与方法:通过观察、操作、探究、归纳等方法,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养合作意识,体验成功的喜悦。
四. 教学重难点1.重点:直角三角形的性质与判定方法的运用。
2.难点:对直角三角形性质与判定方法的理解和应用。
五. 教学方法采用启发式教学法、小组合作学习法、直观演示法、实践操作法等,引导学生主动探究、积极思考,提高学生的几何思维能力。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备几何画图工具,如直尺、圆规、三角板等。
3.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的直角三角形的实例,如建筑工人使用的勾股尺、三角板等,引导学生回顾直角三角形的定义,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示直角三角形的性质与判定方法,引导学生观察、思考,并通过几何画图工具进行实际操作,让学生感受直角三角形的性质与判定方法。
3.操练(10分钟)教师提出一些有关直角三角形性质与判定的问题,学生进行小组讨论,引导学生运用所学知识解决问题。
在此过程中,教师应及时给予指导和鼓励,提高学生的问题解决能力。
北师大版数学八年级下册第1课时直角三角形的性质与判定课件(共21张)
问题1:直角三角形的两个锐角有怎样的关系?为什么?
△ABC 是直角三角形, ∵∠A +∠B +∠C = 180°, ∴∠A +∠B = 90°. 又∵∠C = 90°,
问题2:如果一个三角形有两个角互余,那 么这个三角形是直角三角形吗? 为什么?
∵∠A +∠B +∠C = 180°, 又∵∠A +∠B = 90°, ∴∠C = 90°. ∴△ABC 是直角三角形 定理1 直角三角形的两个锐角互余.
b ca
S大正方形 = 4S直角三角形 + S小正方形 = 4× 1 ab + c2
2
cb a
= c2 + 2ab, ∴ a2 + b2 + 2ab = c2 + 2ab, ∴ a2 +b2 = c2.
证法2 赵爽弦图
大正方形的面积可以表示为 c 2 ;
也可以表示为
4×1
2
ab
+
(
b
-
a
)
2
.
a
c
一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
视察上面三组命题,你发现了什么?
归纳总结
在两个命题中,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么这两个命 题称为互逆命题.
如果把其中一个命题叫做原命题,那么另一个命题 就叫做它的逆命题.
想一想
你能写出命题“如果两个有理数相等,那么它们
上面两个定理的条件和结 论有什么关系?
3 互逆命题与互逆定理
合作探究
视察上面第一个定理和第二个定理,它们的条件 和结论之间有怎样的关系?
北师大版数学八年级下册同步课件:第2课时直角三角形全等的判定
1.2 第2课时 直角三角形全等的判定
情景导入
舞台背景的形状是两个直角三角形,为了美观,工作人员 想知道这两个直角三角形是否全等,但每个三角形都有一条直 角边被花盆遮住无法测量. 你能帮工作人员想个办法吗?
知识回顾 由全等三角形的判定方法SSS,SAS,ASA,
AAS知没有SSA,故三角形不一定全等.
使△ABP≌△CDP (不能添加辅助线),你添加的条件
是
.
答案不唯一,如AB=CD(HL), BP=DP(SAS),∠A=∠C(ASA), ∠B=∠D(AAS)等
4.如图D-13-3,在△ABC中,AB=CB,∠ABC=90°,F为 AB延长线上一点,点E在BC上,且AE=CF. 求证:Rt△ABE≌Rt△CBF.
当对角为直角时,这两个三角形会全等吗?
获取新知
问题 任意画一个Rt△ABC,使∠C =90°,再画一个Rt△A′B′C′, 使∠C′=90°,B′C′=BC,A′B′=AB,然后把画好的Rt△A′B′C′剪下 来放到Rt△ABC上,你发现了什么?
已知:如图, Rt△ABC,∠C =90°. 求作: Rt△A′B′C′,使∠C′=90°,B′C′=BC ,A′B =AB.
证明:在Rt△ABC和Rt△DEF中,
BC=EF, AC=DF , ∴Rt△BAC≌Rt△EDF (HL). ∴∠B=∠DEF (全等三角形的对应角相等). ∵∠DEF+∠F=90°,(直角三角形的两锐角互余), ∴∠B+∠F=90°
巩固练习
如图,两根长度均为12m的绳子,一端系在旗杆上,另一端 分别固定在地面的两个木桩上,两个木桩离旗杆底部的距离 相等吗?请说明你的理由. 解:∵AD⊥BC,∴∠ADB=∠ADC=90°, 在Rt△ABD和Rt △ACD中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
驶向胜利 的彼岸
读一读
1
学无止境
P16《读一读》:
勾股定理的证明.
勾股定理是数学上有证明方法最多的定理──有四百多
种说明! 古今中外有许多人探索勾股定理的证明方法,不但有 数学家,还有物理学家,甚至画家、政治家。如赵爽 (中)、梅文鼎(中)、欧几里德(希腊)、辛卜松 (英)、加菲尔德(美第二十届总统)等等。其证明方 法达数百种之多,这在数学史上是十分罕见的.
已知:如图(1),在△ABC中,AC2+BC2=AB2. 求证:△ABC是直角三角形. 证明:作Rt
△A′B′C′使∠C′ a =900,A′C′=AC,B′C′=BC(如图),则 A′C′2+B′C′2=A′B′2(勾股定理). C ∵AC2+BC2=AB2(已知), B′ A′C′=AC,B′C′=BC(作图), ∴ AB2=A′B′2(等式性质). a ∴ AB=A′B′(等式性质). ∴ △ABC≌ △A′B′C′(SSS). ∴ ∠A=∠A′= 900(全等三角形
等于第三边平方, 那么这个三角形是直角三角形).
这是判定直角三角形的根据之一.
驶向胜利 的彼岸
开启
智慧
命题与逆命题
直角三角形两直角边的平方和等于斜边的平方. 如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形 观察上面两个命题,它们的条件与结论之间有怎样的关系?与同伴交流. 再观察下面三组命题:
1.2 直角三角形(1) 勾股定理与它的逆定理的证明
复习回顾
曾经探索过的直角三角形的哪些性质和判定方法?
直角三角形的性质 1.在直角三角形中,两锐角互余. 2.在直角三角形中,斜边上的中线等于斜边的一半. 3.在直角三角形中,如果一个锐角等于30° ,那么它所对的直角 边等于斜边的一半. 4.在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角 边所对的角等于30° .
直角三角形的判定 1.有一个角等于90° 的三角形是直角三角形. 2.有两个角互余的三角形是直角三角形.
3.如果三角形一边上的中线等于这条边的一半,那么
这个三角形是直角三角形.
开启
ቤተ መጻሕፍቲ ባይዱ
智慧
勾股定理
如果直角三角形两直角边分别为a、b,斜边为c, 那么a2+b2=c2.即直角三角形两直角边的平方和等于 斜边的平方.勾股定理在西方文献中又称为毕达哥 拉斯定理(pythagoras theorem).
驶向胜利 的彼岸
读一读
1
学无止境
P16《读一读》:
勾股定理的证明.
历时几千年的两个定理,牵动着世界上不知多少代
亿万人们的心,前人以坚韧的毅力,开拓创新的精神谱 写了科学知识宝库中探宝的光辉篇章,还有许多宝藏等
待后人开采。自然无限,创造永恒。同学们要努力学习,
提高自身素质,不辜负时代重托,将来为人类作出更大 贡献。
驶向胜利 的彼岸
开启
智慧
定理与逆定理
一个命题是真命题,它逆命题却不一定是真命题. 如果一个定理的逆命题经过证明是真命题,那么它 是一个定理,这两个定理称为互逆定理,其中一个 定理称另一个定理的逆定理.
我们已经学习了一些互逆的定理,如: 勾股定理及其逆定理, 两直线平行,内错角相等;内错角相等,两直线平行. 你还能举出一些例子吗?
驶向胜利 的彼岸
读一读
1
学无止境
P16《读一读》:
勾股定理的证明.
学习永远是件快乐而有趣的事! 勾股定理的魅力将把你引入一个奇妙的境界!
驶向胜利 的彼岸
a
b
c
勾
弦
股
我能行
1
方法一:
勾股定理的证明
拼图计算 方法二:割补法 方法三:赵爽的弦图 方法四:总统证法 方法五:青朱出入图 方法六:折纸法 方法七:拼图计算
这些证法你还能记得多少? 你最喜欢哪种证法?
驶向胜利 的彼岸
回顾反思 1
总统证法
这个证明方法出自一位总统, 1881年,伽菲尔德(J.A.
驶向胜利 的彼岸
我能行
2
勾股定理的逆定理
如果三角形两边的平方和等于第三边平方, 那么这
个三角形是直角三角形.
已知:如图(1),在△ABC中,AC2+BC2=AB2. 求证:△ABC是直角三角形.
B a C c
b (1)
A
驶向胜利 的彼岸
我能行
2
逆定理的证明
B c b (1) c b (2) A
C′
A′
的对应边). ∴ △ABC是直角三角形(直角三 角形意义).
驶向胜利 的彼岸
回顾反思 1
几何的三种语言
B a C
勾股定理的逆定理
如果三角形两边的平方和等于
第三边平方, 那么这个三角形是 直角三角形.
c
b (1) A
′
在△ABC中 ∵AC2+BC2=AB2(已知),
∴△ABC是直角三角形(如果三角形两边的平方和
想一想:
互逆命题与互逆定理有何关系?
驶向胜利 的彼岸
隋堂练习 1
蓄势待发
说出下列合理的逆命题,并判断每对命题的真假: 四边形是多边形; 两直线平行,同旁内角互补; 如果ab=0,那么a=0,b=0.
′
请你举出一些命题,然后写出它的逆命题,并判断 这些逆命题的真假. 老师提示: 你是否能将有关命题的知识予以整理.
开启
智慧
命题与逆命题
在两个命题中,如果一个命题的条件和结论分别 是另一个命题的结论和条件,那么这两个命题称 为互逆命题,其中一个命题称为另一个命题的逆 命题. 你能写出命题“如果两个有理数相等,那么它们的 平方相等”的逆命题吗? 它们都是真命题吗?
想一想:一个命题是真命题,
它逆命题是真命题还是假命题?
如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角; 如果小明患了肺炎,那么他一定会发烧, 如果小明发烧,那么他一定患了肺炎;
三角形中相等的边所对的角相等, 三角形中相等的角所对的边相等.
上面每组中两个命题的条件和结论之间也有类似的关 系吗?与同伴进行交流.
驶向胜利 的彼岸
Garfield )就任美国第二十任总统,在 1876 , 利用了梯形面积 公式。 图中三个三角形面积的和是 2×ab/2+c/2;梯形面积为(a+b)(a+b)/2; c b c a 比较可得:c2 = a2+b2 。 a b 伽菲尔德的证法在数学史上被传为佳话, 后来,人们为了纪念他对勾股定理直观、 简捷、易懂、明了的证明,就把这一证法 称为“总统”证法。 . 勾股定理不只是数学家爱好,魅力真大!