五年级奥数分册第21讲 假设法解题-最新推荐

合集下载

五年级奥数专题讲义-第21讲假设法解题通用版(含答案)

五年级奥数专题讲义-第21讲假设法解题通用版(含答案)

第 21 讲假设法解题基础卷1.小明有 2 元和 5 元的邮票共 100 枚,总价钱为 320 元,这两种邮票各有多少枚?5×100=500元,500-320=180元2元:180÷﹙5-2﹚=60枚5元:100-60=40枚2.松鼠妈妈采松子,晴天每天可以采 20 个,雨天每天只能采 12 个。

它一连几天采了 112 个松子,平均每天采 14 个。

问:这几天当中有几天有雨?采了:112÷14=8天假设全是晴天应该采 20×8=160个比实际少了 160-112=48个是由于把雨天也看成了晴天每天相差 20-12=8个雨天:48÷8=6天3.徒工小王雕刻红木玩具,平均每天雕刻玩具 48 件。

每雕刻出一件正品,可创造财富 12 元:但如果雕刻坏了一件就要损失 98 元。

他平均每天创造财富 466 元。

小王平均每天雕刻出的正品是多少件?可以这么列:(48×12-466)÷(12+98)=1(件)48-1=47(件)4.数学竞赛中抢答题共 10 道题,规定答对一题得 15 分,答错一题倒扣 10 分(不答按答错计算)。

晓敏回答了所有的问题,结果共得 100 分,问:答对和答错各几题?设答对x题,答错(10-x)题.15x-10(10-x)=10015x+10x-100=10025x=200x=8∴答错10-8=2题答:答对8题,答错2题.5.学校组织春游,一共用了 10 辆客车,已知大客车每辆坐 100 人,小客车每辆坐 60 人,大客车比小客车一共多载 520 人,问:大、小客车各几辆?假设大客车为x辆,小客车则为10-x ,又大客车多坐520人那么100*x-520= 60*(10-x)求得x=7所以7辆大客车,3辆小客车6.人民电影院有座位 1200 个,前排票每张 1.5 元,后排票每张 2.5 元。

已知后排票比前排票的总价多1080 元,该电影院有前排座位和后排座位各多少个?假设前排和后排的座位是相同的,那么后排票会比前排票总价多600元(1200除以2等于600, ,2.5减1.5等于1,1X600=600)而现在实际多了1080元,1080—600=480元因此相当于少算了480除以4等于120个后排的座位.(本来是后排就是2.5却被算成前排,对于后排来说就相差2.5加1.5等于4元)所以前排有600-120=480个座位,后排有600+120=720个座位.1200÷2=600(元) 1080—600=480(元)后排:480÷(2.5+1.5)+600=720(个)前排:1200-720=480(个)提高卷1.有 1 元硬币和 5 角硬币若干枚,共值 675 角。

五年级奥数假设法解题答案

五年级奥数假设法解题答案

第二十一讲假设法解题例题1 有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?练习一1,笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?2,一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?3,营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?例题2 有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?练习二1,有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?2,有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

问三种人民币各有多少张?3,有1角、2角、4角、5角的邮票共26张,总计6.9元。

其中1角和2角的张数相等,4角的和5角的张数相等。

求这四种邮票各有多少张?例题3 五(1)班有51个同学,他们要搬51张课桌椅。

规定男生每人搬2张,女生两人搬1张。

这个班有男、女生各多少人?练习三1,甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。

求甲、乙原来各存多少元钱。

2,学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐520人。

大、小客车各几辆?3,班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。

两种票各买了多少张?例题4 用大、小两种汽车运货。

每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货价值2520元。

大、小汽车各有多少辆?练习四1,一辆卡车运矿石,晴天每天运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。

这几天中有几天是雨天?2,有鸡蛋18筐,每只大箩容180个,每只小箩容120个,这批蛋共值302.4元。

专题21 假设法解题(鸡兔同笼问题)(解析)

专题21 假设法解题(鸡兔同笼问题)(解析)

2022-2023学年小学四年级思维拓展举一反三精编讲义专题21 假设法解题(鸡兔同笼问题)知识精讲专题简析:假设法是一种常用的解题方法。

“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。

运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。

典例分析【典例分析01】今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。

问鸡、兔各有多少只?分析与解答:鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。

假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。

减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。

所以兔有24÷2=12只,鸡有35-12=23只。

【典例分析02】面值是2元、5元的人民币共27张,全计99元。

面值是2元、5元的人民币各有多少张?分析与解答:这道题类似于“鸡兔同笼”问题。

假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。

【典例分析03】一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。

每辆大车比小车多装4吨,这批水泥有多少吨?分析与解答:求出大车每辆各装多少吨,是解题关键。

如果用36辆小车来运,则剩4×36=144吨,需45-36=9辆小车来运,这样可以求出每辆小车的装载量是144÷9=16吨,所以,这批水泥共有16×45=720吨。

五年级奥数_假设法解题

五年级奥数_假设法解题

五年级奥数:假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【例题】:有5元和10元的人民币共14,共100元,问5元和10元的人民币各多少?【思路】:先假设有145元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的数是30÷(10-5)=6()。

也可以假设有1410元的……练习一:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的银币各有多少枚?3、营业员把一5元的人民币和一5角的人民币换成了28票面为一元和一角的人民币。

求换来的这两种人民币各多少?【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货物价值2520元。

问大小汽车各多少辆?【思路】:根据“若每箱便宜2元,则这批货物价值2520元。

”可以知道一共便宜了504元,这样可以计算出货物有252箱。

假设18辆都是大汽车,可以装324箱,比实际多装72箱。

用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。

6辆大汽车。

练习二:1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。

平均每天运14次。

这几天中有几天是雨天?2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。

若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。

问大箩、小箩各有多少个?3、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。

如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多少千克大西瓜?【例题】:甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

五年级奥数举一反三答案

五年级奥数举一反三答案

五年级奥数举一反三答案【篇一:五年级奥数举一反三第22讲作图法解题】>专题简析:用作图的方法把应用题的数量关系提示出来,使题意形象具体,一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑难的应用题,能起化难为易的作用。

在解答已知一个数或者几个数的和差、倍差及相互之间的关系,求其中一个数或者几个数问题等应用题时,我们可以抓住题中给出的数量关系,借助线段图进行分析,从而列出算式。

例题1 五(1)班的男生人数和女生人数同样多。

抽去18名男生和26名女生参加合唱队后,剩下的男生人数是女生的3倍。

五(1)班原有男、女生各多少人?分析根据题意作出示意图:练习一1,两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分,第一根是第二根长度的3倍。

这两根电线原来共长多少厘米?2,甲、乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍。

原来两筐水果各有多少个?3,哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元,二人的存款正好相等。

哥哥原来存有多少钱?例题2 同学们做纸花,做了36朵黄花,做的红花比黄花和紫花的总数还多12朵。

红花比紫花多几朵?分析通过线段图来观察:1 - -从图中可以看出:红花比紫花多的朵数由两部分组成,一部分是36朵,另一部分是12朵,所以,红花比紫花多36+12=48朵。

练习二1,奶奶家养了25只鸭子,养的鸡比鸭和鹅的总数还多10只。

奶奶家养的鸡比鹅多几只? 2,批发部运来一批水果,其中梨65筐,苹果比梨和香蕉的总数还多24筐。

运来的香蕉比苹果少多少筐?3,期末测试中,明明的语文得了90分。

数学比语文和作文的总分少70分。

明明的数学比作文高多少分?例题3 甲、乙、丙、丁四个小组的同学共植树45棵,如果甲组多植2棵,乙组少植2棵,丙组植的棵数扩大2倍,丁组植树棵数减少一半,那么四个组植的棵数正好相同。

原来四个小组各植树多少棵?分析图中实线表示四个小组实际植树的棵数:练习三1,甲、乙、丙、丁四个数的和是100,甲数加上4,乙数减去4,丙数乘以4,丁数除以4后,四个数就正好相等。

五年级奥数培优《假设法解题》(鸡兔同笼拓展提高)

五年级奥数培优《假设法解题》(鸡兔同笼拓展提高)

假设法解应用题一、知识梳理“假设”是数学中思考问题的一种方法,有些应用题我们无论是从条件出发用综合法去解答,还是从问题出发用分析法去解答,都很难求出答案,但是如果我们合理的进行“假设”,往往能使问题很快得到解决。

所谓“假设法”就是能过假设,再依照已知条件进行推算,根据数量上出现的矛盾,进行比较,作适当调整,从而找到正确答案的方法,比如“鸡兔同笼”中有些题目就是运用“假设法”解决的。

二、例题精讲例1、一队猎手一队狗,两队并着一起走。

数头一共一百六,数脚一共三百九。

则猎手和狗各有多少?例2、我国明代的《算法统宗》中记载有一个“和尚分馒头”的问题:大和尚与小和尚共100名,分配100个馒头,大和尚每人给3个,小和尚每3人给1个。

问大小和尚各有多少人?例3、张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发则扣12分。

两人各射了10发,共得208分,其中张明比李华多得64分,则张明射中几发?例4、购买5元、8元和10元的公园门票共100张,用去748元,其中5元和8元门票的张数相同,则10元的门票共有多少张?例5、蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,蜘蛛有8条腿但没有翅膀。

希望小学的生物标本室里有这三种昆虫60只,共有400条腿,50对翅膀。

那么蜻蜓、蝉、蜘蛛各有多少只?三、课堂小测6、小芳有14张人民币,面值5元的和10元的共100元,则5元币和10元币各有多少张?8、一次口算比赛规定:答对一题得8分,答错一题扣5分,小华答了18道题得92分,小华在此次比赛中答错了几题?9、某场足球赛赛前售出甲、乙、丙类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙、丙类门票张数相同。

则这一天甲类、乙类、丙类门票分别售出多少张?10、希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由下图可知该标本室里有只蜘蛛。

11、寺庙有一些和尚每天都要去山下取水。

五年级奥数分册第21讲 假设法解题-最新精品

五年级奥数分册第21讲 假设法解题-最新精品

第二十一讲假设法解题专题简析假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例题1 有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?分析假设这14张全是5元的,则总钱数只有5×14=70元,比实际少了100-70=30元。

为什么会少了30元呢?因为这14张人币民币中有的是10元的。

拿一张5元的换一张10元的,就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是10元的,有14-6=8张是5元的。

练习一1,笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?2,一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?3,营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?例题2 有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?分析(1)如果减少2张一元的,那么总张数就是48张,总面值就是114元,这样一元的和二元的张数就同样多了;(2)假设这48张全是5元的,则总值为5×48=240元,比实际多出了240-114=126元,然后进行调整。

用2张5元的换一张1元和一张2元的就会减少7元,126÷7=18次,即换18次。

所以,原来二元的有18张,一元的有18+2=20张,五元的有50-18-20=12张。

练习二1,有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?2,有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

五年级奥数假设法解题

五年级奥数假设法解题

五年级奥数假设法解题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】五年级奥数:假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【例题】:有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张【思路】:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30÷(10-5)=6(张)。

也可以假设有14张10元的……练习一:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只2、一堆2分和5分的硬币共39枚,共值元。

问2分和5分的银币各有多少枚3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。

求换来的这两种人民币各多少张【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货物价值2520元。

问大小汽车各多少辆【思路】:根据“若每箱便宜2元,则这批货物价值2520元。

”可以知道一共便宜了504元,这样可以计算出货物有252箱。

假设18辆都是大汽车,可以装324箱,比实际多装72箱。

用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。

6辆大汽车。

练习二:1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。

平均每天运14次。

这几天中有几天是雨天2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值元。

若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。

问大箩、小箩各有多少个3、运来一批西瓜,准备分两类卖,大的每千克元,小的每千克元,这样卖这批西瓜共值290元。

假设法解题(小数数学奥数五年级)

假设法解题(小数数学奥数五年级)

假设法解题知识与方法:假设法是一种常见的解题方法。

用假设法解题就是先假设一种结果,发现与实际情况的有差别,再找到造成差别的原因,从而修正所作假设得到正确的结果。

如果题目中既要求甲,又要求乙,假设全是甲,先求出的乙;假设全是乙,先求出的就是甲。

有些题目我们在做的过程中会发现少条件,我们也可以采用假设的方法进行思考。

例1:有一个饲养小组养了若干只鸡和兔,已知一共有35个头和94只脚,则这个饲养小组养鸡和兔各多少只?练习1:1.鸡、兔共有头100个,脚320只,鸡兔各有多少只?2. 一辆汽车载客60人,分别到达简阳和成都两个车站下车。

到简阳每张票价18元,到成都每张票价25元,共卖车费1339元,问:到哪个车站下车的人,多多少人?例2:松鼠妈妈采松子。

晴天每天采20个,雨天每天采12个,它一连几天一共采了112个松子。

平均每天采14个,这几天中有多少天雨天?练习2:1. 松鼠妈妈采松子,晴天每天可以采18个,雨天每天只能采12个,它一连几天共采了288个松子。

平均每天采12个,这几天中有几天雨天?2. 50名同学去划船,一共乘坐11只,并且每只船都正好坐满,其中每只大船坐6人,每只小船坐4人,问大船和小船各几只?例3:一批面粉,用小车装载要用50辆。

用大车装载只用40辆,每辆大车比小车多装3吨。

问这批面粉有多少吨?练习3:1. 一批大豆,用大货车装要24辆,用小货车装要36辆。

大货车比小货车每辆多装4吨。

问这批大豆有多少吨?2. 有一堆沙子,用大车需要运50次,用小车需要运80次。

每辆大车比小车多运3吨沙子。

这堆沙子有多少吨?例4:搬运1000只玻璃杯,规定安全运到一只可得搬运费3角,但打碎一只,不仅不给搬运费,还要赔5角。

如果运完后共得运费260元。

那么,搬运中打碎了几只玻璃杯?练习4:1.某玻璃厂为茶博城运1000只玻璃茶杯,双方商定每个运费为1元,如果损坏一个,不但不给运费,而且要赔偿3元,结果运送完时,玻璃场共得运费920元,求损坏了几个玻璃茶杯。

五年级奥数 假设法解题

五年级奥数  假设法解题

假设法解题专题简析假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例题1 有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?分析假设这14张全是5元的,则总钱数只有5×14=70元,比实际少了100-70=30元。

为什么会少了30元呢?因为这14张人币民币中有的是10元的。

拿一张5元的换一张10元的,就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是10元的,有14-6=8张是5元的。

练习一1,笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?2,一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?3,营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?例题2 有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?分析(1)如果减少2张一元的,那么总张数就是48张,总面值就是114元,这样一元的和二元的张数就同样多了;(2)假设这48张全是5元的,则总值为5×48=240元,比实际多出了240-114=126元,然后进行调整。

用2张5元的换一张1元和一张2元的就会减少7元,126÷7=18次,即换18次。

所以,原来二元的有18张,一元的有18+2=20张,五元的有50-18-20=12张。

练习二1,有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?2,有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

问三种人民币各有多少张?3,有1角、2角、4角、5角的邮票共26张,总计6.9元。

最新五年级奥数:假设法解题

最新五年级奥数:假设法解题

五年级奥数:假设法解题专题分析:假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

【例题】:有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张?【思路】:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30÷(10-5)=6(张)。

也可以假设有14张10元的……练习一:1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?2、一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的银币各有多少枚?3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。

求换来的这两种人民币各多少张?【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货物价值2520元。

问大小汽车各多少辆?【思路】:根据“若每箱便宜2元,则这批货物价值2520元。

”可以知道一共便宜了504元,这样可以计算出货物有252箱。

假设18辆都是大汽车,可以装324箱,比实际多装72箱。

用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。

6辆大汽车。

练习二:1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。

平均每天运14次。

这几天中有几天是雨天?2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。

若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。

问大箩、小箩各有多少个?3、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。

五年级奥数―假设法解题

五年级奥数―假设法解题

五年级奥数―假设法解题五年级奥数训练――假设法解题全名:例题1有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?练习一笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?例2:有50块人民币,分别是1元、2元和5元,面值共计116元。

据了解,有两张人民币纸币比两张人民币纸币多。

这三种面额的纸币各有多少元?练习二有400张电影票,价值3元、5元和7元,总价值1920元。

其中,7元和5元的门票数量相等。

三种票价各有多少张票?例题3五(1)班有51个同学,他们要搬51张课桌椅。

规定男生每人搬2张,女生两人搬1张。

这个班有男、女生各多少人?练习三甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。

求甲、乙原来各存多少元钱。

例4使用大型和小型车辆运输货物。

每辆大车18箱,每辆小车12箱。

共有18辆卡车,价值3024元。

如果每盒便宜2元,货物价值2520元。

有多少辆大小车?练习四晴天卡车每天运输矿石20次,雨天卡车每天运输矿石12次。

总共运输矿石112次,平均每天14次。

有多少天是下雨的?例题5甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

两人各投10次,共得152分。

其中甲比乙多得16分,两人各中多少次?练习五甲组工人生产一种零件,每天生产250个。

按规定每个合格记4分,生产一只不合格要倒扣15分。

该组工人4天共得了2752分,问:生产合格的零件共多少只?课堂练习1、营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?2.有26枚邮票,包括1角、2角、4角和5角,共计6.9元。

其中,1角和2角的张数相等,4角和5角的张数相等。

这四种邮票各有几张?3、班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。

两种票各买了多少张?4.一批西瓜将分两类发货和销售:大西瓜每公斤0.4元,小西瓜每公斤0.3元。

五年级奥数-假设法解题

五年级奥数-假设法解题

假设法解题专题简析假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例1.有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?变式训练1.笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?2.一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?3.营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?例2.有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?变式训练1.有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?2.有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

问三种人民币各有多少张?3.有1角、2角、4角、5角的邮票共26张,总计6.9元。

其中1角和2角的张数相等,4角的和5角的张数相等。

求这四种邮票各有多少张?例3.五(1)班有51个同学,他们要搬51张课桌椅。

规定男生每人搬2张,女生两人搬1张。

这个班有男、女生各多少人?变式训练1.甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。

求甲、乙原来各存多少元钱。

2.学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐520人。

大、小客车各几辆?3.班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。

两种票各买了多少张?例4.用大、小两种汽车运货。

每辆大汽车装18箱,每辆小汽车装12箱。

苏教版五年级数学下册 第21讲 假设法解题

苏教版五年级数学下册  第21讲  假设法解题

苏教版五年级上册数学第21讲假设法解题讲义知识要点假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量。

用假设法解题时要找准与假设的内容相对应的数量关系,善于把假定的内容和数据加以调整,从而得到正确的答案。

例1、有5元的和10元的人民币共14张,共100元。

问5元币和10元币各多少张?练习:1、笼中共有鸡和兔100只,鸡和兔的脚共248只。

求笼中鸡和兔各有多少只?2、一些2元和5元的邮票共39枚,共值150元。

问2元和5元的各有多少枚?3、营业员把一张5元人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来这两种人民币各多少张?例2、有一元、二元、五元的汽车票50张,总面值为116元。

已知一元的比二元的多2张,问三种面值的汽车票各有几张?练习:1、有3元、5元和7元的汽车票400张,总面值1920元。

其中7元的和5元的张数相等,三种面值的汽车票各有多少张?2、有一元、五元、十元的人民币共14张总计66元,其中一元的比十元的多2张,问三种人民币各有多少张?3、有1角、2角、4角、5角的邮票共26张,总计6.9元。

其中1角和2角的张数相等,4角和5角的张数相等,求这四种邮票各有多少张?例3、有一堆黑白棋子,其中黑子个数是白子个数的2倍。

如果从这堆棋子中每次同时取出4个黑子和3个白子,那么取了多少次后,白子余1个,而黑子还剩18个?练习:1、有黑白棋子一堆,其中黑子个数是白子个数的3倍。

如果从这堆棋子中每次同时取出黑子6个、白子3个,那么取了多少次后,白子余5个,而黑子还剩36个?2、有黑白棋子一堆,其中黑子个数是白子个数的2倍。

如果从这堆棋子中每次同时取黑子3个、白子4个,那么取了多少次后,黑子余29个,而白子还剩2个?3、操场上有一群同学。

男生人数是女生人数的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。

奥数假设法解题(讲义)-2023-2024学年五年级上册数学人教版

奥数假设法解题(讲义)-2023-2024学年五年级上册数学人教版

假设法是一种思考问题的方法,例1:有5元的和10元的人民币共14张,共100元。

问5元币和10元币各多少张?思路导航:(1)假设这14张全是5元的,则总钱数只有5×14=70(元),比实际少了100-70=30(元)。

为什么会少了30元呢?因为这14张人民币中有的是10元的。

只要把一张10元假设成5元,就会少5元,总共比实际少30元,30元里面有6个5元,就有6张10元假设成5元,所以一共有6张10元的,有14-6=8(张)是5元的。

(100-5×14)÷(10-5)=6(张)10元币14-6=8(张)5元币(2)假设这14张全是10元的,则总钱数只有10×14=140(元),比实际多了100-70=40(元)。

为什么会多了40元呢?因为这14张人民币中有的是5元的。

只要把一张5元假设成10元,就会多出5元,总共比实际多了40元,40元里面有8个5元,就有8张5元假设成10元,所以一共有8张5元的,有14-8=6(张)是10元的。

(10×14-100)÷(10-5)=8(张)5元币14-8=6(张)10元币答:5元币有8张,10元币有6张。

【小试身手】1.一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?2.营业员把一张5元人民币和一张5角的人民币换成了28张面值为1元和一角的人民币,求换来这两种人民币各多少张?3.在储藏室的一角有三脚凳和四脚凳共13只。

已知这些凳子脚的总数是41只,你能说出三脚凳和四脚凳各有多少只吗?【精典例题2】例2:松鼠妈妈采松子,晴天每天可以采20个,雨天每天只能采12个。

它一共采了112个松子,平均每天采14个。

问:这几天当中有几天有雨?思路导航:由“它一共采了112个松子,平均每天采14个”,可以求出松鼠妈妈采松子的天数是112÷14=8(天)用假设法做。

假设这8天全是晴天,晴天每天可以采20个,一共可以采松子20×8=160(个),实际采的松子数比假设的少了160-112=48(个)。

人教版五年级奥数教案:假设法解题

人教版五年级奥数教案:假设法解题

人教版五年级奥数教案:假设法解题
专题知识点详解
假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例题有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?
分析假设这14张全是5元的,则总钱数只有5×14=70元,比实际少了100-70=30元。

为什么会少了30元呢?因为这14张人币民币中有的是10元的。

拿一张5元的换一张10元的,就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是10元的,有14-6=8张是5元的。

第1 页共1 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一讲假设法解题
专题简析
假设法是解应用题时常用的一种思维方法。

在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。

例题1 有5元和10元的人民币共14张,共100元。

问5元币和10元币各多少张?
分析假设这14张全是5元的,则总钱数只有5×14=70元,比实际少了100-70=30元。

为什么会少了30元呢?因为这14张人币民币中有的是10元的。

拿一张5元的换一张10元的,就会多出5元,30元里包含有6个5元,所以,要换6次,即有6张是10元的,有14-6=8张是5元的。

练习一
1,笼中共有鸡、兔100只,鸡和兔的脚共248只。

求笼中鸡、兔各有多少只?
2,一堆2分和5分的硬币共39枚,共值1.5元。

问2分和5分的各有多少枚?
3,营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?
例题2 有一元、二元、五元的人民币50张,总面值116元。

已知一元的比二元的多2张,问三种面值的人民币各有几张?
分析(1)如果减少2张一元的,那么总张数就是48张,总面值就是114元,这样一元的和二元的张数就同样多了;
(2)假设这48张全是5元的,则总值为5×48=240元,比实际多出了240-114=126元,然后进行调整。

用2张5元的换一张1元和一张2元的就会减少7元,126÷7=18次,即换18次。

所以,原来二元的有18张,一元的有18+2=20张,五元的有50-18-20=12张。

练习二
1,有3元、5元和7元的电影票400张,一共价值1920元。

其中7元的和5元的张数相等,三种价格的电影票各有多少张?
2,有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。

问三种人民币各有多少张?
3,有1角、2角、4角、5角的邮票共26张,总计6.9元。

其中1角和2角的张数相等,4角的和5角的张数相等。

求这四种邮票各有多少张?
例题3 五(1)班有51个同学,他们要搬51张课桌椅。

规定男生每人搬2张,女生两人搬1张。

这个班有男、女生各多少人?
分析假设51个全是男生,能搬2×51=102张课桌椅,比实际搬的多出了102-51=51张。

用2个男生换成2个女生就少搬3张,51÷3=17,因此这个班有2×17=34个女同学,有51-34=17个男同学。

练习三
1,甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。

求甲、乙原来各存多少元钱。

2,学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐520人。

大、小客车各几辆?
3,班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。

两种票各买了多少张?
例题4 用大、小两种汽车运货。

每辆大汽车装18箱,每辆小汽车装12箱。

现有18车货,价值3024元。

若每箱便宜2元,则这批货价值2520元。

大、小汽车各有多少辆?
分析根据“若每箱便宜2元,则这批货价值2520元”可以知道,3024-2520=504元,504元中包含有252个2元,即这批货有252箱。

假设18辆都是大汽车,则装货18×18=324(箱),比实际箱数多324-252=72箱。

一辆大汽车换一辆小汽车可少运18-12=6箱,72里面有12个6,所以,有12辆小汽车,有18-12=6辆大汽车。

练习四
1,一辆卡车运矿石,晴天每天运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。

这几天中有几天是雨天?
2,有鸡蛋18筐,每只大箩容180个,每只小箩容120个,这批蛋共值302.4元。

若将每个鸡蛋便宜2分出售,这些蛋可卖252元。

问:大箩、小箩各有几个?
3,运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。

如果每千克西瓜降价0.04元,这批西瓜只能卖250元。

有多少千克大西瓜?
例题5 甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。

两人各投10次,共得152分。

其中甲比乙多得16分,两人各中多少次?
分析我们可以先算出每人各得多少分。

甲得(152+16)÷2=84分,则乙得152-84=68分。

甲投10次,假设10次都投中就该得10×10=100分,而事实只得了84分,少得100-84=16分,因为脱靶一次不仅得不到10分还要倒扣6分。

因此甲共脱靶16÷(10+6)=1次,甲中了10-1=9次。

再用同样的思路可以分析出乙中靶几次。

练习五
1,甲组工人生产一种零件,每天生产250个。

按规定每个合格记4分,生产一只不合格要倒扣15分。

该组工人4天共得了2752分,问:生产合格的零件共多少只?
2,某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵。

已知男生共比女生多种56棵,求男、女生各多少人。

3,王师傅有2元、5元、10元的人民币共118张,共计500元。

其中5元与10元的张数相等,求三种人民币各多少张。

相关文档
最新文档