高三数学总复习 数列教案 理
高中数学数列概念教案
高中数学数列概念教案
教学内容:数列概念
教学目标:能够理解数列概念,掌握常见数列的性质及求解方法。
教学重点和难点:掌握数列的定义及常见数列的性质。
教学准备:教学课件、教学实验材料、小黑板、粉笔、教科书。
教学过程:
一、引入(5分钟)
通过渐进法引入数列的概念,并引导学生思考数列在生活中的实际应用,激发学生学习的
兴趣。
二、讲解(15分钟)
1. 数列的定义:依据顺序排列的一系列数构成的序列称为数列。
2. 数列的表示方法:通项公式及递推公式。
3. 常见数列及性质:等差数列、等比数列、斐波那契数列等。
三、实例讲解(20分钟)
通过实例演算,帮助学生掌握数列的性质及求解方法,巩固所学知识。
四、练习(15分钟)
设计一些与课堂内容相关的练习题,让学生在课堂上进行练习,检验他们的学习情况。
五、总结(5分钟)
对本节课所学内容进行总结,强调重点知识点,帮助学生将学到的知识点牢固记忆。
六、作业布置(5分钟)
布置相关的课外作业,加深学生对数列的理解。
教学反思:
此教案通过引入、讲解、演算、练习、总结和作业布置等方式,全面系统地向学生介绍了
数列的概念及性质,帮助学生掌握了数列的基本知识,同时激发了学生对数学的学习兴趣。
在今后的教学中,应注重巩固学生的基础知识,引导学生灵活运用所学知识解决实际问题,提高学生的数学素养和解题能力。
高三数学数列教案5篇
高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
高中数学《数列复习课》公开课优秀教学设计整理
)
一般特殊
一般特殊
《数列》复习课的点评
在高三的数学复习课上最容易出现的就是“油水分离”式的复习模式,即先对知识点进行梳理,再进行相应的题目训练。
至于这种模式下知识梳理的效果以及相应题目训练是否直指学生学习的困惑或难点,不易得知。
王老师这节复习课的亮点可以用三个字来概括,即“新,准,实”。
一、新
“新”在形式上。
基于教师对学生认知的了解,明确了高三的复习课必须规避“油水分离”式的复习模式,针对怎样才能做到有针对性的复习,王玲老师的这节课给了我们很好的启发。
为了了解学生的情况,王玲老师在本单元复习之前做了章前测,在复习完等差数列后又做了相关的学生调查问卷。
这种新的教学形式正是基于教师对学生的学情分析,有调查问卷提炼出的学生学习难点,有通过课堂前测统计出的解答的正答统计数据和解题过程反馈,教师正是据此确定了本节课的定位并设计了课堂上相关的学生活动。
二、准
“准”在定位上。
正是基于教师对学生的学情分析,有调查问卷提炼出的学生学习难点的聚焦,有通过课堂前测统计出的解答的正答统计数据和解题过程反馈,教师据此确定了本节课的定位并制定了相关的教学目标和重、难点。
使本节课有了很强的指向性。
三、实
“实”在效果上。
王老师这节课真正做到了把课堂还给学生,在学生的自主评价和相互评价中,对知识建构和多角度解读条件的必要性有了感性认识,并且可以比较灵活地应用。
高中教学数列设计数学教案
高中教学数列设计数学教案
教学内容:数列
一、教学目标
1.了解数列的定义和性质。
2.掌握常见数列的求和公式。
3.能够应用数列知识解决问题。
二、教学重点和难点
重点:数列的定义和性质,常见数列的求和公式。
难点:能够灵活运用数列知识解决问题。
三、教学准备
1.教师准备教案和教学PPT。
2.学生准备数学笔记本和作业本。
四、教学过程
1.引入:通过引入一个简单的问题引出数列的概念,让学生思考数列的定义。
2.概念讲解:讲解数列的定义和性质,包括等差数列、等比数列等常见数列的特点。
3.例题讲解:通过几个例题,帮助学生掌握常见数列的求和公式。
4.练习:让学生做一些练习题,巩固所学知识。
5.拓展:提出一些拓展问题,让学生运用所学知识解决问题。
6.总结:总结本节课的重点内容,梳理学生的思路。
五、教学反馈
1.教师让学生口头回答一些问题,检查他们的理解情况。
2.教师布置相关作业,巩固所学知识。
六、教学手段
1.课堂互动:让学生积极参与,通过讨论和解答问题来加深理解。
2.多媒体辅助:通过PPT呈现数列的概念和例题,提高学生的学习效果。
七、教学总结
本节课通过引入、讲解、练习等环节,使学生初步掌握数列的相关知识,为以后的学习打下坚实基础。
数列教案范文
数列教案范文一、教学目标1.知识目标:①了解等差数列和等比数列的概念以及它们的发展规律;②掌握求等差数列和等比数列的公式与方法;③了解数列在生活中的应用。
2.能力目标:①能够熟练地运用等差数列及等比数列求解问题;②能够将所学知识应用到实际生活中。
3.态度目标:①激发学生学习数学的兴趣;②培养学生积极探索、勇于创新的精神。
二、教学重点难点1.重点:等差数列和等比数列的概念、求和公式以及应用;2.难点:应用实例的解决。
三、教学内容及方法1.教学内容(1)等差数列及其求和公式;(2)等差数列在生活中的应用;(3)等比数列及其求和公式;(4)等比数列在生活中的应用。
2.教学方法(1)讲解法:讲解等差数列和等比数列的概念、求和公式及应用,通过例题演示方法,引领学生逐步了解并掌握。
(2)归纳法:在学生学习过程中,引导学生进行概念归纳、规律总结,使学生更深入地理解知识点。
(3)练习法:开展各类型的例题练习,让学生熟练掌握所学知识,提高能力。
(4)探究法:利用生活实际问题,让学生自主探索并解决问题,培养学生创新精神。
四、教学步骤1.导入:与学生讲述数学在生活和科技中的应用,引起学生对数学的兴趣。
2.讲解等差数列和等比数列的概念。
3.介绍等差数列及其求和公式,让学生对等差数列有一个深入的了解。
4.介绍等差数列在生活中的应用,例如:物流运输中的时间问题。
5.介绍等比数列及其求和公式,让学生对等比数列有一个深入的了解。
6.介绍等比数列在生活中的应用,例如:光传输中的问题。
7.练习,让学生能够熟练掌握所学的知识。
8.探究性学习,让学生认识数学应用实际中的作用。
五、教学评价1.能在学生生活中讲述数学的应用,并引起学生对数学的兴趣。
2.能在学生心中形成数学发展规律的认识,掌握等差数列及等比数列的求和方法。
3.能培养学生探究问题的能力,使学生在应用实例上更加熟练。
四、教学总结数列是数学中的重要概念,应用广泛,它既是数学教育的基石,也是日常生活中的基础知识,掌握好数列及其应用,能起到事半功倍的效果。
高三数学数列知识点复习 等差数列一教案
城东蜊市阳光实验学校第三课时等差数列一、复习目的:1、理解等差数列的概念,掌握等差数列的通项公式、前n项和公式并能解决实际问题;2、理解等差中项的概念,掌握等差数列的性质并能灵敏运用。
二、重难点:理解等差数列的概念,掌握等差数列的通项公式、前n项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质,灵敏运用等差数列的性质解题.会求等差数列的公差、求项、求值、求S最值等通常运用等差数列的有关公式及其性质.和、求n三、教学方法:讲练结合,归纳总结,稳固强化。
四、教学过程〔一〕、谈最新考纲要求及高考命题考察情况,促使积极参与。
数列在历年高考都占有很重要的地位,一般情况下都是一至二个客观性题目和一个解答题。
对于本节来讲,客观性题目主要考察数列、等差数列及等比数列的概念、性质、通项公式、前n项和公式等根本知识和根本性质的灵敏应用,对根本的计算技能要求比较高。
〔1〕题型以等差数列及等比数列的公式、性质的灵敏应用为主的1~2道客观题目;〔2〕关于等差数列,等比数列的实际应用问题或者者知识交汇题的解答题也是重点;〔二〕、知识梳理,方法定位〔学生完成以下填空,教师准对问题讲解〕1.等差数列的概念:假设一个数列从第二项起,每一项与它前一项的差等于同一个常数d,这个数列叫做等差数列,常数d称为等差数列的公差.2.通项公式与前n项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n na a n S +=或者者d n n na S n )1(211-+=. 3.等差中项:假设b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的断定方法: ⑴定义法:d a a n n =-+1〔+∈N n ,d 是常数〕⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质: ⑴数列{}n a 是等差数列,那么数列{}p a n +、{}n pa 〔p 是常数〕都是等差数列;⑵在等差数列{}n a 中,等间隔取出假设干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷假设),,,(+∈+=+N q p n m q p nm ,那么q p n m a a a a +=+;⑸假设等差数列{}n a 的前n 项和n S ,那么⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,那么nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n,那么nn S S a S S n 1,-==-奇偶偶奇. 6.等差数列中求n S 最值的方法:〔1〕、不等式组法;〔2〕、性质法;〔3〕、二次函数配方法。
高三理科数学复习教案:数列总复习
高三理科数学复习教案:数列总复习】】欢迎来到高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三理科数学复习教案:数列总复习希望能为您的提供到帮助。
本文题目:高三理科数学复习教案:数列总复习高考导航考试要求重难点击命题展望1.数列的概念和简单表示法?(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);? (2)了解数列是自变量为正整数的一类函数.? 2.等差数列、等比数列?(1)理解等差数列、等比数列的概念;?(2)掌握等差数列、等比数列的通项公式与前n项和公式;?(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;?(4)了解等差数列与一次函数、等比数列与指数函数的关系. 本章重点:1.等差数列、等比数列的定义、通项公式和前n 项和公式及有关性质;2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.?本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用. 仍然会以客观题考查等差数列与等比数列的通项公式和前n项和公式及性质,在解答题中,会保持以前的风格,注重数列与其他分支的综合能力的考查,在高考中,数列常考常新,其主要原因是它作为一个特殊函数,使它可以与函数、不等式、解析几何、三角函数等综合起来,命出开放性、探索性强的问题,更体现了知识交叉命题原则得以贯彻;又因为数列与生产、生活的联系,使数列应用题也倍受欢迎.知识网络6.1 数列的概念与简单表示法典例精析题型一归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式:(1)7,77,777,7 777,(2)23,-415,635,-863,(3)1,3,3,5,5,7,7,9,9,【解析】(1)将数列变形为79(10-1),79(102-1),79(103-1),,79(10n-1),故an=79(10n-1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n,分母是13,35,57,,(2n-1)(2n+1),故数列的通项公式可写成an =(-1)n+1 .(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,.故数列的通项公式为an=n+ .【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f(x):x 1 2 3 4 5f(x) 5 4 3 1 2对于数列{an},a1=4,an=f(an-1),n=2,3,4,,则a2 008的值是()A.1B.2C.3D.4【解析】a1=4,a2=1,a3=5,a4=2,a5=4,,可得an+4=an. 所以a2 008=a4=2,故选B.题型二应用an= 求数列通项【例2】已知数列{an}的前n项和Sn,分别求其通项公式:(1)Sn=3n-2;(2)Sn=18(an+2)2 (an0).【解析】(1)当n=1时,a1=S1=31-2=1,当n2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=23n-1,又a1=1不适合上式,故an=(2)当n=1时,a1=S1=18(a1+2)2,解得a1=2,当n2时,an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,又an0,所以an-an-1=4,可知{an}为等差数列,公差为4,所以an=a1+(n-1)d=2+(n-1)4=4n-2,a1=2也适合上式,故an=4n-2.【点拨】本例的关键是应用an= 求数列的通项,特别要注意验证a1的值是否满足2的一般性通项公式.【变式训练2】已知a1=1,an=n(an+1-an)(nN*),则数列{an}的通项公式是()A.2n-1B.(n+1n)n-1C.n2D.n【解析】由an=n(an+1-an)an+1an=n+1n.所以an=anan-1an-1an-2a2a1=nn-1n-1n-23221=n,故选D. 题型三利用递推关系求数列的通项【例3】已知在数列{an}中a1=1,求满足下列条件的数列的通项公式:(1)an+1=an1+2an;(2)an+1=2an+2n+1.【解析】(1)因为对于一切nN*,an0,因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.所以{1an}是等差数列,1an=1a1+(n-1)2=2n-1,即an=12n-1.(2)根据已知条件得an+12n+1=an2n+1,即an+12n+1-an2n=1. 所以数列{an2n}是等差数列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,),求an.【解析】因为数列{an}是首项为1的正项数列,所以anan+10,所以(n+1)an+1an-nanan+1+1=0,令an+1an=t,所以(n+1)t2+t-n=0,所以[(n+1)t-n](t+1)=0,得t=nn+1或t=-1(舍去),即an+1an=nn+1.所以a2a1a3a2a4a3a5a4anan-1=12233445n-1n,所以an=1n. 总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由Sn求an时,要分n=1和n2两种情况.3.给出Sn与an的递推关系,要求an,常用思路是:一是利用Sn-Sn-1=an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.6.2 等差数列典例精析题型一等差数列的判定与基本运算【例1】已知数列{an}前n项和Sn=n2-9n.(1)求证:{an}为等差数列;(2)记数列{|an|}的前n项和为Tn,求 Tn的表达式.【解析】(1)证明:n=1时,a1=S1=-8,当n2时,an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,当n=1时,也适合该式,所以an=2n-10 (nN*).当n2时,an-an-1=2,所以{an}为等差数列.(2)因为n5时,an0,n6时,an0.所以当n5时,Tn=-Sn=9n-n2,当n6时,Tn=a1+a2++a5+a6++an=-a1-a2--a5+a6+a7++an=Sn-2S5=n2-9n-2(-20)=n2-9n+40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{an}的前n项和为Sn,且S21=42,若记bn= ,则数列{bn}()A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{an}的首项与公差之间的关系从而确定数列{bn}的通项是解决问题的突破口.{an}是等差数列,则S21=21a1+21202d=42.所以a1+10d=2,即a11=2.所以bn= =22-(2a11)=20=1,即数列{bn}是非0常数列,既是等差数列又是等比数列.答案为C.题型二公式的应用【例2】设等差数列{an}的前n项和为Sn,已知a3=12,S120,S130.(1)求公差d的取值范围;(2)指出S1,S2,,S12中哪一个值最大,并说明理由.【解析】(1)依题意,有S12=12a1+12(12-1)d20,S13=13a1+13(13-1)d20,即由a3=12,得a1=12-2d.③将③分别代入①②式,得所以-247(2)方法一:由d0可知a1a3a13,因此,若在112中存在自然数n,使得an0,an+10,则Sn就是S1,S2,,S12中的最大值.由于S12=6(a6+a7)0,S13=13a70,即a6+a70,a70,因此a60,a70,故在S1,S2,,S12中,S6的值最大.方法二:由d0可知a1a3a13,因此,若在112中存在自然数n,使得an0,an+10,则Sn就是S1,S2,,S12中的最大值.故在S1,S2,,S12中,S6的值最大.【变式训练2】在等差数列{an}中,公差d0,a2 008,a2 009是方程x2-3x-5=0的两个根,Sn是数列{an}的前n项的和,那么满足条件Sn0的最大自然数n=.【解析】由题意知又因为公差d0,所以a2 0080,a2 0090. 当n=4 015时,S4 015=a1+a4 01524 015=a2 0084 015当n=4 016时,S4 016=a1+a4 01624 016=a2 008+a2 00924 0160.所以满足条件Sn0的最大自然数n=4 015.题型三性质的应用【例3】某地区2019年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数;(2)该地区9月份(共30天)该病毒新感染者共有多少人? 【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列. 所以9月10日的新感染者人数为40+(10-1)40=400(人).所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列.所以后20天新感染者的人数和为T20=20390+20(20-1)2(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{an}的前n项和为Sn,若S410,S515,则a4的最大值为【解析】因为等差数列{an}的前n项和为Sn,且S410,S515,所以5+3d23+d,即5+3d6+2d,所以d1,所以a43+1=4,故a4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,am=an+(m-n)d.2.在五个量a1、d、n、an、Sn中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d外,还可设a-d,a,a +d;四个数成等差数列时,可设为a-3m,a-m,a+m,a+3m.4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一等比数列的基本运算与判定【例1】数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,).求证:(1)数列{Snn}是等比数列;(2)Sn+1=4an.【解析】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,所以(n+2)Sn=n(Sn+1-Sn).整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,故{Snn}是以2为公比的等比数列.(2)由(1)知Sn+1n+1=4Sn-1n-1 =4ann+1(n2),于是Sn+1=4(n+1)Sn-1n-1=4an(n2).又a2=3S1=3,故S2=a1+a2=4.因此对于任意正整数n1,都有Sn+1=4an.【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a1、q的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n项和公式时,应充分讨论公比q是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用an+1an=q(常数)恒成立,也可用a2n+1 =anan+2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{an}中,a1=317,q=-12.记f(n)=a1a2an,则当f(n)最大时,n的值为()A.7B.8C.9D.10【解析】an=317(-12)n-1,易知a9=31712561,a100,00,故f(9)=a1a2a9的值最大,此时n=9.故选C.题型二性质运用【例2】在等比数列{an}中,a1+a6=33,a3a4=32,anan+1(nN*).(1)求an;(2)若Tn=lg a1+lg a2++lg an,求Tn.【解析】(1)由等比数列的性质可知a1a6=a3a4=32,又a1+a6=33,a1a6,解得a1=32,a6=1,所以a6a1=132,即q5=132,所以q=12,所以an=32(12)n-1=26-n .(2)由等比数列的性质可知,{lg an}是等差数列,因为lg an=lg 26-n=(6-n)lg 2,lg a1=5lg 2,所以Tn=(lg a1+lg an)n2=n(11-n)2lg 2.【点拨】历年高考对性质考查较多,主要是利用等积性,题目小而巧且背景不断更新,要熟练掌握.【变式训练2】在等差数列{an}中,若a15=0,则有等式a1+a2++an=a1+a2++a29-n(n29,nN*)成立,类比上述性质,相应地在等比数列{bn}中,若b19=1,能得到什么等式? 【解析】由题设可知,如果am=0,在等差数列中有a1+a2++an=a1+a2++a2m-1-n(n2m-1,nN*)成立,我们知道,如果m+n=p+q,则am+an=ap+aq,而对于等比数列{bn},则有若m+n=p+q,则aman=apaq,所以可以得出结论:若bm=1,则有b1b2bn=b1b2b2m-1-n(n2m-1,nN*)成立.在本题中则有b1b2bn=b1b2b37-n(n37,nN*).题型三综合运用【例3】设数列{an}的前n 项和为Sn,其中an0,a1为常数,且-a1,Sn,an+1成等差数列.(1)求{an}的通项公式;(2)设bn=1-Sn,问是否存在a1,使数列{bn}为等比数列?若存在,则求出a1的值;若不存在,说明理由.【解析】(1)由题意可得2Sn=an+1-a1.所以当n2时,有两式相减得an+1=3an(n2).又a2=2S1+a1=3a1,an0,所以{an}是以首项为a1,公比为q=3的等比数列.所以an=a13n-1.(2)因为Sn=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.要使{bn}为等比数列,当且仅当1+12a1=0,即a1=-2,此时bn=3n.所以{bn}是首项为3,公比为q=3的等比数列.所以{bn}能为等比数列,此时a1=-2.【变式训练3】已知命题:若{an}为等差数列,且am=a,an=b(m0,nN*)为等比数列,且bm=a,bn=b(m【解析】n-mbnam.总结提高1.方程思想,即等比数列{an}中五个量a1,n,q,an,Sn,一般可知三求二,通过求和与通项两公式列方程组求解.2.对于已知数列{an}递推公式an与Sn的混合关系式,利用公式an=Sn-Sn-1(n2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a10,q1或a10,00,01时,{an}为递减数列;q0时,{an}为摆动数列;q=1时,{an}为常数列.6.4 数列求和典例精析题型一错位相减法求和【例1】求和:Sn=1a+2a2+3a3++nan.【解析】(1)a=1时,Sn=1+2+3++n=n(n+1)2.(2)a1时,因为a0,Sn=1a+2a2+3a3++nan,①1aSn=1a2+2a3++n-1an+nan+1.②由①-②得(1-1a)Sn=1a+1a2++1an-nan+1=1a(1-1an)1-1a-nan+1,所以Sn=a(an-1)-n(a-1)an(a-1)2.综上所述,Sn=【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{anbn}的前n项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将Sn与qSn相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n-32n-3}的前n项和为()A.4-2n-12n-1B.4+2n-72n-2C.8-2n+12n-3D.6-3n+22n-1 【解析】取n=1,2n-32n-3=-4.故选C.题型二分组并项求和法【例2】求和Sn=1+(1+12)+(1+12+14)++(1+12+14++12n-1). 【解析】和式中第k项为ak=1+12+14++12k-1=1-(12)k1-12=2(1-12k).所以Sn=2[(1-12)+(1-122)++(1-12n)]= -(12+122++12n)]=2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,,1+2+22++2n-1,的前n项和为()A.2n-1B.n2n-nC.2n+1-nD.2n+1-n-2【解析】an=1+2+22++2n-1=2n-1,Sn=(21-1)+(22-1)++(2n-1)=2n+1-n-2.故选D.题型三裂项相消法求和【例3】数列{an}满足a1=8,a4=2,且an+2-2an+1+an=0 (nN*).(1)求数列{an}的通项公式;(2)设bn=1n(14-an)(nN*),Tn=b1+b2++bn(nN*),若对任意非零自然数n,Tnm32恒成立,求m的最大整数值.【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,从而可知数列{an}为等差数列,设其公差为d,则d=a4-a14-1=-2,所以an=8+(n-1)(-2)=10-2n.(2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),所以Tn=b1+b2++bn=14[(11-13)+(12-14)++(1n-1n+2)]=14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)m32 ,上式对一切nN*恒成立.所以m12-8n+1-8n+2对一切nN*恒成立.对nN*,(12-8n+1-8n+2)min=12-81+1-81+2=163,所以m163,故m的最大整数值为5.【点拨】(1)若数列{an}的通项能转化为f(n+1)-f(n)的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{an},{bn}的前n项和为An,Bn,记cn=anBn+bnAn-anbn(nN*),则数列{cn}的前10项和为() A.A10+B10 B.A10+B102 C.A10B10 D.A10B10【解析】n=1,c1=A1B1;n2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10项和为A10B10,故选C.总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一函数与数列的综合问题【例1】已知f(x)=logax(a0且a1),设f(a1),f(a2),,f(an)(nN*)是首项为4,公差为2的等差数列.(1)设a是常数,求证:{an}成等比数列;(2)若bn=anf(an),{bn}的前n项和是Sn,当a=2时,求Sn. 【解析】(1)f(an)=4+(n-1)2=2n+2,即logaan=2n+2,所以an=a2n+2,所以anan-1=a2n+2a2n=a2(n2)为定值,所以{an}为等比数列.(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,当a=2时,bn=(2n+2) (2)2n+2=(n+1) 2n+2,Sn=223+324+425++(n+1 ) 2n+2,2Sn=224+325++n2n+2+(n+1)2n+3,两式相减得-Sn=223+24+25++2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,所以Sn=n2n+3.【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f(x)=xm+ax的导函数f(x)=2x+1,则数列{1f(n)}(nN*)的前n项和是()A.nn+1B.n+2n+1C.nn+1D.n+1n【解析】由f(x)=mxm-1+a=2x+1得m=2,a=1.所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.所以Sn=1-12+12-13+13-14++1n-1n+1=1-1n+1=nn+1.故选C. 题型二数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2019年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化. (1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得an 确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,即an+1=80%an+16%=45an+425.(2)由an+1=45an+425有,an+1-45=45(an-45),又a1-45=-120,所以an+1-45=-12(45)n,即an+1=45-12(45)n,若an+135,则有45-12(45)n35,即(45)n-112,(n-1)lg 45-lg 2,(n-1)(2lg 2-lg 5)-lg 2,即(n-1)(3lg 2-1)-lg 2,所以n1+lg 21-3lg 24,nN*,所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以前进3步,然后再后退2步的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是() A.P(2 006)=402 B.P(2 007)= 403C.P(2 008)=404D.P(2 009)=405【解析】考查数列的应用.构造数列{Pn},由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+ 3=404,P(2 009)=404-1=403.故D错.题型三数列中的探索性问题【例3】{an},{bn}为两个数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.(1)对nN*,若点M,An,Bn在同一直线上,求数列{an}的通项公式;(2)若数列{bn}满足log2Cn=a1b1+a2b2++anbna1+a2++an,其中{Cn}是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),,(n,bn)在同一直线上,并求此直线方程. 【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.(2)由已知有Cn=22n-3,由log2Cn的表达式可知:2(b1+2b2++nbn)=n(n+1)(2n-3),①所以2[b1+2b2++(n-1)bn-1]=(n-1)n(2n-5).②①-②得bn=3n-4,所以{bn}为等差数列.故点列(1,b1),(2,b2),,(n,bn)共线,直线方程为y=3x-4. 【变式训练3】已知等差数列{an}的首项a1及公差d都是整数,前n项和为Sn(nN*).若a11,a43,S39,则通项公式an=. 【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a11,a43,S39得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.。
高三数学《数列》复习教案
1、芯衣州星海市涌泉学校等差、等比数列的概念一、 考纲要求1、理解数列的概念和几种简单的表示方法〔列表、图象、通项公式〕,理解数列是一种特殊函数。
理解通项公式的意义,理解通项公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
2、理解等差数列的概念,掌握等差数列的通项公式。
3、理解等比数列的概念,掌握等比数列的通项公式。
二、知识梳理1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N*或者者其子集{1,2,3,……n}的函数f(n).数列的一般形式为a1,a2,…,an…,简记为{an},其中an 是数列{an}的第项. 2.数列的通项公式一个数列{an}的与之间的函数关系,假设可用一个公式an =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3、数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥二、等差数列与等比数列三、 课前小题训练1、在等差数列{an}中,〔1〕假设12,3a d ==,那么10a =______,〔2〕假设 71,8,3d a =-=那么1_____a =。
2、 数列{an}为等比数列,2418,8,a a ==那么5____a =。
3、 等差数列{an}中,1251,4,33,_____3n a a a a n =+===则。
4、 在等差数列{an}中,假设345672850,_____a a a a a a a ++++=+=则。
5、 在等比数列{an}中,假设12345630,120,______a a a a a a +=+=+=则。
6、 {an}是等比数列且15,a a =23540_____x x a -+==是方程的两个根,则。
四、例题分析题型一、等差、等比数列的断定1、数列{an}满足以下条件,问数列{an}能否构成等差数列。
〔1〕na knb =+〔k,b 为常数〕〔2〕n s 为数列{an}的前n 项和,2ns an bn =+〔a,b 是常数〕。
高三数学《数列的极限》基础知识与解题技巧教案
高三数学《数列的极限》基础知识与解题技巧教案引言:数列的极限是高中数学中重要的概念之一,是初步接触数学分析的起点。
本教案将从数列的定义开始,介绍数列的极限的基础知识和解题技巧,帮助学生全面理解和掌握这一概念。
一、数列的定义及基本概念1. 数列的定义:数列是按照一定顺序排列的一组实数。
2. 数列的通项公式:数列中的每一项可以用一个公式来表示,这个公式就是数列的通项公式。
3. 数列的前n项和:数列的前n项和指的是数列的前n个数相加的结果,通常用Sn表示。
二、数列的极限的定义与性质1. 数列的极限定义:当数列中的每一项趋近于一个常数L时,称L 为数列的极限,记作lim(a_n) = L。
2. 数列极限的性质:a) 唯一性:数列的极限如果存在,那么极限是唯一的。
b) 保号性:如果数列中的每一项都大于等于(或小于等于)一个常数A,并且极限L存在,那么L也大于等于(或小于等于)A。
c) 夹逼性:如果数列中的每一项都大于等于(或小于等于)一个数列b_n,并且极限L存在,那么b_n也大于等于(或小于等于)L。
三、数列极限的计算方法1. 利用通项公式计算极限:当数列的通项公式为简单的初等函数表达式时,可以使用代入法或化简法计算极限。
2. 利用数列的性质计算极限:a) 有界性:如果数列有界,并且存在所谓的上(下)确界,那么极限即为上(下)确界。
b) 递推关系:当数列的递推关系表示式演化到极限形式时,可以通过解递推方程求解极限。
四、常见数列的极限及其性质1. 等差数列的极限:当等差数列的公差为零时,数列为常数数列,极限即为常数本身;当公差不为零时,极限不存在。
2. 等比数列的极限:当等比数列的公比绝对值小于1时,数列趋于0;当公比绝对值大于1时,极限不存在。
3. 斐波那契数列的极限:斐波那契数列的极限是黄金比例φ = (1 + √5) / 2。
五、数列极限的解题步骤1. 理解题目要求,确定数列的通项公式。
2. 判断数列的性质和是否有已知极限,选择合适的计算方法。
高三数学第二轮复习教案《数列》
数列(第二轮复习)1.等差(比)数列的定义如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列.2.通项公式等差 a n =a 1+(n-1)d ,等比a n =a 1q n -13.等差(比)中项如果在a 、b 中间插入一个数A ,使a 、A 、b 成等差(比)数列,则A 叫a 、b 的等差(比)中项.A =(a+b)/2或A =±ab4.重要性质:m+n=p+q ⇔ a m ·a n =a p ·a q (等比数列)a m +a n =a p +a q (等差数列) (m 、n 、p 、q ∈N*) 特别地 m+n=2p ⇔ a m +a n =2a p (等差数列) a m ·a n =a p 2 (等比数列)5.等差数列前n 项和等比数列前n 项和6.如果某个数列前n 项和为Sn ,则7.差数列前n 项和的最值(1)若a1>0,d <0,则S n 有最大值,n 可由 ⎩⎨⎧≥≥+0a 0a 1n n (2)若a1<0,d >0,则S n 有最小值,n 可由 ⎩⎨⎧≤≤+0a 0a 1n n 8.求数列的前n 项和S n ,重点应掌握以下几种方法:(1).倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.(2).错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.(3).分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.(4).裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,()()⎩⎨⎧≥-==-2111n S S n S a n n n ()()d n n na n a a S n n 21211-+=+=()()()⎪⎩⎪⎨⎧≠--==111111q qq a q na S n n在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.9. 三个模型:(1)复利公式按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(2).单利公式利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) (3).产值模型原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x10.例、习题:1.若关于x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四个根组成首项为1/4的等差数列,则a+b的值为( )A. 3/8B. 11/24C. 13/24D. 31/722.在等差数列{a n}中,a2+a4=p,a3+a5=q.则其前6项的和S6为( )(A) 5 (p+q)/4 (B) 3(p+q)/2 (C) p+q (D) 2(p+q)3.下列命题中正确的是( )A.数列{a n}的前n项和是S n=n2+2n-1,则{a n}为等差数列B.数列{a n}的前n项和是S n=3n-c,则c=1是{a n}为等比数列的充要条件C.数列既是等差数列,又是等比数列D.等比数列{a n}是递增数列,则公比q大于14.等差数列{a n}中,a1>0,且3a8=5a13,则S n中最大的是( )(A)S10(B)S11(C)S20(D)S215.等差数列{a n}中,S n为数列前n项和,且S n/S m=n2/m2 (n≠m),则a n / a m值为( )(A)m/n (B)(2m-1)/n (C)2n/(2n-1) (D)(2n-1)/(2m-1)6.已知{a n}的前n项和S n=n2-4n+1,则|a1|+|a2|+…|a10|=( )(A)67 (B)65 (C)61 (D)567.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为()(A)12 (B)10 (C)8 (D)68.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(111…11)2 (16个1)位转换成十进制形式是( )(A) 217-2 (B) 216-2 (C) 216-1 (D)215-19.{a n}为等比数列,{b n}为等差数列,且b1=0,C n=a n+b n,若数列{C n}是1,1,5,…则{C n}的前10项和为___________.10.如果b是a,c的等差中项,y是x与z的等比中项,且x,y,z都是正数,则(b-c)log m x+(c-a)log m y+(a-b)log m z=_______.11.数列{a n}的前n项和S n=n2+1,则a n=_________________.12.四个正数成等差数列,若顺次加上2,4,8,15后成等比数列,求原数列的四个数.13.已知等比数列{a n }的公比为q ,前n 项的和为S n ,且S 3,S 9,S 6成等差数列.(1)求q 3的值;(2)求证a 2,a 8,a 5成等差数列.14.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,求公差d.15.数列{a n }是由正数组成的等比数列,S n 为前n 项的和,是否存在正常数c ,使得 对任意的n ∈N +成立?并证明你的结论.16.一个首项为正数的等差数列中,前3项和等于前11项和,问此数列前多少项的和最大?17.已知等比数列{a n }的首项a1>0,公比q >0.设数列{b n }的通项b n =a n+1+a n+2(n ∈N*),数列{a n }与{b n }的前n 项和分别记为A n 与B n ,试比较A n 与B n 的大小.()()()c S c S c S n n n -=-+-++12lg 2lg lg18.设等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,试求S 110.19.已知数列{a n }和{b n }满足(n ∈N +),试证明:{a n }成等差数列的充分条件是{b n }成等差数列.20.已知数列{a n }中的a 1=1/2,前n 项和为S n .若S n =n 2a n ,求S n 与a n 的表达式.21.在数列{a n }中,a n >0, 2Sn = a n +1(n ∈N) ①求S n 和a n 的表达式;②求证: n a n a a b n n +++⋅++⋅+⋅= 21212121111321<+++nS S S S。
高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1
第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。
高三数学总复习 数列教案 理
44 数列教材分析这节课主要研究数列的有关概念,并运用概念去解决有关问题,其中,对数列概念的理解及应用,既是教学的重点,也是教学的难点.教学目标1. 理解数列及数列的通项公式等有关概念,会根据一个数列的有限项写出这个数列的一个通项公式.2. 了解递推数列,并会由递推公式写出此数列的若干项.3. 进一步培养学生观察、归纳和猜想的能力.任务分析这节内容以往很少涉及,对学生来说,既新又抽象,所以,须要依靠实例进行教学.数列与函数的关系应在函数定义的基础上加以理解.由若干项写出数列的一个通项公式是难点,但这又是锻炼学生的归纳、猜想能力的极好机会,应大胆让学生亲自归纳和猜想.教学设计一、问题情景传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们研究过1,3,6,10,…由于这些数都能够表示成三角形(如图44-1),他们就将其称为三角形数.类似地,1,4,9,16,…能够表示成正方形(如图44-2),他们就将其称为正方形数.二、建立模型1. 引导学生观察、分析数列的顺序要求,设法用自己的语言描述出数列的定义及有穷数列、无穷数列、递增数列、摆动数列等有关概念像1,4,9,16,…等按照一定规律排列的一列数,就叫作数列.[练习]下面的数列,哪些是递增数列、递减数列、常数列和摆动数列?(1)全体自然数构成数列0,1,2,3,…(2)1996~2002年某市普通高中生人数(单位:万人)构成数列82,93,105,119,129,130,132.(3)无穷多个3构成数列3,3,3,3,…(4)目前通用的人民币面额按从大到小的顺序构成数列(单位:元)100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01.(5)-1的1次幂,2次幂,3次幂,4次幂,……构成数列-1,1,-1,1,…(6)的精确到1,0.1,0.01,0.001,…的不足近似值与过剩近似值分别构成数列1,1.4,1.41,1.414,…2,1.5,1.42,1.415,…2. 引导学生根据实例、项和第n项等概念发现数列与函数的关系如:数列1,2,0,-1,3,8,…,第1项是1,第4项是-1,……由此可以发现,对于一个给定的数列,当确定了项的位置后,这个数列的项也随之唯一确定.一般地,数列可以看作定义域为N(或其子集)的函数当自变量依次为1,2,3,…时的一系列函数值.[问题]数列既然可以看作一列函数值,那么“这个函数”可以如何表示?一定有解析式吗?你能举出一些有解析式的例子吗?根据学生的讨论,探究,得出:数列可以用列表、图像和函数解析式来表示,从而,解析式即为数列的通项公式.三、解释应用[例题]1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数.(1)1,-,,-.(2)2,0,2,0.解:(1).(2)可以写成也可以写成a n=1+(-1)n-1,(其中n=1,2,…).注:对于(2),可以引导学生得到不同的结论,从而发现,根据数列的前若干项写出的通项公式不一定唯一.2. 下图中的三角形称为希尔宾斯基三角形.在下图4个三角形中,黑色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图像.解:如图44-3,这4个三角形中的黑色三角形的个数依次为1,3,9,27,则所求数列的前4项都是3的指数幂,并且指数为序号减1.所以,这个数列的一个通项公式是a n=3n-1.在直角坐标系中的图像见下图:3. 设数列满足试写出这个数列的前5项.解:∵a1=1,注:像这样给出数列的方法叫逆推法.[练习]1. 数列的前5项分别是以下各数,试分别写出各数列的一个通项公式.2. 已知数列{a n}满足a1=1,a n=-1(n>1),试写出它的前5项.3. 已知数列的通项公式为a n=n2-10n+10,那么这个数列从第n项起各项的数值是否逐渐增大?从第n项起各项的数值是否均为正数?四、拓展延伸教师引导学生分析思考下面的两个问题(可以在课堂上或课后完成):1. 已知数列{a n}满足,问:此数列有无最大项和最小项?2. 通常用S n表示数列{a n}的前n项的和,即S n=a1+a2+a3+…+a n.已知{a n}的前n 项和S n=n2-3n+2,试求{a n}的通项公式.一般地,如何用S n表示a n呢?点评这篇案例通过实例阐述了数列的有关概念,注意揭示了知识发生、发展的过程,比较好地调动了学生参与探索的积极性和主动性.问题情景设计新颖,合理;问题提出得准确,恰当;总体设计完整,清晰.另外,该案例还关注了学生科学地提出和解决问题的能力的培养.美中不足的是,自“问题情景”到“建立模型”两个环节的“交接处”显得有些跳跃,步骤有些过简.。
数列教案(全)
数列教案本章教学约需17课时,具体分配如下:3.1 数列约2课时3.2 等差数列约2课时3.3 等差数列前n项和约2课时3.4 等比数列约2课时3.5 等比数列前n项和约2课时研究性课题:分期付款中的有关计算约3课时小结与复习约4课时一、内容与要求本章从内容上看,可以分为数列、等差数列、等比数列三个部分在数列这一部分,主要介绍数列的概念、分类,以及给出数列的两种方法关于数列的概念,先给出了一个描述性定义,尔后又在此基础上,给出了一个在映射、函数观点下的定义,指出:“从映射、函数的观点看,数列可以看作是一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值”这样就可以将数列与函数联系起来,不仅可以加深对数列概念的理解,而且有助于运用函数的观点去研究数列关于给出数列的两种方法,其中数列的通项公式,教材已明确指出它就是相应函数的解析式了这一点,数列与函数的内在联系揭示得就更加清楚此外,正如并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数),因而研究递推公式给出数列的方法可使我们研究数列的范围大大扩展推是数学里的一个非常重要的概念和方法,数学归纳法证明问题的基本思想实际上也是“递推”在数列的研究中,不仅很多重要的数列是用递推公式给出的,而且它也是获得一个数列的通项公式的途径:先得出较为容易写出的数列的递推公式,然后再根据它推得通项公式但是,这项内容也是极易膨胀的,例如研究用递推公式给出的数列的性质,从数列的递推公式推导通项公式等,这样就会加重学生负担考虑到学生是在高一学习,我们必须牢牢把握教学要求,只要能初步体会一下用递推方法给出数列的思想,能根据递推公式写出一个数列的前几项就行了在等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么表示等差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看两点可以决定一条直线)在推导等差数列前n 项和的公式时,突出了数列的一个重要的对称性质:与任一项前后等距离的两项的平均数都与该项相等,认识这一点对解决问题会带来一些方便 在等比数列这一部分,在讲等比数列的概念和通项公式时也突出了它与指数函数的联系这不仅可加深对等比数列的认识,而且可以对处理某类问题的指数函数方法和等比数列方法进行比较,从而有利于对这些方法的掌握二、本章的特点(一)在启发学生思维上下功夫本章内容,是培养学生观察问题、启发学生思考问题的好素材,使学生在获得知识的基础上,观察和思维能力得到提高在问题的提出和概念的引入方面,为了引起学生的兴趣,在本章的“前言”里用了一个有关国际象棋棋盘的古代传说作为引入的例子它用一个涉及求等比数列的前n 项和的麦粒数的计算问题给学生造成了一个不学本章知识、难获问题答案的悬念,又在学了等比数列后回过头来解开这个悬念;在讲等差数列与等比数列的概念时,都是先写出几个数列,让学生先观察它们的共同特点,然后在归纳共同特点的基础上给出相应的定义在推导结论时,注意发挥它们在启发学生思维方面的作用例如在讲等差数列前n 项和的公式时,没有平铺直叙地推导公式,而是先提出问题: 1+2+3+...+100 = ?,并指出著名数学家高斯10岁时便很快算出它的结果,以激发学生的求解热情,然后让学生在观察高斯算法的基础上,发现上述数列的一个对称性质:任意第k 项与倒数第k 项的和均等于首末两项的和,从而为顺利地推导求和公式铺平了道路在例题、习题的表述方面,适当配备了一些采用疑问形式的题,以增加问题的启发成分如3.3 例4:“已知数列的通项公式为n a =pn 十q ,其中p 、q 是常数,那么这种数列是否一定是等差数列? 如果是,其首项与公差是什么?” 又如:“如果一个数列既是等差数列,又是等比数列,那么这个数列有什么特点?”这样就增加了题目的研究性在讲有些例题时,加了一小段“分析”,通过不多的几句话点明解题的思路如对于上面提到的“3.3 例 4”,加的一段“分析”是:“由等差数列定义,要判定 {n a }是不是等差数列,只要看 n n a a -+1是不是一个与n 无关的常数就行了”话虽不多,但突出了 “从定义出发”这种最基本的证明方法(二)加强了知识的应用除了上面提到的“研究性课题”多具有应用性的特点以外还在教材中适当增加了一些应用问题如在“阅读材料”里介绍了有关储蓄的一些计算;在所增加的应用问题里还涉及房屋拆建规划、绕在圆盘上的线的长度等(三)呼应前面的逻辑知识,加强了推理论证的训练考虑到《新大纲》更加重视对学生逻辑思维能力的培养,且在前面第一章已介绍了“简易逻辑”,为进行推理论证作了准备,紧接着又在第二章“函数”里进行了一定的推理论证训练,因此本草在推理论证方面有所加强(四)注意渗透一些重要的数学思想方法由于本章处在知识交汇点的地位,所蕴含的数学思想方法较为丰富,教材在这方面也力求充分挖掘教材注意从函数的观点去看数列,在这种整体的、动态的观点之下使数列的一些性质显现得更加清楚,某些问题也能得到更好的解决,例如“复习参考题B组第2题”便是一个典型例子思想也是体现得较为充分的,不少的例、习题均属这种模式:已知数列满足某某条件,求这个数列这类问题一般都要通过列出方程或方程组.然后求解递推的思想方法,不仅在数列的递推公式里有所体现观察、归纳、猜想、证明等思想方法的组合运用在本章里得到了充分展示.为学生了解它们各自的作用、相互间的关系并进行初步运用提供了条件三、教学中应注意的几个问题(一)把握好本章的教学要求由于本章联系的知识面广,具有知识交汇点的特点,在应试教育的“一步到位”的教育思想的影响下,本章的教学要求很容易拔高,过早地进行针对“高考”的综合性训练,从而影响了基本内容的学习和加重了学生负担事实上,学习是一个不断深化的过程作为在高一(上)学习的这一章,应致力于打好基础并进行初步的综合训练,在后续的学习中通过对本章内容的不断应用来获得巩固和提高最后在高三数学总复习时,通过知识的系统梳理和进一步的综合训练使对本章内容的掌握上升到一个新的档次为此,本章教学中应特别注意一些容易膨胀的地方例如在学习数列的递推公式时,不要去搞涉及递推公式变形的论证、计算问题,只要会根据递推公式求出数列的前几项就行了;在研究数列求和问题时,不要涉及过多的技巧.(二)有意识地复习和深化初中所学内容对于初中学过的多数知识.在高中没有系统深入学习的机会而初中内容是学习高中数学的必要基础,因而在学习高中内容时有意识地复习、深化初中内容显得特别重要本章是高中数学的第三章,距离初中数学较近,与初中数学的联系最广,因而教学中应在沟通初、高中数学方面尽可能多地作一些努力(三)适当加强本章内容与函数的联系适当加强这种联系,不仅有利于知识的融汇贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步比如,学生在此之前接触的函数一般是自变量连续变化的函数,而到本章接触到数列这种自变量离散变化的函数之后,就能进一步理解函数的一般定义,防止了前面内容安排可能产生的学生认识上的负迁移;本章内容与函数的联系涉及以下几个方面1.数列概念与函数概念的联系相应于数列的函数是一种定义域为正整数集(或它的前n 个数组成的有限子集)的函数,它是一种自变量“等距离”地离散取值的函数上看,它丰富了学生所接触的函数概念的范围但数列与函数并不能划等号,数列是相应函数的一系列函数值基于以上联系,数列也可用图象表示,从而可利用图象的直观性来研究数列的性质数列的通项公式实际上是相应因数的解析表达式而数列的递推公式也是表示相应函数的一种方式,因为只要给定一个自变量的值n ,就可以通过递推公式确定相应的f(n)这也反过来说明作为一个函数并不一定存在直接表示因变量与自变量关系的解析式2.等差数列与一次函数、二次函数的联系从等差数列的通项公式可以知道,公差不为零的等差数列的每一项a n 是关于项数n 的一次函数式于是可以利用一次函数的性质来认识等差数列例如,根据一次函数的图象是一条直线和直线由两个点唯一确定的性质,就容易理解为什么两项可以确定一个等差数列 此外,首项为1a 、公差为d 的等差数列前n 项和的公式可以写为: d n n na S n 2)1(1-+= 即当0≠d 时,n S 是n 的二次函数式,于是可以运用二次函数的观点和方法来认识求等差数列前n 项和的问题如可以根据二次函数的图象了解n S 的增减变化、极值等情况3.等比数列与指数型函数的联系由于首项为1a 、公比为q 的等比数列的通项公式可以写成 qq a S n n --=1)1(1 )1(≠q 它与指数函数y=x a 有着密切联系,从而可利用指数函数的性质来研究等比数列(四)注意等差数列与等比数列的对比,突出两类数列的基本特征 等差数列与等比数列在内容上是完全平行的,包括:定义、性质(等差还是等比)、通项公式、前n 项和的公式、两个数的等差(等比)中项具体问题里成等差(等比)数列的三个数的设法等因此在教学与复习时可采用对比方法,以便于弄清它们之间的联系与区别顺便指出,一个数列既是等差数列又是等比数列的充要条件是它是非零的常数列教学中应强调,等差数列的基本性质是“等差”,等比数列的基本性质是“等比”,这是我们研究有关两类数列的主要出发点,是判断、证明一个数列是否为等差 (等比)数列和解决其他问题的一种基本方法要让学生注意,这里的“等差”(“等比”),是对任意相邻两项来说的上述基本性质,引申出两类数列的一种对称性:即与数列中的任一项“等距离”的两项之和(之积)等于该项的2倍(平方).利用上述性质,常使一些问题变得简便对于学有余力的学生,还可指出等差数列与等比数列描述了两种最简单、最重要的变化:等差数列描述的是一种绝对均匀变化,等比数列描述的是一种相对均匀变化非均匀变化通常要转化或近似成均匀变化来进行研究,这就成为教材之所以重点研究等差数列与等比数列的主要原因所在(五)注意培养学生初步综合运用观察、归纳、猜想、证明等方法的能力综合运用观察、归纳、猜想、证明等方法研究数学,是一种非常重要的学习能力事实上,在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳方法进行试探,提出猜想;最后采用证明方法(或举反例)来检验所提出的猜想应该指出,能够充分进行上述研究方法训练的素材在高中数学里并非很多,而在本章里却多次提供了这种训练机会,因而在教学中应该充分利用,不要轻易放过 (六)在符号使用上与国家标准一致为便于与国际交流,关于量和单位的新国家标准中规定自然数集N ={0, l ,2.3,……},即自然数从O 开始这与长期以来的习惯用法不同,会使我们感到别扭但为了不与上述规定抵触,教学中还是要将过去的习惯用法改变过来,称数集{1,2,3,…}为正整数集.高一数学第三章数列复习小结基本训练题一、选择题1.已知数列{n a }既是等差数列又是等比数列,则这个数列的前n 项和为A.0B .nC.n a 1 D.a 1n 2.已知数列{n a }的前n 项和n S =3n a -2,那么下面结论正确的是B .此数列为等比数列D.此数列从第二项起是等差数列3.已知等比数列{n a }中,n a =2×31-n ,则由此数列的偶数项所组成的新数列的前n 项和n S 的值为A.3n -1 B .3(3n -1)C.419-n 4n 4.实数等比数列{n a },n S =n a a a +++ 21,则数列{n S }中B .必有一项为零D.可以有无数项为零5.如果数列{n a }的前n 项和323-=n n a S ,那么这个数列的通项公式是 n a =2(n 2+n +1) B .n a =3·2nn a =3n +1 D.n a =2·3n6.已知等差数列的第k,n,p 项构成等比数列的连续3项,如果这个等差数列不是常数列,则等比数列的公比为A.n k pn -- B .k p n p -- C.p n k n -- D.pk n k -- 7.数列{n a },{n b }满足n a n b =1, n a =n 2+3n +2,则{n b }的前10项之和为A.31 B .125 C.21 D.127 二、填空题8.2,x,y,z,18成等比数列,则x = . 9.已知数列{n a }的前n 项和n S =n 3,则876a a a ++= .10.三个数成等比数列,它们的积为512,如果中间一个数加上2,则成等差数列,这三个数是 .11.一个数列的前n 项和为n S =1—2+3-4+…+(—1)1+n n ,则S 17+S33+S50=12.一个数列{n a },当n 为奇数时,n a =5n +1,当n 为偶数时,22nn a =,则这个数列前2m 项的和为 .13.已知正项等比数列{n a }共有2m 项,且2a ·4a =9(3a +4a ),1a +2a +3a +…+m a 2=4(2a +4a +6a +…+m a 2),则1a = ,公比q = .14.k 为正偶数,p (k )表示等式)214121(21114131211kk k k k +++++=--++-+- 则p (2)表示等式 ,p (4)表示等式 .15、若数列{}n a 的前n 项和n S =322+-n n ,则其通项公式=n a ____.三、解答题16.三个互不相等的数成等差数列,如果适当排列此三数,也可成等比数列,已知这三个数的和等于6,求这三个数.17.某城市1996年底人口为20万,大约住房面积为8m2,计划到2000年底人均住房面积达到10m2,如果该市人口平均增长率控制在1%,那么要实现上述计划,每年该市要平均新建住房面积多少万平方米?(结果以万平方米为单位,保留两位小数)18.7个实数排成一排,奇数项成等差数列,偶数项成等比数列,且奇数项的和与偶数项的积之差为42,首末两项与中间项之和为27,求中间项.19.已知等差数列{n a }的第2项为8,前10项的和为185,从数列{n a }中依次取出第2项,第4项,第8项,…,第2n项按原来顺序排成一个新数列{n b },求数列{n b }的通项公式及前n 项和公式n S .20.已知n n x a x a x a x a x f ++++= 33221)(,且1a ,2a ,3a ,…,na 组成等差数列(n 为正偶数),又f (1)=n 2,f(-1)=n,求数列的通项n a .数列复习小结基本训练题参考答案1.C 2.B 3.D 4.D 5.D 6.A 7.B8.±32 9.387 10.4,8,16或16,8,411.1 12.22512-+++m m m 13.108;31 14.)441241(24131211;2212211+++=-+-+⨯=-15. ⎩⎨⎧-=344n a n )2()1(≥=n n 16.8,2,—4或—4,2,817.约12.03万m 218.219.62231-+⨯=+n S n n20.12-=n a n课 题:3.1 数列的一般概念(一)教学目的:⒈理解数列及其有关概念,了解数列和函数之间的关系.⒉了解数列的通项公式,并会用通项公式写出数列的任意一项⒊对于比较简单的数列,会根据其前几项写出它的个通项公式教学重点:数列及其有关概念,通项公式及其应用,前n 项和与a n 的关系 教学难点:根据一些数列的前几项抽象、归纳数列的通项公式授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:本节主要介绍数列的概念、分类,以及给出数列的两种方法关于数列的概念,先给出了一个描述性定义,尔后又在此基础上,给出了一个在映射、函数观点下的定义,指出:“从映射、函数的观点看,数列可以看作是一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值”这样就可以将数列与函数联系起来,不仅可以加深对数列概念的理解,而且有助于运用函数的观点去研究数列关于给出数列的两种方法,其中数列的通项公式,教材已明确指出它就是相应函数的解析式点破了这一点,数列与函数的内在联系揭示得就更加清楚此外,正如并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数)教学过程:一、复习引入:1.函数的定义.如果A 、B 都是非空擞 集,那么A 到B 的映射B A f →:就叫做A 到B的函数,记作:)(x f y =,其中.,B y A x ∈∈2.在学习第二章函数的基础上,今天我们来学习第三章数列的有关知识,首先我们来看一些例子:观察这些例子,看它们有何共同特点?(启发学生发现数列定义) 上述例子的共同特点是:⑴均是一列数;⑵有一定次序.从而引出数列及有关定义 二、讲解新课:⒈ 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等 下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项 1 51413121 ↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:na n 1=来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系如:数列①:n a =n+3(1≤n ≤7);数列③:n a n n (1011-=≥1); 数列⑤:n n a )1(-=n ≥1) ⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos |π+=n a n . ⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式.对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式画出其对应图象,下面同学们练习画数列①,②的图象,并总结其特点.在画图时,为方便起见,直角坐标系两条坐标轴上的单位长度可以不同. 数列①、②的图象分别如图1,图2所示.5.数列的图像都是一群孤立的点.6.数列有三种表示形式:列举法,通项公式法和图象法.7. 有穷数列:项数有限的数列.例如,数列①是有穷数列.8.无穷数列:项数无限的数列.例如,数列②、③、④、⑤、⑥都是无穷数列.三、讲解范例:例1 根据下面数列{}n a 的通项公式,写出前5项:(1)n a n n a n n n ⋅-=+=)1()2(;1分析:由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项解:(1);65;54;43;32;21.5,4,3,2,154321======a a a a a n (2) ;5;4;3;2;21.5,4,3,2,154321-==-====a a a a a n 例2写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7; (2);515;414,313;2122222---- (3)-211⨯,321⨯,-431⨯,541⨯. 解:(1)项1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号 1 2 3 4即这个数列的前4项都是序号的2倍减去1,∴它的一个通项公式是: 12-=n a n ;(2)序号:1 2 3 4↓ ↓ ↓ ↓项分母:2=1+1 3=2+1 4=3+1 5=4+1↓ ↓ ↓ ↓项分子: 22-1 32-1 42-1 52-1即这个数列的前4项的分母都是序号加上1,分子都是分母的平方减去1,∴它的一个通项公式是: 1)1(2+-=n n n a n ; (3)序号 2111⨯-↓ 3213 ⨯-↓ 4313⨯-↓ 5414 ⨯-↓ ‖ ‖ ‖ ‖)11(11)1(1+⨯- )12(21)1(2+⨯- )13(31)1(3+⨯- )12(21)1(2+⨯-这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是: )1(1)1(+-=n n a n n 四、课堂练习:课本P 112练习:1—4.学生板演1,2;教师提问评析3,4.答案:⒈⑴1,4,9,16,25;⑵10,20,30,40,50;⑶5,-5,5,-5,5;⑷3/2,1,7/10,9/17,11/26.⒉⑴a 7=1/343,a 10=1/1000;⑵a 7=63,a 10=120;⑶a 7=1/7,a 10=-1/10;⑷a 7=-125,a 10=-1021.⒊⑴n a =2n ;⑵n a =1/5n ;⑶n a =(-1)n /2n ;⑷n a =(1/n)-[1/(n+1)]. ⒋⑴8,64,n a =2n ;⑵1,36,n a =n 2;⑶-1/3,-1/7,n a =(-1)n/n ; ⑷3,6,a n =n .五、小结 本节课学习了以下内容:数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式六、课后作业:课本P 114习题3.1:1,2.答案:⒈ ⑴ n a =3n ;⑵ n a =-2(n-1);⑶ n a =(n+1)/n ;⑷n a =(-1)n/2n ; ⑸ n a =1/n 2;⑹ n a =(-1)n+1 3n .⒉ ⑴a 10=110,a 31=992,a 48=2352;⑵求n(n+1)=420的正整数解得n=20. 补充作业:根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 9, 17, 33,……; (2) 32, 154, 356, 638, 9910, ……; (3) 0, 1, 0, 1, 0, 1,……; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ……;(5) 2, -6, 12, -20, 30, -42,…….解:(1) n a =2n +1; (2) n a =)12)(12(2+-n n n ; (3) n a =2)1(1n-+; (4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……,∴n a =n +2)1(1n-+; (5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……,a=(-1)1 n n(n+1).∴n七、板书设计(略)八、课后记:课题:3.1 数列的概念(二)教学目的:1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项;a的关系;3.理解数列的前n项和与n4.会由数列的前n项和公式求出其通项公式.教学重点:根据数列的递推公式写出数列的前几项教学难点:理解递推公式与通项公式的关系授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:由于并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数),因而研究递推公式给出数列的方法可使我们研究数列的范围大大扩展递推是数学里的一个非常重要的概念和方法在数列的研究中,不仅很多重要的数列是用递推公式给出的,而且它也是获得一个数列的通项公式的途径:先得出较为容易写出的数列的递推公式,然后再根据它推得通项公式但是,这项内容也是极易膨胀的,例如研究用递推公式给出的数列的性质,从数列的递推公式推导通项公式等,这样就会加重学生负担考虑到学生是在高一学习,我们必须牢牢把握教学要求,只要能初步体会一下用递推方法给出数列的思想,能根据递推公式写出一个数列的前几项就行了教学过程:一、复习引入:上节学习知识点如下⒈数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.5.数列的图像都是一群孤立的点.6.数列有三种表示形式:列举法,通项公式法和图象法.7. 有穷数列:项数有限的数列.例如,数列①是有穷数列.8. 无穷数列:项数无限的数列.二、讲解新课: 知识都来源于实践,最后还要应用于生活用其来解决一些实际问题. 观察钢管堆放示意图,寻其规律,建立数学模型.模型一:自上而下:第1层钢管数为4;即:1↔4=1+3第2层钢管数为5;即:2↔5=2+3第3层钢管数为6;即:3↔6=3+3第4层钢管数为7;即:4↔7=4+3第5层钢管数为8;即:5↔8=5+3第6层钢管数为9;即:6↔9=6+3第7层钢管数为10;即:7↔10=7+3若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1即41=a ;114512+=+==a a ;115623+=+==a a依此类推:11+=-n n a a (2≤n ≤7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要定义:。
高中数学数列教案文件
高中数学数列教案文件
一、教学目标:
1. 知识目标:了解数列的概念、性质及常见数列的求和公式。
2. 能力目标:掌握数列的概念和性质,能够运用数列的知识解决实际问题。
3. 情感目标:激发学生对数学的兴趣,培养学生的逻辑思维能力和解决问题的能力。
二、教学重点和难点:
1. 教学重点:数列的概念、性质和常见数列的求和公式。
2. 教学难点:能够灵活运用数列的知识解决实际问题。
三、教学过程:
1. 导入:通过提出一个实际问题引入数列的概念,让学生了解数列的定义和常见的数列类型。
2. 讲解:介绍数列的概念和性质,如等差数列、等比数列等,并讲解常见数列的求和公式。
3. 练习:布置练习题让学生通过练习加深对数列的理解和运用。
4. 拓展:引导学生运用数列的知识解决实际问题,拓展学生的思维广度。
5. 总结:总结数列的知识点,强化学生对数列的掌握和应用能力。
四、课堂作业:
1. 完成练习题,加深对数列的理解和掌握。
2. 找出身边的例子,分析是否符合数列的概念。
3. 思考如何运用数列的知识解决实际问题。
五、教学反馈:
及时对学生的作业进行批改和评价,引导学生对数列的理解和应用进行反思和总结,及时
纠正和加强学生的掌握程度。
高中数学必修五数列教案
高中数学必修五数列教案
主题:数列的概念和性质
目标:通过本课的学习,学生能够掌握数列的定义、常见数列的性质和求解方法,提高数学思维和解题能力。
一、引入
1. 引导学生回顾数列的定义和简单性质,如等差数列、等比数列等。
2. 提出问题:在日常生活中,你认为还有哪些是数列的例子呢?
二、展示
1. 介绍数列的定义:数列是按照一定规律排列的数的集合。
2. 介绍常见的数列及其性质:等差数列、等比数列、斐波那契数列等。
3. 分别讲解等差数列和等比数列的概念、通项公式、前n项和的公式等。
三、练习
1. 练习一:已知等差数列的前项和为50,公差为2,求该数列的第10个项。
2. 练习二:已知等比数列的前三项分别是2,6,18,求该数列的通项公式。
3. 练习三:给出一个数列,让学生判断其是等差数列还是等比数列,并求出其通项公式。
四、拓展
1. 拓展讨论:引导学生思考其他更为复杂的数列形式,如递推数列、调和数列等。
2. 拓展练习:设计一些应用题,让学生巩固对数列的理解和应用能力。
五、总结
1. 总结本课的重点内容和知识点,强调数列的重要性和应用价值。
2. 鼓励学生多进行数列相关练习和思考,提高数学解题能力和建模能力。
六、作业
1. 完成课堂练习题和拓展练习题。
2. 撰写一篇总结本课学习内容的感想。
以上为数列教案范本,希望能够对您的教学工作有所帮助。
数学技巧高中数列教案模板
数学技巧高中数列教案模板
教学目标:
1.了解数列的概念和基本性质;
2.掌握常见数列的求和公式和通项公式;
3.运用数列的性质解决实际问题。
教学重点和难点:
重点:数列的概念和性质;
难点:应用数列的概念和公式求解实际问题。
教学准备:
1.教师准备课件和教材;
2.学生准备笔记本、铅笔等学习用品。
教学步骤:
一、引入
教师可以通过引入一个经典的数列问题,引发学生的兴趣,如:1,3,5,7,9,..请问下一个是多少?
二、概念讲解
1.数列的定义:数列是按照一定规律排列的一组数,每个数称为数列的项。
2.等差数列和等比数列的定义和性质。
3.常见数列求和公式和通项公式的介绍。
三、例题讲解
1.以等差数列和等比数列为例,讲解如何求解数列的通项公式和求和公式。
2.通过实例讲解如何应用数列的概念解决实际问题。
四、练习
学生进行练习,巩固所学知识。
五、作业
布置作业:练习册上的相关练习题。
六、总结
对本节课所讲内容进行总结,强调重点和难点,对学生提出问题,激发思考。
以上是一份高中数学技巧教案范本,教师可以根据实际情况进行适当修改和调整,以提高教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
44 数列
教材分析
这节课主要研究数列的有关概念,并运用概念去解决有关问题,其中,对数列概念的理解及应用,既是教学的重点,也是教学的难点.
教学目标
1. 理解数列及数列的通项公式等有关概念,会根据一个数列的有限项写出这个数列的一个通项公式.
2. 了解递推数列,并会由递推公式写出此数列的若干项.
3. 进一步培养学生观察、归纳和猜想的能力.
任务分析这节内容以往很少涉及,对学生来说,既新又抽象,所以,须要依靠实例进行教学.数列与函数的关系应在函数定义的基础上加以理解.由若干项写出数列的一个通项公式是难点,但这又是锻炼学生的归纳、猜想能力的极好机会,应大胆让学生亲自归纳和猜想.
教学设计
一、问题情景
传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们研究过1,3,6,10,…由于这些数都能够表示成三角形(如图44-1),他们就将其称为三角形数.类似地,1,4,9,16,…能够表示成正方形(如图44-2),他们就将其称为正方形数.
二、建立模型
1. 引导学生观察、分析数列的顺序要求,设法用自己的语言描述出数列的定义及有穷数列、无穷数列、递增数列、摆动数列等有关概念像1,4,9,16,…等按照一定规律排列的一列数,就叫作数列.
[练习]
下面的数列,哪些是递增数列、递减数列、常数列和摆动数列?
(1)全体自然数构成数列
0,1,2,3,…
(2)1996~2002年某市普通高中生人数(单位:万人)构成数列
82,93,105,119,129,130,132.
(3)无穷多个3构成数列
3,3,3,3,…
(4)目前通用的人民币面额按从大到小的顺序构成数列(单位:元)
100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01.
(5)-1的1次幂,2次幂,3次幂,4次幂,……构成数列
-1,1,-1,1,…
(6)的精确到1,0.1,0.01,0.001,…的不足近似值与过剩近似值分别构成数列
1,1.4,1.41,1.414,…
2,1.5,1.42,1.415,…
2. 引导学生根据实例、项和第n项等概念发现数列与函数的关系
如:数列1,2,0,-1,3,8,…,第1项是1,第4项是-1,……由此可以发现,对于一个给定的数列,当确定了项的位置后,这个数列的项也随之唯一确定.一般地,数列可以看作定义域为N(或其子集)的函数当自变量依次为1,2,3,…时的一系列函数值.
[问题]
数列既然可以看作一列函数值,那么“这个函数”可以如何表示?一定有解析式吗?你能举出一些有解析式的例子吗?根据学生的讨论,探究,得出:数列可以用列表、图像和函数解析式来表示,从而,解析式即为数列的通项公式.
三、解释应用
[例题]
1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数.
(1)1,-,,-.
(2)2,0,2,0.
解:(1).
(2)可以写成也可以写成a n=1+(-1)n-1,(其中n=1,2,…).
注:对于(2),可以引导学生得到不同的结论,从而发现,根据数列的前若干项写出的通项公式不一定唯一.
2. 下图中的三角形称为希尔宾斯基三角形.在下图4个三角形中,黑色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图像.
解:如图44-3,这4个三角形中的黑色三角形的个数依次为1,3,9,27,则所求数列的前4项都是3的指数幂,并且指数为序号减1.所以,这个数列的一个通项公式是a n=3n-1.
在直角坐标系中的图像见下图:
3. 设数列满足
试写出这个数列的前5项.
解:∵a1=1,
注:像这样给出数列的方法叫逆推法.
[练习]
1. 数列的前5项分别是以下各数,试分别写出各数列的一个通项公式.
2. 已知数列{a n}满足a1=1,a n=-1(n>1),试写出它的前5项.
3. 已知数列的通项公式为a n=n2-10n+10,那么这个数列从第n项起各项的数值是否逐渐增大?从第n项起各项的数值是否均为正数?
四、拓展延伸
教师引导学生分析思考下面的两个问题(可以在课堂上或课后完成):
1. 已知数列{a n}满足,问:此数列有无最大项和最小项?
2. 通常用S n表示数列{a n}的前n项的和,即S n=a1+a2+a3+…+a n.已知{a n}的前n 项和S n=n2-3n+2,试求{a n}的通项公式.一般地,如何用S n表示a n呢?
点评
这篇案例通过实例阐述了数列的有关概念,注意揭示了知识发生、发展的过程,比较好地调动了学生参与探索的积极性和主动性.问题情景设计新颖,合理;问题提出得准确,恰当;总体设计完整,清晰.另外,该案例还关注了学生科学地提出和解决问题的能力的培养.
美中不足的是,自“问题情景”到“建立模型”两个环节的“交接处”显得有些跳跃,步骤有些过简.。