中考数学复习探索二次函数综合题解题技巧四二次函数与特殊三角形的探究问题练习4

合集下载

初三数学中考复习:二次函数中特殊三角形的存在问题(含答案)

初三数学中考复习:二次函数中特殊三角形的存在问题(含答案)

特殊三角形存在性问题一、等腰三角形存在性问题【例4】如图,抛物线y=-x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,3).(1)求抛物线的解析式.解:把A(-1,0),C(0,3)代入y=-x2+mx+n,得解得∴抛物线的解析式为y=-x2+2x+3.(2)判断△ACD的形状,并说明理由.先确定点D的坐标,求出△ACD的各边长,然后判断△ACD的形状.解:△ACD是等腰三角形.由(1)知,抛物线的对称轴为x=1,∴D(1,0).∵A(-1,0),C(0,3),∴AD=2,AC==,CD==.∴AC=CD.∴△ACD是等腰三角形.(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.先找出所有符合条件的点,然后再求线段长确定P点坐标.解:由(2)知CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.过点C作CM垂直对称轴于M,∴MP1=MD=3.∴DP1=6.∴符合条件的点P的坐标为(1,6),(1,),(1,-).(4)点P是线段BC上的一动点,是否存在这样的点P,使△PCD是等腰三角形?如果存在,求出P点的坐标,如果不存在,请说明理由.先求出BC的解析式,分三种情况讨论计算出m.解:∵B(3,0),C(0,3),∴直线BC的解析式为y=-x+3.设点P(m,-m+3)(m>0).∵C(0,3),D(1,0),∴CP2=2m2,DP2=(m-1)2+(-m+3)2,CD2=10.∵△PCD是等腰三角形:①当CP=DP时,则CP2=DP2.∴2m2=(m-1)2+(-m+3)2.∴m=.∴P.1②当CP=CD时,则CP2=CD2.∴2m2=10.∴m=或m=-(舍去).(,3-).∴P2③当DP=CD时,则DP 2=CD 2.∴(m-1)2+(-m+3)2=10.∴m=4或m=0(舍去).∴P(4,-1).3综上所述,符合条件的点P的坐标为,(,3-)或(4,-1).(5)设抛物线的顶点为E,在其对称轴的右侧的抛物线上是否存在点P,使得△PEC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.分“以CE为底”和“以CE为腰”两种情况讨论.利用腰长相等列关系式,再结合抛物线解析式,求出点P的坐标.解:由(1)知,E点坐标为(1,4),对称轴为直线x=1.①若以CE为底边,则PE=PC.设点P的坐标为(x,y),则(x-1)2+(y-4)2=x2+(3-y)2,即y=4-x.又∵点P(x,y)在抛物线上,∴4-x=-x2+2x+3.解得x=.∵<1,应舍去.∴x=,y=4-x=.即点P的坐标为.②若以CE为一腰,因为点P在对称轴右侧的抛物线上,由抛物线的对称性可知,点P与点C关于直线x=1对称,此时P点坐标为(2,3).综上所述,符合条件的点P坐标为或(2,3).关于等腰三角形找点(作点)和求点的方法①等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用“两圆一问题找点已知点A,B和直线l,在l上求点P,使△P AB为等腰三角形分别以点A,B为圆心,以线段AB长为半径作圆,再作线段AB的垂直平分线,两圆和垂直平分线与l的交点即为所有要求的P点②等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构成等腰三角形,先设所求点的坐标,然后求出三点间的线段长度,分不同顶点进行讨论.二、直角三角形的存在性问题【例5】如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;解:把A(-1,0),B(3,0)代入y=ax2+2x+c,得解得∴抛物线的解析式为y=-x2+2x+3.设AC的解析式为y=kx+3.把A(-1,0)代入解析式,得k=3.∴直线AC的解析式为y=3x+3.(2)动点E在y轴上移动,当△EAC是以AC边为直角边的直角三角形时,求点E的坐标.解:设E的坐标为(0,t).AC2=OA2+OC2=12+32=10,EA2=OA2+OE2=12+t2,CE2=(3-t)2.在Rt△EAC中,AC2+EA2=CE2,∴10+(12+t2)=(3-t)2,解得t=-.∴点E的坐标为.(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.分直角顶点在点A处和点C处两种情况讨论.解:存在.①直角顶点在点C处.如图,过点C作CQ⊥AC交x轴于点Q,△ACQ为直角三角形.又∵CO⊥AQ,∴△COA∽△QOC.∴=.∵A(-1,0),C(0,3),∴OA=1,OC=3.∴=.∴OQ=9.∴Q(9,0).由C(0,3),Q(9,0)可求出直线CQ的解析式为y=-x+3.联立方程解得x1=0(舍去),x2=.当x=时,y=.∴P1.②直角顶点在点A处.如图,过点A作AP2∥CQ交抛物线于点P2.设直线AP2的解析式为y=-x+b,把A(-1,0)代入解析式,得-×(-1)+b=0,∴b=-.∴直线AP2的解析式为y=-x-. 联立方程解得x1=-1(舍去),x2=,当x=时,y=-.∴P2.综上所述,符合条件的点P的坐标为或.(4)在抛物线的对称轴上是否存在一点P,使得以B,C,P为顶点的三角形为直角三角形?若存在,试求出点P的坐标;若不存在,请说明理由.分直角顶点在点B处、点C处和点P处三种情况讨论.解:设点P(1,m),B(3,0),C(0,3).∴BC2=18,PB2=(1-3)2+m2=m2+4,PC2=12+(m-3)2=m2-6m+10.①当以点C为直角顶点时,BC2+PC2=PB2,即18+ (m2-6m+10)=m2+4,解得m=4.②当以点B为直角顶点时,BC2+PB2=PC2,即18+ (m2+4)=m2-6m+10,解得m=-2.③当以点P为直角顶点时,PB2+PC2=BC2,即m2+4+ (m2-6m+10) =18,解得m1=,m2=.综上,存在点P,使得以点B,C,P为顶点的三角形为直角三角形,点P的坐标为(1,4),(1,-2),,.(5)作直线MN平行于x轴,分别交线段AC,BC于点M,N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.分三种情况进行讨论:①∠PMN=90°,PM=MN;②∠PNM=90°,PN=MN;③∠MPN=90°,PM=PN.解:存在.设M,N的纵坐标为m,由B(3,0),C(0,3)可求出直线BC的解析式为y=-x+3.∴M,N(3-m,m)①当∠PMN=90°,PM=MN时,如图1所示,∵MN=,PM=m,∴=m,解得m=,则P的横坐标为-.∴P.②当∠PNM=90°,PN=MN时,同理可得P.③当∠MPN=90°,PM=PN时,作MN的中点Q,连接PQ,则PQ=m.又∵PM=PN,∴PQ⊥MN.则MN=2PQ,即=2m,解得m=,点P的横坐标为==.∴P.综上,存在点P使得△PMN是等腰直角三角形,点P的坐标为,或.关于直角三角形找点和求点的方法①找点:以已知边为边长,作直角三角形,运用两线一圆法,在图上找出存在点的个数.所谓的“两线”就是指以已知边为直角边,过已知边的两个端点分别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;“一圆”就是以已知边为直径,以已知边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点.②求点:以两定点为直角顶点时,两直线互相垂直,则k1·k2=-1;以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用三角形相似求解,或者三条边分别用代数式表示之后,利用勾股定理求解.。

2023年九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案

2023年九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案
(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P点在直线MN上运动.若恰好存在3个P点使得△PAC为直角三角形,请求出C点坐标,并直接写出P点的坐标.
20.如图,抛物线y= x2﹣ x﹣ 与x轴交于点A和点B,与y轴交于点C,经过点C的直线l与抛物线交于另一点E(4,a),抛物线的顶点为点Q,抛物线的对称轴与x轴交于点D.
13.如图,抛物线 经过点A(0,3),B(-1,0).
(1)求抛物线的解析式;
(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长.
(3)在抛物线上是否存在点P,使△PBD是以BD为直角边的直角三角形,若存在请直接写出点P的坐标,若不存在,请说明理由.
14.如图,抛物线 过点 , , .
(3)如图2,在(2)的条件下,点D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
7.如图,抛物线y= x2+bx+c与x轴交于A(3,0)、B(-1,0)两点,过点B作直线BC⊥x轴,交直线y=-2x于点C.
(1)求a、b满足的关系式及c的值;
(2)如果 ,点P是直线AB下方抛物线上的一点,过点P作PD垂直于x轴,垂足为点D,交直线AB于点E,使 .
①求点P的坐标;
②若直线PD上是否存在点Q,使 为直角三角形?若存在,求出符合条件的所有点Q的坐标;若不存在,请说明理由.
16.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,P为第一象限抛物线上的动点,连接AB,BC,PA,PC,PC与AB相交于点Q.
(1)点E的坐标为;

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破

二次函数与三角形的综合-中考数学函数考点全突破一、考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。

这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。

一解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3.根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。

例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。

注意事项:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。

4.利用点坐标表示线段长度时注意要用大的减去小的。

5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。

6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。

二、二次函数问题中三角形面积最值问题(一)例题演示1.如图,已知抛物线(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值.DBOAyxC解答:(1)抛物线令y=0,解得x=-2或x=4,∴A(-2,0),B(4,0).∵直线经过点B(4,0),∴,解得,∴直线BD解析式为:当x=-5时,y=3,∴D(-5,3)∵点D(-5,)在抛物线上,∴,∴.∴抛物线的函数表达式为:.(2)设P(m,)∴∴△BPD面积的最大值为.【试题精炼】2.如图,在平面直角坐标系中,抛物线()与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:与y轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为时,求抛物线的函数表达式;HF解答:1)A(-1,0)∵CD=4AC,∴点D的横坐标为4∴,∴.∴直线l的函数表达式为y=ax+a(2)过点E作EH∥y轴,交直线l于点H设E(x,ax2-2ax-3a),则H(x,ax+a).∴∴.∴△ADE的面积的最大值为,∴,解得.∴抛物线的函数表达式为.【中考链接】3.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;解答:(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B (0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为:y=﹣x2+2x+3;(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∴S=DM•BE+DM•OE=DM(BE+OE)=DM•OB=××3==(m﹣)2+∵0<m<3,∴当m=时,S有最大值,最大值为;二、二次函数问题中直角三角形问题(一)例题演示如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使△BPC为直角三角形的点P的坐标.解答:(1)依题意得:,解得,∴抛物线解析式为.把B(,0)、C(0,3)分别代入直线y=mx+n,得,解得,∴直线y=mx+n的解析式为y=x+3;(2)设P(,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(+3)2+t2=4+t2,PC2=()2+(t-3)2=t26t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解得:t=;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解得:,.综上所述P的坐标为(,)或(,4)或(,)或(,).【试题精炼】如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2))求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1);(2)证明见解析;(3)以线段GF、AD、AE 的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】试题分析:(1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.试题解析:解:(1)将C (0,-3)代入函数表达式得,∴.(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN,∴.设点E的坐标为(x,),∴,∴x=4m.∴为定值.(3)存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH 中,∵tan∠CGO=,tan∠FGH=,∴=.∴OG=“3m,“由勾股定理得,GF=,AD=∴.由(2)得,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.考点:1.二次函数综合题;2.定值和直角三角形存在性问题;3.曲线上点的坐标与方程的关系;4.二次函数的性质;5.勾股定理和逆定理;6相似三角形的判定和性质;7.锐角三角函数定义.【中考链接】如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=x2+x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求BC所在直线的函数关系式.(2)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.解答:(1)∵C点坐标为(-1,0),∴BD=CO=1.∵B点的横坐标为-3,∴B点坐标为(-3,1)设BC所在直线的函数关系式为y=kx+b,则有,解得∴BC所在直线的函数关系式为y=x.(2)①若以为AC直角边,点C为直角顶点,如图所示,作CP1⊥AC,因为BC⊥AC,所以点P1为直线BC与对称轴直线的交点,即点P1的横坐标为-。

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题

中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题
解:存在.令x=0,代入y=-x2+6x-5,得y=-5, ∴点C的坐标为(0,-5).
Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.

九年级数专题训练:二次函数综合(动点与三角形)问题方法与解析

九年级数专题训练:二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题一、知识准备:抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。

(1)抛物线上的点能否构成等腰三角形;(2)抛物线上的点能否构成直角三角形;(3)抛物线上的点能否构成相似三角形;解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。

二、例题精析㈠【抛物线上的点能否构成等腰三角形】例一.如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.考点:二次函数综合题专题:综合题.分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.解答:解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,∴可得A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得:.∴抛物线解析式为:y=x2+2x﹣3.(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3,则C点坐标为:(﹣3,0),AC=4,故可得S△ABC=AC×OB=×4×3=6.(3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,,解得:,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6),③当MB=MA时,,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形.点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解.㈡【抛物线上的点能否构成直角三角形】例二.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a (x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.㈢【抛物线上的点能否构成相似三角形】例三.如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.考点:二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: 解:(1)∵直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B ,∴A (﹣1,0),B (0,3);∵把△AOB 沿y 轴翻折,点A 落到点C ,∴C (1,0).设直线BD 的解析式为:y=kx+b ,∵点B (0,3),D (3,0)在直线BD 上,∴,解得k=﹣1,b=3,∴直线BD 的解析式为:y=﹣x+3.设抛物线的解析式为:y=a (x ﹣1)(x ﹣3),∵点B (0,3)在抛物线上,∴3=a ×(﹣1)×(﹣3),解得:a=1,∴抛物线的解析式为:y=(x ﹣1)(x ﹣3)=x 2﹣4x+3.(2)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M (2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N1(0,0);(II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上,∵OB=OD=ON2=3,∴N2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(3)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评: 本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.三、训练1.如图,已知抛物线y=﹣x 2+bx+4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式;(3)试判断△AOC 与△COB 是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若不存在,求出符合条件的Q 点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点C坐标;令y=0,可求出点B坐标.再利用待定系数法求出直线BD的解析式;(3)根据,∠AOC=∠BOC=90°,可以判定△AOC∽△COB;(4)本问为存在型问题.若△ACQ为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解.解答:解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),∴﹣×(﹣2)2+b×(﹣2)+4=0,解得:b=,∴抛物线解析式为y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为:x=3.(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4);令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,∴直线BC的解析式为:y=x+4.(3)可判定△AOC∽△COB成立.理由如下:在△AOC与△COB中,∵OA=2,OC=4,OB=8,∴,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB.(4)∵抛物线的对称轴方程为:x=3,可设点Q(3,t),则可求得:AC===,AQ==,CQ==.i)当AQ=CQ时,有=,25+t2=t2﹣8t+16+9,解得t=0,∴Q1(3,0);ii)当AC=AQ时,有=,t2=﹣5,此方程无实数根,∴此时△ACQ不能构成等腰三角形;iii)当AC=CQ时,有=,整理得:t2﹣8t+5=0,解得:t=4±,∴点Q坐标为:Q2(3,4+),Q3(3,4﹣).综上所述,存在点Q,使△ACQ为等腰三角形,点Q的坐标为:Q1(3,0),Q2(3,4+),Q3(3,4﹣).点评:本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点.难点在于第(4)问,符合条件的等腰三角形△ACQ 可能有多种情形,需要分类讨论.2 :已知:直线112y x =+与y 轴交于A ,与x 轴交于D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.3、如图,抛物线212222y x x =-++与x 轴交于A B 、两点,与y 轴交于C 点.(1)求A B C 、、三点的坐标;(2)证明ABC △为直角三角形;(3)在抛物线上除C 点外,是否还存在另外一个点P ,使ABP △是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由.4、如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1个单位长度的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于Q .(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S ,求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ成为以.BQ ..为一腰...的等腰三角形?若存在, 求出点Q 的坐标,若不存在,说明理由.5、在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS ∠BCO =310。

中考数学复习典型压轴题专题讲解20---二次函数与特殊三角形存在型问题

中考数学复习典型压轴题专题讲解20---二次函数与特殊三角形存在型问题
2 / 60
同理可得直线 AC 的表达式为: y = 4 x + 4 ,
3
设直线 AC 的中点为 K (− 3 , 2) ,过点 M 与 CA 垂直直线的表达式中的 k 值为 − 3 ,
2
4
同理可得过点 K 与直线 AC 垂直直线的表达式为: y = − 3 x + 7 … ②,
48
①当 AC = AQ 时,如图 1,
33
QOB = OC ,∴∠ABC = ∠OCB = 45° = ∠PQN ,
3 / 60
PN = PQ sin ∠PQN =
2 (− 1 m2 + 1 m + 4 + m − 4) = −
2 (m − 2)2 + 2
2

23 3
6
3
Q − 2 < 0 ,∴ PN 有最大值,
6
当 m = 2 时, PN 的最大值为: 2
NQ 2
求 t 的值; (3)如图②,连接 AM 交 BC 于点 D ,当 ∆PDM 是等腰三角形时,直接写出 t 的值.
【分析】(1)求直线 y = −x + 4 与 x 轴交点 B ,与 y 轴交点 C ,用待定系数法即求得抛物 线解析式. (2)根据点 B 、C 坐标求得 ∠OBC = 45° ,又 PE ⊥ x 轴于点 E ,得到 ∆PEB 是等腰直角三 角形,由 PB = 2t 求得 BE = PE = t ,即可用 t 表示各线段,得到点 M 的横坐标,进而用 m
4 / 60
∽ 表示点 M 纵坐标,求得 MP 的长.根据 MP / /CN 可证 ∆MPQ ∆NCQ ,故有 MP = MQ = 1 , NC NQ 2
【分析】(1)由二次函数交点式表达式,即可求解; (2)分 AC = AQ 、 AC = CQ 、 CQ = AQ 三种情况,分别求解即可; (3)由 PN = PQ sin ∠PQN = 2 (− 1 m2 + 1 m + 4 + m − 4) 即可求解.

中考数学复习探索二次函数综合题解题技巧四二次函数与特殊三角形的探究问题练习无答案

中考数学复习探索二次函数综合题解题技巧四二次函数与特殊三角形的探究问题练习无答案

探索二次函数综合题解题技巧四;;二次函数在中考数学中常常作为压轴题,具有一定的综合性和较大的难度。

学生往往因缺乏思路,感到无从下手,难以拿到分数。

事实上,只要理清思路,方法得当,稳步推进,少失分、多得分、是完全可以做到的。

第1小问通常是求解析式:这一小题简单,直接找出坐标或者用线段长度来确定坐标,进而用待定系数法求出解析式即可。

第2—3小问通常要结合三角形、四边形、圆、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系;既要防止钻牛角尖,又要防止轻易放弃。

类型四二次函数与特殊三角形的探究问题;;(1)与直角三角形的探究问题例1如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B。

(1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式;(2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.解:(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),抛物线与x轴的另一交点为B,∴B的坐标为:(-3,0),设抛物线的解析式为:y=a(x-1)(x+3),把C(0,3)代入,-3a=3,解得:a=-1,∴抛物线的解析式为:y=-(x-1)(x+3)=-x2-2x+3;把B(-3,0),C(0,3)代入y=mx+n得:m=1,n=3∴直线y=mx+n的解析式为:y=x+3;(1)设P(-1,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,①若点B为直角顶点,则BC2+PB2=PC2,即:18+4+t2=t2-6t+10,解之得:t=-2;②若点C为直角顶点,则BC2+PC2=PB2,即:18+t2-6t+10=4+t2,解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2,即:4+t2+t2-6t+10=18,解之得:t1= 错误!未找到引用源。

中考复习:二次函数综合能力提升——各种题型逐一突破

中考复习:二次函数综合能力提升——各种题型逐一突破

二次函数综合能力提升 ——各类题型逐一突破一、【二次函数的定义】二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数具备三个条件,缺一不可:(1)是整式;(2)是一个自变量的二次式;(3)二次项系数不为0(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 例1、下列函数中,是二次函数的是 . ①y=x 2-2x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ;⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ;⑧y=-∏x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

4、若函数y=(m -2)x m2 -2+5x+1是关于x 的二次函数,则m 的值为 。

5、k 为何值时,y=(k +2)x 622--k k 是关于x 的二次函数?训练题:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值).v 1 2 3 4 5 6 7 8E(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍? 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52-xD .y=(x +1)(x -2)7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围.9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF .设DE=x ,DF=y .(1)AE 用含y 的代数式表示为:AE= ; (2)求y 与x 之间的函数表达式,并求出x 的 取值范围;(3)设四边形DECF 的面积为S ,求S 与x 之间的函数表达式.二、【二次函数y=ax 2+bx+c 的图象特征与a 、b 、c 的关系】* a 决定开口方向,a > 0,开口向上;a < 0,开口向下。

中考数学总复习《二次函数压轴题(特殊三角形问题)》专项提升练习(附答案)

中考数学总复习《二次函数压轴题(特殊三角形问题)》专项提升练习(附答案)
(2)作射线 ,将射线 绕点A顺时针旋转 交抛物线于另一点D,在射线 上是否存在一点H,使 的周长最小,若存在,求出点H的坐标;若不存在,请说明理由;
(3)在(2)的条件下,点Q为抛物线的动点,过Q点作x轴的垂线交射线 与P点,点Q从A点出发,P点随之运动,当 是以 为腰的等腰三角形时,直接写出Q点的坐标.
(1)求直线BC的函数表达式;
(2)求出P,D两点的纵坐标(用含t的代数式表示,结果需化简);
(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值:若不存在,请说明理由.
5.如图,抛物线 与x轴交于点 和 ,与y轴交于点C.
(1)求抛物线的表达式;
13.已知在平面直角坐标系xOy中,二次函数y=2x2−(1+2c)x+c(c> ,c是常数)的图像与x轴分别交于点A,点B(点B在点A右侧),与y轴交于点C,连接BC.
(1)证明:△BOC是等腰直角三角形;
(2)抛物线顶点为D,BC与抛物线对称轴交于点E,当四边形AEBD为正方形时,求c的值.
14.如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.
(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;
(2)若点P在第四象限,连接PA、PE及AE,当t为何值时,△PAE的面积最大?最大面积是多少?
(3)是否存在点P,使△PAE为以AE为直角边的直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.
15.如图,已知抛物线于x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).
(2)过点P作 ,垂足为点N.求线段 的最大值;

专题 二次函数与相似三角形有关的问题(知识解读)-中考数学(全国通用)

专题 二次函数与相似三角形有关的问题(知识解读)-中考数学(全国通用)

专题05二次函数与相似三角形有关的问题(知识解读)【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。

【解题思路】关函数与相似三角形的问题一般三个解决途径:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形.根据未知三角形中已知边与已知三角形的可能对应边分类讨论;(2)利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解.【典例分析】【典例1】(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【变式1-1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【变式1-2】(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【典例2】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【变式2-1】(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.【变式2-2】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ (点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【变式2-3】(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.专题05二次函数与相似三角形有关的问题(知识解读)【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。

二次函数综合题--二次函数与直角三角形有关的问题(解析版)-中考数学重难点题型专题汇总

二次函数综合题--二次函数与直角三角形有关的问题(解析版)-中考数学重难点题型专题汇总

二次函数综合题-中考数学重难点题型二次函数与直角三角形有关的问题(专题训练)1.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.【答案】()11,-(3)()14-,或()25-,或⎝⎭或⎫⎪⎪⎝⎭【分析】(1)根据解析式求出A ,B ,C 的坐标,然后用勾股定理求得AC 的长;(2)求出对称轴为x=1,设P (1,t ),用t 表示出PA 2和PC 2的长度,列出等式求解即可;(3)设点M(m,m 2-2m-3),分情况讨论,当222CM BC BM +=,222BM BC CM +=,222BM CM BC +=分别列出等式求解即可.(1)223y x x =--与x 轴交点:令y=0,解得121,3x x =-=,即A (-1,0),B (3,0),223y x x =--与y 轴交点:令x=0,解得y=-3,即C (0,-3),∴AO=1,CO=3,∴AC ==(2)抛物线223y x x =--的对称轴为:x=1,设P (1,t ),∴()()22221104PA t t =++-=+,()()()222210313PC t t =-++=++,∴24t +()213t =++∴t=-1,∴P (1,-1);(3)设点M (m,m 2-2m-3),()()()()22222223230323BM m m m m m m =-+---=-+--,()()()222222202332CM m m m m m m =-+--+=+-,()()222300318BC =-++=,①当222CM BC BM +=时,()()()222222218323m m m m m m +-+=-+--,解得,10m =(舍),21m =,∴M (1,-4);②当222BM BC CM +=时,()())222222323182m m m m m m-+--+=+-,解得,12m =-,23m =(舍),∴M (-2,5);③当222BM CM BC +=时,()()()222222323218m m m m m m -+--++-=,解得,m =,∴M ⎝⎭或⎫⎪⎪⎝⎭;综上所述:满足条件的M 为()14-,或()25-,或1522⎛+ ⎪ ⎪⎝⎭或1522⎛⎫⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,考查了与坐标轴交点、线段求值、存在直角三角形等知识,解题的关键是学会分类讨论的思想,属于中考压轴题.2.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x 轴分别交于A 、B 两点,与y 轴交于点C (0,6),抛物线的顶点坐标为E (2,8),连结BC 、BE 、CE .(1)求抛物线的表达式;(2)判断△BCE 的形状,并说明理由;(3)如图2,以C 为半径作⊙C ,在⊙C 上是否存在点P ,使得BP +12EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.【答案】(1)y=12-x 2+2x+6;(2)直角三角形,见解析;(3)存在,2【分析】(1)用待定系数法求函数解析式;(2)分别求出三角形三边的平方,然后运用勾股定理逆定理即可证明;(3)在CE 上截取CF=2(即CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.【详解】解:(1)∵抛物线的顶点坐标为E (2,8),∴设该抛物线的表达式为y=a (x-2)2+8,∵与y 轴交于点C (0,6),∴把点C (0,6)代入得:a=12-,∴该抛物线的表达式为y=12-x 2+2x+6;(2)△BCE 是直角三角形.理由如下:∵抛物线与x 轴分别交于A 、B 两点,∴当y=0时,12-(x-2)2+8=0,解得:x 1=-2,x 2=6,∴A (-2,0),B (6,0),∴BC 2=62+62=72,CE 2=(8-6)2+22=8,BE 2=(6-2)2+82=80,∴BE 2=BC 2+CE 2,∴∠BCE=90°,∴△BCE 是直角三角形;(3)如图,在CE 上截取CF=2(即CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.连接CP ,∵CP 为半径,∴12CF CP CP CE ==,又∵∠FCP=∠PCE ,∴△FCP ∽△PCE ,∴12CF FP CP PE ==,FP=12EP ,∴BF=BP+12EP ,由“两点之间,线段最短”可得:BF 的长即BP+12EP 为最小值.∵CF=14CE ,E (2,8),∴F (12,132),∴2【点睛】本题考查二次函数综合,待定系数法,二次函数图象和性质,勾股定理及其逆定理,圆的性质,相似三角形的判定和性质等,题目综合性较强,属于中考压轴题,熟练掌握二次函数图象和性质,圆的性质,相似三角形的判定和性质等相关知识是解题关键.3.(2021·湖北中考真题)在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD ∠=∠,求点P 的坐标;(3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当QMN 为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标【答案】(1)223y x x =--;(2)()14,5P ,257,24P ⎛⎫- ⎪⎝⎭;(3)154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;(35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【分析】(1)由()1,0A -和D ()1,4-,且D 为顶点列方程求出a 、b 、c ,即可求得解析式;(2)分两种情况讨论:①过点C 作1//CP BD ,交抛物线于点1P ,②在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ;(3)QMN 为等腰直角三角形,分三种情况讨论:当90QM MN QMN =∠=︒,;②当90QN MN QNM =∠=︒,;③当90QM QN MQN =∠=︒,.【详解】解:(1)将()1,0A -和D ()1,4-代入2y ax bx c=++得04a b c a b c -+=⎧⎨++=-⎩又∵顶点D 的坐标为()1,4-∴12ba-=-∴解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为:223y x x =--.(2)∵()3,0B 和()1,4D -∴直线BD 的解析式为:26y x =-∵抛物线的解析式为:223y x x =--,抛物线与y 轴交于点C ,与x 轴交于点()1,0A -和点B,则C 点坐标为()0,3-,B 点坐标为()3,0.①过点C 作1//CP BD ,交抛物线于点1P ,则直线1CP 的解析式为23y x =-,结合抛物线223y x x =--可知22323x x x --=-,解得:10x =(舍),24x =,故()14,5P .②过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,由OB OC =可知四边形OBGC 为正方形,∵直线1CP 的解析式为23y x =-∴1CP 与x 轴交于点3,02E ⎛⎫⎪⎝⎭,在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ∴OCE FCG∠=∠又∵OC=CG ,90COE G ∠=∠=︒∴OEC △≌()GFC ASA ,∴32FG OE ==,33,2F ⎛⎫- ⎪⎝⎭,又由()0,3C -可得直线CF 的解析式为132y x =-,结合抛物线223y x x =--可知212332x x x --=-,解得10x =(舍),252x =,故257,24P ⎛⎫- ⎪⎝⎭.综上所述,符合条件的P 点坐标为:()14,5P ,257,24P ⎛⎫- ⎪⎝⎭.(3)∵()3,0B ,()0,3C -∴直线BC 的解析式为3BC y x =-设M 的坐标为()3m m -,,则N 的坐标为()223m m m --,∴()22=3233MN m m m m m----=-∵()1,0A -,()0,3C -∴直线BC 的解析式为33AC y x =--∵QMN 为等腰直角三角形∴①当90QM MN QMN =∠=︒,时,如下图所示则Q 点的坐标为33m m ⎛⎫-- ⎪⎝⎭,∴4=33m mQM m ⎛⎫--=⎪⎝⎭∴24=33mm m -解得:10m =(舍去),2133m =,353m =∴此时154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;②当90QN MN QNM =∠=︒,则Q 点的坐标为222233m m m m ⎛⎫--- ⎪⎝⎭,∴222=33m m m mQM m -+-=∴22=33m mm m +-解得:10m =(舍去),25m =,32m =∴此时()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;③当90QM QN MQN =∠=︒,时,如图所示则Q 点纵坐标为()()22211113236=32222m m m m m m m -+--=----∴Q 点的坐标为22111136622m m m m ⎛⎫--- ⎪⎝⎭,∴Q 点到MN 的距离=221151+6666m m m m m--=∴22511+=3662m m m m ⋅-(直角三角形斜边上的中线等于斜边的一半)解得:10m =(舍去),27m =,31m =∴此时()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.综上所述,点M 及其对应点Q 的坐标为:154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【点睛】本题主要考查二次函数与几何图形.该题综合性较强,属于中考压轴题.4.(2021·湖北中考真题)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF 的面积;(3)若()3,P t 是对称轴上一定点,Q 是抛物线上的动点,求PQ 的最小值(用含t 的代数式表示).【答案】(1)263y x x =-+-;(2)4;(3)6(6)116(6)211()2t t PQ t t t ⎧⎪-≥⎪⎪=-<<⎨≤【分析】(1)与y 轴相交于点()0,3C -,得到3b =-,再根据抛物线对称轴,求得1a =-,代入即可.(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,可知E 、F 两点关于对称轴对称,DEF 是等腰直角三角形得到45FED ∠=︒,设(,)(0)E m n n >,根据等腰直角三角形的性质求得E 点坐标,从而求得DEF 的面积.(3)(,)(6)Q p q q ≤,根据距离公式求得222(21)6PQ q t q t =-+++,注意到q 的范围,利用二次函数的性质,对t 进行分类讨论,从而求得PQ 的最小值.【详解】解:(1)由抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -得到3b =-抛物线的对称轴为3x =,即232b a--=,解得1a =-∴抛物线的方程为263y x x =-+-(2)过点E 作EM AB ⊥交AB 于点M ,过点F 作FN AB ⊥,交AB 于点N ,如下图:∵DEF 是等腰直角三角形∴DE DF =,45FED ∠=︒又∵EF x ∥轴∴45EDM ∠=︒∴EMD 为等腰直角三角形∴EM DM=设(,)(0)E m n n >,则(,0)M m ,3,DM m EM n=-=∴3n m=-又∵263n m m =-+-∴2363m m m -=-+-2760m m -+=解得1m =或6m =当1m =时,2n =,符合题意,2,4DM EM MN ===142DEF S MN EM =⨯=△当6m =时,30n =-<,不符合题意综上所述:4DEF S = .(3)设(,)(6)Q p q q ≤,Q 在抛物线上,则263q p p =-+-222222(3)()692PQ p q t p p q tq t =-+-=-++-+将263q p p =-+-代入上式,得222(21)6PQ q t q t =-+++当112t >时,2162t +>,∴6q =时,2PQ 最小,即PQ 最小22223612661236(6)PQ t t t t t =--++=-+=-PQ =6(6)6116(6)2t t t t t -≥⎧⎪-=⎨-<<⎪⎩当112t ≤时,2162t +≤,∴212t q +=时,2PQ 最小,即PQ 最小22344t PQ -=,2PQ =综上所述6(6)116(6)211()2t t PQ t t t ⎧⎪-≥⎪⎪=-<<⎨≤【点睛】此题考查了二次函数的对称轴、二次函数与三角形面积、等腰直角三角形的性质以及距离公5.(2020•泸州)如图,已知抛物线y =ax 2+bx+c 经过A (﹣2,0),B (4,0),C (0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD =5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.【分析】(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;(2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;②先确定出点Q的坐标,设点P(x,−12x2+x+4)(1<x<4),得出PG=x﹣1,GQ=−12x2+x+3,再利用三垂线构造出△PQG≌△QRH(AAS),得出RH=GQ=−12x2+x+3,QH=PG=x﹣1,进而得出R(−12x2+x+4,2﹣x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.【解析】(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=−12,∴抛物线的解析式为y=−12(x+2)(x﹣4)=−12x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得−2k+b'=0b'=4,∴k=2b'=4,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴OB BF=BD BE,∵B(4,0),∴OB=4,∵BD=5DE,∴BD BE=BD BD+DE=5DE5DE+BE=56,∴BF=BE BD×OB=65×4=245,∴OF=BF﹣OB=245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴4m+n=0−45m+n=125,∴m=−12n=2,∴直线BD的解析式为y=−12x+2;②∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ =∠HQR ,∴△PQG ≌△QRH (AAS ),∴RH =GQ =−12x 2+x+3,QH =PG =x ﹣1,∴R (−12x 2+x+4,2﹣x ),由①知,直线BD 的解析式为y =−12x+2,∴x =2或x =4(舍),当x =2时,y =−12x 2+x+4=−12×4+2+4=4,∴P (2,4).6.(2020·甘肃兰州?中考真题)如图,抛物线24y ax bx =+-经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.【答案】(1)215466y x x =--;(2)详见解析;(3)存在,点M 的坐标为(52,-9)或(52,11).【解析】【分析】(1)将A (-3,0),B (5,-4)代入抛物线的解析式得到关于a 、b 的方程组,从而可求得a 、b 的值;(2)先求得AC 的长,然后取D (2,0),则AD=AC ,连接BD ,接下来,证明BC=BD ,然后依据SSS 可证明△ABC ≌△ABD ,接下来,依据全等三角形的性质可得到∠CAB=∠BAD ;(3)作抛物线的对称轴交x 轴与点E ,交BC 与点F ,作点A 作AM′⊥AB ,作BM ⊥AB ,分别交抛物线的对称轴与M′、M ,依据点A 和点B 的坐标可得到tan ∠BAE=12,从而可得到tan ∠M′AE=2或tan ∠MBF=2FM 和M′E 的长,故此可得到点M′和点M 的坐标.【详解】解:(1)将A (-3,0),B (5,-4)两点的坐标分别代入,得9340,25544a b a b --=⎧⎨+-=-⎩,解得1,65,6a b ⎧=⎪⎪⎨⎪=-⎪⎩故抛物线的表达式为y =215466y x x =--.(2)证明:∵AO=3,OC=4,∴.取D (2,0),则AD=AC=5.由两点间的距离公式可知=5.∵C (0,-4),B (5,-4),∴BC=5.∴BD=BC .在△ABC 和△ABD 中,AD=AC ,AB=AB ,BD=BC ,∴△ABC ≌△ABD ,∴∠CAB=∠BAD ,∴AB 平分∠CAO ;(3x 轴与点E ,交BC 与点F .抛物线的对称轴为x=52,则AE=112.∵A (-3,0),B (5,-4),∴tan ∠EAB=12.∵∠M′AB=90°.∴tan ∠M′AE=2.∴M′E=2AE=11,∴M′(52,11).同理:tan ∠MBF=2.又∵BF=52,∴FM=5,∴M (52,-9).∴点M 的坐标为(52,11)或(52,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM 和M′E 的长是解题的关键7.(2020·内蒙古通辽?中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于点,A B ,与y 轴交于点C ,且直线6y x =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称.点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的函数解析式;(2)当MDB △的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以,,Q M N 三点为顶点的三角形是直角三角形,若存在,直接写出点Q 的坐标;若不存在,说明理由.【答案】(1)256y x x =-++;(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,4+)或(0,4-).【解析】【分析】(1)根据直线6y x =-求出点B 和点D 坐标,再根据C 和D 之间的关系求出点C 坐标,最后运用待定系数法求出抛物线表达式;(2)设点P 坐标为(m ,0),表示出M 和N 的坐标,再利用三角形面积求法得出S △BMD =231236m m -++,再求最值即可;(3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.【详解】解:(1)∵直线6y x =-过点B ,点B 在x 轴上,令y=0,解得x=6,令x=0,解得y=-6,∴B (6,0),D (0,-6),∵点C 和点D 关于x 轴对称,∴C (0,6),∵抛物线2y x bx c =-++经过点B 和点C ,代入,03666b c c =-++⎧⎨=⎩,解得:56b c =⎧⎨=-⎩,∴抛物线的表达式为:256y x x =-++;(2)设点P 坐标为(m ,0),则点M 坐标为(m ,256m m -++),点N 坐标为(m ,m-6),∴MN=256m m -++-m+6=2412m m -++,∴S △BMD =S △MNB +S △MND =()2141262m m ⨯-++⨯=231236m m -++=-3(m-2)2+48当m=2时,S △BMD 最大=48,此时点P 的坐标为(2,0);(3)存在,由(2)可得:M (2,12),N (2,-4),设点Q 的坐标为(0,n ),当∠QMN=90°时,即QM ⊥MN ,如图,可得,此时点Q 和点M 的纵坐标相等,即Q (0,12);当∠QNM=90°时,即QN ⊥MN ,如图,可得,此时点Q 和点N 的纵坐标相等,即Q (0,-4);当∠MQN=90°时,MQ⊥NQ,如图,分别过点M和N作y轴的垂线,垂足为E和F,∵∠MQN=90°,∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,∴∠NQF=∠QME,∴△MEQ∽△QFN,∴ME EQQF FN=,即21242nn-=+,解得:n=4+或4-,∴点Q(0,4+)或(0,4-),综上:点Q的坐标为(0,12)或(0,-4)或(0,4+)或(0,4-).【点睛】本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.。

中考数学总复习《二次函数与特殊三角形综合》专题训练-附答案

中考数学总复习《二次函数与特殊三角形综合》专题训练-附答案

中考数学总复习《二次函数与特殊三角形综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.2.如图,二次函数2142y x bx =+-的图像与x 轴相交于点(2,0)A B -、,其顶点是C .(1)b =_______;(2)D 是第三象限抛物线上的一点,连接OD ,5tan 2AOD ∠=将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(,0)k 作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知PCQ △是直角三角形,求点P 的坐标.3.如图,抛物线2y x bx c =++过点()1,0A -、点()5,0B ,交y 轴于点C .(1)求b ,c 的值.(2)点()()000,05P x y x <<是抛物线上的动点①当0x 取何值时,PBC 的面积最大?并求出PBC 面积的最大值;①过点P 作PE x ⊥轴,交BC 于点E ,再过点P 作PF x ∥轴,交抛物线于点F ,连接EF ,问:是否存在点P ,使PEF 为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.在平面直角坐标系中,已知抛物线2y x bx c =++过点()0,2A ,对称轴是直线2x =.(1)求此抛物线的函数表达式及顶点M 的坐标;(2)若点B 在抛物线上,过点B 作x 轴的平行线交抛物线于点C 、当BCM 是等边三角形时,求出此三角形的边长;(3)已知点E 在抛物线的对称轴上,点D 的坐标为1,1,是否存在点F ,使以点A ,D ,E ,F 为顶点的四边形为菱形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.5.如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,和()0,3C .(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.6.如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0A -和()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E 和F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.7.如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于()4,0B ,()2,0C -两点.与y 轴交于点()0,2A -.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P作y 轴的平行线交x 轴于点D ,求与12PK PD +的最大值及此时点P 的坐标; (3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.8.如图1,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -,(2,0)B 和(0,2)C ,连接BC ,点(,)P m n (0)m >为抛物线上一动点,过点P 作PN x ⊥轴交直线BC 于点M ,交x 轴于点N .(1)直接写出....抛物线和直线BC 的解析式; (2)如图2,连接OM ,当OCM 为等腰三角形时,求m 的值;(3)当P 点在运动过程中,在y 轴上是否存在点Q ,使得以O ,P 和Q 为顶点的三角形与以B ,C 和N 为顶点的三角形相似(其中点P 与点C 相对应),若存在,直接写出....点P 和点Q 的坐标;若不存在,请说明理由.9.已知抛物线2y x bx c =-++(b ,c 为常数,1c >)的顶点为P ,与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点C ,抛物线上的点M 的横坐标为m ,且2b c m -<<,过点M 作MN AC ⊥,垂足为N .(1)若2,3b c =-=.①求点P 和点A 的坐标;①当2MN =时,求点M 的坐标;(2)若点A 的坐标为(),0c -,且MP AC ∥,当392AN MN +=时,求点M 的坐标.10.如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点()()0,3M m m ≥-,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.11.如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 和C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 和BC .动点P 从点A 出发,在线段AC 上以每秒2个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少? (3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.12.如图,已知抛物线y =a (x +6)(x ﹣2)过点C (0,2),交x 轴于点A 和点B (点A 在点B 的左侧),抛物线的顶点为D ,对称轴DE 交x 轴于点E ,连接EC .(1)直接写出a 的值,点A 的坐标和抛物线对称轴的表达式;(2)若点M 是抛物线对称轴DE 上的点,当①MCE 是等腰三角形时,求点M 的坐标; (3)点P 是抛物线上的动点,连接PC ,PE ,将①PCE 沿CE 所在的直线对折,点P 落在坐标平面内的点P ′处.求当点P ′恰好落在直线AD 上时点P 的横坐标.13.如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于点,A B ,与y 轴交于点C ,且直线6y x =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称.点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的函数解析式;(2)当MDB△的面积最大时,求点P的坐标;Q M N三点为顶点的三角形是直(3)在(2)的条件下,在y轴上是否存在点Q,使得以,,角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.a>的图像交x轴于点A、B,14.如图,在平面直角坐标系中,函数223=-++()0y ax ax aCD x轴交抛物线于点D,连接DE并交y轴于点C,它的对称轴交x轴于点E.过点C作//延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:______;∆是直角三角形时,求a的值;(2)当HEF(3)HE与GK有怎样的位置关系?请说明理由.15.将抛物线2:(2)=-向下平移6个单位长度得到抛物线1C,再将抛物线1C向左平移C y xC.2个单位长度得到抛物线2(1)直接写出抛物线1C ,2C 的解析式;(2)如图(1),点A 在抛物线1C 对称轴l 右侧上,点B 在对称轴l 上,OAB 是以OB 为斜边的等腰直角三角形,求点A 的坐标;(3)如图(2),直线y kx =(0k ≠,k 为常数)与抛物线2C 交于E ,F 两点,M 为线段EF的中点;直线4y x k=-与抛物线2C 交于G ,H 两点,N 为线段GH 的中点.求证:直线MN 经过一个定点.参考答案:1.(1)223y x x =--+;(2)()00,或()03-,或()0332-,或()0332+,; (3)存在,()1317P --,,()417Q --,或()1317P -+,,()417Q -,或()11P -,,()22Q -,或()()1142314P Q -+,,,或()()1,142314P Q ---,,2.(1)1-;(2)3k ≤-;(3)53,2⎛⎫- ⎪⎝⎭或51,2⎛⎫-- ⎪⎝⎭.3.(1)4b =-,5c =-(2)①当052x =时,PBC 的面积由最大值,最大值为1258; ①当点P 的坐标为733333322,⎛⎫ ⎪ ⎪⎝⎭--或()4,5-时,PEF 为等腰直角三角形4.(1)242y x x =-+ ()2,2-(2)23(3)存在点F ,当()1,5F 或()1,0F -或()3,16F -+或()3,16F --时,以点A ,D ,E ,F 为顶点的四边形为菱形.5.(1)243y x x =-+(2)()2,1P -或317717,22P ⎛⎫ ⎪ ⎪⎝⎭-+或317717,22P ⎛⎫ ⎪ ⎪⎝⎭+- (3)31752a +<<或31721a <--<. 6.(1)2142y x x =-++ (2)()1,1F 或()1,3F 或()1,5F -或()1,3F -(3)162OM ON +=7.(1)211242y x x =--(2)存在,12PK PD +的最大值为258 335,216P ⎛⎫- ⎪⎝⎭(3)()1,6或()1,4-8.(1)抛物线:22y x x =-++;直线BC :2y x =-+(2)1m =或2m =或2m =(3)(2,2)P ,(0,21)Q -或(13,13)P +--,(0,1)Q 或(15,35)P +-- (0,2)Q -9.(1)①点P 的坐标为()1,4-;点A 的坐标为()3,0-;①点M 的坐标为()2,3- (2)521,24⎛⎫- ⎪⎝⎭10.(1)()1,6D(2)223y x x =-++或223y x x =-+-(3)1022-11.(1)b =2,c =3;(2)t =2,最小值为4;(3)(3174+,23178+) 12.(1)a =﹣16,A (-6,0),直线x =﹣2;(2)(﹣2,2)或(﹣2,4)或(﹣2,22)或(﹣2,﹣22);(3)132412-+或132412--. 13.(1)256y x x =-++;(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,4215+)或(0,4215-).14.(1)(1,0);(2) 33或13;(3)平行 15.(1)抛物线1C 的解析式为: y=x 2-4x -2;抛物线2C 的解析式为:y=x 2-6;(2)点A 的坐标为(5,3)或(4,-2);(3)直线MN 经过定点(0,2)。

苏科版数学九年级下册专题复习:二次函数与特殊三角形探究拓展训练(word版含答案)

苏科版数学九年级下册专题复习:二次函数与特殊三角形探究拓展训练(word版含答案)

二次函数与特殊三角形探究拓展【复习目标】梳理并掌握二次函数与直角三角形、等腰三角形的常见考点,感受和运用数形结合的思想方法,提升综合解题能力. 【课堂研讨】 研究问题一:探究1:如图,抛物线218333=-++y x x 与x 轴交于A B 、两点,与y 轴交于C 点. (1)直接写出A B C 、、三点的坐标 ; (2)证明ABC △为直角三角形。

探究2:如图,Rt △ABC 的斜边长为5,斜边上的高OC 为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上。

(1)求线段OA 、OB 的长(2)求出经过点A 、B 、C 的抛物线的关系式。

探究3:抛物线2=++y ax bx c (a ≠0)的图像与x 轴交于A B 、两点(点A 在点B 左侧),与y 轴交于C 点,且∠ACB=90º,请写出a 、b 、c 满足的关系式研究问题二:如图,已知抛物线y=﹣x 2/2+bx+c 与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0), B (1,0).(1)直接写出抛物线的解析式 ;(2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(3)已知点E 在x 轴上,点F 在抛物线上,是否存在以A,C,E,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由。

研究问题三:如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)△ABC的面积为6.(1)求抛物线的解析式;(2)设抛物线的顶点为D,在线段BC上方的抛物线上是否存在点P使得△PDC 是等腰三角形?若存在,直接写出符合条件的点P的坐标.研究问题四:m ,0),B(m+2,0)两点,记抛物线顶如图,一开口向上的抛物线与x轴交于A(2点为C ,且AC ⊥BC .(1)若m 为常数,求抛物线的解析式;(用含有m 的式子表示)(2)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BOD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.提优拓展训练1、如图,已知直线y=kx-6与抛物线y=ax 2+bx+c 相交于A 、B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上. (1)求抛物线的解析式;(2)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.O BACD xy2、如图,抛物线经过、两点,与轴交于另一点. (1)求抛物线的解析式;(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.24y ax bx a =+-(10)A -,(04)C ,x B (1)D m m +,D BC BD P 45DBP ∠=°P yxOABC3、如图,一次函数3y=-x+2与坐标轴分别交于A,B两点,抛物线22y=-x+bx+c3经过点A,B,点P从点B出发,以每秒2个单位长度的速度沿射线BA运动,点Q从点A 出发,以每秒1个单位长度的速度沿射线AO运动,两点同时出发,运动时间为t秒.(1)求此抛物线的表达式;(2)求当△APQ为等腰三角形时,所有满足条件的t的值;(3)点P在线段AB上运动,t为何值时,△APQ的面积达到最大?并求出最大面积.参考答案研究问题一 1. A (-1,0)B (9, 0)C (0,3)证明略2. 解:∵OC 2=OA·OB , ∴OA·OB=4,又∵OA+OB=5,且OA <OB , 解得,OA=1,OB=4,∴A (-1,0),B (4,0),C (0,2),设过A 、B 、C 三点的抛物线的解析式为:y=a (x+1)(x-4),把C 点坐标代入得,∴3. ac=-1 研究问题二研究问题三(1)322++-=x x y (2)研究问题四 (1)(2)存在实数m=4,使得△BOD 为等腰三角形提优拓展训练1. (1)322--=x x y(2)2. (1)抛物线的解析式为(2)(0,1) (3)3.(2)(3)S max=1/2。

陕西省中考数学试题研究类型二次函数与特殊三角形判定练习

陕西省中考数学试题研究类型二次函数与特殊三角形判定练习

第24题 二次函数综合题类型1 二次函数与特殊三角形判定1. 已知二次函数y =ax 2+bx -3a (a >0)经过点A (-1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.第1题图(1)解:∵二次函数y =ax 2+bx -3a 的图象经过点A (-1,0)、C (0,3),∴根据题意,得⎩⎪⎨⎪⎧a -b -3a =0-3a =3, 解得⎩⎪⎨⎪⎧a =-1b =2, ∴抛物线的解析式为y =-x 2+2x +3;(2)证明:由y =-x 2+2x +3=-(x -1)2+4得,点D 的坐标为(1,4),点B 的坐标为(3,0),如解图,过点D 作DE ⊥x 轴于点E ,过点C 作CF ⊥DE 于点F ,∵D (1,4),B (3,0),C (0,3),∴OC =OB =3,DE =4,BE =2,CF =DF =1,∴CD 2=CF 2+DF 2=2,BC 2=OC 2+OB 2=18,BD 2=DE 2+BE 2=20,∴CD 2+BC 2=BD 2,∴△BCD 是直角三角形;第1题解图(3)解:存在.抛物线y =-x 2+2x +3对称轴为直线x =1.i )如解图,若以CD 为底边,则P 1D =P 1C ,设点P 1的坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3-y )2,P 1D 2=(x -1)2+(4-y )2, ∴x 2+(3-y )2=(x -1)2+(4-y )2,即y =4-x .又∵P 1(x ,y )在抛物线y =-x 2+2x +3上,∴4-x =-x 2+2x +3,即x 2-3x +1=0, 解得x 1=3+52,x 2=3-52<1(舍去), ∴x =3+52, ∴y =4-x =5-52, 即点P 1的坐标为(3+52,5-52). ii )如解图,若以CD 为一腰,∵点P 2在对称轴右侧的抛物线上,由抛物线的对称性知,点P 2与点C 关于直线x =1对称,此时点P 2的坐标为(2,3).∴符合条件的点P 的坐标为(3+52,5-52)或(2,3). 2. 如图,抛物线C 1:y =x 2+bx +c 经过原点,与x 轴的另一个交点为(2,0),将抛物线C 1向右平移m (m >0)个单位得到抛物线C 2,C 2交x 轴于A ,B 两点(点A 在点B 的左边),交y 轴于点C .(1)求抛物线C 1的解析式及顶点坐标;(2)以AC 为斜边向上作等腰直角△ACD ,当点D 落在抛物线C 2的对称轴上时,求抛物线C 2的解析式;(3)若抛物线C 2的对称轴上存在点P ,使△PAC 为等边三角形,请直接写出m 的值.第2题图解:(1)∵抛物线C 1:y =x 2+bx +c 经过原点(0,0),与x 轴的另一个交点为(2,0),∴⎩⎪⎨⎪⎧c =04+2b +c =0, 解得⎩⎪⎨⎪⎧c =0b =-2,∴抛物线C 1的解析式为 y =x 2-2x ,则y =x 2-2x =(x -1)2-1,∴该抛物线的顶点坐标为(1,-1);(2)∵将抛物线C 1向右平移m (m >0)个单位得到抛物线C 2,∴抛物线C 2的解析式为y =(x -1-m )2-1,∵抛物线C 2交x 轴于A 、B 两点(点A 在点B 的左边),与y 轴交于点C , ∴A (m ,0)、B (m +2,0)、C (0,m 2+2m ),设抛物线C 2的对称轴与x 轴的交点为点E ,如解图①,过点C 作CH ⊥DE 于点H ,第2题解图①∵△ACD 是以AC 为斜边的等腰直角三角形,∴∠CDA =90°,CD =AD ,又∵∠CHD =∠DEA =90°,∴∠CDH +∠ADE =∠ADE +∠DAE ,∠HCD +∠HDC =∠HDC +∠ADE ,∴∠CDH =∠DAE, ∠HCD =∠EDA ,∴△CHD ≌△DEA ,∴HD = AE =1, DE = CH =m +1,∴EH =HD +DE =m +2,由OC =HE 得m 2+2m = m +2,解得m 1=1,m 2=-2(舍去), ∴抛物线C 2的解析式为y =(x -1-1)2-1=x 2-4x +3;(3)m =33.【解法提示】如解图②,连接BC 、BP ,由抛物线的对称性可知AP =BP ,第2题解图②∵△PAC 是等边三角形,∴AP =BP =CP ,∠APC =60°,∴C 、A 、B 三点在以点P 为圆心,PA 长为半径的圆上,∴∠CBO =12∠CPA =30°,∴BC =2OC ,由勾股定理得OB=BC2-OC2=3OC,∴3()m2+2m=m+2,解得m1=33,m2=-2(舍去).∴m=33.。

中考数学复习《二次函数与三角形判定》典型例题解析

中考数学复习《二次函数与三角形判定》典型例题解析

中考数学复习《 二次函数与三角形判断 》典型例题分析二次函数与三角形判断★1.如图,在平面直角坐标系中,抛物线y =x 2+ + c 与 x 轴交于 A( - ,bx 10)、 B 两点,与 y 轴交于 C(0,-3),极点为 D.(1)求抛物线表达式;(2)点 N 为抛物线对称轴上一动点, 若以 B 、N 、C 为极点的三角形为直角三角形, 求出全部相应的点 N 的坐标.第 1题图解: (1)∵ 抛物线 y =x 2+bx + c 过 A(-1,0)、C(0, -3),1 b c 0 b2 ∴3,解得,cc3∴ 抛物线表达式为 y =x 2-2x -3; (2)由(1)知抛物线对称轴为 x =-b=1,则设 N(1,n),易知 B(3,0),2a则 BN = 4+n 2, NC = 123 n ,BC =3 2,如解图,连结 NC 、 NB ,① 若∠BNC =90°,则 BC 2=BN 2+ NC 2 ,即 18= 4+ n 2+1+9+6n +n 2,∴ n 2+3n - 2= 0,-3± 17∴ 解得 n = 2 ,∴N(1,317 )或 N(1, 317 );22②若∠NBC =90°,则 NC 2=BN 2+BC 2,即 1+9+6n +n 2=4+n 2+18, 第 1 题解图∴ n = 2,∴ N(1,2);③ 若∠NCB =90°,则 BN 2=NC 2 +BC 2 ,即 4+n 2=1+9+6n +n 2+18, ∴ n = -4,∴N(1,-4).3 17 3 17综上,当 N(1,2)或 N(1,)或 N(1,2)或 N(1,-4)时,以 B 、2N 、 C 为极点的三角形为直角三角形.★ 2.已知抛物线 y =-x 2+ 2x +m -1 过原点 O ,与 x 轴的另一个交点为 A ,极点为 D ,我们称由抛物线的极点和与 x 轴的两个交点构成的三角形为该抛物线的 “极点三角形 ”.(1)求 m 的值;(2)判断该 “极点 △ADO ”的形状,并说明原因;(3)将此抛物线平移后,经过点C(1,0),且“极点三角形”为等边三角形,求平移后的抛物线表达式.解: (1)∵抛物线 y=-x2+ 2x+m-1 经过坐标原点,∴把(0,0)代入表达式得m-1=0,∴m=1;(2)该“极点△ ADO”为等腰直角三角形.原因以下:如解图①,∵m=1,∴抛物线表达式为 y=-x2+2x,变形为 y=- (x-1)2+1,∴点 D 坐标为 (1,1),∴OD= 2.把 y=0 代入表达式得, x1=0,x2= 2,∴A 点坐标为 (2, 0),∴ AD= 2, OA= 2,∴ OD= AD,OA2=OD2+AD2,∴∠ ADO=90 °,∴△ ADO 为等腰直角三角形;第 2题解图①第2题解图②(3)如解图②,设所求抛物线表达式为y=-x2+bx+c,∵抛物线经过点 C(1,0),∴ b+ c=1①,设点 D′为平移后抛物线极点,b 4c + b 2,∴D ′(4 )2,4c +b 2∵ tan ∠D ′CE = tan60 °= 4 = ②,b 32-1①② 两式联立,解得 b =2 3+2,c = -2 3- 1, (b =2,c =-1 舍去 )∴ 平移后抛物线的表达式为 y =- x 2+(2 3+2)x -1-2 3.★ 3. 如图,在平面直角坐标系中, △ABC 是直角三角形, ∠ACB =90°,AC= BC , OA = 1, OC = 4,抛物线 y =x 2+bx + c 经过 A , B 两点.(1)求抛物线的表达式;(2)点 E 是直角 △ ABC 斜边 AB 上一动点 (点 A 、B 除外 ),过点 E 作 x 轴的垂线交抛物线于点 F ,当线段 EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上能否存在一点 P ,使△EFP 是以 EF 为直角边的直角三角形?若存在,恳求出全部点P 的坐标;若不存在,请说明原因.第3题图解: (1)∵ OA = 1, OC =4,AC =BC ,∴ BC = 5,∴ A(-1,0),B(4, 5),抛物线 y =x 2+ bx +c 经过 A ,B 两点,1 b c 0 b2 ∴4bc 5,解得,16 c3∴ 抛物线表达式为 y =x 2-2x -3;(2)设直线 AB 分析式为 y =KX + b ,直线经过点 A ,B 两点,k b 0 k 1 ∴b5,解得,4k b1∴ 直线 AB 的分析式为: y =x +1,设点 E 的坐标为 (m ,m + 1),则点 F(m ,m 2-2m -3),2 23 225∴ EF =m + 1- m +2m +3=- m +3m +4=- (m -2) + 4 , ∴ 当 EF 最大时, m =3,23 5 3 ,- 15∴点 E( , ),F( 4 );2 22(3)存在.5① 当∠FEP =90°时,点 P 的纵坐标为 2,25 226 2 26 即 x -2x - 3= ,解得 x 1=2, x 2=,22∴点 P 1 2226 5,2 2 26 5 (,2) P(2 ,2),15② 当∠EFP =90°时,点 P 的纵坐标为 - 4 ,2-2x - 3= - 15 1 = 3 舍去 , 即 x 4 ,解得 1 = , 2 2( x 2 x )115∴ 点 P 3(2,- 4 ).综上所述, P 1 226 ,522 26 ,531,-15)★ 4.在平面直角坐标系中,抛物线 y =ax 2-2ax + b 与 x 轴交于 A 、 B 两点,点 B 坐标为 (3,0),与 y 轴交于点 C(0,3).(1)求抛物线对称轴及点 A 的坐标;(2)求抛物线的表达式;(3)点 M 、N 是抛物线上的两点 (点 M 在 N 的左边 ),连结 MN.若 MN ∥ x 轴,则在x 轴上能否存在一点 Q ,使得 △MNQ 为等腰直角三角形?若存在,求出点 Q 的坐标;若不存在,说明原因.解: (1)依据抛物线的表达式 y =ax 2-2ax + b ,-2a可知其对称轴为直线 x =- 2a = 1,依据点 A 、 B 对于对称轴对称,点 B 坐标为 (3,0),可得点 A 坐标为 (-1,0);(2)将点 A(-1,0)、 C(0,3)坐标代入抛物线表达式中有:a 2ab 0 a 1b ,解得b3 ,3∴ 抛物线的表达式为 y =- x 2+ + ;2x 3 (3)存在.如解图, △QMN 是直角三角形,直角极点不确立,则分以下三种状况议论:① 当点 Q 是直角极点时,依据等腰直角三角形的对称性可知点Q 1(1,0);② 当点 M 或 N 是直角极点时,且点 M 、N 在 x 轴上方时,设点 Q 2, 0)(x < 1) ,(x∴ Q 1Q 2=-,1 x∴MN =2Q 1 Q 2= - ,2(1 x)∵△ Q2MN 为等腰直角三角形,∴y=2(1- x),即-x2+2x+3=2(1-x),又∵x< 1,∴解得 x1=2- 5, x2=2+ 5(舍去 ),∴点 Q2(2- 5,0),由抛物线的对称性可知点 Q3 ( 5,0);③若点 N 或点 M 是直角极点,且点M、N 在 x 轴下方时,设点Q4(x,0)(x<1),第4题解图∴Q1Q4= 1- x,而 MN=2Q1Q4=2(1-x),∵△ Q4MN 为等腰直角三角形,∴- y= 2(1-x),即-(- x2+2x+ 3)=2(1-x),又∵x< 1,∴解得 x3=-5,x4=5(舍去 ),∴点 Q4(-5,0),由抛物线的对称性可知点Q5 ( 5+2,0),∴存在点 Q,分别为: Q1(1,0)、Q2(2-5,0)、Q3( 5,0)、Q4(-5,0),Q5( 5+2, 0).★5.如图,已知抛物线 y=ax2+bx+4(a≠ 0)的对称轴为直线 x=3,与 x 轴订交于 A、B 两点,与 y 轴订交于点 C,已知 B 点的坐标为 B(8,0).(1)求抛物线的表达式;(2)在抛物线的对称轴上能否存在点Q,使△ ACQ 为等腰三角形?若存在,求出切合条件的 Q 点坐标;若不存在,请说明原因.第5题图【思想教练】 (1)要求抛物线表达式由已知抛物线对称轴,利用求对称轴公式,联合点 B 坐标,利用待定系数法求解即可;(2)点 A、点 C 为定点,要使△ACQ 为等腰三角形,需分三种状况,议论:① AC=CQ,②AQ=CQ,③AC=AQ,求切合条件的点即可.b解: (1)依据题意得,-2a=3,即 b=-6a,∴抛物线的表达式为y=ax2-6ax+4,将 B(8,0)代入得, 0= 64a-48a+4,1 3解得 a=-4,b=2,1 2 3∴抛物线的表达式为y=-4x +2x+4;(2)存在.1 2 3令-4x +2x+4=0,解得 x1=-2,x2=8,∴A(-2,0),当 x=0 时, y=4,∴ C(0,4),由勾股定理得, AC=22+42= 25,如解图,过点 C 作 CD⊥对称轴于点 D,∵抛物线对称轴为直线x= 3,则 CD= 3,D(3,4).第5题解图当①AC=CQ 时, DQ=CQ2-CD2=(25)2-32=11,点 Q 在点 D 的上方时,点 Q 到 x 轴的距离为 4+ 11,此时,点 Q1(3, 4+ 11),当点 Q 在点 D 的下方时,点 Q 到 x 轴的距离为 4- 11,此时点 Q2(3,4-11);②当 AQ=CQ 时,点 Q 为对称轴与 x 轴的交点, AQ=5,CQ=32+42=5,此时,点 Q3(3, 0);③当 AC=AQ 时,∵AC= 2 5,点 A 到对称轴的距离为 5, 2 5<5,∴ 这类情况不存在.综上所述,当点 Q 的坐标为 (3,4+11)或(3,4-11)或 (3,0)时,△ACQ 为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索二次函数综合题解题技巧四
二次函数在中考数学中常常作为压轴题,具有一定的综合性和较大的难度。

学生往往因缺乏思路,感到无从下手,难以拿到分数。

事实上,只要理清思路,方法得当,稳步推进,少失分、多得分、是完全可以做到的。

第1小问通常是求解析式:这一小题简单,直接找出坐标或者用线段长度来确定坐标,进而用待定系数法求出解析式即可。

第2—3小问通常要结合三角形、四边形、圆、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系;既要防止钻牛角尖,又要防止轻易放弃。

类型四二次函数与特殊三角形的探究问题
(1)与直角三角形的探究问题
例1如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,
且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B。

(1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解
析式;
(2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC
为直角三角形的点P的坐标.
解:(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,
且抛物线经过A(1,0),抛物线与x轴的另一交点为B,
∴B的坐标为:(-3,0),
设抛物线的解析式为:y=a(x-1)(x+3),
把C(0,3)代入,-3a=3,
解得:a=-1,
∴抛物线的解析式为:y=-(x-1)(x+3)=-x2-2x+3;
把B(-3,0),C(0,3)代入y=mx+n得:
m=1,n=3
∴直线y=mx+n的解析式为:y=x+3;
(1)设P(-1,t),
又∵B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,
①若点B为直角顶点,则BC2+PB2=PC2,
即:18+4+t2=t2-6t+10,解之得:t=-2;
②若点C为直角顶点,则BC2+PC2=PB2,
即:18+t2-6t+10=4+t2,解之得:t=4,
③若点P为直角顶点,则PB2+PC2=BC2,
即:4+t2+t2-6t+10=18,
解之得:t1= 错误!未找到引用源。

, t2=
综上所述P的坐标为(-1,-2)或(-1,4)或(-1,)或(-1,)方法提炼(1):
★利用坐标系中两点距离公式,得到所求三角形三边平方的代数式;
★确定三角形中的直角顶点,若无法确定则分情况讨论;
★根据勾股定理得到方程,然后解方程,若方程有解,此点存在;否则不存在;
方法提炼(2):
★利用两直线垂直,K值互为负倒数(K1K2=-1),先确定点所在的直线表达式
★将直线与抛物线的表达式联立方程组,若求出交点坐标,此点存在;否则不存在;
方法提炼(3):
★利用特殊角45°构造直角三角形,易求点的坐标。

(2)与等腰三角形的探究问题
例2如图,直线y=3x+3交x轴于点A,交y轴于点B,过A、
B两点的抛物线交x轴于另一点C(3,0)。

(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角
形?若存在,求出符合条件的点Q的坐标;若不存在,请说明
理由。

解:(1)抛物线的解析式为:y=-x2+2x+3
(2)该抛物线的对称轴为x= 1。

设Q点坐标为(1,m)
当AB=AQ时 Q点坐标(1,6),或(1,- 6);
当BA= BQ时解得:m=0,m =6, Q点坐标为(1,0)或(1,6) 此点在直线AB上,不符合题意应舍去;
当QA=QB时解得:m=1, Q点坐标为(1,1).
抛物线的对称轴上是存在着点Q(1, 6)、(1,- 6)、(1,0)、(1,1)
方法提炼:
★设出点坐标,求边长;(类型一方法提炼)
★当所给定长未说明是等腰三角形的底还是腰时,需分三种情况讨论,如:本题中当AB=AQ 时;当BA= BQ时;当QA=QB时;具体方法如下:
①当定长为腰,找已知直线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与已知直线有交点且交点不是定长的另一端点时,交点即为所求的点;若所画弧与已知直线无交点或交点是定长的另一端点时,满足条件的点不存在;②当定长为底边时,作出定长的垂直平分线,若作出的垂直平分线与已知直线有交点,则交点即为所求的点,若作出的垂直平分线与已知直线无交点,则满足条件的点不存在.用以上方法即可找出所有符合条件的点。

跟踪训练1:如图,已知抛物线y=x2+bx-3a过点A(1,0),
B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B
为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,
Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
跟踪训练2:以菱形ABCD的对角线交点O为坐标原点,AC
所在的直线为x轴,已知A(-4,0),B(0,-2),M(0,
4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P
的纵坐标为a.
(1)求BC边所在直线的解析式;
(2)当△OPM为直角三角形时,求点P的坐标.
跟踪训练3:如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,B C.
(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B
运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速
度向点C运动.规定其中一个动点到达端点时,另一个动点也随之
停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
跟踪训练4:如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC =2.
(1)求二次函数y=ax2+bx+c的解析式;
(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P 为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.。

相关文档
最新文档