实验六

合集下载

实验六——常见非金属离子的定性检验

实验六——常见非金属离子的定性检验

02
硫酸根干扰: 硫酸根也会与 硝酸银反应生成沉淀,但加 入过量硝酸银后,硫酸银沉 淀会转化为氯化银沉淀。因 此,在滴定前需加入足量硝 酸银,确保硫酸根完全转化 为硫酸银。
03
颜色干扰: 如果待测溶液有 颜色,可能会影响滴定终点 的判断。可采用电位滴定法 ,通过测量电位变化确定滴 定终点,消除颜色干扰。
硫酸根离子(SO4²⁻) 的检验:通常使用钡离 子与其反应生成白色沉 淀硫酸钡(BaSO4)。 若产生不溶于酸的白色 沉淀,则说明存在硫酸 根离子。
氯离子(Cl⁻)的检验: 一般利用硝酸银溶液, 氯离子与之反应生成白 色沉淀氯化银(AgCl) 。若产生不溶于硝酸的 白色沉淀,则证明有氯 离子的存在。
磷酸根离子
是磷肥的主要成分,也广泛存 在于土壤和水体中。
检验原理和方法概述
化学反应法:利用特定的化学试剂与非金属离子 发生反应,通过观察反应现象(如颜色变化、沉 淀生成等)来判断离子种类。如银盐法可用于检 测氯离子的存在。
电化学法:通过测量离子在电场作用下的迁移行 为来判断离子种类。如电位滴定法、电导法等。
常见非金属离子的定 性检验
目录
• 引言 • 硫酸根离子的检验 • 氯离子的检验 • 硝酸根离子的检验 • 碳酸根离子和碳酸氢根离子的检验 • 结论
01
引言
定性检验的目的和意义
确定离子种类
通过定性检验,可以明确样品中 存在哪些非金属离子,为后续分
析和研究提供依据。
保障生产安全
在化工生产中,某些非金属离子可 能对设备和工艺产生不良影响,通 过定性检验可以及时发现问题,确 保生产安全。
光谱法:利用非金属离子在特定波长下的吸收或 发射光谱进行识别。如原子吸收光谱法、荧光光 谱法等。

植物学实验 第六章 植物叶的形态和结构

植物学实验 第六章 植物叶的形态和结构

三、实验内容
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (1)旱生植物夹竹桃叶横切面结构
三、实验内容
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (1)旱生植物夹竹桃叶横切面结构
夹竹桃叶横切-示旱生植物叶结构
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (3)水生植物睡莲浮水叶横切面结构
三、实验内容
(一)双子叶植物叶的结构
取三种生态型的叶,做徒手切片并制作水封片,在显微镜 下仔细观察。 (4)水生植物眼子菜沉水叶横切面结构
三、实验内容
(一)双子叶植物叶的结构
五、思考题
2.比较小麦叶和玉米叶的结构特点。
玉米的维管束
小麦的维管束
五、思考题
3.马尾松针叶的结构与其生长环境是如何相适应的?
1、松针中小,表皮细胞壁厚,角质层发达,表皮 下具多层厚壁细胞组成的下皮层,气孔内陷。 2、叶肉细胞的细胞壁内陷,形成许多褶壁,叶绿 体沿褶壁分布,使细胞扩大了光合面积。 3、在叶肉内方具明显内皮层,内皮层上有凯氏带。
五、思考题
2.比较小麦叶和玉米叶的结构特点。
玉米与小麦叶脉的详细结构:
玉米的维管束鞘只有一层薄壁细胞,细胞较大,内含 有比叶肉细胞个大、数多的叶绿体。其外紧密毗连着 一圈叶肉细胞,组成“花环型”的结构----四碳植物。
小麦维管束鞘是两层,外层细胞壁薄,个大,含叶绿 体较叶肉细胞少。内层细胞壁厚,细胞也小,几乎不 含叶绿体。因此小麦没有“花环”结构----三碳植物。
三、实验内容
(一)双子叶植物叶的结构

实验6 电位差计测电压

实验6 电位差计测电压

实验六 利用电位差计测量电压一、实验目的1. 理解并掌握电位差计的工作原理;2. 掌握用箱式电位差计测量电压的方法。

二、实验器材直流稳压电源、电阻箱一个、滑线变阻器一个、万用表一个、箱式直流电位差计一只,导线等。

三、实验原理如图所示,标准电压Es=1.0186V ,调节滑动变阻器1使开关打向左边Es 时I G =0。

此时,流经电阻和滑动变阻器2的电流为:10101.86s E I mA == 当开关打向右边Ux 时,调节滑动变阻器2使I G =0,此时回路1的器件和条件都没发现变化,其电流仍然为10mA ,此时滑动变阻器2的左端电压就等于Ux 的电压。

四 、实验步骤(1)电压的测量1、打开直流是位差计电源开关,将倍率开关K1由“断”放所需档位5上,将功能开关K3旋到“测量”,旋动调零电位器,使检流计初步指零;令电位差计预热5分钟;2、将检流计精细调0;将扳键推向“标准”,旋动工作电流调节旋钮“粗”,“微”,使检流计指0;3、按图2所示,接好电路图;4、用万用表测量100欧姆电阻两端电压;5、按万用表测量数据初步调节读盘数据,被测电阻两端电压按正确极性接在“未知”接线柱上,将扳键开关K2扳向“未知”;调节大小读数使检流计指零,则被测量值等于倍率与3个读盘之和的乘积。

图1 电位差计实验原理图2 电位差计测量电压(2)电位差计的灵敏度电位差计的灵敏度定义为:电位差计平衡后,单位被测电压的变化所引起的检流计指针偏转的变化。

若改变平衡时的补偿电压U的改变量为△U,引起检流计指针的偏转为△n,则灵敏度S为:S=△n/△U =五、实验报告万用表测量电压值为电位差计测量值为电位差计的灵敏度S=。

实验六

实验六

(2)悬滴法 (a)在洁净凹载玻片周围涂少许凡士林。 (b)在盖玻片中央滴一小滴菌液,或用接种环取 1—2环菌液置于中央。 (c)将凹玻片反转,使凹窝中心对准盖玻片上的 菌液滴,液滴不得与凹玻片接触,以接种环柄轻压 使盖玻片与凹玻片粘在一起,液滴处于封闭的小室 中,防止液滴干燥和气流的影响。 (d)小心将凹玻片翻转过来,使菌滴仍悬浮在盖 玻片下和凹窝中心。 (e)先用低倍镜找到悬滴边缘,再用高倍镜观察。 观察时光线要调得暗一些。
五、实验报告
接物镜 接物镜倍 目镜测微尺 镜台测微尺 数 格数 格数 低倍镜 高倍镜 油 镜
接目镜放大倍数: 接目镜放大倍数:_______________
1.结果 (1)将目镜测微尺校正结果填人下表:
目镜测微尺每 格代表的长 度/pm
五、实验报告
宽 长 微生物 目镜测微 名称 尺每格 (2)将各菌测定结果填人 下表: 代表的 长度 /µm 目镜测 宽度/ 目镜测 长度 µm /µm 微尺 微尺 格数 格数 大肠杆 菌 酿酒酵 母 金葡球 菌 菌体大 小范 围 /µm
三、实验器材 菌种:大ห้องสมุดไป่ตู้杆菌。 仪器或其他用具 、凡士林、凹载玻片、 盖玻片、镊子、显微镜等。
四、操作步骤 (1)压滴法 (A)制片:在载玻片上加一滴生理盐水,挑取一环 菌液与水混合,加一环万分之一的美蓝水溶液混匀。 用镊子夹一洁净的盖玻片,使其一边先接触菌液, 然后将整个盖玻片慢慢放下,注意不要产生气泡。 (B)镜检:先以低倍镜找到标本,再用高倍镜观察, 观察时光线要调得暗些。 有鞭毛细菌可做直线、波浪式或翻滚运动,两个细 胞之间出现明显的位移,区别与布朗运动。
细菌的运动性观察
一、目的要求 学习用压滴法和悬滴法观察细菌的运动性 二、实验原理

实验六 发酵法检测大肠菌群培养基制备

实验六 发酵法检测大肠菌群培养基制备

第5组:包培养皿,并协助第4组配制培养基。
① 6付1包。包90付。共15包。 ② 高压蒸汽灭菌。115℃,灭菌30min。
后续试验分组
2013-1班:分6组(5-6人1组) 2013-2班:分6组(5-6人1组) 2012-1班:分5组(5-6人1组) 2012-2班:分6组(5-6人1组)
30g 9g 15g 15g 3ml 1000ml
配制方法:
①将蛋白胨、牛肉膏、乳糖及氯化钠加热溶解于1000ml水中, 调整pH为7.2-7.4。
②定量加入1.6%溴甲酚紫乙醇溶液,充分混匀。
③分装试管(内有小倒管)。用注射器分装每管5ml。装36支 试管。
④高压蒸汽灭菌。115℃,灭菌30min。
实验六 发酵法检测水中大肠菌群培养基的制备
一 实验目的
1 学习并掌握液体培养基配制方法。 2 学习培养皿的包扎方法。 3 掌握并巩固高压蒸汽灭菌方法。
二 实验操作步骤(分组操作:6-7人1组,分5组)
第1组:3倍浓缩乳糖培养基制备。(配制200ml)
蛋白胨 牛肉膏 乳糖 氯化钠 1.6%溴甲酚紫乙醇溶液 水
③ 分装试管(内有小倒管)。用注射器分装每管10ml。每 组装55支试管。
④ 高压蒸汽灭菌。115℃,灭菌30min。
第4组:伊红美蓝储备培养基制备(配制1400ml)
蛋白胨 乳糖 磷酸氢二钾 琼脂ቤተ መጻሕፍቲ ባይዱ水
10g 10g 2g 20g 1000ml
配制方法: ① 将琼脂加入900ml水中,加热溶解;
② 然后加入磷酸二氢钾及蛋白胨,混匀溶解; ③ 加水补足1000ml,调pH7.2-7.4。 ④ 加入乳糖后溶解混匀。 ⑤ 分装三角瓶。每瓶200ml(定量)。 ⑥ 高压蒸汽灭菌。115℃,灭菌30min。

2022版新高考物理:实验六 探究向心力的大小与半径、角速度、质量的关系

2022版新高考物理:实验六 探究向心力的大小与半径、角速度、质量的关系

(3) 为 了 验 证 向 心 力 跟 半 径 、 质 量 的 关 系 , 还 需 要 用 到 的 实 验 器 材 有 ______________和______________。
【解析】(1)为了探究向心力跟角速度的关系,需要控制金属块转动半径和金 属块质量两个变量保持不变。金属块的拉力可由力传感器直接测量,根据题
(1)在该实验中应用了__________来探究向心力的大小与质量 m、角速度 ω 和 半径 r 之间的关系。
A.理想实验法 B.控制变量法 C.等效替代法
(2)用两个质量相等的小球放在 A、C 位置,匀速转动时,左边标尺露出 1 格, 右边标尺露出 4 格,则皮带连接的左右塔轮半径之比为__________。
答案:(1)B (2)2∶1
创新型实验 类型一 不变目的变装置(探究向心力的影响因素) 【典例 2】如图甲为探究向心力跟质量、半径、角速度关系的实验装置,金属 块放置在转台上,电动机带动转台做圆周运动,改变电动机的电压,可以改 变转台的转速,光电计时器可以记录转台每转一圈的时间,金属块被约束在 转台的凹槽中,只能沿半径方向移动,且跟转台之间的摩擦力很小可以忽略。
【数据处理】 1.m、r 一定:
序号
F向
ω ω2
1 23 45 6
2.m、ω 一定:
序号 F向r1Fra bibliotek234563.r、ω 一定:
序号 F向 m
123456
4.分别作出 F 向­ω2、F 向­r、F 向­m 的图像。 5.实验结论: 物体做圆周运动需要的向心力跟物体的质量成正比,跟半径成正比,跟角速 度的二次方成正比。
实验六 探究向心力的大小与半径、角速度、 质量的关系
实验操作·创新探究

实验6 验证机械能守恒定律

实验6 验证机械能守恒定律

实验六验证机械能守恒定律验证机械能守恒定律。

1.在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能保持不变。

若物体某时刻瞬时速度为v,下落高度为h,则重力势能的减少量为mgh,动能的增加量为12m v2,看它们在实验误差允许的范围内是否相等,若相等则验证了机械能守恒定律。

2.速度的测量:做匀变速直线运动的物体某段位移中间时刻的瞬时速度等于这段位移的平均速度。

计算打第n点速度的方法:测出第n点与相邻前后点间的距离x n和x n+1,由公式v n=x n+x n+12T计算,或测出第n-1点和第n+1点与起始点的距离h n-1和h n+1,由公式v n=h n+1-h n-12T算出,如图所示。

铁架台(含铁夹),打点计时器,学生电源,纸带,复写纸,导线,毫米刻度尺,重物(带纸带夹)。

1.安装置:如图所示,将检查、调整好的打点计时器竖直固定在铁架台上,接好电路。

2.打纸带:将纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手提着纸带使重物静止在靠近打点计时器的地方。

先接通电源,后松开纸带,让重物带着纸带自由下落。

更换纸带重复做3~5次实验。

3.选纸带:分两种情况说明(1)用12m v2n=mgh n验证时,应选点迹清晰,且第1、2两点间距离接近2 mm的纸带。

若第1、2两点间的距离大于2 mm,则可能是由于先释放纸带后接通电源造成的。

这样,第1个点就不是运动的起始点了,这样的纸带不能选。

(2)用12m v2B-12m v2A=mgΔh验证时,处理纸带时不必从起始点开始计算重力势能的大小,这样,纸带上打出的起始点O后的第一个0.02 s内的位移是否接近2 mm,以及第一个点是否清晰也就无关紧要了,实验打出的任何一条纸带,只要后面的点迹清晰,都可以用来验证机械能守恒定律。

1.测量计算在起始点标上0,在以后各计数点依次标上1、2、3…,用刻度尺测出对应下落高度h1、h2、h3…。

免疫学实验实验六肥达试验

免疫学实验实验六肥达试验
免疫学实验实验六肥 达试验
目录
• 实验简介 • 实验材料 • 实验步骤 • 实验结果分析 • 实验结论
01
实验简介
实验目的
掌握肥达试验的原理 及操作方法。
了解肥达试验在临床 诊断中的应用。
学习通过肥达试验检 测伤寒沙门氏菌的方 法。
实验原理
肥达试验是一种利用已知伤寒沙门氏菌的菌体抗原和鞭毛抗原,以及副伤寒沙门氏 菌的鞭毛抗原,通过凝集反应检测血清中相应抗体的方法。
01
02
03
实验器材
准备试管、吸管、显微镜 等实验器材,确保其清洁、 干燥、无菌。
试剂
配制好所需的抗原和抗体 溶液,确保其质量和浓度 符合实验要求。
样本
采集待检测的血清样本, 确保其无菌、无污染,并 妥善保存。
实验操作流程
摇匀
轻轻摇动试管,使血清、抗原 和抗体充分混合。
离心
将反应后的液体进行离心,分 离出沉淀物。
用于观察细菌形态和计数。
移液器
用于精确移取一定量的菌液和 血清。
试管和吸管
用于配制菌液和稀释血清。
培养皿和培养基
用于细菌培养和计数。
实验动物
小鼠
兔子
用于感染细菌后观察症状和收集血清 样本。
用于感染细菌后观察症状和收集血清 样本。
大鼠
用于感染细菌后观察症状和收集血清 样本。
03
实验步骤
实验前准备
当待测血清中含有相应抗体时,抗体与抗原发生特异性结合,形成可见的凝集反应。
通过凝集反应的结果,可以判断待测血清中是否含有相应的抗体,进而推断出患者 是否感染了伤寒沙门氏菌或副伤寒沙门氏菌。
实验意义
肥达试验对于伤寒的诊断具有重 要意义,尤其在伤寒的早期诊断 中具有较高的灵敏度和特异性。

实验6洞道干燥实验

实验6洞道干燥实验

洞道干燥实验一、实验目的1、了解洞道式干燥装置的基本结构、工艺流程和操作方法。

2、学习测定物料在恒定干燥条件下干燥特性的实验方法。

3、掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。

4、实验研究干燥条件对于干燥过程特性的影响。

二、实验原理在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。

由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。

按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。

若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。

主要参数与公式:三、 实验装置四、 实验步骤1、 单价开启风机,再单击自动读数2、 将鼠标指向天平右边的砝码并按住左键迅速拖走,此时天平向左倾,当天平平衡时,会自动“读取数据”,此时一个秒表停止,另一个秒表启动,再减重,再自动读取数据,依次类推,建议每次减重1克,读一组数据,直到余30克左右。

3、 干燥结束后,关闭风机。

天平通风机温度计秒表加热器 湿球温度计干燥箱五、数据处理质量(g)减重(g)干燥时间(s)X(kg水/kg干料)Ux(kg·m-2·s-1)1 74 1.75 1 0 0.00 0.0002 73 1.71 1 56 1.73 5.4773 72 1.67 1 53 1.69 5.7874 71 1.63 1 51 1.65 6.0145 70 1.60 1 49 1.61 6.2606 69 1.56 1 49 1.58 6.2607 68 1.52 1 47 1.54 6.5268 67 1.49 1 48 1.50 6.3909 66 1.45 1 48 1.47 6.39010 65 1.41 1 48 1.43 6.39011 64 1.37 1 48 1.39 6.39012 63 1.34 1 48 1.35 6.39013 62 1.30 1 48 1.32 6.39014 61 1.26 1 48 1.28 6.39015 60 1.23 1 48 1.24 6.39016 59 1.19 1 48 1.21 6.39017 58 1.15 1 48 1.17 6.39018 57 1.11 1 51 1.12 6.01419 56 1.08 1 52 1.09 5.88920 55 1.04 1 53 1.06 5.78721 54 1.00 1 54 1.02 5.68022 53 0.97 1 56 0.98 5.47723 52 0.93 1 57 0.95 5.38124 51 0.89 1 59 0.91 5.19925 50 0.85 1 61 0.87 5.02826 49 0.82 1 63 0.83 4.86927 48 0.78 1 65 0.80 4.71928 47 0.74 1 68 0.76 4.51129 46 0.71 1 71 0.72 4.32030 45 0.67 1 73 0.69 4.20231 44 0.63 1 77 0.65 3.98332 43 0.59 1 81 0.61 3.78733 42 0.56 1 85 0.57 3.60834 41 0.52 1 89 0.54 3.44635 40 0.48 1 94 0.50 3.26336 39 0.44 1 100 0.46 3.06737 38 0.41 1 107 0.42 2.86638 37 0.37 1 114 0.39 2.69039 36 0.33 1 122 0.35 2.51440 35 0.30 1 133 0.31 2.30641 34 0.26 1 147 0.28 2.08642 33 0.22 1 165 0.24 1.85943 32 0.18 1 192 0.20 1.59744 31 0.15 1 238 0.16 1.28845 30 0.11 1 363 0.13 0.845六、思考题1、什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。

实验六 凝固点降低法测定物质的相对分子质量

实验六 凝固点降低法测定物质的相对分子质量

凝固点降低法测定物质的相对分子质量一.实验目的用凝固点降低法测定萘的相对摩尔质量掌握溶液凝固点测定技术通过实验加深对稀溶液依数性质的理解二.实验原理凝固点降低法是一种比较简单而准确的测定相对摩尔质量的方法,凝固点降低是理想稀溶液的依数性质之一。

理想稀溶液的凝固点降低(对析出物为纯固相溶剂的体系)与溶液组成之间的关系为∶2,()f f f f B fus m A R T T T T x H ***∆=-=∆式中∶ f T *为纯溶剂的凝固点(K), f T ∆为凝固点降低值(K), f T 为稀溶液的凝固点(K), B x 为溶液中溶质的摩尔分数。

,fus m A H *∆为纯溶剂的摩尔凝固焓。

当溶液的浓度很稀时,上式可改写为∶22,,()()()()()()()()f f A f A f fus m A B fus m A B B R T R T n m B m B T M k H n H M m A M m A ****∆===∆∆ f k 为凝固点降低常数,()m A 为溶剂的质量,()m B 为溶质的质量,A M 为溶剂的摩尔质量,B M 为溶剂的摩尔质量,称取()m B /kg 的溶质和()m A /kg 溶剂配成理想稀溶液,分别测定纯溶剂和溶液的凝固点,求得凝固点降低值f T ∆ (K),再查得溶剂的凝固点降低常数,代入上式即可计算溶质的相对摩尔质量B M 。

通常测凝固点的方法是将已知浓度的溶液(或溶剂)逐步冷却,记录一定时刻体系的温度,并绘出冷却曲线。

纯溶剂的凝固点是它的液相和固相共存时的平衡温度,在冷却曲线上为水平线所处之温度。

但将在实际冷却过程中,常发生过冷现象,在开始析出固体后温度才回升并会稳定一段时间,在冷却曲线水平线段的左端出现一向下弯曲的曲线。

溶液的凝固点是该溶液的液相和溶剂的固相共存时的平衡温度。

若将溶液逐步冷却,随着溶剂固体的析出,冷却曲线出现转折点,若适当控制冷却速率(如∶ 控制寒剂的温度或搅拌速度等),使得过冷现象不严重,可得到较好的实验结果,否则实验结果将偏低。

实验六

实验六

实验6 菜单、工具栏和状态栏
一.目的和要求
(1)熟练掌握菜单的编辑方法及菜单的属性设置。

(2)掌握工具栏的设置和工具栏事件的编写方法。

(3)掌握状态栏控件的用法。

二.内容和步骤
1:完成如下简易文本编辑器的设计,其中包括窗体布局界面、各项菜单(主菜单、子菜单、快捷菜单、按钮事件等功能(如图6-1和图6-2所示)的设计,而快捷菜单的生成是针对高级文本编辑框而言,即编辑菜单栏:剪切[&X]、复制[&C]、粘贴[&V]。

`
图6-1 程序运行界面1
图6-2 程序运行界面2
2:仿照第8章“简单文件编辑器”的例题,设计实现一个“图片编辑器”。

要求:设计界面包含菜单栏、工具栏、以及状态栏,具有打开、保存等简单功能。

实验六实验报告

实验六实验报告

实验六实验报告实验一:实验目的和背景实验一的目的是探究某种物质的性质、结构或变化规律。

背景方面,可以简要介绍该物质的相关知识、实验方法及仪器设备。

实验二:实验步骤和材料在此部分,需要详细描述实验的步骤和所需的材料。

步骤应按照实际操作顺序进行描述,并包含实验前的准备工作、实验过程中的操作方法以及实验后的处理步骤。

材料方面应列出所有使用到的实验器材、试剂及其他相关物品。

实验三:实验结果和数据分析实验结果应包括定量和定性的数据。

如果实验过程中产生了原始数据,需要将其整理成表格、图表或图像等形式进行展示。

对于定性数据,可以使用文字描述。

在此基础上,对实验结果进行分析和解释,可以使用适当的统计方法、图像拟合或其他分析手段。

实验四:实验讨论和结论实验讨论部分应对实验结果进行分析和解释,可以涉及对理论的讨论,与先前研究结果的对比,或其他相关内容。

同时,也可以对实验中遇到的问题、误差或局限性进行讨论,并提出相应的解决方案或改进意见。

最后得出结论,简要概括实验的主要发现和结果。

实验五:实验总结和反思在实验总结部分,可以回顾实验的目的、方法和结果,总结实验的主要特点和发现,以及对相关知识的理解和应用能力的提升。

同时,也可以对自身的实验操作技巧、实验数据分析能力等方面进行反思,并提出进一步的改进计划或建议。

实验报告附录在实验报告的末尾,可以附上相关的数据表格、图表或其他原始数据,以供评阅人或其他读者参考。

附录部分通常不计入正文的字数限制。

以上为对实验六实验报告的大致写作框架和内容要点的描述,根据实际需要和实验的具体情况,你可以在每个部分进一步展开和详细描述。

同时,请注意在整个实验报告的写作过程中,确保语句通顺、逻辑清晰、排版整洁美观,以提高阅读体验和内容的质量。

实验6-微生物的生理生化反应

实验6-微生物的生理生化反应

实验六微生物的生理生化反应1、实验目的探究菌株在碳源同化、氮源利用、乙醇发酵和抗生素效价分析等方面不同的生长特性,观察并简要分析不同微生物的生理生化特征及其形成机理。

2、实验过程简述2.1 培养基与试剂准备2.1.1碳源同化培养基准备碳源为葡萄糖、半乳糖、蔗糖、麦芽糖、乳糖、棉籽糖、蜜二糖、纤维二糖、海藻糖、松三糖、可溶性淀粉、α-甲基葡萄糖苷的YNB 培养基,放入一根杜氏管。

2.1.2氮源同化培养基准备氮源为硫酸铵,尿素,蛋白胨,硝酸钾,无氮源YNB 的固体、液体培养基。

2.1.3 乙醇发酵用种子培养基:YPD 培养基2.1.4乙醇发酵用发酵培养基葡萄糖,酵母粉,蛋白胨,尿素,磷酸二氢钾,硫酸镁,氯化钙。

2.1.5抗生素效价测定用培养基:LB 培养基2.1.6青霉素:用pH 6.0 磷酸缓冲液配制,浓度为100 mg/ml,0.22μm 孔径过滤灭菌。

2.2 微生物的碳源同化和发酵1、从菌体斜面接一环菌于1 ml 无菌水中,室温静置2 h。

2、取200 μl 菌悬液,分别转接于含杜氏管的小试管中,静置培养48 h。

3、每24 h 观察记录生长和产气情况。

4、根据实验结果判断不同菌株对不同碳源的同化或发酵。

2.3 微生物的氮源利用1、从菌体斜面接一环菌于1 ml 无菌水中,室温静置2 h。

2、取200μl 菌悬液,分别转接于上述培养基小试管中,30℃或37℃静置培养48 h。

3、各取20μl 菌悬液,分别划线于不同氮源的固体平板上,待菌液被吸收后,培养皿倒置,静置培养48 h。

4、每24 h 观察记录生长情况,48 h 测定液体培养物的OD 600。

5、根据实验结果判断不同菌株对不同氮源的利用能力或偏好性。

2.4 酵母菌的乙醇发酵1、种子液培养:将酿酒酵母从菌种斜面上接一接种环至YPD 种子培养基中,30℃,200rpm,培养18 h。

2、乙醇发酵:按照10%(v/v)的比例将培养好的种子液接入100 ml 发酵培养基中,用无菌塑料布将封口密封,30℃,静置培养,每24 h 手摇1 次,发酵3-4 d。

实验六视力视野和盲点的测定

实验六视力视野和盲点的测定
根据视力视野测定结果,可以判断受试者的视力和视野均在正常范围内,表明受试者的视 觉功能正常。
盲点测定结果分析
生理盲点是正常存在的生理现象,而病理盲点则是由于眼部疾病或损伤引起的异常现象。 在本实验中未发现受试者存在病理盲点,表明受试者的眼部健康状况良好。
结果解读总结
通过本实验的测定结果,可以得出受试者的视力和视野正常,生理盲点位置和大小均在正 常范围内,未发现病理盲点的结论,表明受试者的视觉功能正常且眼部健康状况良好。
盲点
盲点是指眼睛在某一方向上无法看到的区域,通常是由于视神经或视网 膜的缺陷或病变引起的。
03
测定方法
视力视野和盲点的测定通常采用视觉刺激技术,如使用光点、光栅、视
标等,通过观察被试者的反应来判断其视力视野和盲点的大小和位置。
学习测定视力视野和盲点的方法
视力视野的测定
通过观察被试者对不同大小和距离的 视标作出的反应,可以判断其视力视 野的大小和位置。通常采用的方法有 Amsler网格法、弧形视野计法等。
生理机制
视力视野的生理机制涉及 到眼睛的构造、视觉神经 传导以及大脑对视觉信号 的处理。
盲点的形成原理
盲点
指眼睛无法直接看到的区域,通 常位于视野的边缘。
形成原理
盲点是由于视觉神经在视网膜上 的分布不均造成的,导致某些区 域无法接收到视觉信号。
视力视野和盲点测定的科学依据
科学依据
通过科学的方法和技术,可以测定个体的视力、视野和盲点,从而了解眼睛的健 康状况和功能。
视野测定
通过视野计检查,受试者在各个方向上的视野范围均大于90 度,未发现视野缺损或异常。
盲点测定结果
生理盲点
受试者在左右眼分别存在生理盲点, 生理盲点的位置和大小均在正常范围 内。

实验6蚯蚓的横切面观察

实验6蚯蚓的横切面观察
பைடு நூலகம்
四、作业与思考题 绘蚯蚓的横切面图,注明其主要结构名称。
2.肠壁 肠管位中央,肠壁由黄色细胞(脏壁体腔膜)、纵肌、环 肌和肠上皮构成。肠上皮由单层细胞构成,背面下凹成纵槽,称为 盲道。
3.体腔 体壁体腔膜与肠管的脏壁体腔膜之间形成一大空腔,称为
4.其他器官 在肠的背方有背血管,腹方有腹血管和腹神经链,尚 有位于腹神经链下的神经下血管,有时可见小肾管和隔膜。
实验六蚯蚓的横切面观察一实验目的?通过观察环毛蚓的横切片了解环毛蚓的形态结构掌握环节动物门的主要特征
实验六、蚯蚓的横切面观察
一、实验目的
通过观察环毛蚓的横切片,了解环毛蚓的 形态结构,掌握环节动物门的主要特征。 二、实验材料 蚯蚓横切片
蚯蚓的体壁自外往内由角质膜、表皮层、环肌、纵肌和体壁体腔 膜构成。角质膜薄而透明,由表皮的单层柱状细胞分泌而成;体

实验六土壤中有机碳的测定:TOC仪测定法

实验六土壤中有机碳的测定:TOC仪测定法

实验六 土壤中有机碳的测定:TOC仪测定法一、实验目的和要求1. 掌握利用TOC分析仪测定土壤有机碳的方法2. 了解土壤有机碳在环境科学研究的意义二、实验原理广泛分布于地球表面的陆地和水体中的土壤和沉积物中的有机碳包含多种物质,从简单的糖类,到复杂的大分子蛋白质、脂肪和有机酸等。

土壤有机碳在土壤中含量并不高,一般在5%以下。

土壤中有机碳还是土壤形成的主要标志。

土壤有机碳的复杂组成使其具有许多特性,例如,它与重金属离子和水氧化物相结合,既而形成水溶性和不溶性复合体;可以与粘土矿物和颗粒物相结合;吸附各种污染物;吸收和释放植物营养元素;保持土壤水分等。

因此,土壤有机碳对土壤的性质以及各种污染物在土壤中的歉意和转化有很大的影响是环境分析测定的基本项目之一。

此外,在全球气候变化的研究中,碳循环处于一个极其重要的核心地位,而土壤有机碳是全球碳循环的重要组成部分,对于大气二氧化碳的固定或释放有重要影响。

在环境演化研究中,土壤中的有机碳含量是重要的气候替代指标。

因此,准确测定土壤中总有机碳含量具有重要意义。

土壤有机碳的测定过程包括样品氧化合检测两部分。

样品氧化可有干法氧化合湿法氧化,本实验采用干法氧化,即燃烧法。

干烧法是将土壤样品置于炉中通过高温燃烧,使其中的有机碳氧化成CO2,然后通过滴定法、重量法、热量法、分光光度法和气相色谱技术测定CO2量,并最终计算出TOC的含量。

有机质燃烧不充分时可能产生一定量的CO,为将其完全转化成CO2,经常需要借助一些过渡金属,如Pt、Cu、Ir、Ni等的氧化物进行催化氧化。

当燃烧温度过高时,诸如碳酸盐类矿物会发生分解释放出CO2,因此,在测定前,通常需要去除土壤样品中的所有碳酸盐矿物。

三、仪器、试剂和材料1. 仪器及设备TOC仪、天平、分析筛(100目)、烘箱、样品舟(陶瓷舟)2. 主要试剂盐酸溶液(1 M)量取85ml浓盐酸,边搅动边缓慢倒入500ml水中,用水稀释至1000ml,混匀。

实验六

实验六

实验六图形块一、实验目的通过实验进一步理解和掌握图块的定义、存盘、插入、释放、更新以及命令的操作。

二、实验内容和要求【内容】1、绘制图6-1、图6-2、图6-3、图6-4中所示图形,并分别定义成块(块名如图所注);2、多重插入WIN1图块(3行2列,行距3 500,列距4 000,使成图6-5。

然后,使用块更新方法,将其更新成图6-6);3、在图6-6中插入块HEIGHT(标高符号);图6-1——图6-4【要求】1、按图6-1、图6-2、图6-3、图6-4中的尺寸1:1绘制出四个图形后,分别定义成内部图形块;2、将图6-5和图6-6画在同一屏幕上;三、实验指导1、进入CAD系统并选择一个样板图,绘制图6-1到图6-4所示的四个图并定义成图块;2、用Limits命令设置绘图界限(18 000,13 500),并用Zoom命令将界限显示在屏幕内。

然后绘制图6-1所示的四个图形(在画图时,尺寸不必标上);3、执行Block命令并分别选择四个图形,然后定义成WIN1,WIN2,DOOR,GEIGHT 图形块;4、在定义成图形块时DOOR的插入基点取在直线的下端点,图块HEIGHT的插入基点取在下部直线的左端点。

图块WIN1的插基点取在左下角点,图块WIN2的插入基点在左边的中点。

操作时,若图表过小,可使用Zoom命令放大;5、调用Minsert命令,多重插入块WIN1(3行2列,行距3 500,列距4 000;插入比例因子均为1),产生图6-5所示结果。

6、调用Insert命令,再插入一个块WIN1(插入点位置任意,插入比例因子均为1)。

然后用Explode命令将其爆炸;7、运用画线命令以及一些编辑命令(如Trim和Erase等),将炸开的图形块WIN1编辑成图6-6中的单图形式(整体尺寸不变);8、再用Block命令重新定义图形块WIN1(块名和插入点不变,将原块覆盖)。

于是6-5中的所有窗户自动变成图6-6中窗户的形式(标高图块是后面加上去的),这就是图块的重新定义;9、调用Insert命令,在窗在左边端插入块HEIGHT,比例统一设为0.5 。

部编人教版小学三年级科学上册《科学实验六》教案

部编人教版小学三年级科学上册《科学实验六》教案

部编人教版小学三年级科学上册《科学实
验六》教案
一、实验目的
通过完成实验,使学生了解水的几种形态变化,培养学生的观
察和实验操作能力。

二、实验工具和材料
- 水杯
- 冰块
三、实施步骤
1. 向学生介绍实验目的,并解释水的几种形态变化。

2. 让学生观察并描述冰块的形态。

3. 让学生将冰块放在桌子上,观察冰块的变化。

4. 向学生解释冰块逐渐融化的过程,说明水的形态发生了变化。

5. 让学生观察融化后的水,了解液体的形态。

6. 结束实验,引导学生总结实验过程和观察结果。

四、实验要点
- 学生应该仔细观察实验过程中的变化,并描述出来。

- 学生应该注意实验操作的安全性,避免受伤。

五、实验结果及分析
通过观察实验过程,学生可以发现冰块在温度升高的情况下逐渐融化,形成液体水。

这说明冰块和水是同一种物质,只是处于不同的形态。

六、实验延伸
教师可以进行以下延伸活动:
1. 让学生观察水在不同温度下的融化速度是否有所差异。

2. 引导学生思考冰块融化前后发生了哪些物质变化。

七、实验小结
通过完成本实验,学生了解了水的几种形态变化,培养了他们的观察和实验操作能力。

实验结果验证了冰和水是同一种物质,只是处于不同的状态下。

这些知识对理解水的性质和科学实验方法有一定的帮助。

八、教师寄语
希望同学们在今后的学习中能够保持对科学实验的兴趣,积极探索和实践,发现身边的科学现象,培养自己的科学素养。

实验六 动作捕捉系统实验

实验六 动作捕捉系统实验

实验六动作捕捉系统实验一、实验目的通过动作捕捉实验,熟练运用运动作捕捉系统获取作业过程中的人体参数并进行分析处理,学会对作业者在作业过程中的工作姿态的评价和分析。

二、实验说明不良的作业姿势与不当的受力/施力状态已成为工人疲劳、肌肉骨骼职业疾病的重要原因。

传统的观察、测量、评价方法只能从外界获取工人所处的作业状态,在获取肌肉、骨骼、关节等组织的负荷、角度、速度参数时尚有不足。

本实验中介绍的动作捕捉系统可以实时获取作业过程中的身体姿势、解剖学角度、角速度、扭矩、足底压力等人体参数,对作业姿势的改进、作业方式的再设计提供了有效帮助。

目前动作捕捉系统已经广泛应用于动画制作、步态分析、生物力学、人因工程等领域。

三、实验仪器及原理无线传感运动动作捕捉及力学评估系统(Functional Assessment of Biomechanics, FAB)FAB是基于无线惯性传感技术的生物力学及动作评价系统。

系统由13个(标准配置)小巧轻便的传感器组成(根据需要可以扩充到17个)和一套数据分析、显示的软件。

传感器分别装配在头、上臂、下臂、胸、盆骨、大腿、小腿、足底。

通过弹性绷带可以将传感器固定在各个部位。

系统可以输出的人体参数有:扭矩、角速度、角加速度、空间角度、解剖学角度、足底压力、足底重量、力量、功率等。

特点:1、无线实时进行动作捕捉及数据分析;2、误差小准确性高使用范围广;3、体积小重量轻便携性好,安装方便使用简单;4、无线传输最远距离20米(开阔地带可达40米);5、解剖学角度、空间角度、力量、扭矩、角速度、角加速度等数据同步分析;6、数据可以传输存储在记忆卡,可将分析数据以Excel表格的形式导出;7、足底压力及足底重量数据同步采集。

FAB软件主界面该设备摆脱了摄像机的限制,并实现了对数据无损耗的特性,大大优于传统的动作捕捉系统,其能够将测量数据实时反映在计算机软件中,并且系统本身自带存储设备,可以完全远离固定场所,拥有很高的灵活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六:双频微带天线设计
一、实验目的
1、学习在Ansoft HFSS软件中仿真设计,熟练掌握仿真环境。

2、在矩形微带天线设计模型的基础上设计出一个工作于1.9GHz和2. 45GH Z 的同轴线馈电的双频微带天线。

3、仿真分析,给出天线的各项性能参数。

二、实验原理
1、在矩形微带天线设计模型的基础上设计出一个工作于1. 9GHz和2. 45GH
Z 的同轴线馈电的双频微带天线。

2、首先,把微带天线的基本参数,即介质基片厚度h= 1.6mm,介质的介电常数为 4.4,而且其辐射贴片在x轴上的长度为27.9m m,分别代入到式1—式4中计算出中心工作频率。

式1
式2
式3
式4
3、最后,根据实际分析给出的辐射贴片的长度和宽度以及馈电点的位置,使用HFSS 分析给出设计出的双频天线各项性能参数。

4、实验原理图。

三、实验内容及步骤
1、创建设计工程
这里使用实验7的HFSS设计文件。

所以,首先双击打开实验设计的文件Coax_Patch. hfss。

然后,从主菜单栏中选择【File】—【Save As】命令,把该工程文件另存为Dual_Patch. hfss文件。

删除工程树Results节点下的所有结果报告、Optimetrics节点下的所有优化设计项和参数扫描分析项以及Radiation节点下定义的辐射表面名称。

同时,打开该设计文件所在的文件夹,删除其中的Dual_Patch. hfssresults文件夹。

2、添加设计变量
新添加一个设计变量L2,用以表示同轴线馈电点的y坐标,其初始值为10mm。

从主菜单栏中选择【HFSS】—【Design Properties】命令,打开设计属性对话框。

单击该对话框中的Add按钮,打开Add Property对话框。

3、修改设计模型
设置同轴线内芯模型 Feed的底面圆心坐标和端口面模型Port的圆心坐标为(L1,L2,0)。

展开操作历史树下的Solids -pec - Feed选项,双击Feed节点下的Create Cylinder 选项,打开圆柱体模型Feed属性对话框的Command选项卡,将Center Position选项由原先的(L1,0,0)修改为(L1,L2,0),如图5。

再展开操作历史树下的Sheets -Lumped Port -Port选项,双击Port节点下的CreateCircle选项,打开圆面模型Port属性对话框的Command选项卡,将Center Position
选项也由原先的(L1,0,0)修改为(L1,L2,0)
4、修改扫频范围
把扫频范围由原先的1.5GHz〜3.5GHz更改为1.5GHz〜3GHz。

展开工程树下的Analysis -Setup 1选项,双击Setup1节点下的Sweep1选项,打开扫频设置对话框。

在该对话框中将Stop选项由原先的3.5GHz修改为3GHz,其他选项都
保留原先设置不变
5、设计检查和运行仿真计算
菜单栏中选择【HFSS】-►【Validation Check】
四、运行结果
1、回波损耗S11
2、分析TM10模振谐频率随着辐射贴片y方向长度W0的变化关系
3、分析TM10模输入阻抗和馈电点y坐标之间的关系
4、输入阻抗的实部和虚部与同轴线馈电点位置的变化关系曲线图示
5、史密斯圆图
6、方向图
7、3D方向图
五、总结
在1.GHz工作频点上,输入阻抗为(87.9-j20.4)根据之前的理论分析可知,要想使输入阻抗在50ohm左右,则L2的值需要小于初始值10mm。

从结果报告中可以看出,1.9GHz时的归一化阻抗为1.00-j0.16,2.45GHz时的归一化阻抗为1.03 -j0.03,在两个工作频点上都达到了很好的阻抗匹配。

相关文档
最新文档