八年级数学下册 18_2_2 菱形 第1课时 菱形的性质导学案 (新版)新人教版

合集下载

18.2.2菱形的性质

18.2.2菱形的性质
菱形的面积公式:S菱形=底×高=对角线乘积的一半。
【变式迁移】
A
如图,菱形花坛ABCD的周长为80m,∠ABC=60度,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.1m2)
O
D
B
C
【当堂训练】
1.菱形的定义:__________________________是菱形
宽邦中学八年级数学导学案
第节
课题
18.2.2菱形(1)
主备人:陈哲
第1课时
【学习目标】
1.理解菱形的概念,会用菱形的性质解决简单的问题;
2.经历类比矩形探究菱形性质的过程,通过观察、类比、猜想、证明等活动,体会几何图形研究的一般步骤和方法.
【重点】【难点】
重点:菱形性质的探索、证明和应用.
难点:菱形性质的探索、证明和应用.
学习反馈
2.菱形的性质:①菱形的四条边_____,②菱形的对角线_____,并且每一条对角线_____组对角.
3.菱形的面积公式:①____________;②__________________________
4.菱形既是_____________图形,又是______________图形.
5.已知菱形的周长是12cm,那么它的边长是______.
D
B
AB=BC
C
∴四边形ABCD是菱形
【合作探究】
1.你能举出生活中的菱形的实际例子吗?
追问:你能动手做出一个菱形吗?
2.菱形是特殊的平行四边形,因此它具有平行四边形的所有性质.类似于矩形,菱形是否也具有一般平行四边形不具有的特殊性质?如果有,是什么?
菱形的性质定理:
【尝试应用】

菱形的性质(导学案)-八年级数学下册同步备课系列(人教版)

菱形的性质(导学案)-八年级数学下册同步备课系列(人教版)

人教版初中数学八年级下册18.2.3菱形的性质导学案一、学习目标:1.了解菱形的概念及其与平行四边形的关系.2.探索并证明菱形的性质定理.3.应用菱形的性质定理解决相关计算或证明问题.重点:掌握菱形的定义和性质及菱形面积的求法.难点:灵活运用菱形的性质解决问题.二、学习过程:课前自测前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是______时,就成为了______.自主学习如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?【归纳】有一组邻边______的平行四边形叫做______.【针对练习】下列哪个图形能够反映四边形、平行四边形、菱形的关系的是()合作探究折一折、剪一剪将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开后你知道它是什么图形吗?(请把得到的图形画在下图的右侧空白处)从中你能得到菱形的哪些性质?________________________________;_________________________________________________________.几何符号语言:∵______________________∴_______________________________________________________________求证:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.已知:如图,菱形ABCD的对角线相交于O点.求证:AC⊥BD,AC平分∠BAD和∠BCD,BD平分∠ABC和∠ADC.如图,比较菱形的对角线和平行四边形的对角线,我们发现,菱形的对角线把菱形分成四个全等的三角形,而平行四边形通常只被分成两对全等的三角形.由菱形两条对角线的长,你能求出它的面积吗?典例解析例1.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.【针对练习】四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=5,AO=4.求AC和BD的长.例2.如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长.【针对练习】已知菱形的两对角线的长分别是6和8,求菱形的周长和面积.例3.如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.【针对练习】如图,在菱形ABCD中,CE⊥AB于E,CF⊥AD于F.求证:AE=AF.例4.如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,OA =5,OB=12.求菱形ABCD两对边的距离h.【针对练习】如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.达标检测1.菱形具有而一-般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.53.菱形两条对角线分别为6和4,则菱形的周长是()A.24B.16C.413D.234.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()125 B.185 C.4 D.2455.如图,P为线段AB上的一个点,分别以AP,PB为边在AB的同侧作菱形APCD 和菱形PBFE,点P,C,E在一条直线上.若∠DAP=60°,AP2+3PB2=1,M,N分别是对角线AC,BE的中点,则MN的长为()12 B.14 C.1 D.46.菱形的周长是8,则菱形的一边长是______.7.菱形的面积为24,一对角线长为6,则另一对角线长为_____,边长为_____.8.如图,一活动菱形衣架中,菱形的边均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=______度.9.如图,菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=_____度.10.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是______.11.如图,在菱形ABCD中,E、F分别是BC、CD上的点,且BE=DF.求证:∠AEF=∠AFE.12.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.。

人教版八下数学18.2.2菱形 课时2 菱形的判定教案+学案

人教版八下数学18.2.2菱形  课时2 菱形的判定教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 菱形课时2菱形的判定教案【教学目标】知识与技能目标1.理解并运用菱形的定义和两个判定定理进行有关的推理论证和计算.2.了解菱形的现实应用和常用判别条件.过程与方法目标1.从菱形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会菱形的性质与判定的区别与联系.2.让学生经历探索菱形判定定理的过程,理解并掌握菱形的判定方法,积累几何学习的经验,培养学生的观察能力、动手能力,发展合情推理和演绎推理能力.情感、态度与价值观目标1.让学生在探究过程中加深对菱形的理解,养成主动探索的学习习惯.2.通过菱形与矩形判定方法的类比,进一步体会类比的思想方法的作用. 【教学重点】菱形的定义和判定定理的运用.【教学难点】探究菱形的判定条件并合理利用它进行论证和计算.【教学过程设计】一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角.这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究知识点一:菱形的判定【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形例 1如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.证明:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形例 2如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:(1)AC⊥BD;(2)四边形ABCD是菱形.解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD 即可;(2)首先证得四边形ABCD是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA =CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD 是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】 利用“四条边相等的四边形是菱形”判定四边形是菱形例 3 如图,已知△ABC ,按如下步骤作图:①分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于P ,Q 两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过C 作CF ∥AB 交PQ 于点F ,连接AF .(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解析:(1)由作图知PQ 为线段AC 的垂直平分线,从而得到AE =CE ,AD =CD .然后根据CF ∥AB 得到∠EAC =∠FCA ,∠CFD =∠AED ,利用“AAS ”证得两三角形全等即可;(2)根据(1)中全等得到AE =CF .然后根据EF 为线段AC 的垂直平分线,得到EC =EA ,FC =F A .从而得到EC =EA =FC =F A ,利用“四边相等的四边形是菱形”判定四边形AECF 为菱形.证明:(1)由作图知PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD .∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD (AAS);(2)∵△AED ≌△CFD ,∴AE =CF .∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =F A ,∴EC =EA =FC =F A ,∴四边形AECF 为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.知识点二:菱形的判定的应用【类型一】 菱形判定中的开放性问题例 4如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD ∥BC ,∴∠F AD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠F AD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】 菱形的性质和判定的综合应用例 5 如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由. 解析:(1)首先利用“SSS ”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,⎩⎨⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎨⎧BC =CD ,∠BCF =∠DCF ,CF =CF , ∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°, ∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、教学小结本节课你有哪些收获?学生归纳小结菱形的判定方法:(1)菱形的定义:有一组邻边相等的平行四边形是菱形.(2)菱形的判定定理:对角线互相垂直的平行四边形是菱形.(3)菱形的判定定理:四条边相等的四边形是菱形四、学习检测1.下列说法正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形解析:根据菱形的定义与判定定理直接辨别各选项正确与否.由菱形的定义,可知一组邻边相等的平行四边形叫做菱形,因此,选项B正确.故选B.2.已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.其中能使平行四边形ABCD是菱形的有( )A.①③B.②③C.③④D.①②③解析:对角线互相垂直的平行四边形是菱形,一组邻边相等的平行四边形是菱形,因此①③都可以判定平行四边形ABCD是菱形.故选A.3.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形解析:根据菱形的判定定理(四条边相等的四边形是菱形)即可判定,由题中图的作法可知AD=AB=DC=BC,∴四边形ABCD是菱形.故选B.4.一个平行四边形的一条边长是3,两条对角线的长分别是4和2,这是一个特殊的平行四边形吗?为什么?求出它的面积解析:先根据题意画出相应的图形,如图.根据平行四边形的对角线互相平分,可求出OB及OA的长,由勾股定理的逆定理可得∠BOA为直角,进而得AC⊥BD.根据“对角线互相垂直的平行四边形是菱形”可得平行四边形ABCD为菱形.根据菱形的面积等于对角线乘积的一半可求得菱形ABCD的面积.解:这是一个菱形.理由如下:如图,▱ABCD中,AC=4,BD=2,AB=3,∴OA=AC=2,OB=BD=.∵OA2+OB2=22+()2=9,而AB2=32=9,∴OA2+OB2=AB2.∴△AOB是直角三角形,∠AOB=90°.∴AC⊥BD.∴▱ABCD是菱形(对角线互相垂直的平行四边形是菱形).S菱形ABCD=AC·BD=×4×2=4.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时1 矩形的性质1.菱形的判定有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形.2.菱形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时1矩形的性质学案【学习目标】1.理解矩形的概念,知道矩形与平行四边形的区别与联系;2.会证明矩形的性质,会用矩形的性质解决简单的问题;3.掌握直角三角形斜边中线的性质,并会简单的运用.【学习重点】理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.【学习难点】会会用这些菱形的判定方法进行有关的证明和计算.【自主学习】一、知识回顾1.菱形的定义是什么?性质有哪些?2.根据菱形的定义,可得菱形的第一个判定方法是什么?用数学语言如何表示?有一组邻边_____的______________是菱形.数学语言:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形二、自主探究知识点1:对角线互相垂直的平行四边形是菱形想一想前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相_________的平行四边形是菱形.证一证已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC ⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形.∴OA____OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA______BC.∴四边形ABCD是________.要点归纳:菱形的判定定理:对角线互相_______的____________是菱形.几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.【典例探究】例1如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.【跟踪练习】在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CD知识点2:四条边相等的四边形是菱形活动1已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?AC的长为半径作弧,小刚:分别以A、C为圆心,以大于12两条弧分别相交于点B , D,依次连接A、B、C、D四点.想一想根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?猜想:四条边__________的四边形是菱形.证一证已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证明:∵AB=BC=CD=AD;∴AB=CD , BC=AD.∴四边形ABCD是___________.又∵AB=BC,∴四边形ABCD是__________.要点归纳:菱形的判定定理:四条边都______的四边形是菱形.几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形 ABCD是________.【典例探究】例2如图,在△ABC中, AD是角平分线,点E,F分别在AB,AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.例3 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.方法总结:四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.例4如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH 是菱形.【跟踪练习】1.如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?2.如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?3.如上图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?4.在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?探究点3:菱形的性质与判定的综合运用【典例探究】例4如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.【跟踪练习】如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.三、知识梳理内容菱形的判定定义法:有一组邻边相等的平行四边形是菱形.判定定理:对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.运用定理进行计算和证明四、学习过程中我产生的疑惑【学习检测】1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.2.一边长为5cm平行四边形的两条对角线的长分别为24cm和26cm,那么平行四边形的面积是_____________.3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°4.下列图形中,不一定为菱形的是()A.四条边相等的四边形B.用两个能完全重合的等边三角形拼成的四边形C.一组邻边相等的平行四边形D.有一个角为60度的平行四边形D(解析:根据菱形的判定定理作答即可.)3.如图所示,△ABC中,E,F,D分别是AB,AC,BC上的点,且DE∥AC,DF∥AB.要使AEDF是一个菱形,在不改变图形的前提下,你需添加的一个条件是.AE=AF(解析:(答案不唯一)添加AE=AF或DE=DF或AD是∠BAC的平分线或AE=ED,AF=FD等都可以.)4.木工师傅在做菱形的窗格时,总是保证四条边框一样长,你能说出其中的道理吗?解:四条边相等的四边形是菱形.5.已知菱形的周长为24,一条对角线长为8,求菱形的面积.解:由题意知菱形的边长为6,故另一条对角线长为4,故菱形的面积为×8×4=16.4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE ∥BD.求证:四边形O CED是菱形.6.如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD 于点G.求证四边形ACGF是菱形.证明:∵AF∥CD,FG∥AC,∴四边形ACGF为平行四边形,∵CE是△ABC外角∠ACD的平分线,∴∠ACF=∠FCG,∵AF∥CG,∴∠AFC=∠FCG,∴∠ACF=∠AFC,∴AF=AC,∴▱ACGF为菱形.5. 如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE ∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.8.如图所示,在△ABC中,∠BAC=90°,AD⊥BC,BE,AF分别是∠ABC,∠DAC的平分线,BE和AD交于G,试说明四边形AGFE的形状.解:四边形AGFE是菱形.理由如下:由∠BAC=90°,AD⊥BC,易得∠BAD=∠C,∵∠AGE=∠ABG+∠BAG,∠AEB=∠EBD+∠C,又∵∠ABG=∠EBC,∴∠AGE=∠AEG.∴AE=AG.由AF是∠DAC的平分线,易知AF⊥GE且AF平分GE.同理可得BE⊥AF且BE平分AF.∴AF与GE垂直且互相平分,从而可知四边形AGFE是菱形.6.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.9.如图(1),在△ABC和△EDC中,AC=CE=CB=DC,∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC分别交于M,H.(1)求证CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形,并证明你的结论.(1)证明:∵△ABC和△EDC都是等腰直角三角形,且AC=CE=CB=CD,∴∠A=∠D=45°.∵∠ACB=∠DCE=90°,∴∠ACB-∠ECB=∠DCE-∠ECH,即∠ACF=∠DCH,在△AFC 和△DHC 中, ⎪⎩⎪⎨⎧∠=∠=∠=∠,,,DCH ACF DC AC D A ∴△AFC ≌△DHC (ASA),∴CF =CH. (2)解:菱形,证明如下:∵∠BCE =45°,∴∠ACF =∠BCE =∠DCH =45°,即∠ACD =135°, 又∠A =∠D =45°,∴在四边形ACDM 中,∠AMD =360°-∠ACD ∠A -∠D =135°, ∴∠ACD =∠AMD ,∴四边形ACDM 是平行四边形.又AC =CD ,∴四边形ACDM 是菱形.。

18.2.2菱形的性质

18.2.2菱形的性质

2、菱形的一条边 AB=5,则菱形的周长是_______;菱形的周长为 6,则菱形的边 长是_______。 3、菱形的面积是 20,它的一条对角线长 5,则另一条对角线长_______。 4、菱形的的两邻角之比为 1﹕2 ,且较短的对角线长 3,则菱形的周长是( ) A、8 B、9 C、12 D、15 5、 在菱形 ABCD 中, ∠ABC=120°, BD=5, 则∠A=______, 菱形的周长是________。 6、四边形 ABCD 是菱形,O 是两条对角线的交点,AB=5,AO=4,则对角线 AC 的长为______、BD 的长为______。 7、在菱形 ABCD 中,∠ABC=70°,则∠ABD=__ _,∠BAD=_____。
D A O B C B
A D
O C
6 题图 7 题图 8、如图菱形 ABCD 的边长为 2,∠ABC=45°,则点 D 的坐标是多少?
四、整理学案 五、布置作业:课本 P57 页练习第 2 题、P60 页第 5 题
镇安县白塔中学 八年级数学学科导学案
课 题 课时说明 一、学习目标 菱形的性质 一课时 流程及学习内容 题型
我学习我进步我成长 班级:
设计 陈绍强 使用时间 学法
姓名:
审核
新授课
1.识记菱形概念,知道菱形与平行四边形的关系,理解并掌握菱形的性质 1、2 2.会用这些性质进行有关的论证和计算,会计算菱形的面积. 【学习重点】菱形的性质 1、2. 【学习难点】菱形的性质及菱形知识的综合应用 二、学习流程 (一)知识回顾 平行四边形 矩形
四边形 (二)自主学习 1.观察图形,归纳出菱形的定义.
有一组邻边 平行四边形 相等 菱形
_________________________________________________叫菱形. 2.举出生活中菱形的实例. (三)合作探究菱形的性质 1.按右图的方法剪得菱形,观察得到的菱形,回答下列问题。 ①它是轴对称图形吗?有几条对称轴?对称轴之间有什么位置关系? ②图中有哪些相等的线段? ③图中有哪些相等的角?

精品学案:18_2_2菱形的判定

精品学案:18_2_2菱形的判定

人教版八年级数学下册《第十八章平行四边形》导学案课题:18.2.2 菱形的判定◆【学习目标】1.理解并掌握矩菱形的定义及其它两个判定方法.2.能运用菱形的判定方法进行有关的论证和计算.◆【学习重、难点】学习重点:菱形的判定方法;学习难点:菱形判定定理的证明及灵活运用.◆【学习过程】第一环节自主学习旧知链接:菱形的性质:菱形的四边,菱形的两条对角线 .新知自研:课本第57页到第58页探究上面的内容. 2.完成导学案自学指导的内容.导入新课:上节课我们学习了菱形的性质,这节课将要学习菱形的判定,除了定义外,你还能判定一个四边形(或平行四边形)是菱形吗?下面我们一起来探究吧!自学指导:【学法指导1】自研教材P57探究,思考:1、写出菱形性质“菱形的对角线互相垂直”和“菱形的四条边相等”的逆命题:2、※请你猜想上面的逆命题是否成立呢?◆得到猜想①:猜想:上面的逆命题是;◆验证猜想①:(要求:画图写出已知、求证、证明)求证:对角线互相垂直的平行四边形是菱形.已知:如图,在□ABCD中,对角线AC、BD相交于O点,且 .求证:□ABCD是菱形.证明:◆得到定理:请你总结菱形的判定定理;(完成在随堂笔记处)定理几何语言表示:∵ 四边形ABCD是平行四边形,且,∵ .3、我们知道,菱形的四条边相等. 反过来,四条边相等的四边形是菱形吗?◆得到猜想②: .◆验证猜想②: 求证:四条边相等四边形是菱形.已知:如图,四边形ABCD,.求证:四边形ABCD是菱形.证明:◆得到定理:请你总结菱形的判定定理;(完成在随堂笔记处)定理几何语言表示:∵ ,∵ 四边形ABCD是菱形.4、归纳总结菱形的判定方法.(完成在随堂笔记处)【例题导析】自研课本第57页的例1,思考:已知:四边形ABCD是,AB= ,OA= ,OB= .◎我会分析◎由定理可得到是直角三角形,所以⊥,再由菱形判定: 得到平行四边形ABCD是菱形◎我会思考◎1、例题中运用到了哪些知识点?.2、例题的处理思路?.●典例●:已知:如图平行四边形ABCD的对角线AC的垂直平分线与AD,BC分别交于E、F。

人教版初中数学八年级下册18.2.2《菱形的性质》教案设计

人教版初中数学八年级下册18.2.2《菱形的性质》教案设计

《菱形的判定》导学案学习目标:1.知识与技能:掌握菱形的三种判定方法. 并能有效的解决问题。

2.过程与方法通过学生自主动手实验、观察、推理,通过用菱形的定义和探究菱形的其他判定方法的过程开发学生的形象思维和逻辑推理能力.根据菱形的判定定理进行简单的证明,培养学生的逻辑推理能力和演绎能力.3.情感态度与价值观:在探究菱形的判定方法的活动中获得成功的体验,通过运用菱形的判定和性质,锻炼克服困难的意志,建立自信心.教学重点:菱形的三种判定方法的探究.教学难点:菱形判定方法的探究及灵活运用.教学方法:本节课采用探索式教学,引导学生联系菱形的性质进行独立思考,通过自主动手、思考来获取新知识、发现性质、有利于学生对新知识的记忆加深。

教学手段:在教师的导控下,创设教学情境,提出探究问题,利用多媒体辅助教学,增强直观性,提高学习效率和质量,激发学生兴趣,调动积极性。

教学过程一、创设情境,引入新课1.复习(1)菱形的定义:一组邻边相等的平行四边形是菱形。

(2)菱形的性质1 (边)菱形的四条边都相等;2 (对角线)菱形的两条对角线互相垂直,且每一条对角线平分一组对角。

2.直接导入这节课我们一起来学习菱形的判定。

二、合作交流,探索新知1.根据菱形的定义,可得菱形的判定方法1:有一组邻边相等的平行四边形叫做菱形.数学语言:∵四边形ABCD是平行四边形,且AB=AD∴四边形ABCD是菱形.2.提问:除定义之外,菱形还有其他的判定方法吗?类比学习矩形的判定过程,研究菱形性质定理的逆命题,你能找到菱形判定的其他方法吗?逆命题:对角线互相垂直的平行四边形是菱形.先让学生分析写出已知、求证,并尝试证明,然后在小组内讨论交流,最后全班交流,达成共识。

已知:四边形ABCD 是平行四边形,且AC⊥BD求证:平行四边形ABCD 是菱形.证明:∵四边形ABCD是平行四边形∴OA=OC又∵AC⊥BD∴平行四边形ABCD 是菱形.得出结论:菱形的判定方法2:对角线互相垂直的平行四边形是菱形。

菱形的性质与判定 导学案(1)

菱形的性质与判定 导学案(1)

菱形的性质与判定导学案第一课时一、学习准备:1、叫做平行四边形2、平行四边形的性质:边角对角线对称性二、自主学习:叫做菱形。

菱形是的平行四边形。

性质:边:角:对角线:对称性:周长:面积:注意:菱形具有的一切性质。

思考:菱形具有而平行四边形不一定具有的性质有哪些?菱形是图形,对称轴有条,即两条所在的直线。

三、夯实基础:1、(1)菱形的对角线长为24和10,则菱形的边长为,周长为,面积为(2)在菱形ABCD中,已知∠ABC=60°,AC=4,则AB= 。

(3)菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.(4)已知菱形的面积等于80cm2,高等于8cm,则菱形的周长为 . (5)已知菱形ABCD的周长为20cm,∠A:∠ABC=1:2,则BD= cm. (6)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.60°C.45°D.30°(7)菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是()A.相等B.互相垂直且不平分C.互相平分且不垂直 D.垂直且平分(8)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为____________cm2.四、能力提升:1、已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.2、已知菱形ABCD的边长为2 cm,∠BAD=120°对角线AC、BD相交于点O,试求出菱形对角线的长和面积.2、如图,已知菱形ABCD的对角线交于点O,AC=16cm,BD=12cm,求菱形的高.。

人教版数学八年级下册18.2.2第1课时《菱形的性质》教学设计

人教版数学八年级下册18.2.2第1课时《菱形的性质》教学设计

人教版数学八年级下册18.2.2第1课时《菱形的性质》教学设计一. 教材分析《菱形的性质》是人民教育出版社八年级下册数学教材第十七章第二节的一部分,主要介绍菱形的性质。

本节课内容是学生在学习了平行四边形的性质的基础上进行的,是进一步深化学生对四边形性质的理解,为后续学习正六边形和其他多边形的性质做铺垫。

本节课的主要内容包括菱形的定义、性质及其判定。

二. 学情分析学生在之前的学习中已经掌握了平行四边形的性质,具备了一定的几何思维能力。

但是对于菱形的性质的理解还需要进一步的引导和启发。

此外,学生对于新知识的学习兴趣需要激发,对于菱形在实际生活中的应用需要引导。

三. 教学目标1.知识与技能:理解菱形的定义,掌握菱形的性质及其判定方法。

2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的几何思维能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生积极探究的精神。

四. 教学重难点1.重点:菱形的性质及其判定。

2.难点:菱形性质的理解和应用。

五. 教学方法采用问题驱动法、启发式教学法和小组合作学习法。

通过问题引导学生思考,通过启发式教学法引导学生自主探究,通过小组合作学习法培养学生的合作精神。

六. 教学准备1.教学PPT:包含菱形的定义、性质及其判定等内容。

2.几何画板:用于展示菱形的性质。

3.练习题:用于巩固所学内容。

七. 教学过程1.导入(5分钟)通过展示一些生活中的菱形图形,如蜂巢、骰子等,引导学生对菱形产生兴趣,进而提出问题:“什么是菱形?菱形有哪些性质?”2.呈现(10分钟)利用PPT呈现菱形的定义及性质,引导学生观察、思考,并通过几何画板展示菱形的性质,让学生直观地理解菱形的特点。

3.操练(10分钟)让学生分组进行练习,运用菱形的性质判断给出的四边形是否为菱形。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)出示一些有关菱形的应用题,让学生运用所学知识解决问题,加深对菱形性质的理解。

八年级数学下册平行四边形特殊的平行四边形菱形菱形的性质教案新版新人教版

八年级数学下册平行四边形特殊的平行四边形菱形菱形的性质教案新版新人教版

18.2.2菱形的性质一、学生起点分析学生知识技能基础:学生刚刚学习过平行四边形、矩形,对平行四边形有直观的感知和认识。

学生活动经验基础:在学习平行四边形的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。

二、学习任务分析菱形和矩形一样,也是一类特殊的平行四边形,在学习平行四边形的基础上,学生学会进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索菱形的性质并培养学生的探索意识。

教学目标:1.知识与技能:掌握菱形的性质,并能运用菱形的性质进行有关的证明和计算。

2.过程与方法:经历菱形的定义和性质的探究过程,培养学生动手实验、观察、归纳、推理的意识,发展学生的形象思维和逻辑推理能力。

3.情感与态度:在探究菱形性质的过程和应用性质的过程中,培养学生独立思考的习惯和成功的体验。

通过菱形性质的应用,进一步认识数学与生活的密切联系。

教学重点:菱形性质的探究与应用教学难点:菱形性质的探究教学方法:探索归纳法三、教学过程设计:本节课分6个环节:第一环节:创设情境激趣导入第二环节:自主探究合作归纳第三环节:基础训练提升能力第四环节:变式训练探索发现第五环节:评价反思概括总结第一环节:创设情境激趣导入(感知菱形):活动一:内容:课件演示,四边形如何变化得平行四边形和矩形,flash动画演示,将短边沿着长边平移,得特殊的平行四边形,目的:引导学生回顾矩形和平行四边形的联系,进一步明确矩形是具有特殊性的平行四边形,让学生进一步体会并理解三种平行四边形的区别与联系,引入新课,得菱形的定义:一组邻边相等的平行四边形是菱形。

教师进一步强调,菱形中的两个条件:①平行四边形,②一组邻边相等,表示:菱形ABCD活动二:内容: 生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。

菱形的性质与判定(一)导学案

菱形的性质与判定(一)导学案

第一章特殊平行四边形1.菱形的性质与判定(一)一、教学目标:1.经历从现实生活中抽象出图形的过程,了解菱形的概念及其与平行四边形的关系;2.体会菱形的轴对称性,经历利用折纸等活动探索菱形性质的过程,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中进一步发展学生的逻辑推理能力三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备;第二环节:设置情境,提出课题;第三环节:猜想、探究与证明;第四环节:性质应用与巩固;第五环节:课堂小结;第六环节:布置作业。

第一环节课前准备1、教师在课前布置学生复习平行四边形的性质,搜集菱形的相关图片。

2、教师准备菱形纸片,上课前发给学生上课时使用。

第二环节设置情境,提出课题【教学内容】学生:观察衣服、衣帽架和窗户等实物图片。

教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形。

教师:请同学们观察,彩图中的平行四边形与ABCD相比较,还有不同点吗?学生2:彩图中的平行四边形不仅对边相等,而且任意两条邻边也相等。

教师:同学们观察的很仔细,像这样,“一组邻边相等的平行四边形叫做菱形”。

【注意事项】学生在通过观察对比得到菱形定义的过程中,会提出菱形的许多性质,如四条边相等、对角相等和对边平行等等,教师要对学生的答案进行积极的有鼓励性的评价,激发学生的学习积极性,同时又要强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义,又为下面的教学内容做好了铺垫。

第三环节猜想、探究与证明【教学内容】1、想一想①教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。

你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分。

②教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流。

学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果。

18.2.2菱形的判定(教案)2023-2024学年八年级下册数学人教版(安徽)

18.2.2菱形的判定(教案)2023-2024学年八年级下册数学人教版(安徽)
难点解析:阐述矩形为何有一组邻边相等时就是菱形,通过实际例题和练习,强化学生的理解。
(3)菱形性质的应用:学生需要将菱形的性质运用到实际问题中,如计算面积、周长等。
难点解析:教授如何利用菱形的性质进行计算,并通过典型题目和练习,提高学生的实际应用能力。
(4)识别和运用不同判定方法:在实际问题中,学生需要根据具体情况选择合适的判定方法。
3.注重培养学生的逻辑思维和表达能力,通过提问、讨论等方式,引导学生学会思考和表达。
4.加强课后辅导,针对学生在课堂学习中遇到的问题,给予个别指导,确保每位同学都能跟上教学进度。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与菱形相关的实际问题,如如何判断一个四边形是否为菱形。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、测量等方法,演示菱形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.培养学生的几何直观能力:通过观察和分析菱形的特征,使学生能够直观判断和证明菱形,提高空间想象力和几何直观感。
2.培养学生的逻辑推理能力:在掌握菱形判定方法的过程中,引导学生运用逻辑思维,从定义、性质等方面推理出菱形的判定方法,增强逻辑推理素养。
3.培养学生的数学建模能力:通过解决与菱形相关的问题,使学生能够建立数学模型,运用所学知识解决实际问题,提高数学建模素养。
2.教学难点
(1)对角线判定法的理解与应用:学生需要掌握对角线互相垂直且平分的条件,并能够运用这一条件判断菱形。
难点解析:解释为什么对角线互相垂直且平分的四边形一定是菱形,通过示例和练习,帮助学生理解和运用这一判定方法。

人教版八下数学课件第18章18.2.2第1课时菱形的性质

人教版八下数学课件第18章18.2.2第1课时菱形的性质
灿若寒星
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.

18.2.2《菱形》导学案2

18.2.2《菱形》导学案2

18.2.2 菱形第1课时1.知道菱形的定义和它与平行四边形的特殊联系.2.通过操作,能概括菱形的特殊性质,会用菱形的性质进行相关的证明、计算.3.通过对菱形性质的探究和反思,获得解决问题的经验和方法,养成科学的思维习惯.4.重点:菱形的性质及应用.知识梳理菱形的定义阅读教材本小节中的第一个“思考”前面的内容,解决下列问题.1.有一组邻边相等的平行四边形叫做菱形.2.观察如图1所示的教具的变化过程,当一个平行四边形中的一组邻边相等时,就得到了菱形,由此你能说出菱形和平行四边形的关系吗?菱形是平行四边形的特例,是属于平行四边形的.【预习自测】你能说出生活中的一些菱形的实例吗?问题探究菱形的性质阅读教材本小节第一个“思考”至“例3”结束,解决下列问题.1.由于菱形是特殊的四边形,因此它具有平行四边形的所有性质,除此以外,它还有其特殊的性质,结合平行四边形的性质的探求过程,你认为应该从哪几个方面探求菱形的性质?从边、角、对角线等几个方面探求菱形的性质.2.将一张矩形的纸对折再对折,然后沿着图2中的虚线剪下,再打开,就得到了一个菱形(可在下课时给出证明),由此可以发现菱形的四条边有什么关系?菱形的四条边相等.3.如图3,四边形ABCD是菱形,所以它也是平行四边形,∴AB=CD,AD= BC,又根据菱形的定义,AD=AB,∴AD=BC =CD =AB.4.由问题2中剪出的菱形,展开后,你能发现它的对角线有什么结论吗?菱形的对角线互相垂直,并且每条对角线平分一组对角.5.试利用三角形全等的知识证明上述结论.证明:如图4,∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA=OC,OB=OD,∴△AOB≌△COB≌△AOD≌△COD,∴∠AOB=∠BOC=∠AOD=∠COD=90°,∠ABO=∠CBO=∠ADO=∠CDO,∠BAO=∠DAO=∠BCO=∠DCO.6.因为菱形的两条对角线互相垂直,所以对角线长为a、b的菱形的面积为ab.【归纳总结】菱形的四条边相等,菱形的对角线互相垂直平分,并且每条对角线平分一组对角.菱形是轴对称图形,对称轴是两条对角线所在的直线.定理的用法:如图4,∵四边形ABCD是菱形,∴AB=BC=CD=DA, AC⊥BD,∠ABO=∠CBO=∠ADO=∠CDO,∠BAO=∠DAO=∠BCO=∠DCO.【预习自测】若菱形两条对角线的长分别为12 cm和16 cm,则它的周长是40 cm,面积是96 cm2.互动探究1:如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH= .【方法归纳交流】因为菱形的对角线互相垂直,从而出现直角三角形,可以利用直角三角形求线段的长度以及相关的面积、周长等.互动探究2:如图,在菱形ABCD中,E、F分别是BC、CD的中点,连接AE、AF,AE和AF有什么样的数量关系?说明理由.解:AE=AF.理由:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=CD.又∵E,F分别为BC,CD的中点,∴BE=BC=CD=DF.∴△ABE≌△ADF,∴AE=AF.[变式训练]如图,在菱形ABCD中,AE⊥BC,AF⊥DC,则AE和AF有怎样的数量关系?说明理由.解:AE=AF.理由:∵AE⊥BC,AF⊥DC,∴∠BEA=∠DFA=90°.∵在菱形ABCD中有∠B=∠D,AB=AD,∴△ABE≌△ADF.∴AE=AF.互动探究3:菱形ABCD中,对角线AC、BD相交于点O,E、F分别是AB、AD的中点,求证:OE=OF(方法指导:利用三角形中位线定理).证明:在菱形ABCD中,AB=AD,OB=OD,OA=OC.又∵E、F分别是AB、AD的中点,∴OE=AD,OF=AB.∴OE=OF.互动探究4:如图,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.证明:∵ABCD是菱形,∴AD∥BC,AB=BC=CD=DA.又∵∠ABC=60°,∴BC=AC=AD.∵DE∥AC,∴四边形ACED为平行四边形.∴CE=AD=BC,DE=AC.∴DE=CE=BC.∴DE=BE.见《导学测评》P24。

《18.2.2 菱形》教案、导学案、同步练习

《18.2.2 菱形》教案、导学案、同步练习

《18.2.2 菱形》教案第一课时教学目的1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.3.通过运用菱形知识解决具体问题,提高分析能力和观察能力.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.重点、难点1.教学重点:菱形的性质1、2.2.教学难点:菱形的性质及菱形知识的综合应用.例题的意图分析本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.课堂引入1.(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2.(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念.菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】菱形(1)是平行四边形;(2)一组邻边相等.让学生举一些日常生活中所见到过的菱形的例子.例习题分析例1 (补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∵四边形ABCD是菱形,∴ CB=CD, CA平分∠BCD.∴∠BCE=∠DCE.又 CE=CE,∴△BCE≌△COB(SAS).∴∠CBE=∠CDE.∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC∴∠AFD=∠CBE.例2 (教材P108例2)略随堂练习1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.课后练习1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为 8cm,求菱形的高.2.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.《18.2.2 菱形》教案第二课时教学目的1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.重点、难点1.教学重点:菱形的两个判定方法.2.教学难点:判定方法的证明方法及运用.例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.例习题分析例1 已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵四边形ABCD是平行四边形,∴ AE∥FC.∴∠1=∠2.又∠AOE=∠COF,AO=CO,∴△AOE≌△COF.∴ EO=FO.∴四边形AFCE是平行四边形.又 EF⊥AC,∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).※例2(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF 中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

2021年人教版数学八年级下册学案 18.2.2《 菱形 》(含答案)

2021年人教版数学八年级下册学案 18.2.2《 菱形 》(含答案)

18.2.2 菱形第1课时菱形的性质学习目标:1、记忆菱形的定义;2、记忆菱形的性质;3、能区别菱形与平行四边形;4、菱形的面积计算公式。

重难点:菱形的性质;菱形的性质的应用。

学习过程一、自主学习看课本回答下列问题:平行四边形菱形1、叫做菱形。

菱形是的平行四边形。

2、从菱形的定义中可以发现:两层意义1、;2、二、探究菱形的性质与面积计算1、菱形的一般性质(1)菱形也具有平行四边形的所有性质.、、。

2、菱形的特殊性质观察剪下来的图形是怎样的图形.实际上,学生很容易发现,剪下的一个图形是菱形.动手操作后发现:(1)菱形是轴对称图形,有条对称轴对称轴就是它的对角线所在的直线(两条).(2)利用轴对称图形的性质可知:性质定理1:(1)菱形的四条边都相等;几何语言: ∵∴性质定理2:(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.几何语言: ∵∴3、菱形被两条对角线分成四个全等的小直角三角形,思考:你可以用哪些方法求菱形的面积?每种方法中要知道哪些条件?得出菱形的面积计算公式:(方法一)第2课时菱形的判定学习目标:记忆菱形的三种判定方法;重难点:菱形判定方法的应用。

学习过程一、复习旧知菱形的定义是什么?(一组邻边相等的四边形是菱形)性质:(1)边的性质:对边平行,四条边都;(2)角的性质:对角;(3)对角线的性质:两条对角线互相、,每条对角线平分一组对角;(4)对称性:是轴对称图形,有条对称轴,是两条对角线所在的直线.二、探究新知1、菱形的四边都相等。

反过来,四边都相等的四边形是菱形,对吗?答:简单说理:由此得到菱形的判定定理1(从四边形错误!未找到引用源。

菱形):几何语言表述:在四边形ABCD中∵ AB= = = ∴2、(1)菱形的定义:一组邻边相等的四边形是菱形由此得到菱形的判定定理2(从平行四边形错误!未找到引用源。

菱形)---定义法:几何语言表述: 在□ABCD中∵或或或∴(2)教具:两根一长一短的细木条,钉子、橡皮筋.操作:教师在两根细木条的中点处固定一个小钉子,做成一个可转动的十字,再将四周围上一根橡皮筋,做成一个四边形,问:这个四边形是怎样的四边形?(答:).问:将木条转成互相垂直的位置,这时这个平行四边形是怎样的平行四边形呢?为什么?由此得到菱形判定定理3(从平行四边形错误!未找到引用源。

八年级数学下册 18.2.2《菱形》菱形的性质导学案1(无答案)(新版)新人教版

八年级数学下册 18.2.2《菱形》菱形的性质导学案1(无答案)(新版)新人教版

118.2.2《菱形》菱形的性质【学习目标】1、菱形性质的探究过程,掌握菱形的性质.(重点)2、根据菱形的性质定理进行简单的计算与证明.(难点)【自主学习方案】✧温故1、 的四边形叫平行四边形。

2、 有一个角为 的平行四边形是矩形。

✧ 知新阅读教材P97-P98相关内容,思考、讨论、合作交流后完成下列问题: 3、定义: 的平行四边形叫菱形。

4、菱形 (是/不是)轴对称图形,菱形有 对称轴。

5、菱形是特殊的平行四边形,除了具有平行四边形的性质外,还特殊在: (1)菱形的 都相等。

(2)菱形的两条对角线 ,并且 。

6、求证:菱形的两条对角线互相垂直,并且第一条对角线平分一组对角。

如图 已知:在ABCD 中,AB=BC 。

求证:(1)AC ⊥BD ,(2)BD 平分∠ABC 与∠ADC.提示:菱形的面积有两种算法:(1)底乘高。

(2)两条对角线乘积的一半。

✧ 预习成果1、 在四边形ABCD 中,已知AB ∥CD ,AD ∥BC ,请添加一个条件,使四边形ABCD 是菱形,所添加的条件是。

2、 四边形ABCD 是菱形,点O 是两条对角线的交点,AB =5cm ,AO=4cm ,则AC= , BD= 。

3、菱形的两条对角线的长分别是6cm 和8cm ,则菱形的周长为 ,面积为 。

4、菱形具有而矩形不一定具有的特征是( )A .对角相等且互补B .对角线互相平分C .一组对边平行,另一组对边相等D .对角线互相垂直5、如图,在菱形ABCD 中,点E 、F 分别在AD ,CD 上,且DE =DF ,求证:BE =BF.【合作探究方案】例1 (菱形对角线与边的关系)菱形的边长为5,一条对角线AC 为6,求菱形的另一条对角线BD.BBB2例2 在菱形ABCD 中,∠A =110°,E 、F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,求∠FPC 的度数。

【达标检测】1、在菱形ABCD 中 ,AB=5cm ,则此菱形的周长为( )。

18_2_2 菱形(第1课时 菱形的性质)【2022春人教八下数学同步精品变式练习】(原卷版)

18_2_2 菱形(第1课时 菱形的性质)【2022春人教八下数学同步精品变式练习】(原卷版)

第十八章平行四边形18.2.2 菱形(第一课时菱形的性质)精选练习一.选择题(共10小题)1.菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是()A.cm B.2cm C.1cm D.2cm2.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB 交CD于点F,则EF的长为()A.4.8 B.2C.5 D.63.若菱形的边长为2,则周长是()A.2 B.4 C.8 D.164.如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AD 上的中点,则OH的长度为()A.3 B.4 C.2.5 D.55.菱形的周长为8cm,两相邻角度数比是1:2,则菱形的面积是()A.2cm2B.2cm2C.4cm2D.4cm26.菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为()A.4 B.5 C.6 D.87.如图,在菱形ABCD中,∠A=60°,AB=8cm,则菱形ABCD的面积是()cm2.A.16B.32C.64D.328.如图,四边形ABCD为菱形,对角线AC,BD交于点O,E为AD的中点,若OE=3.5,则菱形ABCD的周长等于()A.14 B.28 C.7 D.359.如图,菱形ABCD的两条对角线相交于点O,若AC=6,菱形的面积等于12,则菱形ABCD的周长等于()A.4 B.2C.D.410.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4 B.2C.2 D.1二.填空题(共5小题)11.如图,在菱形ABCD中,已知AB=5,AC=6,那么菱形ABCD的面积为.12.如图,在平面直角坐标系中,菱形OABC的顶点A(4,0),∠AOC=60°,则顶点B 的坐标是.13.如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若OE=2,则菱形的周长为.14.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.15.已知菱形的两条对角线长分别为4cm,5cm.则它的面积是cm2.三.解答题(共2小题)16.已知:在菱形ABCD中,点E、F分别为AB,AD的中点,连接CE,CF.求证:△BCE≌△DCF.17.如图,E为菱形ABCD的对角线BD延长线上一点,连接AE,CE.(1)求证:AE=CE;(2)若BC=10,AE=13,∠ABC=60°,求BE的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.2.2 菱形
第1课时菱形的性质
1.理解并掌握菱形的定义及性质定理;会用这些定理进行有关的论证和计算.
2.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
自学指导:阅读课本55页至56页,完成下列问题.
1.有一组邻边相等的平行四边形叫做菱形.
2.菱形是轴对称图形,它的对角线所在的直线就是它的对称轴.它有两条对称轴.同时它也是中心对称图形.
3.菱形具有平行四边形的一切性质.
4.菱形的四条边都相等.
5.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
知识探究
1.如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?
解:将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.如下图:
2.命题:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.
已知:菱形AB CD的对角线AC和BD相交于点O,如下图.
求证:AC⊥BD;AC平分∠BAD和∠BCD;BD平分∠ABC和∠ADC.
证明:∵四边形ABCD是菱形,
∴AB=AD(菱形的四条边都相等).
在△ABD中,
又∵BO=DO,
∴AC⊥BD,AC平分∠BAD.
同理:AC平分∠BCD;BD平分∠ABC和∠ADC.
3.菱形的面积公式:
菱形是特殊的平行四边形,那么就能利用平行四边形面积公式计算菱形的面积.
S菱形=BC·AE
又S菱形=S△ABD+S△BCD=1
2
BD×AC
∴S菱形=底×高=对角线乘积的一半.
自学反馈
如图,在菱形ABCD中,对角线AC、BD相交于点O.
(1)图中有哪些线段是相等的?哪些角是相等的?
(2)有哪些特殊的三角形?
解:(1)相等的线段:AB=CD=AD=BC,OA=OC,OB=OD.
相等的角:∠DAB=∠BCD,∠ABC=∠CDA,∠AOB=∠DOC=∠AOD=∠BOC=90°,
∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8.
(2)等腰三角形:△ABC △DBC △ACD △ABD
直角三角形:Rt△AOB Rt△BOC Rt△COD Rt△DOA
活动1 小组讨论
例1如图,菱形花坛ABCD的边长为20 m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积.(分别精确到0.01 m和0.1 m)
菱形花坛ABCD中∠ABC=60°,可知△ABC是等边三角形,AC=AB=20 m,AO=10 m.
Rt△AOB中,
∴BD≈34.64 m AC=20 m.
花坛面积=1
2
AC·BD≈346.4 m2.
例2菱形ABCD的周长为16,相邻两角的度数比为1∶2.
(1)求菱形ABCD的对角线的长;
(2)求菱形ABCD的面积.
此题是例1的变形,根据周长求出边长,根据角的比例求出∠ABC,就变成了例1.
例3已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AB=1.
求:(1)∠ABC的度数;
(2)对角线AC、BD的长;
(3)菱形ABCD的面积.
由四边形ABCD为菱形,得:AD=AB,E是AB的中点,且DE⊥AB得:AD=BD=AB,即△ABD是等边三角形.
∴∠ABD=60°;
又菱形ABCD可知BD平分∠ABC,
∴∠ABC=120°.
根据菱形里面的直角三角形求出对角线,再求出面积.
活动2 跟踪训练
1.已知菱形的周长是12 cm,那么它的边长是3 cm.
2.菱形ABCD中,∠ABC=60°,则∠BAC=60°.
3.菱形的两条对角线长分别为6 cm和8 cm,则菱形的边长是(C)
A.10 cm
B.7 cm
C.5 cm
D.4 cm
4.在菱形ABCD中,AE⊥BC,AF⊥CD,E、F分别为BC,CD的中点,那么∠EAF的度数是(B)
A.75°
B.60°
C.45°
D.30°
5.四边形ABCD是菱形,O是两条对角线的交点,已AB=5 cm,AO=4 cm,求对角线BD的长.
根据菱形中的直角三角形求出即可得出BD=6 cm.
6.已知:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F.求证:EF⊥AD.
DE∥AC且DF∥AB,可得四边形AEDF是平行四边形.
由DE∥AC得∠3=∠2,
又∠1=∠2,可得∠1=∠3,所以AE=DE.
由菱形定义可得四边形AEDF是菱形.
由菱形的性质可知:EF⊥AD.
活动3 课堂小结
1.菱形的定义.
2.菱形的性质.
3.菱形与平行四边形、矩形的关系.。

相关文档
最新文档