数学周末卷(15)

合集下载

一年级数学周末卷

一年级数学周末卷
一年级数学周末卷(第6周)
1、 写出计算过程
两位数加一位数(进位)两种方法:
例:
35+8=43
35+8=43
35+5=40
5+ 8=13
40+3=43
30+13=43
两位数减一位数(退位)两种方法:
例:
36-8=27
35-8=27
35-5=30
15-8=7
30-3=27
20+7=27
56+7= 算法一:
100-30=
15+45=
+16=
-40=
+=
36+ =
-=
15+95=
+12=
60- =
二竖式计算:
82-36=
35+48=
6+64-89= 25+16+35
2、 填空: (1)68里有( )个十和( )个一5个一和7个十合起来是( ); (2)一个数个位上是6,十位上的数比个位大1,这个数是( )。 (3)在72、65、89、18、53、26、83中,把这些数按从小到大的顺序 排列起来,用“<”连接。
五、动脑筋: (1)耐心试一试(在□里填上相同的数使等式成立) 15-□=□+3
(2)在一个减法算式里,如果被减数、减数和差相加的和是20,其中 差是5,减数是( )
一年级数学周末卷(第15周) 一、在○里填入“>、<或“=”号:在□里填数: 37+2○48-8 3米○300厘米 75+□=100 28-□>20
1
2
3
4
5
6
7
8

苏教版四年级数学上册周末练

苏教版四年级数学上册周末练

四年级数学第一周周末乐园一、填空。

(1)4升=( )毫升6000毫升=( )升4500毫升=( )升( )毫升8升30毫升=( )毫升1升=( )毫升6000毫升=( )升(2)在〇里填上“>”、“<”或“=”。

900毫升〇 9升 2400毫升〇 2升 5600毫升〇 6升708毫升〇7升8500毫升○8升1001毫升○999升301毫升○3001毫升1500毫升○15升6000毫升○5升(3)装有2升的酸奶,倒了一半还剩()毫升,再倒一半还剩()毫升。

(4)棱长为()的正方体盒子的容量为1L。

(5)在括号里填上“升”或“亳升”一瓶油2.5()一瓶果汁500()一针筒药水有5()一个热水瓶可装水3()一太阳能热水器装水120()二、判断。

1.计量水、油、饮料等液体的多少,通常只用毫升作单位。

……………()2.2升水的质量是2千克。

……………………………………………………()3.爸爸发烧,医生给他挂了15毫升的药水。

………………………………()4.一听可乐的容量是250毫升,8听可乐的容量是2升。

………………()5.一瓶娃哈哈有180升。

……………………………………………………()6.明明今天喝了400毫升牛奶。

……………………………………………()三、选择。

1.一个太阳能热水器的容量大约是()。

①8升②10升③80升2.把1升的水倒入容量为200毫升的纸杯中,可倒()杯。

①1 ②4 ③53.计量比较少的液体,用()作单位,计量比较多的液体,用()作单位。

①升②毫升4.一瓶洗发水有750(),一瓶可乐有3()①升②毫升5.有甲、乙、丙三个容器。

把甲容器装满水,倒入乙容器中,乙容器没有倒满;把丙容器的水倒入乙容器中,丙容器的水还有剩余。

问:最大的容器是(),最小的容器是()①甲容器②乙容器③丙容器四、用竖式计算,带*号的要验算。

36×45 537÷3 *782÷6五、解决实际问题。

苏教版初一数学上册周末提优练习(含解析)

苏教版初一数学上册周末提优练习(含解析)

七年级数学周末提优练习1.小明同学将28铅笔笔尖从原点0开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1 个单位长度完成第一次操作:再沿负半轴滑动2个单位长度完成第二次操作:又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…, 以此规律继续操作,经过第50次操作后笔尖停留在点尸处,那么点尸对应的数是〔〕A. 0B. - 10C. -25D. 502 .如下图,圆的周长为4个单位长度,在圆的4等分点处标上数字0, 1, 2, 3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2021将与圆周上的哪个数字重合〔〕3 .同学们都知道,15 - 〔-2〕 I表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.答复以下问题:(1)15 - 〔 -2〕 1=.〔2〕找出所有符合条件的整数x,使得k+5l+h -2l=7成立,这样的整数是.〔3〕对于任何有理数%, Lr-31+k - 61的最小值是.〔4〕对于任何有理数x, lx- ll+Lt-21+k+ll的最小值是,此时x的值是.4 .百子回归图是由1, 2, 3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20〞标示澳门回归日期,最后一行中间两位“23 50〞标示澳门而积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,那么这个和为.5 .符号“G 〞表示一种运算,它对一些数的运算结果如下:(1) G (1) =1, G (2) =3, G (3) =5, G (4) =7,-(2) G (i) =2, G (工)=4, G (1) =6, G (工)=8,… 2 3 4 5利用以上规律计算:G (2021) -G (―1―) -2021= 2021------------ 6 . 一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单 位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳 第2021次落下时,落点处离原点的距离是 个单位.7 .阅读以下材料:我们知道3的几何意义是在数轴上数x 对应的点与原点的距离:即lxl=lx -01,也就是说,卜1表示在数轴上数x 与数0对应点之间的距离:这个结论可以推广为M -.5表示在数轴上xi, 也对应点之间的距离:例1.kl=2,求x 的值.解:容易看出,在数轴上与原点距离为2点的对应数为-2和2,即x 的值为-2和2.例2.k-11=2,求x 的值.解:在数轴上与1的距离为2点的对应数为3和-1,即x 的值为3和-1.仿照阅读材料的解法,求以下各式中x 的值.(1) Lr-2I=3(2) lx+ll=4.8 .阅读以下材料:我们知道3的几何意义是在数轴上数x 对应的点与原点的距离;即Ld=k-0l ;这个结论 可以推广为M-X2I 表示在数轴上数也对应点之间的距离.绝对值的几何意义在解题 中有着广泛的应用:nMuMmMx “9luNullntt 35:31>:>|11 M;aM:“r44 UIN 二・eMA«■二他例1:解方程3=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x= ±4:例2:解方程k+11+k-21=5.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x的值.在数轴上,-1和2的距离为3,满足方程的x对应的点在2的右边或在-1的左边.假设x对应的点在2的右边,如图(25-1)可以看出x=3:同理,假设x对应点在-1的左边,可得x=-2.所以原方程的解是x=3或工・=-2.例3:解不等式在数轴上找出k- 11=3的解,即到1的距离为3的点对应的数为-2, 4,如图〔25-2〕, 在-2的左边或在4的右边的x值就满足k - 11>3,所以k - 1>3的解为xV - 2或x>4. 参考阅读材料,解答以下问题:〔1〕方程卜+31=5的解为;〔2〕方程k - 2021l+Lx+ll=2021 的解为:〔3〕假设Lt+4l+k-3l2U,求x的取值范围.图1 图29 .根据给出的数轴及条件,解答下面的问题:-6 -5 -4「-2 -1 0-12~3 4 5〔1〕点A,B,.表示的数分别为1,一旦,-3观察数轴,与点A的距离为3的点2表示的数是,B, C两点之间的距离为:〔2〕假设将数轴折叠,使得A点与.点重合,那么与3点重合的点表示的数是;假设此数轴上M, N两点之间的距离为2021 〔M在N的左侧〕,且当A点与.点重合时,M 点与N点也恰好重合,那么M, N两点表示的数分别是:时, N:〔3〕假设数轴上P,.两点间的距离为小〔P在.左侧〕,表示数〃的点到尸,.两点的距离相等,那么将数轴折叠,使得尸点与.点重合时,P,.两点表示的数分别为:P, Q〔用含〃?,n的式子表示这两个数〕.10 .某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程〔单位:加?〕依先后次序记录如下:+9, -3, -5, +4, -8, +6, -3, -6, -4, + 10.〔1〕将最后一名乘客送到目的地,出租车离一中出发点多远?在一中什么方向?〔2〕假设每千米的价格为3.5元,司机一个下午的营业额是多少?11 .从一批机器零件毛坯中取出10件,称的质量如下〔单位:/〕:205, 200, 185, 206, 214, 195, 192, 218, 187, 215,请用两种方法求这10 件毛坯的总质量.x 7 x>012 .阅读以下材料:lxl=・0, x=0 ,即当x>0时,-x, x<0 用这个结论可以解决下面问题:13 .某超市为了促销,推出两种促销方式:方式①:所有商品实行7.5折销售;方式②:一次购物满200元送60元现金.试解答以下问题:〔1〕杨师傅要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置:方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置:方案四:628元和788元的商品均按促销方式②购置.请你帮杨师傅计算出四种购置方案所付金额,并给杨师傅提出省钱的购置方案. 〔2〕计算下表中标价在600元到800元之间商品的付款金额:商品标价〔元〕方式①方式② 根据上表计算的结果,你能总结出商品的购置规律吗?14 .:CaXb 〕 2=a 2Xb 2. 〔aXb 〕 3=a 3Xb\ 〔aXb 〕 4=t/4xM,〔l 〕用特例验证上述等式是否成立,〔取“=1, /7=-2〕 〔2〕通过上述验证,猜一猜:〔“X 〃〕,〔M,=,归纳得出:〔〃Xb 〕 〃=〔3〕上述性质可以用来进行积的乘方运算,反之仍然成立,即:〔“X 〃〕〞 应用上述等式计算:〔-L 〕 2.19义42叫15.商人小周于上周日买进某农产品10000 每斤2.4元,进入批发市场后共占5个摊位, 〔1〕己知如6是有理数,前嘀的值,〔2〕.、〃是有理数,当而cHO 时,〔3〕“、b 、c 是有理数,"Hc=0,求育土亩的值・…求皆嘀畤的值• 付款金额〔元〕628638 648 768 778 788-^=^=1:当 xVO 时,每个摊位最多能容纳2000斤该品种的农产品,每个摊位的市场治理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况〔购进当日该农产品的批发价格为每斤2.7元〕.星期—四五与前一天的价格涨跌情况〔元〕+0.3-0.1+0.25+0.2-0.5当天的交易量〔斤〕25002000300015001000〔1〕星期四该农产品价格为每斤多少元?〔2〕本周内该农产品的最高价格为每斤多少元?最低价格为每斤多少元?〔3〕小周在销售过程中采用逐步减少摊位个数的方法来降低本钱,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.16 .如图,数轴上一电子跳蚤.从原点.出发,第1次沿数轴向右跳4个单位长度落在点A,第2次从点A出发沿数轴向左跳3个单位长度落在点B,第3次从点B沿数轴向右跳4个单位长度落在点C,第4次从点.出发沿数轴向左跳3个单位长度落在点.,…, 按此规律继续跳动.〔1〕写出电子跳蚤.在第5、6次跳动后落在数轴上的点对应的数分别是多少?〔2〕写出电子跳蚤.在第〃次跳动后落在数轴上的点对应的数?〔3〕电子跳蚤.经过多少次跳动后落在数轴上的点对应数100?QQ一、^月 J ~ O 1 5^ 17 .阅读下面材料:点A、8在数轴上分别表示有理数〃、b, A、8两点之间的距离表示为L48I.当A、8两点中有一点在原点时,不妨设点儿在原点,如图1所示,\AB\ = \OB\=\b\ =1“ - 〃1:当A、8两点都不在原点时.〔1〕如图 2 所示,点A、5 都在原点右边,\AB\=\OB\ - \OA\=\b\ - la\=b - a=\a - bh 〔2〕如图 3 所示,点A、3 都在原点左边,\AB\=\OB\ - \OA\=\b\ - k/l= - b -〔-〃〕= h - Z?l;〔3〕如图 4 所示,点A、8在原点两边,\AB\=\OBMOA\=\b\+kA=a+〔 -//〕=\a - b\. 综上所述,数轴上A、B两点之间的距离表示为= 根据阅读材料答复以下问题:〔1〕数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是: 〔2〕数轴上表示x和-3的两点A、B之间的距离是,如果IABI=2,那么X为.〔3〕当代数式k+11+lx- 21取最小值时,即在数轴上,表示x的动点到表示-1和2的两个点之间的距离和最小,这个最小值为,相应的x的取值范围是.18 .数学实验室:点A、8在数轴上分别表示有理数“、b, A、8两点之间的距离表示为A3,在数轴上4、8两点之间的距离利用数形结合思想答复以下问题:①数轴上表示2和6两点之间的距离是,数轴上表示1和-4的两点之间的距离是.②数轴上表示x和-3的两点之间的距离表示为.数轴上表示x和6的两点之间的距离表示为.③假设x表示一个有理数,那么lx - ll+k+41的最小值=.④假设x表示一个有理数,且lx+ll+k-3l=4,那么满足条件的所有整数x的是.⑤假设x表示一个有理数,当x为,式子k+21+k - 31+卜-41有最小值为.4 . 4 一答案与解析1 .小明同学将28铅笔笔尖从原点0开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1 个单位长度完成第一次操作:再沿负半轴滑动2个单位长度完成第二次操作:又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…, 以此规律继续操作,经过第50次操作后笔尖停留在点尸处,那么点尸对应的数是( )A. 0B. - 10C. -25D. 50【分析】取向右为正方向,那么向左为负,利用有理数的加减法可得结果.【解答】解:由题意得,1 - 2+3 - 4+5 - 6+…49 - 50=25X ( - 1) = - 25,应选:C.【点评】此题主要考查了正负数,数轴和有理数的加减法,理解正负数的意义是解答此题的关键.2 .如下图,圆的周长为4个单位长度,在圆的4等分点处标上数字0, 1, 2, 3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2021将与圆周上的哪个数字重合( )【分析】据圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,那么根据规律即可解答.【解答】解:圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,那么与圆周上的0重合的数是-2, -6, - 10-,即-(-2+4/?),同理与3重合的数是:-(-1+4/?),与2重合的数是-4%与1重合的数是-(1+4〞),其中〃是正整数.而- 2021= - ( - 1+4X505),・•・数轴上的数-2021将与圆周上的数字3重合.应选:O.【点评】此题综合考查了数轴、循环的有关知识,关键是把数和点对应起来,也就是把22“数〞和“形〞结合起来.3.同学们都知道,15- 〔-2〕 I表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.答复以下问题:(1)15 - 〔 -2〕 1= 7 ,〔2〕找出所有符合条件的整数必使得k+5l+h -2l=7成立,这样的整数是-5, -4,- 3. - 2, - 1, 0, 1, 2 ,〔3〕对于任何有理数%, Lr-31+k - 61的最小值是3 .〔4〕对于任何有理数x, LLll+Lr-21+k+ll的最小值是3 ,此时x的值是1 .【分析】〔1〕直接去括号,再根据去绝对值的方法去绝对值就可以了.〔2〕要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算, 最后确定x 的值.〔3〕根据〔2〕方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值, 最后讨论得出最小值.〔4〕要使k- 21+Lr+ll的值最小,x的值只要取-1到2之间〔包括-1、2〕的任意一个数,要使Lr- II的值最小,x应取1,显然当x=l时能同时满足要求,把x=l代入原式计算即可得到最小值.【解答】解:〔1〕原式=15+21=7,故答案为:7:〔2〕令x+5=0 或x - 2=0 时,那么x=-5 或x=2当xV -5时,...-〔x+5〕 - 〔x-2〕 =7,-x - 5 - x+2=7,x=5〔范围内不成立〕;当-5WxW2 时,-•.〔A+5〕-〔A - 2〕 =7,x+5 - x+2=7,7=7,.*.x= - 5, - 4» - 3» - 2, - 1, 0, 1, 2:二(A+5) + (x-2) =7,2Y =4,x=2 (范围内不成立);,综上所述,符合条件的整数x 有:-5, -4, -3, -2, - 1, 0, 1, 2: 故答案为:-5, -4, -3, -2, - 1, 0, 1, 2(3)当 xV3 时,k-3l+h -6l=9-2x>3,当 3WxW6 时,Lr-3l+k-6l=3, 当 x>6 时,k-3l+k-6l=2x-9>3,,k-3l+Lr-6l 的最小值是3,故答案为:3:(4)当 7WxW2 时,Lx -21+lx+ll 的值最小为 3,当尸1时,k- 11的值最小为0,,当 x=l 时,k- ll+k-21+Lr+ll 的最小值是 3, 故答案为:3, 1.【点评】此题考查了绝对值,两点间的距离,理解绝对值的几何意义是解题的关犍.4 .百子回归图是由1, 2, 3…,100无重复排列而成的正方形数表,它是一部数化的澳门简 史,如:中央四位“19 99 12 20〞标示澳门回归日期,最后一行中间两位“23 50〞 标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每 条对角线10个数之和均相等,那么这个和为505.【分析】根据得:百子回归图是由1, 2, 3…,100无重复排列而成,先计算总和: 又由于一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和=10. 【解答】解:1〜100的总和为:(1+100)乂 100=5050,»MI«〞M,» ■AilMavsieHM 〞2一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050・10=505,故答案为:505.【点评】此题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1 开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.5 .符号“G〞表示一种运算,它对一些数的运算结果如下:(1) G (1) =1, G (2) =3, G (3) =5, G (4) =7,-(2) G (工)=2, G (工)=4, G (1)=6, G (1)=8, •••2 3 4 5利用以上规律计算:G (2021) -G(」一)- 2021= - 2021 .2021 ----------------【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前而括号中的数的2倍减1, (2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G (2021) -G(―^) - 2021=2021X2- 1 - (2021- 1) X2-2021= 2021-2021.【点评】找到正确的规律是解答此题的关键.6 . 一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2021次落下时,落点处离原点的距离是一1010个单位.【分析】根据题意可以直接写出前几次落点在数轴上对应的数据,从而可以发现变化的规律,从而可以解答此题.【解答】解:设向右为正,向左为负,所以1+ (-2) +3 (-4) +-+2021+ (-2021) +2021=[1+(-2) ]+[3(-4) ]+ -+[2021+ (-2021) ]+2021=-1009+2021=1010那么第2021次落点在数轴上对应的数是1010,故答案为:1010.【点评】此题考查数字的变化类、数轴,解答此题的关键是明确题意,发现数字的变化规律.7 .阅读以下材料:我们知道3的几何意义是在数轴上数x对应的点与原点的距离:即lxl=Lr -01,也就是说,卜1表示在数轴上数x与数0对应点之间的距离:这个结论可以推广为M--切表示在数轴上XI,X2对应点之间的距离:例1.Ld=2,求x的值.解:容易看出,在数轴上与原点距离为2点的对应数为-2和2,即x的值为-2和2.例2.k-11=2,求x的值.解:在数轴上与1的距离为2点的对应数为3和-1,即x的值为3和-1.仿照阅读材料的解法,求以下各式中x的值.(1)1A--21=3(2)I A+1I=4.【分析】〔1〕由例2可知在数轴上与2的距离为3点的对应数为5和-1;〔2〕由例2可知在数轴上与-1的距离为4点的对应数为3和-5.【解答】解:〔1〕在数轴上与2的距离为3点的对应数为5和-1,即x的值为5和一1.〔2〕在数轴上与-1的距离为4点的对应数为3和-5,即x的值为3和-5【点评】此题考查了在数轴上表示点与点的距离,同时考查了学生的阅读理解水平.8.阅读以下材料:我们知道3的几何意义是在数轴上数x对应的点与原点的距离:即Ld=k-OI;这个结论可以推广为M表示在数轴上数xi,电对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程hl=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x= ±4:例2:解方程k+11+k-21=5.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x的值.在数轴上,-1和2的距离为3,满足方程的%对应的点在2的右边或在-1的左边.假设x对应的点在2的右边,如图〔25-1〕可以看出x=3;同理,假设x对应点在- 1的左边,可得x=-2.所以原方程的解是x=3或x=-2.例3:解不等式lx-ll>3.在数轴上找出k - 11=3的解,即到1的距离为3的点对应的数为-2, 4,如图〔25 - 2〕, 22在-2的左边或在4的右边的x值就满足Lr - 11>3,所以k - 11>3的解为xV - 2或x>4.参考阅读材料,解答以下问题:〔1〕方程lx+31 = 5的解为x=2或x= - 8 ;〔2〕方程Lr - 2021l+h+ll=2021 的解为x=-2 或x=2O18 ;〔3〕假设3+4l+k-3l2U,求〉的取值范围.图L 图2【分析】〔1〕根据例1的方法,求出方程的解即可;〔2〕根据例2的方法,求出方程的解即可:〔3〕根据例3的方法,求出x的范围即可.【解答】解:〔1〕方程Lr+3I=5的解为x=2或x= - 8:故答案为:.*=2或x=8:〔2〕方程k-2021l+lx+ll=2021 的解为%= -2 或x=2021:故答案为:x= -2或尸2021:〔3〕・.・k+4l+k - 31表示的几何意义是在数轴上分别与-4和3的点的距离之和,而-4与3之间的距离为7,当x在-4和3时之间,不存在x,使k+41+k-31>11成立,当x在3的右边时,如下图,易知当x>5时,满足lx+4l+k-3l,ll,当x在-4的左边时,如下图,易知当xW-6时,满足k+41+k-31211,所以x的取值范围是或xW -6._____ z------ ----------- n ---- □——------- ►-6 -4 0 3 〕【点评】此题考查了含绝对值的一元一次方程,弄清题意是解此题的关键.9.根据给出的数轴及条件,解答下面的问题:।। 1 q % ।।। 4 ।।।।〕-6 -5 -4 -3 -2 -1 0~12~~3~~4 5〔1〕点A, B, C表示的数分别为1,-互,-3观察数轴,与点A的距离为3的点2表示的数是一4或-2 , B,.两点之间的距离为_1_:2〔2〕假设将数轴折卷,使得A点与C点重合,那么与5点重合的点表示的数是_1_:假设2此数轴上M, N两点之间的距离为2021 〔M在N的左侧〕,且当A点与.点重合时,M点与N点也恰好重合,那么M, N两点表示的数分别是:M - lOOS.S ?N 1006.5〔3〕假设数轴上P,.两点间的距离为小〔尸在.左侧〕,表示数〃的点到P,.两点的距离相等,那么将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:尸〃-典,Q〃但〔用含帆,〃的式子表示这两个数〕.一二【分析】〔1〕分点在A的左边和右边两种情况解答;利用两点之间的距离计算方法直接计算得出答案即可:〔2〕 A点与.点重合,得出对称点位-1,然后根据两点之间的距离列式计算即可得解: 〔3〕根据〔2〕的计算方法,然后分别列式计算即可得解.【解答】解:〔1〕点A的距离为3的点表示的数是1+3=4或1-3=-2:B, C两点之间的距离为一$-〔-3〕 =1:2 2〔2〕 8点重合的点表示的数是:〔-$〕]=!:2 2M= - 1 - - 1OO8.5, 〃= - 1006.5:2 2〔3〕尸=〃-四,.=〃目.2 2故答案为:4或-2,工:工,- 1008.5, 1006.5;史,〃目.2 2 2 2【点评】此题考查了数轴的运用.关键是利用数轴,数形结合求出答案,注意不要漏解.10 .某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程〔单位:依先后次序记录如卜:+9, -3, - 5, +4» - 8, +6, -3, - 6, - 4, +10.〔1〕将最后一名乘客送到目的地,出租车离一中出发点多远?住一中什么方向?〔2〕假设每千米的价格为3.5元,司机一个下午的营业额是多少?【分析】〔1〕求出记录数据之和,即可作出判断:〔2〕求出各数据绝对值之和,乘以3.5即可得到结果.【解答】解:〔1〕根据题意得:+9-3-5+4-8+6-3-6-4+10=0,那么将最后一名乘客送到目的地,出租车在一中:〔2〕根据题意得:〔9+3+5+4+8+6+3+6+4+10〕 X3.5=58X3.5 = 203 〔元〕,那么司机一个下午的营业额是203元.【点评】此题考查了正数与负数,弄清题中的数据是解此题的关键.11 .从一批机器零件毛坯中取出10件,称的质量如下(单位:#):205, 200, 185, 206, 214, 195, 192, 218, 187, 215,请用两种方法求这丘件毛坯的 总质量.【分析】(1)直接相加求出即可;(2)以每个毛坯重200g 为准,超过的记为正,缺乏的记为负,得到以下数据(单位:g):5, 0, - 15, 6, 14, -5, -8, 18, - 13, 15.再计算即可.【解答】解:(1) 205+200+185+206+214+195+192+218+187+215=2021 (g)(2)以每个毛坯重200g 为准,超过的记为正,缺乏的记为负,得到以下数据(单位:g):5, 0, - 15, 6, 14, -5, -8, 18, - 13, 15.5+0+ ( - 15) +6+14+ ( -5) + ( -8) +18+ ( - 13) +15 =5- 15+6+14-5-8+18- 13+15 = 5+6+14+18+15- 15-5-8-13 = 58-41=17(Q,200X10+17=2021 (g).答:这10件毛坯的总质量是2021g.【点评】此题主要考查有理数的混合运算,掌握混合运算的顺序是解题的关键.Xj x>012 .阅读以下材料:lxl= 0, x=0 ,即当x>0时,击了二「当XV0时,居二一1. 』X <01x1 X图 r用这个结论可以解决下面问题:(2).、〃是有理数,当而cHO 时,(3)“、b 、c 是有理数,"Hc=0,【分析】(1)分3种情况讨论即可求解:(2)分4种情况讨论即可求解;(3)根据得到"+c=-b, 〃+b=-c,八 氏c 两正一负,进一步计算即可求解.(1) 己知如〃是有理数,留神W0时,求前嘀的值,…求皆啮嘀的值.【解答】解:〔I 〕小〃是有理数,当帅W0时,〔2〕己知4, b, C 是有理数,当"cWO 时,①aVO, b<0, cVO, -Ar+ + R = - 1 - 1 - 1= - 3: 周 |bT |c| ②a>0, b>3 c>0,书-*^^-=1 + 1+1=3:|a| Ib| |c|故-f3r + J I + |G =± ]或±3;周 411cl(3) 〞,b, c 是有理数,a+b+c=O, "cVO,贝lj Hc= - a, a+c= - b, a+b= - c, a. b 、c 两正一负,a _bc _ i i i _ iM --N -¥T故答案为:±2或0; ±1或±3; - 1.【点评】此题考查了有理数的除法,以及绝对值,熟练掌握运算法那么是解此题的关键.13 .某超市为了促销,推出两种促销方式:方式①:所有商品实行7.5折销售; 方式②:一次购物满200元送60元现金. 试解答以下问题:〔1〕杨师傅要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置: 方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置: 方案四:628元和788元的商品均按促销方式②购置.请你帮杨师傅冲算出四种购置方案所付金额,并给杨师傅提出省钱的购置方案.①aVO, b<0. ②a>0, b>0. 俞喻= 俞喻=-1 - 1= -2:1 + 1=2:=-1 - 1+1= - 1: =-1+1 + 1 = 1.③a 、b 异号,Ic|Icl c ③a 、b 、c 两负一正,④“、b 、c 两正一负,〔2〕计算下表中标价在600元到800元之间商品的付款金额:商品标价〔元〕方式① 方式②根据上表计算的结果,你能总结出商品的购置规律吗?【分析】〔1〕根据各种方案列式计算后再根据运算结果选择方案:〔2〕方式①直接乘以0.75,方式②有几个200就减掉几个60,【解答】解:〔1〕付款:方案一:〔628+788〕 X0.75=1062元; 方案二:628X0.75+788 - 3X60=471+608=1079 元; 方案三:628 - 3 X 60+788 X 0.75=448+591 = 1039 元; 方案四:628 - 3X60+788 - 3X60=448+608=1056 元. 所以选择方案三付款省钱.〔2〕正确填写下表:规律:商品标价接近600元的按促销方式②购置,标价接近800元的按促销方式①购买.或标价大于600元且小于720元按促销方式②购置,标价大于720元且小于800元 按促销方式①购置.〔其它表述正确,或能将两种购物方式抽象概括成一次函数并能正确解答的均可给分〕 【点评】此题信息量比拟大,读懂题意,仔细审题,不难求出答案.14 .:(aXb) 2=a 2Xh 2. CuXb) 3=a^Xb\ (aX 〃)4=a 4X//,〔1〕用特例验证上述等式是否成立,〔取.=1, b=-2〕〔2〕通过上述验证,猜一猜:〔aXb 〕 * J 00//00 ,归纳得出:〔</XZ >〕/r = g n h n : 〔3〕上述性质可以用来进行积的乘方运算,反之仍然成立,即:〔aXb 〕 〃付款金额〔元〕628638 648 768 778 788分别计算后填入即可.付款金额 628 638 648 768 778 788〔元〕 商品标价 〔元〕 方式①方式② 471 478.5 486 576 583.5 591448 458 468 588 598 608应用上述等式计算:〔-[〕20,9X 42°,9.【分析】〔1〕分别令4=1,a=-2 代入〔〞X〃〕2=〃2乂//、〔"X〃〕3=t?X//、〔</ X /?〕4 = ,『X〃4进行计算即可;〔2〕根据〔1〕中的各数的值找出规律即可解答:〔3〕根据〔2〕中的规律计算出所求代数式的值即可.【解答】解:〔1〕令“=1, b= -2,那么:[IX 〔 -2〕 ]2=12X 〔 -2〕 2=4, [IX 〔 -2〕 ]3=13X 〔 -2〕3= -8, [IX 〔 -2〕 ]4 = 14X 〔 -2〕4=16,故〔“X.〕"=/〃:〔2〕由⑴ 可猜测:〔aXb〕100=«,00b100,归纳得出:〔“X〃〕"=1%〞:〔3〕由〔2〕中的规律可知,〔-±〕2021X42021 4=[〔-i〕 X4]20214=〔7〕2021=-1.【点评】此题考查数字的变化规律,从简单到复杂,从特殊到一般,探寻规律得出答案即可.15 .商人小周于上周日买进某农产品10000斤,每斤2.4元,进入批发市场后共占5个摊位, 每个摊位最多能容纳2000斤该品种的农产品,每个摊位的市场治理价为每天20元.下表为本周内该农产品每天的批发价格比前一天的涨跌情况〔购进当日该农产品的批发价格为每斤2.7元〕.星期四五与前一天的价格涨跌情况〔元〕+0.3 -0.1+0.25+0.2-0.5当天的交易量〔斤〕2500 2000300015001000〔1〕星期四该农产品价格为每斤多少元?〔2〕本周内该农产品的最高价格为每斤多少元?最低价格为每斤多少元?〔3〕小周在销售过程中采用逐步减少摊位个数的方法来降低本钱,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.【分析】〔1〕根据价格的涨跌情况即可作出判断:〔2〕计算出每天的价格即可作出判断:〔3〕根据售价-进价-摊位费用=收益,即可进行计算.【解答】解:〔1〕 2.7+0.3-0.1+0.25+0.2=3.35 元:〔2〕星期一的价格是:2.7+03 = 3.0 7C;星期二的价格是:3.0-0.1 =2.9元:星期三的价格是:2.9+0.25=3.15元:星期四是:3.15+0.2=3.35元:星期五是:3.35 - 0.5 = 2.85元.因而本周内该农产品的最高价格为每斤3.35元,最低价格为每斤2.85元:〔3〕列式:〔2500X3 - 5X20〕 + 〔2000X2.9-4X20〕 + 〔3OOOX3.15-3X2O〕 + 〔1500 X3.35 - 2X20〕+ 〔1000X2.85 -20〕 - 10000X2.4 =7400+5720+9390+4985+2830 - 24000 = 30325 - 24000 =6325 〔元〕.答:小周在本周的买卖中共赚了6325元钱.【点评】解题关键是理解''正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.16 .如图,数轴上一电子跳蚤.从原点.出发,第1次沿数轴向右跳4个单位长度落在点A,第2次从点A出发沿数轴向左跳3个单位长度落在点B,第3次从点B沿数轴向右跳4个单位长度落在点C,第4次从点.出发沿数轴向左跳3个单位长度落在点.,…, 按此规律继续跳动.〔1〕写出电子跳蚤.在第5、6次跳动后落在数轴上的点对应的数分别是多少?〔2〕写出电子跳蚤.在第〃次跳动后落在数轴上的点对应的数?〔3〕电子跳蚤.经过多少次跳动后落在数轴上的点对应数100?【分析】〔1〕根据左减右加的计算规律,计算得出答案即可;〔2〕分〃为奇数和偶数得出数轴上的对应点即可;〔3〕利用得出的规律列方程求得答案即可.【解答】解:〔1〕第5次跳动后落在数轴上的点对应的数是4 - 3+4 - 3+4=6:第6次跳动后落在数轴上的点对应的数是4 - 3+4 - 3+4 - 3 = 3:〔2〕当〃为偶数时,第〃次跳动后落在数轴上的点对应的数是反:2当〃为奇数时,第,,次跳动后落在数轴上的点对应的数是旦工4=纪工;2 2〔3〕由21=100, 2解得:〃 = 200:由过工=1002解得:〃=193.答:电子跳蚤Q经过193次或200次跳动后落在数轴上的点对应数100.【点评】此题考查了数轴及图形的变化规律,要注意数轴上点的移动规律是“左减右加〞.把数和点对应起来,也就是把“数〞和“形〞结合起来,二者互相补充,相辅相成, 把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.阅读下面材料:点A、8在数轴上分别表示有理数“、b, A、8两点之间的距离表示为L4BI.当A、8两点中有一点在原点时,不妨设点A在原点,如图1所示,\AB\ = \OB\=\b\ = 当A、B两点都不在原点时.〔1〕如图 2 所示,点A、8 都在原点右边,\AB\=\OB\ - \OA\=\b\ - \a\=b - a=\a - bh 〔2〕如图 3 所示,点A、B 都在原点左边,\AB\=\OB\ - \OA\=\b\ - k/l= - b -〔-〃〕= \ci - bl:〔3〕如图 4 所示,点A、5 在原点两边,lAB\=\OB\+\OA\=lb\+\al=a+〔- h〕 =\a - b\.综上所述,数轴上A、8两点之间的距离表示为= 乩根据阅读材料答复以下问题:〔1〕数轴上表示-2和-5的两点之间的距离是3 ,数轴上表示1和-3的两点之间的距离是4 :〔2〕数轴上表示x和-3的两点A、8之间的距离是k+31 ,如果A8I=2,那么x为-1 或-5 .〔3〕当代数式k+ll+k-21取最小值时,即在数轴上,表示x的动点到表示-1和2的两个点之间的距离和最小,这个最小值为3.相应的x的取值范闱是..0网」、.勾b。

练习-初二数学周末练习15(一元二次方程的解法)

练习-初二数学周末练习15(一元二次方程的解法)

初二数学周末练习15(一元二次方程的解法)周末练习:一、选择题:1.方程的解是()。

A.B.,C.D.2.方程的解是()。

A.,B.,C.,D.3.已知2是关于x的方程的一个根,则的值是()A.3 B.4 C.5 D.64.关于x的一元二次方程的一个根是0,则a的值是()。

A.1B.-1 C.1或-1 D.0.55.已知下列方程:,,,,其中,整式方程的个数是()。

A.1 B.2C.3D.46.方程的根是()。

A.2 B.-1 C.-1或2 D.1或27.用换元法解方程时,如果设,那么原方程可化为()。

A.B.C.D.8.*方程的实根的个数是()。

A.3B.2C.1 D.没有9.如果,那么的值等于()。

A.1 B.-1 C.-2 D.±110.冰雪节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元。

出发时,又增加了两名同学,结果每名同学比原来少分摊3元车费.若设参加旅游的学生共有x有,则所列的方程为()。

A.B.C.D.二、解答题:11.用直接开平方法解下列方程:(1);(2);(3);(4)。

12.用配方法解下列各方程:(1);(2);(3);(4)。

13.用公式法解下列各方程:(1);(2);(3);(4)。

14.用因式分解法解下列各方程:(1);(2);(3);(4)。

15.阅读下题的解答过程,请判断其是否有错;若有错,请你写出正确答案。

已知m是关于x的方程的一个根,求m的值。

将x=m代入原方程,化简,得。

两边同除以m,得,所以m=1.把m=1代入原方程检验,可知m=1符合题意,所以m的值是1。

16.要使关于x的方程与有且只有一个公共根,求b的值。

17.是否存在使函数的函数值为0的x值,若存在,就把它求出来;若不存在,请说明理由。

参考答案:1.A 2.B 3.C 4.B 5.B 6.B 7.D 8.C 9.A 10.D11.(1),(2),(3),(4),12.(1),(2),(3),(4),13.(1),(2),(3),(4)14.(1),(2),(3)(4),15.有错,m的值是0,1或-1。

北师大版七上数学第15周周末作业15

北师大版七上数学第15周周末作业15

2024-2025学年上学期七年级北师大版数学周末练习(第十五周)一、选择题(本大题共12小题,每小题3分,共36分)1.下列各数中,比-3小的数是()A.-3B.-2C.0D.-42.如图所示的几何体从上面看到的图形是()3.下列运算正确的是()A.4m-m=3B.2a2-3a2=-a2C.a2b-ab2=0D.x-(y-x)=-y4.已知方程2x+a=ax+2的解为x=3,则a的值为()A.3B.2C.-2D.±25.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数为()A.100° B.120° C.135° D.150°第5题图第6题图6.如图,上列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1B.y=2n+1+nC.y=2n+nD.y=2n+n+17.如果x=是关于x的方程3x﹣2m=4的解,则m的值是()A.﹣1 B.1 C.2 D.﹣28.小明晚上放学到家时,钟表的时间显示为6点15分(如图),此时时钟的分针与时针所成角的度数是( )0A.77.5 B.87.5 C.97.5 D.100.59.中国古代人民很早就在生产生活种发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9 B.3(x+2)=2x﹣9 C. +2=D.﹣2=10.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形个数是()A .1B .2C .3D .411.下列调查方法合适的是( )A .为了了解冰箱的使用寿命,采用普查的方式B .为了了解全国中学生的视力状况,采用普查的方式C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式12.找出以如图形变化的规律,则第101个图形中黑色正方形的数量是( )A .149B .150C .151D .152二、填空题(本大题共8小题,每小题3分,共24分) 1.关于一个多面体的顶点数(v )、棱数(e )、面数(f )之间关系的为 .2.据人民网统计,2018年“五一”假期期间江西省以近200亿元的旅游收入位居全国第一,其中200亿用科学记数法表示为__________________________..3.当x = 时,代数式2x +3与6-4x 的值相等.4.已知622x y 和313m nx y -是同类项,则m ﹣n 的值是 5.如图,已知线段AB =16cm ,点M 在AB 上,AM :BM =1:3,P 、Q 分别为AM 、AB 的中点,则PQ 的长为 _________.6.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h ,小明的速度为5km/h ,小丽比小明晚到15min ,则甲、乙两村的距离是 km.7.已知有理数a ,b 满足ab <0,|a|>|b|, 2|a +b|=|b -a|,则ab的值为 .8.在∠AOB 的内部引n 条射线,则图中的角共有_________________个(用含n 的代数式表示). 三、计算或解答(共60分)1.(9分)计算:①.-14-(1-0.5)×13×[3-(-3)2]. ②.(137112812--+)×(24-).③.先化简,再求值::2x 2﹣3(﹣x 2+xy ﹣y 2)﹣3x 2,其中x=2,y=﹣1..2.解下列方程(6分):(1)4-x =3(2-x); (2)2x -13-x +14=1.3(4分).在做解方程练习时,学习卷中有一个方程“2y ﹣=y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x ﹣1)﹣2(x ﹣2)﹣4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?4①(3分).如图,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若AB =12,求线段ED 的长度.②(4分).如图,直线AB 、CD 相交于点O ,∠BOM=90°,∠DON=90°.(1)若∠COM=∠AOC ,求∠AOD 的度数;(2)若∠COM=∠BOC ,求∠AOC 和∠MOD .5(6分).我们规定:若关于x 的一元一次方程ax=b 的解为b +a ,则称该方程为“和解方程”. 例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”. 请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x=m 是“和解方程”,求m 的值;(2)已知关于x 的一元一次方程﹣2x=mn +n 是“和解方程”,并且它的解是x=n ,求m ,n 的值.6(5分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:请根据他们的对话内容,求小明和爸爸的骑行速度.7(6分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.8.(8分)如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求x的值;(3)在第(2)问的条件下,求原长方体的体积.9(9分).在某市人代会上,提出了建设美丽城市决胜全面小康的奋斗目标.为响应市委号召,学校决定改造校园内的一小广场,如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F,E和C 的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?。

北师大五年级数学上册周十五卷

北师大五年级数学上册周十五卷

化雨中英文学校周末卷(12-13上学期)第15周科目小五数学班级姓名得分试卷说明:(第五单元计算组合图形面积的练习)
一、填表。

(20分)
二、求下面图形的面积(单位:m)。

你能想出几种方法?(10分)
10
16
30
40
三、求下面图形的面积(单位:cm)(30分)
6
四、计算下面图形中阴影部分的面积。

(20分)
12dm 5m
25dm 5m
五、解决问题。

(20分)
1、如图,学校有30扇门要刷油漆,两面都要刷。

(单位:m)
(1)一共要刷多少平方米?
2
(2)如果每平方米需要花6元,学校要花多少钱?
0.8
2、小明家的客厅要铺地板,如图所示,如果每平方米地板需要16元,小明家要花多少钱? 6
12
5
14
本周末卷要求 30 分钟完成,实际完成时间:()分钟家长签名。

冀教版六年级下学期数学应用题周末专项练习

冀教版六年级下学期数学应用题周末专项练习

冀教版六年级下学期数学应用题周末专项练习班级:__________ 姓名:__________1. 修一条公路,甲队单独修要20天修完,乙队单独要30天修完。

两队合修,几天可以修完?2. 小明的年龄比爸爸小26岁,今年爸爸的年龄正好是小明的3倍,小明今年几岁?3. 修一条公路,如果甲工程队单独修,需要20天完成,乙工程队单独修,需要30天完成。

(1)甲、乙两工程队合修多少天,可以修完这条公路?(2)甲、乙两工程队合修3天,完成了这条公路的几分之几?4. 甲、乙、丙三人合作修一条路,他们约定两人两人地轮流做。

首先甲、乙合修5天完成了,然后乙、丙二人合修2天完成了余下的,最后甲、丙二人合修5天完成全部工程。

整条路的维修费用是32000元,按工作量算,甲应得工钱多少元?5. 下面是周末全天各时段进出公园的游客人数统计表:(进入为“+”,离开为“-”)(1)哪个时段进入公园的人数最多?哪个时段离开公园的人数最多?你认为是什么原因呢?(2)哪些时段进入公园的人数多于离开公园的人数?(3)你还发现了什么?6. 星星文具店的老板将两个不同品牌的书包都以240元的价格卖出,结果与进价相比,一个亏了,另一个赚了。

文具店老板是亏了还是赚了?如果亏了,亏了多少钱?如果赚了,赚了多少钱?7. 六年一班男生人数占全班总人数的65%,女生人数占全班总人数的百分之几?谁占的百分比多?多多少?8. 东西两地相距60千米,甲骑自行车,乙步行,同时从两地出发,相对而行,3小时后相遇。

已知甲每小时的速度比乙快10千米,二人每小时的速度各是多少千米?9. 在比例尺是1︰2000000上,量得A、B两地的图上距离是12厘米。

(1)A、B两地实际距离有多少千米?(2)如果一辆车以每小时60千米的速度从A地到B地,要用几小时?10. 算一算,想一想。

(1)请把上表补充完整。

(2)从上表中你得到了什么结论?并说明理由。

(至少写出两条与正比例和反比例有关的结论)11. 一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米。

苏教版2021年五年级数学第二周周末过关检测卷【含答案】

苏教版2021年五年级数学第二周周末过关检测卷【含答案】

苏教版2021年五年级数学第二周周末过关检测卷姓名1.将一个能活动的平行四边形拉成长方形,其周长()A.变大 B.变小 C.不变 D.无法比较2.平行四边形的高是16cm,底是5cm,和它的面积相等、高也相等的三角形的底是()A.10cm B.5cm C.2.5cm3.平行四边形相邻的两条边长度分别为12厘米和8厘米,已知其中的一条高是10厘米,那么这个平行四边形的面积是()平方厘米.A.120 B.96 C.80 D.604.在图中,平行四边形的面积是阴影部分面积的()A.3倍 B.4倍 C.6倍5.一个三角形的底是6,高是9,这个三角形的面积是()。

A.12B.18C.27D.546.从数轴上观察,大于﹣4而小于4的整数是()A.﹣1,﹣2,﹣3,1,2,3 B.﹣1,﹣2,﹣3,0,1,2C.﹣1,1,﹣2,2,0,3 D.﹣3,﹣2,﹣1,0,1,2,37.如果用一个通用公式来概括正方形、长方形、平行四边形、三角形和梯形的面积,应该是()面积公式。

A.长方形 B.平行四边形 C.三角形 D.梯形8.小虎家上半年的用水情况如下:一月份15吨;二月份20吨;三月份18吨;四月份14吨;五月份16吨;六月份19吨.⑴算出他们家上半年的平均用水吨数.⑵如果把每月平均用水的吨数作为标准,超过平均用水的吨数用正数表示,不足平均用水的吨数用负数表示,请把表格填写完整.一月份二月份三月份四月份五月份六月份平均用水()()()()()()()9.一个长方形的面积是48平方米,如果把长扩大到原来的3倍,宽不变,面积是平方米;如果长不变,把宽缩小到原来的一半,面积是平方米.10.在横线上填上适当的数.23厘米= 米7500克= 千克83平方分米= 平方米79平方厘米= 平方分米3公顷= 平方米1平方千米= 平方米11.一个平行四边形的面积是10平方米,如果底和高都扩大到它的2倍,它的面积是平方米.12.一个三角形与平行四边形等底等高,三角形的面积是60平方米,平行四边形面积是.13.如果从0点出发,向北走50m记作+50m,那么﹣30m表示向走 m.14.如果一个三角形的高不变,底扩大到原来的2倍,那么面积将扩大倍;如果三角形的底不变,高缩小原来的,那么面积将.15.求阴影部分的面积.(单位:cm)【45°说明是等腰三角形,两条直角边长一样】16.画出各图形底边对应的高.17.在图中两条平行线之间画一个和三角形ABC面积相等的平行四边形.18.一块三角形菜地,底30米,高46米,这块菜地的面积是多少平方米?19.如图平行四边形的面积是多少?CD的长度是多少?20.按要求作图.用3种不同的方法,把正方形的面积四等分.21.画一画。

小学五年级数学周末试卷 -国标苏教版 (15)

小学五年级数学周末试卷 -国标苏教版 (15)

五年级数学寒假练习卷一、能简便的就用简便方法计算22.9-13.68+12.68 5.37—(2.37-1.8) 13.86-2.997.28—(0.8+3.28) 5.29-( 3.8-0.71 )-0.2 42.68-(5.74-2.32)73.8-1.64-13.8-5.36 (3.6×2.8×4.4)÷(1.8×1.4×2.2)2.72—3.98+5.28—2.02 35.72-4.9-(5.72+5.1)0.1+0.3+0.5+…++4.7+4.9 0.9+9.9+99.9+999.9+9999.93.5×1.02 0.25×4.4 (12.6+4.8)÷0.628.8×6.3-6.3×18.8 2.8×98+5.6 6.41×9.9+0.641 9.43×101-9.43 0.25×3.2×1.25 0.8×(12.5—1.25)6.09×3.6+0.36×39.1 3.3×2.4-5.6×1.2 5.6÷(5.6×25)9.73÷12.5÷0.8 1.25×(0.8+0.4) ×2.5 85÷343.7×0.125+6.3÷8 8.63÷0.5+1.37×2 17.85÷2.5-7.85×0.4 492÷1.25÷8 0.258×448+0.677×258+25.8×1.25 2.5×3.2×0.1254.8÷0.6+4.8÷0.4 17.6-0.5×0.5-0.75 10÷0.8+6÷0.89.9×31.5+3.3×5.5 2003×2001.20012001-2001×2003.20032003二、计算阴影的面积。

人教版初2数学8年级下册 第17章(勾股定理)周末培优训练卷(含解析)

人教版初2数学8年级下册 第17章(勾股定理)周末培优训练卷(含解析)

第十七章勾股定理周末培优训练卷1.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AB=5,AD=2.(1)求CD的长;(2)求四边形ABCD的面积.2.如图,在Rt△ABC中,∠C=90°,AC=8,AB=10,AB的垂直平分线分别交AB、AC 于点D、E.求AE的长.3.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?4.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度BC=4m,BE=1m.求滑道AC的长度.5.如图,△ABC中,∠ABC=90°,AC=25cm,BC=15cm.(1)直接写出AB的长度 .(2)设点P在AB上,若∠PAC=∠PCA.求AP的长;(3)设点M在AC上.若△MBC为等腰三角形,直接写出AM的长.6.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动.设点P的运动时间为t秒(t>0).(1)求AC的长及斜边AB上的高;(2)①当点P在CB上时,CP的长为 .(用含t的代数式表示)②若点P在∠BAC的角平分线上,则t的值为 .(3)在整个运动中,直接写出△BCP是等腰三角形时t的值.7.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,在A处有一所中学,AP=120米,此时有一辆消防车在公路MN上沿PN方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?8.一块钢板形状如图所示,量得AB=3,BC=4,AC=5,CD=12,AD=13,请你计算一下这块钢板的面积.9.我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为62+82=4×52=100,所以这个三角形是常态三角形.(1)若△ABC三边长分别是2,和4,则此三角形 常态三角形(填“是”或“不是”);(2)若Rt△ABC是常态三角形,则此三角形的三边长之比为 (请按从小到大排列);(3)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,连接CD,若△BCD 是常态三角形,求△ABC的面积.10.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求AB的长;(3)判断△ABC的形状.11.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.12.如图,Rt△ACB在直线l上,且∠ABC=90°,BC=6cm,AC=10cm.(1)求AB的长.(2)若有一动点P从点B出发,以2cm/s的速度在直线l上运动,则当t为何值时,△ACP 为等腰三角形?13.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.14.如图,在一棵树CD的6m高处B有两只猴子,其中一只猴子爬下树走到离树12m处的池塘的A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,请问这棵树有多高?15.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)16.如图是盼盼家新装修的房子,期中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;17.阅读下列内容:设a,b,c是一个三角形的三条边的长,且a是最长边,我们可以利用a,b,c三边长间的关系来判断这个三角形的形状:①若a2=b2+c2,则该三角形是直角三角形;②若a2>b2+c2,则该三角形是钝角三角形;③a2<b2+c2,则该三角形是锐角三角形.例如一个三角形的三边长分别是4,5,6,则最长边是6,由于62=36<42+52,故由上面③可知该三角形是锐角三角形,请解答以下问题:(1)若一个三角形的三条边长分别是2,3,4,则该三角形是 三角形.(2)若一个三角形的三条边长分别是3,4,x,且这个三角形是直角三角形,则x的值为 .(3)若一个三角形的三条边长a=,b=,c=,其中a是最长边,请判断这个三角形的形状,并写出你的判断过程.18.如图所示的一块地,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块地的面积.19.以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.(1)根据上述四组勾股数的规律,写出第六组勾股数;(2)用含n(n≥2且n为整数)的数学等式描述上述勾股数组的规律,并证明.20.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB 长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?21.(1)如图1,等腰三角形ABC中,AB=AC,点D是BC的中点,DE⊥AB于点E、DF⊥AC于点F.求证:DE=DF;(2)如图2,等腰三角形ABC中,AB=AC=13,BC=10,点D是BC边上的动点,DE ⊥AB于点E、DF⊥AC于点F.请问DE+DF的值是否随点D位置的变化而变化?若不变,请直接写出DE+DF的值;若变化,请说明理由.22.善于思考的小鑫同学,在一次数学活动中,将一副直角三角板如图放置,A,B,D在同一直线上,且EF∥AD,∠BAC=∠EDF=90°,∠C=45°,∠E=60°,量得DE=12cm,求BD的长.23.如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D 从点C出发,沿边CA向点A运动,当运动到点A时停止,若设点D运动的时间为t 秒.点D运动的速度为每秒1个单位长度.(1)当t=2时,CD= ,AD= ;(2)求当t为何值时,△CBD是直角三角形,说明理由;(3)求当t为何值时,△CBD是以BD或CD为底的等腰三角形?并说明理由.24.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式 ;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.25.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为: .(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.26.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?27.在一次“构造勾股数”的探究性学习中,老师给出了下表:m 2 3 3 4…n1123…a22+1232+1232+2242+32…b4 6 1224 …c22﹣1232﹣1232﹣2242﹣32…其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a= ,b= ,c= .(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.28.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)29.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:a2+b2=c2(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.①请在坐标轴上找一点C,使△ABC为等腰三角形.写出一个满足条件的在x轴上的点的坐标: ;写出一个满足条件的在y轴上的点的坐标: ,这样的点有 个.30.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称 , ;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)31.先阅读下列一段文字,再回答问题:已知平面内两点P1(x1,y1)、P2(x2,y2),这两点间的距离P1P2=.同时当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,3)、B(4,2),试求A、B两点间的距离;(2)已知点A、B在平行于x轴的直线上,点A的横坐标为7,点B的横坐标为5,试求A、B两点间的距离;(3)已知一个三角形的各顶点坐标为A(﹣2,1)、B(1,4)、C(1﹣a,5),试用含a 的式子表示△ABC的面积.32.某地要开发一块三角形植物园,如图,测得AC=80cm,BC=60cm,AB=100cm.(1)若入口E在边AB上,且AB=2BE,求从入口E到出口C的最短路线的长;(2)在第一问的条件下,若线段CD是一条水渠,且点D在边AB上,CD=CE,请直接写出DE的长度.33.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,求AM的最小值.34.学了勾股定理后,刘老师给学生布置了一道题:如图△ABC中,∠B=45°,∠BAC=75°,AB=,求BC的长.有些同学认为△ABC不是直角三角形,求不出BC的长,老师让学生小组合作,经过讨论形成共识:可以通过作垂直构建直角三角形求解.请你结合他们的思路完成这一问题.35.如图,在四边形ABCD中,AB∥CD,∠D=90°,若AD=3,AB=4,CD=8,点P 为线段CD上的一动点,若△ABP为等腰三角形,求DP的长.36.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?37.数学实验室:制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c 为边长的正方形构成“弦图”(如图2),古代数学家利用“弦图”验证了勾股定理.探索研究:(1)小明将“弦图”中的2个三角形进行了旋转,得到图3,请利用图3证明勾股定理;数学思考:(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明).38.已知:如图,有一块Rt△ABC的绿地,量得两直角边AC=8m,BC=6m.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8m为直角边长的直角三角形,求扩充后等腰△ABD的周长.(1)在图1中,当AB=AD=10m时,△ABD的周长为 ;(2)在图2中,当BA=BD=10m时,△ABD的周长为 ;(3)在图3中,当DA=DB时,求△ABD的周长.参考答案1.解:(1)延长BA、CD交于点H,如图所示:∵∠B=∠ADC=90°,∠C=60°,∴∠ADH=90°,∠H=30°,∴HA=2AD=4,CH=2BC,∴DH===2,BH=HA+AB=4+5=9,∵BH===BC=9,∴BC=3,∴CH=2BC=6,∴CD=CH﹣HD=6﹣2=4;(2)四边形ABCD的面积=△BCH的面积﹣△ADH的面积=×3×9﹣×2×2=.2.解:在Rt△ABC中,∠C=90°,AC=8,AB=10,∴BC===6,连接BE,∵DE垂直平分AB,∴AE=BE,设AE=BE=x,则CE=8﹣x,在Rt△BCE中,∵BC2+CE2=BE2,∴62+(8﹣x)2=x2,解得x=,∴AE=.3.解:设水深x尺,则芦苇长(x+1)尺.由题意得x2+52=(x+1)2.解得x=12.∴x+1=13.答:水深12尺;芦苇长13尺.4.解:设AC=xm,则AE=AC=xm,AB=AE﹣BE=(x﹣1)m,由题意得:∠ABC=90°,在Rt△ABC中,AB2+BC2=AC2(x﹣1)2+42=x2解得x=8.5∴AC=8.5m.5.解:(1)∵∠ABC=90°,AC=25cm,BC=15cm,∴AB===20(cm),故答案为:20cm;(2)∵∠PAC=∠PCA,∴AP=PC,设AP=PC=x,∴PB=20﹣x,∵∠B=90°,∴BP2+BC2=CP2,即(20﹣x)2+152=x2,解得:x=,∴AP=;(3)AM的长为10cm,7cm,12.5cm.如图(1),当CB=CM=15时,AM=AC﹣CM=25﹣15=10(cm);如图(2),当BM=CM时,AM=BM=CM=AC=12.5(cm);如图(3),当BC=BM时,过B作BH⊥AC于点H,则BH==12(cm),CH==9(cm),∴CM=2CH=18(cm),∴AM=AC﹣CM=7(cm);综上所述,AM的长为10cm,7cm,12.5cm.6.解:(1)在△ABC中,∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4.设斜边AB上的高为h,∵AB•h=AC•BC,∴5h=3×4,∴h=2.4.∴AC的长为4,斜边AB上的高为2.4;(2)已知点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B﹣A运动,①当点P在CB上时,点P运动的长度为:AC+CP=2t,∵AC=4,∴CP=2t﹣AC=2t﹣4.故答案为:2t﹣4.②当点P'在∠BAC的角平分线上时,过点P'作P'D⊥AB,如图:∵AP'平分∠BAC,P'C⊥AC,P'D⊥AB,∴P'D=P'C=2t﹣4,∵BC=3,∴BP'=3﹣(2t﹣4)=7﹣2t,在Rt△ACP'和Rt△ADP'中,,∴Rt△ACP'≌Rt△ADP'(HL),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt△BDP'中,由勾股定理得:12+(2t﹣4)2=(7﹣2t)2,解得:t=.故答案为:.(3)由图可知,当△BCP是等腰三角形时,点P必在线段AC或线段AB上,①当点P在线段AC上时,此时△BCP是等腰直角三角形,∴此时CP=BC=3,∴AP=AC﹣CP=4﹣3=1,∴2t=1,∴t=0.5;②当点P在线段AC上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴CH=,在Rt△BCH中,由勾股定理得:BH==1.8,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则BQ=CQ=0.5×BC=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt△BPQ中,由勾股定理得:BP==2.5,点P运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t的值为0.5或4.75或5或5.3.7.解:(1)学校受到噪音影响.理由如下:作AB⊥MN于B,如图1,∵PA=120m,∠QPN=30°,∴AB=PA=60m,而60m<100m,∴消防车在公路MN上沿PN方向行驶时,学校受到噪音影响;(2)以点A为圆心,100m为半径作⊙A交MN于C、D,如图,∵AB⊥CD,∴CB=BD,在Rt△ABC中,AC=100m,AB=60m,CB==80m,∴CD=2BC=160m,∵消防车的速度5m/s,∴消防车在线段CD上行驶所需要的时间=160÷5=32(秒),∴学校受影响的时间为32秒.8.解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=×3×4+×5×12=6+30=36.9.解:(1)∵22+42=4×()2=20,∴△ABC三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;(2)∵Rt△ABC是常态三角形,∴设两直角边长为:a,b,斜边长为:c,则a2+b2=c2,a2+c2=4b2,则2a2=3b2,故a:b=:,∴设a=x,b=x,则c=x,∴此三角形的三边长之比为:::.故答案为:::;(3)∵Rt△ABC中,∠ACB=90°,BC=6,点D为AB的中点,△BCD是常态三角形,∴当AD=BD=DC,CD2+BD2=4×62时,解得:BD=DC=6,则AB=12,故AC==6,则△ABC的面积为:×6×6=.当AD=BD=DC,CD2+BC2=4×BD2时,解得:BD=DC=2,则AB=4,故AC=2,则△ABC的面积为:×6×2=6.故△ABC的面积为或6.10.解:(1)在△BCD中,因为CD⊥AB,所以BD2+CD2=BC2.所以CD2=BC2﹣BD2=152﹣92=144.所以CD=12.(2)在△ACD中,因为CD⊥AB,所以CD2+AD2=AC2.所以AD2=AC2﹣CD2=202﹣122=256.所以AD=16.所以AB=AD+BD=16+9=25.(3)因为BC2+AC2=152+202=625,AB2=252=625,所以AB2=BC2+AC2.所以△ABC是直角三角形.11.解:(1)是.理由:∵AM2+BN2=22+(2)2=16,MN2=42=16,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形.故答案为是.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(7﹣x)2=x2+25,解得x=;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=25+(7﹣x)2,解得x=.综上所述BN的长为或.12.解:(1)∵∠ABC=90°,BC=6cm,AC=10cm,∴AB===8cm;(2)①如图1,若CP=CA,则:BP=CP+BC=6+10=16或BP=CP﹣BC=10﹣6=4,即2t=16,t=8或2t=4,t=2;②如图2,若AP=AC,则:AB垂直平分PC,BP=BC=6,即2t=6,t=3;③若PA=PC,则P在AC的垂直平分线上,所以P在B左侧,PB=2t,BC=6,∴t=8,PA=2t+6,∵∠ABP=90°,∴AP2=AB2+BP2,即(2t+6)2=(2t)2+82,解得t=;综上所述,当点P向左运动s、2s、3s或向右运动8s时,△ACP为等腰三角形.13.解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.14.解:由题意知AD+DB=BC+CA,且CA=12米,BC=6米,设BD=x米,则AD=(18﹣x)米,在Rt△ACD中:CD2+CA2=AD2,即(18﹣x)2=(6+x)2+122,解得x=3,故树高为CD=6+3=9米.答:树高为9米.15.解:将半圆面展开可得:AD=4π米,DE=DC﹣CE=AB﹣CE=18米,在Rt△ADE中,AE=米.即滑行的最短距离约为22米.16.解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM===2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM+∠BPN=90°,∵∠APM+∠AMP=90°,∴∠AMP=∠BPN.在△AMP与△BPN中,,∴△AMP≌△BPN,∴MA=PB=2.4,∵PA==0.7,∴AB=PA+PB=0.7+2.4=3.1;17.解:(1)∵42=16>22+32,∴该三角形是钝角三角形,故答案为:钝角,(2)①若4为最长边,则:42=32+x2,解得x=,x=﹣(舍去),②若x最长边,则:x=32+42,得x=5,x=﹣5(舍去),故答案为:5或.(3)∵a2﹣b2﹣c2=x2+3z2﹣x+y2﹣2y+=(x﹣)2+(y﹣1)2+3z2+>0,∴a2>b2+c2,∴该三角形是钝角三角形.18.解:连接AC,∵∠ADC=90°,AD=4,CD=3,∴AC=5.由AB=13,BC=12可得AC2+BC2=AB2,∴△ABC是直角三角形,∴S △ABC =30,S △ACD =6,30﹣6=24(m 2).故这块地的面积为24m 2.19.解:(1)上述四组勾股数组的规律是:32+42=52,62+82=102,82+152=172,102+242=262,即(n 2﹣1)2+(2n )2=(n 2+1)2,所以第六组勾股数为14,48,50.(2)勾股数为n 2﹣1,2n ,n 2+1,证明如下:(n 2﹣1)2+(2n )2=n 4+2n 2+1=(n 2+1)2.20.解:∵EG ⊥AB ,FH ⊥AD ,HG 经过点A ,∴FA ∥EG ,EA ∥FH ,∴∠AEG =∠HFA =90°,∠EAG =∠FHA ,∵AB =9里,AD =7里,EG =15里,∴AF =3.5里,AE =4.5里,∴FH =1.05里.21.(1)证明:如图1,连接AD .∵AB =AC ,点D 是BC 边上的中点,∴AD 平分∠BAC ,∵DE 、DF 分别垂直AB 、AC 于点E 和F .∴DE =DF .(2)解:不变.如图2所示:连接AD ,∵AB =AC =13,BC =10,∴△ABC 底边BC 上的高==12,∴△ABC 的面积=×BC ×12=60,∴AB •DE +AC •DF =60,∴DE +DF =,故答案为:.22.解:过点F作FH⊥AB于点H,∴∠FHB=90°,∵∠EDF=90°,∠E=60°,∴∠EFD=90°﹣60°=30°,∴EF=2DE=24,∴DF==12,∵EF∥AD,∴∠FDA=∠DFE=30°,∴FH=DF=6,∴DH==18,∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠HFB=90°﹣45°=45°,∴∠ABC=∠HFB,∴BH=FH=6,则BD=DH﹣BH=18﹣6.23.解:(1)t=2时,CD=2×1=2,∵∠ABC=90°,AB=8,BC=6,∴AC===10,AD=AC﹣CD=10﹣2=8;故答案是:2;8.(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×10•BD=×8×6,解得BD=4.8,∴CD===3.6,t=3.6÷1=3.6秒;②∠CBD=90°时,点D和点A重合,t=10÷1=10秒,综上所述,t=3.6或10秒;故答案为:(1)2,8;(2)3.6或10秒;(3)①CD=BC时,CD=6,t=6÷1=6;②BD=BC时,如图,过点B作BF⊥AC于F,则CF=3.6,CD=2CF=3.6×2=7.2,∴t=7.2÷1=7.2,综上所述,t=6秒或7.2秒时,△CBD是以BD或CD为底的等腰三角形.24.(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴大正方形的面积=(a+b)2,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积=a2+b2+ab+ab=a2+2ab+b2,∴(a+b)2=a2+2ab+b2;故答案为:(a+b)2=a2+2ab+b2;(2)证明:∵△ABC≌△CDE,∴∠BAC=∠DCE,∵∠ACB+∠BAC=90°,∴∠ACB+∠DCE=90°,∴∠ACE=90°;(3)证明:∵∠B=∠D=90°,∴∠B+∠D=180°,∴AB∥DE,即四边形ABDE是梯形,∴四边形ABDE的面积=(a+b)(a+b)=ab+c2+ab,整理得:a2+b2=c2.25.解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5,故答案为3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3.26.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.27.解:(1)当m=2,n=1时,a=5、b=4、c=3,∵32+42=52,∴a、b、c的值能为直角三角形三边的长;(2)观察得,a=m2+n2,b=2mn,c=m2﹣n2;(3)以a,b,c为边长的三角形一定为直角三角形,∵a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.28.解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.29.解:(1)由图可得,×(a+b)(a+b)=ab+c2+ab,整理得=,∴a2+2ab+b2=2ab+c2,∴a2+b2=c2.(2)一个满足条件的在x轴上的点的坐标:(﹣1,0);一个满足条件的在y轴上的点的坐标:(0,2+),这样的点有4个.故答案为:(﹣1,0);(0,2+),4.30.(1)解:∵直角梯形和矩形的角都为直角,所以它们一定为勾股四边形.(2)证明:连接CE,∵BC=BE,∠CBE=60°∴△CBE为等边三角形,∴∠BCE=60°又∵∠DCB=30°∴∠DCE=90°∴△DCE为直角三角形∴DE2=DC2+CE2∵AC=DE,CE=BC∴DC2+BC2=AC231.解:(1)AB==.(2)∵已知点A、B在平行于x轴的直线上,点A的横坐标为7,点B的横坐标为5,∴AB=7﹣5=2.(3)由题意,直线AB的解析式为y=x+3,延长AB交直线y=5于N(2,5).①当1﹣a<2,即a>﹣1时,作CM∥y轴交AB于M.则M(1﹣a,4﹣a),∴CM=5﹣(4﹣a)=a+1,∴S△ABC=•CM•(B x﹣A x)=•(a+1)•3=a+.②当1﹣a>2,即a<﹣1时,同法可得S△ABC=﹣a﹣.32.解:(1)∵AC=80cm,BC=60cm,AB=100cm,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∵AB=2BE,∴E为AB的中点,即CE为AB边上的中线,∴CE=AB=50cm;(2)作CF⊥AB,交AB于点F,∵CE=CD,∴EF=DF,∵S△ABC=AC•BC=AB•CF,∴CF==48cm,在Rt△ACF中,根据勾股定理得:AF==64cm,∴EF=AF﹣AE=64﹣50=14cm,则ED=2EF=28cm.33.解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.当AP⊥BC时,AP的最小值即为直角三角形ABC斜边上的高,∴AM的最小值是.34.解:作AD⊥BC于D,在Rt△ABD中,∠B=45°,∴DA=DB,由勾股定理得,AD2+BD2=AB2=6,解得,AD=DB=,∵∠B=45°,∠BAC=75°,∴∠C=60°,∴∠DAC=30°,∴CD=AC,由勾股定理得,AD2+CD2=AC2,即3+CD2=4CD2,解得,CD=1,则BC=BD+CD=+1.35.解:①AB=AP时,DP==;②BP=AP时,DP=AB=×4=2;③BA=BP时,过点B作BH⊥CD于H,则BH=AD=3,由勾股定理得,PH==,DP=4﹣,或者DP′=4+.综上所述,DP的值为,2,4﹣,或4+.36.解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)若P在C点的左侧,CP=16﹣2t.AP=20﹣2t(20﹣2t)2=(16﹣2t)2+82解得:t=5,若P在C点的右侧,CP=2t﹣16.AP=2t﹣12;(2t﹣12)2=(2t﹣16)2+82解得:t=11答:当t为5或11时,能使DE=CD.37.解:(1)如图3所示∵图形的面积表示为a2+b2+2×ab=a2+b2+ab,图形的面积也可表示为c2+4×ab=c2+ab;∴(a+b)2=c2+4×ab,a2+b2+ab=c2+ab,∴a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方.(2))如图4所示:∵大正方形的面积表示为(a+b)2;大正方形的面积也可表示为c2+4×ab∴(a+b)2=c2+4×ab,a2+b2+2ab=c2+2ab,∴a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方.38.解:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴DC==6(m),则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD﹣BC=10﹣6=4(m),故AD==4(m),则△ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为:(20+4)m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,∵AC=8m,BC=6m,∴AB=10m,故△ABD的周长为:AD+BD+AB=2(+6)+10=(m).。

新人教版九年级数学上册二次根式_一元二次方程试题精选

新人教版九年级数学上册二次根式_一元二次方程试题精选

初三数学周末练习卷(二次根式和一元二次方程综合测试题)一填空题:1.写出一个无理数使它与32+的积是有理数 ---------------------------2.若式子xx+1有意义,则x 的取值范围是。

————————————— 3.观察分析下列数据,寻找规律 2315323630,,,,,,,那么第10个数据应是 。

4=成立的条件是 。

5、写出一个两实数根符号相反的一元二次方程:__________________。

6.方程0812=-x 的根是 。

7.当m 时, 012)1(2=+++-m mx x m 是一元二次方程。

8. 是同类二次根式的是 。

9.已知x x y -++-=323,则xy 的值为______________。

10.已知4=+ab b a ,则a bb a +的值为_______________。

11. 已知x y 33_________x y xy +=。

12. 2440y y -+=,求xy 的值。

------------------------- 13..若最简二次根式53-a 与3+a 是同类二次根式,则a =____________;14、当x ≤0时,化简1x -的结果是 .15.、若3的整数部分是a ,小数部分是b ,则=-b a 3 .16. .若1a b -+()2005_____________a b -=17. .11m +有意义,则m 的取值范围是 -------------------------------------18. .已知一元二次方程x 2-( 3 +1)x+3 -1=0的两根为x 1、x 2,则x 1 2+x 22( ) 19. 当x __________ 时,式子31-x 有意义. 20.计算()2006·()2006=_______.二(选择题:1.下列计算正确的是( )4=±B.1=4=D.26·32= 2.已知关于的方程:(1)ax 2+bx+c=0;(2)x 2-4x=8+x 2;(3)1+(x-1)(x+1)=0; (4)(k 2+1)x 2+ kx + 1= 0中,一元二次方程的个数为( )个。

九年级上册数学周末试卷【含答案】

九年级上册数学周末试卷【含答案】

九年级上册数学周末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()A. a/2B. a√2C. 2aD. a²2. 下列函数中,哪一个不是正比例函数?()A. y = 3xB. y = x/2C. y = 5D. y = 4x 13. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()A. 21B. 19C. 17D. 155. 若一个等边三角形的周长为18cm,则其边长为()A. 6cmB. 9cmC. 12cmD. 18cm二、判断题(每题1分,共5分)6. 任何两个等边三角形都是相似的。

()7. 两条平行线的斜率一定相等。

()8. 一元二次方程的解一定是实数。

()9. 对角线互相垂直的四边形一定是菱形。

()10. 在同一平面内,垂直于同一直线的两条直线一定平行。

()三、填空题(每题1分,共5分)11. 若一个圆的半径为r,则其直径是______。

12. 若一个数的平方是64,则这个数是______。

13. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是______。

14. 若等差数列{an}的前n项和为Sn,则第n项an = ______。

15. 在直角坐标系中,点(3, -2)到x轴的距离是______。

四、简答题(每题2分,共10分)16. 简述等边三角形的性质。

17. 什么是直角坐标系?如何表示平面上的点?18. 解释一元二次方程的解的意义。

19. 什么是等差数列?给出一个等差数列的例子。

20. 什么是圆的标准方程?如何表示?五、应用题(每题2分,共10分)21. 已知一个正方形的对角线长为10cm,求其面积。

22. 若一元二次方程x² 5x + 6 = 0,求其解。

五年级上册数学周末作业-第8周∣北师大版(2021秋)

五年级上册数学周末作业-第8周∣北师大版(2021秋)

五年级第8周数学周末作业班级:姓名:学号:评分:一、填空。

=90可知,()是()和()的倍数,6是90的(),15也是90的()。

2、÷的结果用循环小数的简便方法表示是(),保留两位小数是()。

3、一个三位小数四舍五入后是,这个三位小数最大是(),最小是()。

4、如果一个图形沿着一条直线对折,两侧的图形能够完全冲额,这样的图形就叫()图形,这条直线就是()。

5、100以内14的倍数:(),14的最小倍数是()。

6、…记作,…记作。

7、根据132÷12=11,直接写出下列各题的得数。

÷=÷=二、判断对错。

1、17的最小倍数是34。

()2、6是6的倍数,也是6的因数。

()3、所有的循环小数都小于1。

()4、一个数的倍数是无限的,最小是它本身,没有最大的倍数。

()5、1是所有非零自然数的因数。

()三、选一选。

1、我们只在()的范围内研究倍数与因数。

A、整数B、小数C、自然数(零除外)2、下面()是24的因数。

A、6和4B、5和7C、9和10三、竖式计算。

÷=9÷=÷11=四、脱式计算。

()×五、解决实际问题。

1、做一种蛋糕,每个要用克奶油。

80克奶油最多可以做多少个这样的蛋糕?3、2、蜗牛2分钟爬行。

照这样计算,蜗牛爬行需要多少分钟?4、划用小货车运,每次运吨,7次恰好运完。

后来改用大货车运,2次恰好运完,大货车比小货车每次多运多少吨?作业书写:工整()一般()不认真()作业时间:及时()合理()拖拉()作业完成:独立()辅导()代做()合理化建议:家长签字:2021年月日。

北师大版四年级上学期数学应用题周末专项练习

北师大版四年级上学期数学应用题周末专项练习

北师大版四年级上学期数学应用题周末专项练习班级:__________ 姓名:__________一、计算题。

1. 星期天,雏鹰小队活动,同学们去爬宝石山,上山时平均每分钟走35米,上山用了2小时,下山从原路返回,用了1小时15分钟,下山平均每分钟走多少米路?2. 甲、乙两个车间共有84人,如果从甲车间调6人到乙车间,则两个车间人数相等。

原来甲、乙两个车间各有多少人?3. 一辆货车,空车从甲地开往乙地平均速度为每小时64千米,一共开了9 小时,载重返回时,速度减慢共开了12个小时,问该车返回时平均速度是多少?4. 两个同学共同打一份稿件,3天完成。

甲每天打4000字,乙每天打4200字,这份稿件共多少字?5. 爸爸开车奶奶家,去时用了3小时,回来时用了2小时。

如果去时的速度是44千米/时,回来的速度是多少?6. 做一种零件,8个工人0.5小时完成64个,照这样计算,3小时要完成144个零件,需要多少个工人?7. 益民商店每副乒乓球拍39元,李老师准备给学校乒乓球队买16副乒乓球拍,他带了600元钱,李老师带的钱够吗?8. 李大伯家有一块直角三角形的菜地,在这块菜地中较大锐角是较小锐角的2倍。

请你算出这块菜地每个角的度数。

9. 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,刚好准时到校。

亮亮今天起晚了,他早晨7:08才出发,为了刚好准时到校,他每分钟需要走多少米?10. 某体育用品商店进行“迎五一”促销活动,所有篮球“买五送一”,每个篮球85.5元。

实验小学买了12个篮球,花了多少钱?11. 一辆长途客车6小时行驶480千米,照这样的速度,它12小时可以行驶多少千米?12. 小红骑自行车每分钟能行110米,他从家到学校骑自行车需要25分钟,小红家距学校有多少米?13. 甲乙两城相距1560千米,一辆汽车从甲城开往乙城,前6小时行360千米,照这样的速度,汽车行完全程一共需要多少小时?14. 月球是地球唯一的天然卫星,也是距离地球最近的天然卫星,它到地球的平均距离约为38万千米,人们第一次乘坐宇宙飞船登上月球时用了约76小时。

八年级数学上册第15周周末练习题含答案

八年级数学上册第15周周末练习题含答案

北师大版八年级数学上册第15周练习卷组卷人:家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题(共10小题,答案写在表格内)题号 1 2 3 4 5 6 7 8 9 10答案1.要直观介绍空气中各成分的百分比,最适合使用的计图是(*)A.条形统计图B.折线统计图C.扇形统计图D.统计表2.下面的折线图描述了某城市某日的气温变化情况,根据图中信息,下列说法错误的是(*)A.4:00气温最低B.24:00气温为26℃C.14:00气温最高D.气温是30℃的只有16:003.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BC=12,点D到边AB的距离为4,则线段BD的长为(*)A.4B.8C.10D.124.在等式y=kx+b中,当x=1时,y=3;当x=﹣1时,y=9.则k•b的值为(*)A.18B.﹣18C.﹣20D.205.某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系,若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则42码鞋子的长度为(*)A.23cm B.24cm C.25cm D.26cm6.下表记录了九(1)班4名同学在某项选拔赛中成绩的平均数与方差,根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择(*)甲乙丙丁48474748 S2 1.6 1.6 2.9 2.9 A.甲B.乙C.丙D.丁7.某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有45本,则丙类书的本数是(*)A.120B.180C.240D.3008.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是(* )A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变9.在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到47、61、60,那么这三个人中最大年龄与最小年龄的差是(*)A.28B.27C.26D.2510.如图是两户居民家庭全年各项支出的统计图,根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是(*)A.甲户比乙户大B.乙户比甲户大C.甲,乙两户一样大D.无法确定哪一户大二.填空题(共7小题)11.某店最近一周,每天销售某种礼物的个数为:12,10,11,14,11,13,16.这组数据的中位数是.12.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是小时.13.已知一组数据1,2,x,5的平均数是4,则这组数据的方差是.14.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.15.一组数据:2015,2015,2015,2015,2015,2015的方差是.16.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.17.已知,则x+y=.三.解答题18.三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?19.甲、乙两人分别在六次射击中的成绩如下表:(单位:环)第1次第2次第3次第4次第5次第6次甲677868乙596859分别算出两人射击的平均数和方差.这六次射击中成绩发挥比较稳定的是谁?20.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).21.如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.(1)小刚家与学校的距离为m,小刚骑自行车的速度为m/min;(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;(3)小刚出发35分钟时,他离家有多远?北师大版八年级数学上册第15周练习卷参考答案一. 选择题(每小题3分,共10小题)题号 1 2 3 4 5 6 7 8 9 10答案 C D B B D A A B A B二.填空题11. 12 12. 5.3 13. 7.5 14. 2.815. 0 16. 80 17. 3三.解答题18.解:(1)由题意知:男生鞋号数据的平均数==24.55;男生鞋号数据的众数为25;男生鞋号数据的中位数==24.5.∴平均数是24.55,中位数是24.5,众数是25.19.解:∵甲=(6+7+7+8+6+8)=7,乙=(5+9+6+8+5+9)=7;∴S2甲=[(6﹣7)2+(7﹣7)2+(7﹣7)2+(8﹣7)2+(6﹣7)2+(8﹣7)2]=,S2乙=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=3;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定.20.解:(1)甲的众数为8,乙的平均数=×(5+9+7+10+9)=8,乙的中位数为9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为:8,8,9;变小.21.解:(1)由题意得,小刚家与学校的距离为3000m,小刚骑自行车的速度为:(5000﹣3000)÷10=200(m/min),故答案为:3000;200;(2)小刚从图书馆返回家的时间:5000÷200=25(min),总时间:25+20=45(min),设小刚从图书馆返回家的过程中,y与x的函数表达式为y=kx+b,把(20,5000),(45,0)代入得:,解得,∴y=﹣200x+9000(20≤x≤45);(3)小刚出发35分钟时,即当x=35时,y=﹣200×35+9000=2000.答:此时他离家2000m.。

苏教版四年级上学期数学应用题周末专项练习

苏教版四年级上学期数学应用题周末专项练习

苏教版四年级上学期数学应用题周末专项练习班级:__________ 姓名:__________一、计算题。

1. 甲、乙两车分别从A,B两城相对同时开出,甲车每小时行78千米,乙车每小时行67千米,两车在距A,B两城中点66千米处相遇。

A,B两城相距的路程是多少千米?2. 某体育用品商店进行“迎五一”促销活动,所有篮球“买五送一”,每个篮球85.5元。

实验小学买了12个篮球,花了多少钱?3. 文具店一共运进576支钢笔,卖出116支后降价处理,钢笔20元/支。

王老师带了9000元,能买走剩下的所有钢笔吗?4. 100粒大米约重4克。

照这样计算,一亿粒大米约重多少克?500克大米可以供一名成年人生活一天,全国13亿人如果每人少浪费一粒米,节约的粮食可供一名成年人生活几天?5. 一个工厂要生产3000个零件,前6天生产了750个,剩下的要在15天内完成,剩下的平均每天生产多少个?6. 每套运动服54元,每条连衣裙90元。

5套运动服的价钱可以买几条连衣裙?7. 一本科技书有326页,每页大约有625个字,用计算器算一算,这本科技书一共大约有多少个字?8. 南京到武汉的高速公路全长540千米。

一辆汽车从南京出发,沿高速公路开往武汉,已经行驶了65千米,剩下的路程每小时行95千米,还需多少小时才能到达武汉?9. 根据表中的信息,解决问题。

一天中午,张老师从学校到李凡家进行家访。

(1)张老师去时步行用了10分钟,坐公共汽车用了15分钟。

李凡家离学校有多远?(2)返回时,张老师直接坐出租车回学校,张老师坐出租车用了多长时间?10. 学校买来一批篮球和足球。

买来篮球12只,共用a元,买来足球b只,每只25元。

(1)篮球的单价比足球贵多少元?(2)当a=576时,篮球的单价比足球贵多少元?(3)买这批篮球和足球共用了多少元?(4)当a=1200,b=80时篮球和足球共用了多少元?11. 新学期红星小学准备买50个篮球,其中有三家文体超市篮球的价格都是50元,但三家超市的优惠办法各不相同。

五年级北京版数学下学期应用题周末专项练习

五年级北京版数学下学期应用题周末专项练习

五年级北京版数学下学期应用题周末专项练习班级:__________ 姓名:__________1. 如下图,把一个长方形剪成一个最大的正方形。

(1)正方形的面积是多少?(2)剪去的长方形的面积是多少?当a=7时,剪去的面积是多少?2. 两车从两地同时开出相向而行,4.5小时后两车在距中点9千米处相遇,快车每小时行42千米,甲乙两地相距多少千米?3. 有一个团队78人去租船,他们打算最多花160元钱租船。

小明说:“可以租6条大船,3条小船。

”请你帮他检验一下,他的答案合理吗?把你的检验过程详细地写下来。

大船限乘10人,租金20元。

小船限乘6人,租金13元。

4. 实验小学五年级(1)班同学参加植树活动。

活动中班长先安排a人搬运树苗,其余的人被分成b 组植树,每组4人。

(1)用含有字母的式子表示五年级(1)班的总人数。

(2)如果12a =,9b =,五年级(1)班一共有多少人?5. 一个三位数,在它的前面写上1,所得的数是原来的三位数的9倍。

原来的三位数是多少?6. 下面是张老师家上个月的电费票据,把票据填写完整,请写出计算过程。

7. 人们常用“雨后春笋”来比喻新事物大量出现。

春雨过后,一棵竹笋4天就长高了2.88m ,照这样计算,一个星期能长高多少米?8. 甲、乙两列火车同时从相距 700 千米的两地相向而行,甲列车每小时行70 千米,乙列车每小时行80 千米,几小时两列火车相遇?(用方程解)9. 某广告公司准备在电视台播放一则时长20秒的广告,每天播放两次,连续播放两周,共需要广告费47.6万元。

平均每秒付广告费多少元?10. 根据算式选择问题.甲、乙两人同时从两地相向而行,甲骑车每小时行15千米,乙步行每小时行6千米,经过4小时两人相遇.(1)甲、乙两人每小时共行多少千米?(2)两地之间的路程是多少千米?(3)相遇时,甲行了多少千米?11. 某支股票从周一到周五的价格如下表:(1)如果把周一的价格10.5元记作0元,请你用正、负数表示每天的价格,并填在表中.(2)这支股票在本周是涨了还是跌了?12. 某市在用水高峰的月份(5~9月),自来水收费标准如下:每户每月限用水6吨,每吨1.8元;超过6吨时,超出部分每吨收费3.5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级(上)数学周末卷(15)五()班()号姓名()签名
一、递等式计算(能简便方法计算)
4.38-1.76÷0.8×1.25
12.5×(0.4+0.08)×25
8.6÷(4.3×4.8+5.2×4.3)【0.35+(3.74-1.8)÷0.4】×0.28
4.8×【0.15+(3.74-1.8)】÷0.1(1)7.4与2.2的
差除11.5与9.3
的和,商是多少?
(2)4加上一个数的3倍正好等于这个数的7倍,求这个数
三、计算下列图形中的未知量
已知直角三角形ABC中,AC=3cm BC=4cm 已知三角形ABC的面积为24cm,且DC的长度AB=5cm,求垂直于AB的线段CD的长度。

是AD的两倍,求三角形BCD的面积。

六、应用题:(1、2两题用方程解)
1)A、B两地相距2000米,甲乙两车同时分别从A、B两地相向而行,12分钟后两车还相距80米。

甲车每分钟行75米,求乙车速度。

3)商店上午卖出毛巾35条,下午卖出毛巾50条,上午比下午少收货款67.5元,每条毛巾多少元?2)妈妈买了一些苹果和草莓,苹果有682克,如吃掉45克的草莓,那么剩下的草莓就比苹果少36克,妈妈买了多少克的草莓?
(4)已知小正方形和大正方形的边长分别为6厘米和4厘米。

求阴影部分的面积。

相关文档
最新文档