计量经济学核心名词解释

合集下载

计量经济学名词解释

计量经济学名词解释

1.计量经济学广义计量经济学是利用经济理论、数学以及统计学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

狭义计量经济学,也就是我们通常所说的计量经济学,以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

2.回归分析回归分析是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

3.总体回归函数在给定解释变量Xi 条件下被解释变量Yi 的期望轨迹称为总体回归线。

相应的函数: 称为(双变量)总体回归函数4.样本回归函数样本散点图近似于一条直线,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。

该线称为样本回归线。

记样本回归线的函数形式为: 称为样本回归函数5.普通最小二乘法给定一组样本观测值(Xi, Yi )(i=1,2,…n )要求样本回归函数尽可能好地拟合这组值. 给出的判断标准是:二者之差的平方和最小。

6.异方差对于多元线性回归模型,如果出现对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性7.加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS 估计其参数。

8.自回归(序列相关)对于多元线性回归模型,如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现了序列相关性。

9.广义差分法 广义差分法是将原模型变换为满足OLS 法的差分模型,再进行OLS 估计。

)()|(i i X f X Y E =ii i X X f Y 10ˆˆ)(ˆββ+==∑∑+-=-=ni i i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ。

计量经济学名词解释和简答

计量经济学名词解释和简答

计量经济学名词解释和简答计量经济学名词解释和简答1.计量经济学:是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科。

2.计量经济模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。

3.回归分析:是研究一个变量关于另一个(一些)变量的依赖关系的计算方法和理论。

4、最优线性无偏估计:线性性、无偏性和有效性称为小样本性质,拥有这类性质的估计称为最优线性无偏估计。

5计量经济学检验:在进行计量经济学模型的回归分析时,必须对所研究对象是否满足普通最小二乘法下的基本假定进行检验,即检验是否存在一种或多种违背基本假定的情况,这种检验称为计量经济学检验。

6.异方差性:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

7序列相关性:多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关,如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

8.虚假序列相关:由于随机干扰项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误时出现的,这种情形称为虚假序列相关。

9模型设定偏误:在模型的设定中由于遗漏了重要的解释变量或对模型的函数形式设定有误而引起的虚假序列相关,称为模型的设定偏误。

10多重共线性:如果某两个或多个解释变量之间出现了相关性则称为存在多重共线性。

11随机解释变量:如果存在一个或多个随机变量作为解释变量,则称原模型存在随机解释变量问题。

12工具变量:是指在模型估计过程中被作为工具使用,以替代与随机干扰项相关的随机解释变量的另一个变量。

13虚拟变量:根据因素的属性类型,构造只取“0”或“1”的人工变量,通常称为虚拟变量,记为D.14虚拟变量陷阱:一般称由于引入虚拟变量个数与定性因素个数相同出现的模型无法估计的问题,称为"虚拟变量陷阱"15滞后变量:某些经济变量不仅受到同期各种因素的影响,而且也受到过去某些时期的各种因素甚至自身的过去值的影响。

计量经济学核心名词解释

计量经济学核心名词解释

计量经济学核心重点:1.计量经济学2.计量经济学模型成功的三要素3.建立计量经济学模型的步骤4.最小二乘原理5.最小二乘估计量的性质6.总体回归模型7.总体回归函数8.总体回归函数的随机设定形式9.样本回归函数 10.样本回归模型 11.最小样本容量12.异方差性 13.异方差性的后果 14.异方差性的检验方法 15.异方差性的修正16.序列相关性 17.序列相关性的后果 18.序列相关性的检验方法 19.序列相关性的补救20.多重共线性 21.多重共线性的后果 22.多重共线性的检验 23.克服多重共线性的方法24.随机解释变量的克服方法25.工具变量法26.虚拟变量27.单方程计量经济学模型与联立计量经济学模型的区别28.变量 29.内生变量 30.外生变量 31.先决变量 32.结构是模型 33.简化式模型 34.联立方程计量经济学模型的估计方法以下是具体的名词解释,你背背,在回答的时候能用得上。

1、计量经济学: 是经济学的一个分支学科,是已揭示经济活动中的客观存在的数量关系为内容的分支学科。

2.计量经济学模型成功的三要素:理论、方法和数据。

3.建立计量经济学模型的步骤:(1)理论模型的设计(2)样本数据的收集(3)模型参数的估计(4)模型的检验。

4.最小二乘原理:样本回归线上的点Yi(上有盖)与真实观测点Yi之查可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度,这就是最小二乘原理。

5.最小二乘估计量的性质:(1)线形性(2)无偏性(3)有效性(4)渐近无偏性(5)一致性(6)渐进有效性。

Yi=E(Y|Xi)+Ui或Yi=Bo+B1Xi+Ui即给定可支配收入水平Xi,个别家庭的消费支出可表示为两部分之和:(1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为系统性部分或确定性部分:(2)其他随机部分或非系统部分Ui,6.总体回归模型:Yi=E(Y|Xi)+Ui或Yi=Bo+B1Xi+Ui式称为总体回归函数的随机设定形式,它表明被解释变量Y除了受解释变量X的系统性影响外,还受其他未包括在模型中的诸多因素的随机性影响,U即为这些影响因素的综合代表。

计量经济学知识点总结

计量经济学知识点总结

计量经济学知识点总结计量经济学是一门融合了经济学、统计学和数学的交叉学科,它通过建立经济模型,运用统计方法对经济数据进行分析,以揭示经济变量之间的关系和规律。

以下是对计量经济学中一些重要知识点的总结。

一、回归分析回归分析是计量经济学的核心方法之一。

简单线性回归模型表示为:$Y =\beta_0 +\beta_1 X +\epsilon$,其中$Y$是被解释变量,$X$是解释变量,$\beta_0$是截距项,$\beta_1$是斜率系数,$\epsilon$是随机误差项。

在进行回归分析时,需要对模型进行估计。

常用的估计方法是最小二乘法(OLS),其基本思想是使残差平方和最小,从而确定参数的估计值。

通过估计得到的回归方程可以用于预测和解释变量之间的关系。

回归分析还需要进行一系列的检验,包括拟合优度检验(如判定系数$R^2$)、变量的显著性检验($t$检验)和方程的显著性检验($F$检验)等。

二、多重共线性多重共线性指的是解释变量之间存在较强的线性关系。

这可能导致参数估计值不稳定、方差增大、$t$检验失效等问题。

检测多重共线性的方法有多种,如计算解释变量之间的相关系数、方差膨胀因子(VIF)等。

解决多重共线性的方法包括剔除一些相关变量、增大样本容量、使用岭回归或主成分回归等方法。

三、异方差性异方差性是指随机误差项的方差不是常数,而是随解释变量的变化而变化。

异方差性会影响参数估计的有效性和假设检验的可靠性。

常用的检测方法有图形法(如绘制残差平方与解释变量的关系图)、怀特检验等。

解决异方差性的方法有加权最小二乘法(WLS)等。

四、自相关性自相关性是指随机误差项在不同观测值之间存在相关关系。

自相关性会导致参数估计值有偏、无效,以及$t$检验和$F$检验不可靠。

常用的检测方法有杜宾沃森(DW)检验等。

解决自相关性的方法有广义差分法等。

五、虚拟变量虚拟变量用于表示定性变量,如性别、季节等。

在模型中引入虚拟变量可以更准确地反映经济现象。

计量经济学(重要名词解释)

计量经济学(重要名词解释)

——名词解释将因变量与一组解释变量和未观测到的扰动联系起来的方程,方程中未知的总体参数决定了各解释变量在其他条件不变下的效应。

与经济分析不同,在进行计量经济分析之前,要明确变量之间的函数形式。

经验分析(Empirical Analysis):在规范的计量分析中,用数据检验理论、估计关系式或评价政策有效性的研究。

确定遗漏变量、测量误差、联立性或其他某种模型误设所导致的可能偏误的过程线性概率模型(LPM)(Linear Probability Model, LPM):响应概率对参数为线性的二值响应模型。

没有一个模型可以通过对参数施加限制条件而被表示成另一个模型的特例的两个(或更多)模型。

有限分布滞后(FDL)模型(Finite Distributed Lag (FDL) Model):允许一个或多个解释变量对因变量有滞后效应的动态模型。

布罗施-戈弗雷检验(Breusch-Godfrey Test):渐近正确的AR(p)序列相关检验,以AR(1)最为流行;该检验考虑到滞后因变量和其他不是严格外生的回归元。

布罗施-帕甘检验(Breusch-Pagan Test)/(BP Test):将OLS 残差的平方对模型中的解释变量做回归的异方差性检验。

若一个模型正确,则另一个非嵌套模型得到的拟合值在该模型是不显著的。

因此,这是相对于非嵌套对立假设而对一个模型的检验。

在模型中包含对立模型的拟合值,并使用对拟合值的t 检验来实现。

回归误差设定检验(RESET)(Regression Specification Error Test, RESET):在多元回归模型中,检验函数形式的一般性方法。

它是对原OLS 估计拟合值的平方、三次方以及可能更高次幂的联合显著性的F 检验。

怀特检验(White Test):异方差的一种检验方法,涉及到做OLS 残差的平方对OLS 拟合值和拟合值的平方的回归。

这种检验方法的最一般的形式是,将OLS 残差的平方对解释变量、解释变量的平方和解释变量之间所有非多余的交互项进行回归。

计量经济学名词解释和简答题

计量经济学名词解释和简答题

计量经济学 第一部分:名词解释第一章1、模型:对现实的描述和模拟。

2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。

3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。

5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。

6、残差项:是一随机变量,是针对样本回归函数而言的。

7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。

8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。

9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

12、估计量的标准差:度量一个变量变化大小的测量值。

13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。

14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。

15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。

17、拟合优度检验:检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。

计量经济学(重要名词解释)

计量经济学(重要名词解释)

——名词解释将因变量与一组解释变量和未观测到的扰动联系起来的方程,方程中未知的总体参数决定了各解释变量在其他条件不变下的效应。

与经济分析不同,在进行计量经济分析之前,要明确变量之间的函数形式。

经验分析(Empirical Analysis):在规范的计量分析中,用数据检验理论、估计关系式或评价政策有效性的研究。

确定遗漏变量、测量误差、联立性或其他某种模型误设所导致的可能偏误的过程线性概率模型(LPM)(Linear Probability Model, LPM):响应概率对参数为线性的二值响应模型。

没有一个模型可以通过对参数施加限制条件而被表示成另一个模型的特例的两个(或更多)模型。

有限分布滞后(FDL)模型(Finite Distributed Lag (FDL) Model):允许一个或多个解释变量对因变量有滞后效应的动态模型。

布罗施-戈弗雷检验(Breusch-Godfrey Test):渐近正确的AR(p)序列相关检验,以AR(1)最为流行;该检验考虑到滞后因变量和其他不是严格外生的回归元。

布罗施-帕甘检验(Breusch-Pagan Test)/(BP Test):将OLS 残差的平方对模型中的解释变量做回归的异方差性检验。

若一个模型正确,则另一个非嵌套模型得到的拟合值在该模型是不显著的。

因此,这是相对于非嵌套对立假设而对一个模型的检验。

在模型中包含对立模型的拟合值,并使用对拟合值的t 检验来实现。

回归误差设定检验(RESET)(Regression Specification Error Test, RESET):在多元回归模型中,检验函数形式的一般性方法。

它是对原OLS 估计拟合值的平方、三次方以及可能更高次幂的联合显著性的F 检验。

怀特检验(White Test):异方差的一种检验方法,涉及到做OLS 残差的平方对OLS 拟合值和拟合值的平方的回归。

这种检验方法的最一般的形式是,将OLS 残差的平方对解释变量、解释变量的平方和解释变量之间所有非多余的交互项进行回归。

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答

(完整版)计量经济学名词解释和简答三、名词解释经济计量学:是经济学、统计学和数学合流⽽构成的⼀门交叉学科。

理论经济计量学:是寻找适当的⽅法,去测度由经济计量模型设定的经济关系式。

应⽤经济化量学:以经济理论和事实为出发点,应⽤计量⽅法,解决经济系统运⾏过程中的理论问题或实践问题。

内⽣变量:具有⼀定概率分布的随机变量,由模型⾃⾝决定,其数值是求解模型的结果。

外⽣变量:是⾮随机变量,在模型体系之外决定,即在模型求解之前已经得到了数值。

随机⽅程:根据经济⾏为构造的函数关系式。

⾮随机⽅程:根据经济学理论或政策、法规⽽构造的经济变量恒等式。

时序数据:指某⼀经济变量在各个时期的数值按时间先后顺序排列所形成的数列。

截⾯数据:指在同⼀时点或时期上,不同统计单位的相同统计指标组成的数据。

回归分析:就是研究被解释变量对解释变量的依赖关系,其⽬的就是通过解释变量的已知或设定值,去估计或预测被解释变量的总体均值。

相关分析:测度两个变量之间的线性关联度的分析⽅法。

总体回归函数:E (Y /X i )是X i 的⼀个线性函数,就是总体回归函数,简称总体回归。

它表明在给定X i 下Y 的分布的总体均值与X i 有函数关系,就是说它给出了Y 的均值是怎样随X 值的变化⽽变化的。

随机误差项:为随机或⾮系统性成份,代表所有可能影响Y ,但⼜未能包括到回归模型中来的被忽略变量的代理变量。

有效估计量:在所有线性⽆偏估计量中具有最⼩⽅差的⽆偏估计量叫做有效估计量。

判定系数:TSS ESS Y Y Y Y R i i=--=∑∑222)()?(,是对回归线拟合优度的度量。

R 2测度了在Y 的总变异中由回归模型解释的那个部分所占的⽐例或百分⽐。

异⽅差:在回归模型中,随机误差项1u ,2u ,…,n u 不具有相同的⽅差,即 ()()≠i j Var u Var u ,当j i ≠时,则称随机误差的⽅差为异⽅差。

异⽅差的补救⽅法:已知时,⽤加权最⼩⼆乘法;未知时,⽤普通最⼩⼆乘法。

计量经济学(重要名词解释).(精选)

计量经济学(重要名词解释).(精选)

——名词解释将因变量与一组解释变量和未观测到的扰动联系起来的方程,方程中未知的总体参数决定了各解释变量在其他条件不变下的效应。

与经济分析不同,在进行计量经济分析之前,要明确变量之间的函数形式。

经验分析(Empirical Analysis):在规范的计量分析中,用数据检验理论、估计关系式或评价政策有效性的研究。

确定遗漏变量、测量误差、联立性或其他某种模型误设所导致的可能偏误的过程线性概率模型(LPM)(Linear Probability Model, LPM):响应概率对参数为线性的二值响应模型。

没有一个模型可以通过对参数施加限制条件而被表示成另一个模型的特例的两个(或更多)模型。

有限分布滞后(FDL)模型(Finite Distributed Lag (FDL) Model):允许一个或多个解释变量对因变量有滞后效应的动态模型。

布罗施-戈弗雷检验(Breusch-Godfrey Test):渐近正确的AR(p)序列相关检验,以AR(1)最为流行;该检验考虑到滞后因变量和其他不是严格外生的回归元。

布罗施-帕甘检验(Breusch-Pagan Test)/(BP Test):将OLS 残差的平方对模型中的解释变量做回归的异方差性检验。

若一个模型正确,则另一个非嵌套模型得到的拟合值在该模型是不显著的。

因此,这是相对于非嵌套对立假设而对一个模型的检验。

在模型中包含对立模型的拟合值,并使用对拟合值的t 检验来实现。

回归误差设定检验(RESET)(Regression Specification Error Test, RESET):在多元回归模型中,检验函数形式的一般性方法。

它是对原OLS 估计拟合值的平方、三次方以及可能更高次幂的联合显著性的F 检验。

怀特检验(White Test):异方差的一种检验方法,涉及到做OLS 残差的平方对OLS 拟合值和拟合值的平方的回归。

这种检验方法的最一般的形式是,将OLS 残差的平方对解释变量、解释变量的平方和解释变量之间所有非多余的交互项进行回归。

计量经济学名词解释论述

计量经济学名词解释论述

1、计量经济学:根据经济理论,和统计观测数据,用随机数学模型的方法,研究经济学定量问题的科学。

1、计量经济学模型:在一定假设条件下,描述经济变量之间数量关系的一个或一组随机数学方程。

2、解释变量:影响研究对象结果的‘因素变量3、被解释变量:作为研究对象的变量。

即因果关系中的‘结果变量’:4、狭义回归分析:用确定性的函数关系,近似的描写(拟合)不确定性的相关关系。

5、相关分析:在相关关系中,测定变量之间联系的密切程度。

6、回归变量:用确定的函数关系,近似的描写(拟合)不确定性的相关关系,并测定变量之间密切的联系程度。

7、经济变量:用来描述经济因素数量水平的指标.8、模型参数:模型中表现经济变量相互依存程度的那些因素,同城是一些相对稳定的量.9、前定变量:在模型中滞后内生变量或更大范围的内生变量与外生变量一起称为前定变量。

10、间序列的平稳性,是指时间序列的统计规律不会随着时间的推移而发生变化11、最小平方法:用使估计的剩余平方和最小的原则确定样本回归函数。

Then β^2 =∑xiyi/∑xi2 ; β^1 =Y(Y 上面加一横)-β^2 X(X 上面加一横) only thus ,can the residue sum of squares 残差平方和RSS=∑(Yi-Yi^)2 Is Least 最小。

(故称最小平方差)12、异方差:定义:若线性回归模型 Yi=β1+β2Xi+ui (i=1、 2……n)中方差Var(ui)= σui2=f(Xi)不等于常数则称此模型具有异方差性13、自相关:若相信回归方程中随机项ut 之间的某个协方差Cov(ut ,ut’)不等于 0 (t 不等于 t’; t’不等于 1,2,…,n)14、多重共线性:等价于完全多重共线性+不完全多重共线性若齐次线性方程组 λ2X2i+λ3X3i+……+λkXki=0 i=1,2,…,n 存在不完全为零的解 λ2,λ3,……λk 则称线性回归模型 Yi=β1+β2X2i+…+βkXki+ui 具有完全多重共性15、不完全多重共线性: 若含随机项 vi 齐次线性方程组 λ2X2i+λ3X3i+…+λkXki+vi=0 存在不完全为零的解λ2,λ3,…λk 则称线性回归模型Y=Xβ+U 存在不完全多重共线性16、结构模型:根据经济理论和行为规律,描述经济变量间关系结构的一组含随机项的方程。

计量经济学常考的名词解释

计量经济学常考的名词解释

计量经济学常考的名词解释在计量经济学领域中,有一些常考的名词,理解这些名词的概念对于学习和应用计量经济学非常重要。

本文将对部分常考名词进行解释,以帮助读者更好地掌握计量经济学的核心知识。

一、假设检验(Hypothesis Testing)假设检验是计量经济学中的一项重要工具,用于评估统计模型的有效性和统计推断的可靠性。

通过对现实问题进行抽样和数据分析,我们可以根据样本数据的特征推断总体的一些性质。

假设检验涉及两个假设:原假设(null hypothesis)和备择假设(alternative hypothesis)。

通过计算样本数据的特征,我们可以对原假设进行验证或拒绝。

二、回归分析(Regression Analysis)回归分析是计量经济学中最常用的方法之一,用于研究变量之间的关系。

在回归分析中,我们使用一个或多个自变量来解释一个或多个因变量的变化。

通过拟合一个数学模型,我们可以测量变量之间的关联程度,并进行预测和因果推断。

三、时间序列(Time Series)时间序列是按照时间顺序进行排序的数据序列。

在计量经济学中,时间序列数据常常用于分析和预测经济和金融变量的动态演变。

时间序列分析可以帮助我们理解和解释时间相关性、趋势、季节性和周期性等模式。

四、异方差性(Heteroskedasticity)异方差性是指随机误差项的方差在不同条件下不稳定或不均匀分布的情况。

在计量经济学中,异方差性可能导致回归分析结果的无效性和推断的误差。

通过应用稳健的标准误差估计方法,我们可以纠正异方差性并获得更准确的回归结果。

五、端点问题(Endpoint Problem)在计量经济学中,端点问题指的是当因变量或自变量的取值受限于某些边界条件时,回归分析可能产生的问题。

例如,当因变量的取值范围在0到1之间时,回归模型的预测结果可能超出这个范围,导致无法解释或使用。

解决端点问题的方法包括截尾回归(truncated regression)和双曲正切转换(hyperbolic tangent transformation)等。

计量经济学名词解释及简答

计量经济学名词解释及简答

计量经济学名词解释及简答一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。

3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。

4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。

2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用表示,该值越接近1,模型对样本观测值拟合得越好。

3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。

4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。

第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用表示。

3、修正的可决系数:用自由度修正多重可决系数中的残差平方和与回归平方和。

4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。

5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。

6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。

(完整word版)计量经济学名词解释和简答题汇总(word文档良心出品)

(完整word版)计量经济学名词解释和简答题汇总(word文档良心出品)

计量经济学第一部分:名次解释1、模型:对现实的描述和模拟。

2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

4、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

5、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。

6、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

7、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。

8、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。

9、残差项:是一随机变量,是针对样本回归函数而言的。

10、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。

11、回归系数:回归模型中βo ,β1等未知但却是固定的参数。

12、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

13、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

14、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

15、估计量的标准差:度量一个变量变化大小的测量值。

16、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。

17、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。

18、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

19、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。

20、拟合优度检验:检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。

计量经济学名词解释和简答题汇总

计量经济学名词解释和简答题汇总

计量经济学第一部分: 名次解释1.模型: 对现实的描述和模拟。

2.广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称, 包括回归分析方法、投入产出分析方法、时间序列分析方法等。

3、狭义计量经济学: 以揭示经济现象中的因果关系为目的, 在数学上主要应用回归分析方法。

4.总体回归函数: 指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

5、样本回归函数: 指从总体中抽出的关于Y, X的若干组值形成的样本所建立的回归函数。

6.随机的总体回归函数: 含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。

7、线性回归模型: 既指对变量是线性的, 也指对参数β为线性的, 即解释变量与参数β只以他们的1次方出现。

8、随机干扰项: 即随机误差项, 是一个随机变量, 是针对总体回归函数而言的。

9、残差项: 是一随机变量, 是针对样本回归函数而言的。

10、条件期望:即条件均值, 指X取特定值Xi时Y的期望值。

11.回归系数: 回归模型中βo, β1等未知但却是固定的参数。

12.回归系数的估计量: 指用等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

13.最小二乘法:又称最小平方法, 指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

14、最大似然法: 又称最大或然法, 指用生产该样本概率最大的原则去确定样本回归函数的方法。

15.估计量的标准差: 度量一个变量变化大小的测量值。

16、总离差平方和: 用TSS表示, 用以度量被解释变量的总变动。

17、回归平方和: 用ESS表示: 度量由解释变量变化引起的被解释变量的变化部分。

18、残差平方和: 用RSS表示: 度量实际值与拟合值之间的差异, 是由除解释变量以外的其他因素引起的被解释变量变化的部分。

19、协方差: 用Cov(X, Y)表示, 度量X,Y两个变量关联程度的统计量。

计量经济学知识点

计量经济学知识点

计量经济学知识点计量经济学是一门融合了经济学、统计学和数学的交叉学科,它运用数学和统计方法来分析经济数据,从而揭示经济现象之间的数量关系和规律。

以下将为您介绍一些计量经济学的重要知识点。

一、回归分析回归分析是计量经济学的核心方法之一。

简单线性回归模型是最基础的形式,它假设因变量(Y)与一个自变量(X)之间存在线性关系,可以用方程 Y =β₀+β₁X +ε 来表示。

其中,β₀是截距,β₁是斜率,ε 是随机误差项。

在进行回归分析时,我们需要估计参数β₀和β₁。

常用的估计方法是最小二乘法,其目标是使残差平方和最小。

通过计算得到的回归系数可以解释自变量对因变量的影响程度。

多元线性回归则是将简单线性回归扩展到多个自变量的情况,模型变为 Y =β₀+β₁X₁+β₂X₂+… +βₖXₖ +ε。

回归分析还需要进行一系列的检验,包括模型的拟合优度检验(如R²统计量)、变量的显著性检验(t 检验)和整体模型的显著性检验(F 检验)等。

二、异方差性异方差性是指误差项的方差不是恒定的,而是随着自变量的取值不同而变化。

这会导致最小二乘法估计的有效性受到影响。

为了检测异方差性,可以使用图形法(如绘制残差图)或统计检验方法(如怀特检验)。

如果发现存在异方差性,可以采用加权最小二乘法等方法进行修正。

三、自相关性自相关性指的是误差项在不同观测值之间存在相关性。

常见的自相关形式有正自相关和负自相关。

自相关性会使估计的标准误差产生偏差,影响参数估计的有效性和假设检验的结果。

常用的检测方法有杜宾瓦特森检验。

解决自相关问题可以采用广义差分法等方法。

四、多重共线性多重共线性是指自变量之间存在较强的线性关系。

这会导致回归系数估计值不稳定,难以准确解释变量的影响。

可以通过计算方差膨胀因子(VIF)来判断是否存在多重共线性。

解决多重共线性的方法包括删除相关变量、增大样本容量或使用岭回归等方法。

五、虚拟变量虚拟变量常用于表示定性的因素,例如性别、季节、地区等。

计量经济学核心概念

计量经济学核心概念

计量经济学核心概念一、变量与数据1.变量:在计量经济学中,变量是用来描述经济现象或经济行为的一种度量指标。

例如,收入、消费、投资等都可以作为变量。

2.数据:数据是用于研究经济现象或经济行为的一组数值。

在计量经济学中,数据通常包括观察值、样本数据和时间序列数据等。

二、模型与假设1.模型:模型是用于描述变量之间关系的数学方程或统计模型。

在计量经济学中,模型通常用于解释经济现象或预测未来经济行为。

2.假设:假设是模型建立的基础,它规定了模型中变量的性质和关系。

例如,假设变量之间存在线性关系、误差项是随机且独立同分布等。

三、估计与检验1.估计:估计是指根据样本数据对模型参数进行估计的过程。

在计量经济学中,常用的估计方法包括最小二乘法、最大似然法等。

2.检验:检验是指对模型的假设进行检验的过程。

常用的检验方法包括统计检验、图形分析和模型诊断等。

四、预测与决策1.预测:预测是指根据模型对未来经济现象或经济行为进行预测的过程。

在计量经济学中,常用的预测方法包括时间序列分析、回归分析和模拟分析等。

2.决策:决策是指根据预测结果进行决策的过程。

在计量经济学中,决策通常涉及选择最优方案、制定政策或策略等方面。

五、实证与应用1.实证:实证是指对实际经济现象或行为进行调查和研究的过程。

在计量经济学中,实证研究通常涉及收集数据、建立模型和分析结果等方面。

2.应用:应用是指将计量经济学理论和方法应用于实际经济领域的过程。

在计量经济学中,应用通常涉及政策制定、市场分析和企业决策等方面。

经济学考研计量经济学核心知识

经济学考研计量经济学核心知识

经济学考研计量经济学核心知识计量经济学是经济学中的一个重要分支,通过运用数理统计方法和经济理论来分析经济现象和经济行为的关系。

在经济学考研中,计量经济学是必修内容之一,对于候选人们来说,掌握计量经济学的核心知识是非常重要的。

一、回归分析回归分析是计量经济学中最基本的方法之一。

其通过建立经济模型,通过样本数据对模型进行估计,并利用估计结果进行经济问题的预测和对经济政策的评估。

回归分析包括单元根检验、OLS估计、假设检验等内容。

1. 单元根检验单元根检验是回归分析中的一个重要步骤,用于检验一个时间序列是否具有平稳性。

常用的单元根检验方法有ADF检验、PP检验等。

2. OLS估计OLS估计是回归分析中最常用的估计方法,通过最小化残差平方和来估计模型中的参数。

需要注意的是,OLS估计的有效性需要满足一定的假设条件,如线性性、正态性、无多重共线性等。

3. 假设检验假设检验是回归分析中用于判断经济模型的显著性的方法。

常用的假设检验方法有t检验、F检验等。

二、时间序列分析时间序列分析是计量经济学中的另一个重要内容,通过对时间序列数据的统计方法和经济理论进行结合,来评估经济现象和经济政策的影响。

时间序列分析包括平稳性检验、协整关系检验、Granger因果检验等内容。

1. 平稳性检验平稳性检验是时间序列分析的首要步骤,用于判断一个时间序列是否具有平稳性。

常用的平稳性检验方法包括ADF检验、PP检验等。

2. 协整关系检验协整关系检验是时间序列分析中的一个重要内容,用于研究两个或多个非平稳时间序列之间的长期均衡关系。

常用的协整关系检验方法有Johansen检验、Engle-Granger检验等。

3. Granger因果检验Granger因果检验是时间序列分析中用于检验两个变量之间是否存在因果关系的方法。

通过引入滞后项对自变量进行延迟处理,然后进行假设检验,判断因果关系是否显著。

三、面板数据模型面板数据模型是计量经济学中用于分析横截面和时间序列数据的一种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学核心重点:
1.计量经济学
2.计量经济学模型成功的三要素
3.建立计量经济学模型的步骤
4.最小二乘原理
5.最小二乘估计量的性质
6.总体回归模型
7.总体回归函数
8.总体回归函数的随机设定形式
9.样本回归函数10.样本回归模型11.最小样本容量
12.异方差性13.异方差性的后果14.异方差性的检验方法15.异方差性的修正
16.序列相关性17.序列相关性的后果18.序列相关性的检验方法19.序列相关性的补救
20.多重共线性21.多重共线性的后果22.多重共线性的检验23.克服多重共线性的方法
24.随机解释变量的克服方法
25.工具变量法
26.虚拟变量
27.单方程计量经济学模型与联立计量经济学模型的区别
28.变量29.内生变量30.外生变量31.先决变量32.结构是模型33.简化式模型34.联立方程计量经济学模型的估计方法
以下是具体的名词解释,你背背,在回答的时候能用得上。

1、计量经济学:是经济学的一个分支学科,是已揭示经济活动中的客观存在的数量关系为内容的分支学科。

2.计量经济学模型成功的三要素:理论、方法和数据。

3.建立计量经济学模型的步骤:(1)理论模型的设计(2)样本数据的收集(3)模型参数的估计(4)模型的检验。

4.最小二乘原理:样本回归线上的点Yi(上有盖)与真实观测点Yi之查可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度,这就是最小二乘原理。

5.最小二乘估计量的性质:(1)线形性(2)无偏性(3)有效性(4)渐近无偏性(5)一致性(6)渐进有效性。

Yi=E(Y|Xi)+Ui或Yi=Bo+B1Xi+Ui即给定可支配收入水平Xi,个别家庭的消费支出可表示为两部分之和:(1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为系统性部分或确定性部分:(2)其他随机部分或非系统部分Ui,
6.总体回归模型:Yi=E(Y|Xi)+Ui或Yi=Bo+B1Xi+Ui式称为总体回归函数的随机设定形式,它表明被解释变量Y除了受解释变量X的系统性影响外,还受其他未包括在模型中的诸多因素的随机性影响,U即为这些影响因素的综合代表。

由于方程中引入了随机干扰项,成为计量经济学模型,因此也称为总体回归模型。

7.总体回归函数:在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线,或更一般地称为总体回归曲线,相应的函数E(Y|Xi)=f(Xi)称为(双变量)总体回归函数。

8.总体回归函数的随机设定形式:Yi=E(Y|Xi)+Ui或
Yi=Bo+B1Xi+Ui式称为总体回归函数的随机设定形式,即给定可支配收入水平Xi,个别家庭的消费支出可表示为两部分之和:(1)该收入水平下所有家庭的平均消费支出E(Y|Xi),称为系统性部分或确定性部分:(2)其他随机部分或非系统部分Ui。

9.样本回归函数:样本散点图近似于一条直线,画一条直线尽可能地拟合该散点图,由于样本取自总体,可用该线近似地代表总体回归线,该线称为样本回归线,其函数形式记为Yi(上有盖)=f(Xi)=Bo(上有盖)+B1(上有盖)Xi称为样本回归函数。

10.样本回归模型:样本回归函数也有如下的随机形式:Yi=Yi(上有盖)+Ui (上有盖)=Bo(上有盖)+B1(上有盖)Xi+ei,其中ei称为(样本)残差(或剩余)项,代表了其他影响Yi的随机因素的集合,可看成是Ui的估计量Ui(上有
盖),由于方程中引入了随机项,成为计量经济学模型,因此也称为样本回归模型。

11.最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。

12.异方差性:对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。

13.异方差性的后果:(1)参数估计量非有效(2)变量的显著性检验失去意义(3)模型的预测失效
14.异方差性的检验方法:(1)图示检验法(2)帕克检验和戈里瑟检验(3)G-Q检验(4)怀特检验。

15.异方差性的修正:最常用的方法是加权最小二乘法,即对原模型加权,使之变成一个新的不存在异方差的模型,然后采用OLS法估计其参数。

16.序列相关性:多元线形回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。

如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

17.序列相关性的后果:(1)参数估计量非有效(2)变量的显著性检验失去意义(3)模型的预测失败。

18.序列相关性的检验方法:(1)图示法(2)回归检验法(3)杜宾—瓦森检验法(4)拉格朗日乘法检验。

19.序列相关性的补救:(1)广义最小二乘法(2)广义差分法(3)随机干扰项相关系数的估计(4)广义差分法在计量经济学软件中的实现。

20.多重共线性:(1)对于模型Yi=Bo+B1X1i+B2X2i+...+BkXki+Ui, i=1,2,...,n其基本假设之一是解释变量X1,X2,...,Xk是相互独立的。

如果某两个或多个解释变量之间出现了相关性,则称为存在多重共线性。

21.多重共线性的后果:(1)完全共线性下参数估计量不存在(2)近似共线性下普通最小二乘法参数估计量的方差变大(3)参数估计量经济含义不合理(4)变量的显著性检验和模型的预测功能失去意义。

22.多重共线性的检验:(1)检验多重共线性是否存在(2)判明存在多重共线性的范围。

23.克服多重共线性的方法:(1)排出引起共线性的变量(2)差分法(3)减小参数估计量的方差。

24.随机解释变量的克服方法:模型中出现随机解释变量并且与随机干扰项相关时,普通最小二乘法计量是由偏的。

如果随机解释变量与随机干扰项异期相关,则可以通过增大样本容量的办法来得到一致的估计量;但如果是同期相关,即使增大样本容量也无济于事。

这时最常用的估计方法是工具变量法。

25.工具变量法:(1)工具变量的选取(2)工具变量的应用(3)工具变量法估计量是一致估计量。

26.虚拟变量:许多经济变量是可以定量度量的,为了在模型中反映对模型的影响因素,并提高模型的精度,需要将它们“量化”,这种“量化”是通过引入“虚拟变量”来完成的。

根据这些因素的属性类型,构造只取“0”或“1”的人工变量,通常称为虚拟变量。

27.单方程计量经济学模型与联立计量经济学模型的区别:单方程计量经济学模型是用单一方程来揭示经济变量之间的单项因果的数量关系,适用于单一经济现象的研究。

联立计量经济学模型是用一组方程来揭示经济变量之间的相互依存,相互因果的数量关系,适用于某一经济系统的研究。

28.变量:对于联立方程计量经济学模型系统而言,将变量分为内生变量和外生变量两大类,外生变量与滞后内生变量又被统称为先决变量。

29.内生变量:是具有某种概率分布的随机变量,它的参数是联立方程系统估计的元素,内生变量是由模型决定的,同时也对模型系统产生影响。

内生变量一般都是经济变量。

30.外生变量:一般是确定性变量,或是具有临界概率分布的随机变量,其参数不是模型系统研究的元素。

外生变量影响系统,但本身不受系统的影响。

外生便量一般是经济变量、条件变量、政策变量、虚变量。

31.先决变量:外生变量与滞后内生变量统称为先决变量。

32.结构是模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经济学方程系统统称为结构式模型。

33.简化式模型:将联立方程计量经济学模型的每个内生变量表示成所有先决变量和随机干扰项的函数,即用所有先决变量作为每个内生变量的解释变量,所形成的模型称为简化式模型。

34.联立方程计量经济学模型的估计方法:分为两大类,单方程估计方法和系统估计方法。

所谓单方程估计方法,指每次只估计模型系统中的一个方程,依次逐个估计;所谓系统估计方法,指同时对全部方程进行估计,同时得到所有方程的参数估计量。

单方程估计方法称为有限信息估计方法,按方法原理可分为(1)间接最小二乘法(2)两阶段最小二乘法(3)工具变量法(4)有限信息最大似然法(5)最小方差比方法;系统估计方法称为完全信息估计方法,主要包括三阶段最小二乘法和完全信息最大似然法。

相关文档
最新文档