最新人教版八年级下册数学4.3第1课时《平方差公式》同步练习题

合集下载

北师大版数学八年级下册:4.3 公式法 同步练习(附答案)

北师大版数学八年级下册:4.3 公式法  同步练习(附答案)

3公式法第1课时运用平方差公式因式分解知识点1直接运用平方差公式因式分解1.(2020·金华)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a-b2C.a2-b2D.-a2-b22.已知多项式x2+a能用平方差公式在有理数范围内因式分解,那么在下列四个数中a 可以等于()A.9 B.4 C.-1 D.-23.把多项式(x-1)2-4因式分解的结果是()A.(x+3)(x+1)B.(x+1)(x-3)C.(x-1)(x+3)D.(x-5)(x+3)4.因式分解:(1)(2020·绍兴)1-x2=;(2)(2020·张家界)x2-9=;(3)(2019·黔东南)9x2-y2=.5.把下列各式因式分解:(1)9m2-4n2;(2)-16+a2b2;(3)964m2-n2;(4)(x-2y)2-4y2.知识点2先提公因式后运用平方差公式因式分解6.对a2b-b3因式分解,结果正确的是()A.b(a+b)(a-b)B.b(a-b)2C.b(a2-b2)D.b(a+b)27.因式分解:(1)(2020·济宁)a 3-4a = ;(2)(2019·黄冈)3x 2-27y 2= ;(3)(2020·黄石)m 3n -mn 3= .8.把下列各式因式分解:(1)16m 3-mn 2;(2)a 2(a -b )-4(a -b ).知识点3 用平方差公式因式分解的应用9.如图,在边长为6.75 cm 的正方形纸片上,剪去一个边长为3.25 cm 的小正方形,则图中阴影部分的面积为( )A .3.5 cm 2B .12.25 cm 2C .27 cm 2D .35 cm 210.若m 2-n 2=6,且m -n =2,则m +n = .11.已知长方形的面积是9a 2-16(a>43),若一边长为3a +4,则另一边长为 .易错点 因式分解不彻底导致出错12.(2019·毕节)分解因式:x 4-16= .13.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是( )A .(a -b )2=a 2-2ab +b 2B .a(a -b )=a 2-abC .(a -b )2=a 2-b 2D .a 2-b 2=(a +b )(a -b )14.对于任意整数n ,多项式(n +7)2-(n -3)2的值都能( )A.被20整除B.被7整除C.被21整除D.被(n+4)整除15.因式分解:(1)(x-8)(x+2)+6x=;(2)-9x2+(x-y)2=;(3)m2(a-2)+(2-a)=.16.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.17.把下列各式因式分解:(1)(2019·河池)(x-1)2+2(x-5);(2)0.36x2-49y2;(3)a3b-16ab;(4)3m4-48;(5)x n-x n+2;(6)(y+2x)2-(x+2y)2;(7)a2(a-b)+b2(b-a).18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此,4,12,20都是“和谐数”.36和2 020这两个数是“和谐数”吗?为什么?第2课时运用完全平方公式因式分解知识点1完全平方式1.下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2C.a2-2b+b2D.a2+2a+12.(1)若x2-6x+k是完全平方式,则k=9;(2)若x2+kx+4是完全平方式,则k=±4;(3)若x2+2xy+m是完全平方式,则m=y2.知识点2直接运用完全平方公式因式分解3.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-2x+14.把下列多项式因式分解,结果正确的是()A.4a2+4a+1=(2a+1)2B.a2-2a+4=(a-2)2C.a2-2a-1=(a-1)2D.a2-b2=(a-b)25.因式分解:(1)(2019·温州)m2+4m+4=;(2)a2-2ab+b2=.6.把下列完全平方式因式分解:(1)y2+y+14;(2)4x2+y2-4xy;(3)(m-n)2+6( m-n)+9.知识点3先提公因式后运用完全平方公式因式分解7.把代数式3x3-12x2+12x因式分解,结果正确的是()A.3x(x2-4x+4)B.3x(x-4)2C.3x(x+2)(x-2)D.3x(x-2)28.因式分解:(1)(2019·威海)2x2-2x+12=;(2)(2019·绵阳)m2n+2mn2+n3=;(3)(2019·眉山)3a3-6a2+3a=.9.把下列各式因式分解:(1)-x2+6xy-9y2;(2)a3+9ab2-6a2b.易错点对完全平方式理解不透10.在多项式4x2+1中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是.(写出一个即可)11.计算1252-50×125+252的结果为()A.100 B.150C.10 000 D.22 50012.下列多项式中,能运用公式法因式分解的有.①-a2+b2;②4x2+4x+1;③-x2-y2;④-x2+8x-16;⑤x4-1;⑥m2+4m-4.13.若m=2n+1,则m2-4mn+4n2的值是.14.(教材P94习题T4变式)将图1中两个全等的直角三角形和一个等腰直角三角形(它的直角边等于前两个三角形的斜边)拼接成一个梯形(如图2),请根据拼接前后面积的关系写出一个关于a,b的多项式的因式分解:.15.把下列各式因式分解:(1)(a-b)2+4ab;(2)-2a3b2+8a2b2-8ab2;(3)4x2-(x2+1)2;(4)25-30(x-y)+9(x-y)2;(5)(x2-2xy+y2)+(-2x+2y)+1.16.(教材P105复习题T6变式)若a +b =-3,ab =1,求12a 3b +a 2b 2+12ab 3的值.17.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程. 解:设x 2-4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2-4x +4)2.(第四步)(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学在第四步将y 用所设中的x 的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否(填“是”或“否”).如果否,直接写出最后的结果 ;(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.18.上数学课时,王老师在讲完乘法公式(a±b )2=a 2±2ab +b 2的多种运用后,要求同学们运用所学知识解答:求代数式x 2+4x +5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x 2+4x +5=x 2+4x +4+1=(x +2)2+1.∵(x +2)2≥0,∴当x =-2时,(x +2)2的值最小,最小值是0.∴(x +2)2+1≥1.∴当x =-2时,x 2+4x +5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x = 时,代数式x 2-6x +12的最小值是 ;(2)知识运用:若y =-x 2+2x -3,当x =1时,y 有最大值(填“大”或“小”),这个值是 ;(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值.第3课时运用特殊方法因式分解知识点1利用十字相乘法因式分解1.阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=;(2)x2-6x+8=;(3)x2+2x-3=;(4)x2-6x-27=.拓展训练:分解因式:(1)2x2+3x+1=;(2)3x2-5x+2=.2.分解因式:(1)x2-2x-8=;(2)2x2-10x-12=.知识点2利用分组分解法因式分解3.【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+)-(b3+)=a2( )-(a+b)=( )(a+b)=.【我也可以】分解因式:(1)4x2-2x-y2-y;(2)a2+b2-9+2ab.4.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有()A.2个B.3个C.4个D.6个5.将下列多项式因式分解:(1)x3-7x2-30x;(2)(2019·齐齐哈尔)a2+1-2a+4(a-1);(3)(m2+2m)2-7(m2+2m)-8;(4)(a-b)2+3(a-b)(a+b)-10(a+b)2.6.已知在△ABC中,三边长a,b,c满足a2+2b2+c2-2ab-2bc=0,请判断△ABC 的形状并证明你的结论.【变式】变式点:变换条件若△ABC的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,则△ABC的形状是.参考答案:第1课时 运用平方差公式因式分解知识点1 直接运用平方差公式因式分解1.(2020·金华)下列多项式中,能运用平方差公式分解因式的是(C )A .a 2+b 2B .2a -b 2C .a 2-b 2D .-a 2-b 22.已知多项式x 2+a 能用平方差公式在有理数范围内因式分解,那么在下列四个数中a 可以等于(C )A .9B .4C .-1D .-23.把多项式(x -1)2-4因式分解的结果是(B )A .(x +3)(x +1)B .(x +1)(x -3)C .(x -1)(x +3)D .(x -5)(x +3)4.因式分解:(1)(2020·绍兴)1-x 2=(1-x )(1+x );(2)(2020·张家界)x 2-9=(x +3)(x -3);(3)(2019·黔东南)9x 2-y 2=(3x +y )(3x -y ).5.把下列各式因式分解:(1)9m 2-4n 2;解:原式=(3m +2n )(3m -2n ).(2)-16+a 2b 2;解:原式=(ab +4)(ab -4).(3)964m 2-n 2; 解:原式=(38m +n )(38m -n ).(4)(x -2y )2-4y 2.解:原式=(x -2y +2y )(x -2y -2y )=x(x -4y ).知识点2 先提公因式后运用平方差公式因式分解6.对a 2b -b 3因式分解,结果正确的是(A )A .b(a +b )(a -b )B .b(a -b )2C .b(a 2-b 2)D .b(a +b )27.因式分解: (1)(2020·济宁)a 3-4a =a(a +2)(a -2);(2)(2019·黄冈)3x 2-27y 2=3(x +3y )(x -3y );(3)(2020·黄石)m 3n -mn 3=mn(m +n )(m -n ).8.把下列各式因式分解:(1)16m 3-mn 2;解:原式=m(4m +n )(4m -n ).(2)a 2(a -b )-4(a -b ).解:原式=(a -b )(a +2)(a -2).知识点3 用平方差公式因式分解的应用9.如图,在边长为6.75 cm 的正方形纸片上,剪去一个边长为3.25 cm 的小正方形,则图中阴影部分的面积为(D )A .3.5 cm 2B .12.25 cm 2C .27 cm 2D .35 cm 210.若m 2-n 2=6,且m -n =2,则m +n =3.11.已知长方形的面积是9a 2-16(a>43),若一边长为3a +4,则另一边长为3a -4.易错点 因式分解不彻底导致出错12.(2019·毕节)分解因式:x 4-16=(x 2+4)(x +2)(x -2).13.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是(D )A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)14.对于任意整数n,多项式(n+7)2-(n-3)2的值都能(A)A.被20整除B.被7整除C.被21整除D.被(n+4)整除15.因式分解:(1)(x-8)(x+2)+6x=(x+4)(x-4);(2)-9x2+(x-y)2=-(4x-y)(2x+y);(3)m2(a-2)+(2-a)=(a-2)(m+1)(m-1).16.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为12.17.把下列各式因式分解:(1)(2019·河池)(x-1)2+2(x-5);解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).(2)0.36x2-49y2;解:原式=(0.6x)2-(7y)2=(0.6x+7y)(0.6x-7y).(3)a3b-16ab;解:原式=ab(a2-16)=ab(a+4)(a-4).(4)3m4-48;解:原式=3(m4-16)=3(m2+4)(m2-4)=3(m2+4)(m+2)(m-2).(5)x n-x n+2;解:原式=x n(1-x2)=x n(1+x)(1-x).(6)(y+2x)2-(x+2y)2;解:原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=(y+2x+x+2y)(y+2x-x-2y)=(3x+3y)(x-y)=3(x+y)(x-y).(7)a2(a-b)+b2(b-a).解:原式=a2(a-b)-b2(a-b)=(a2-b2)(a-b)=(a-b)2(a+b).18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此,4,12,20都是“和谐数”.36和2 020这两个数是“和谐数”吗?为什么?解:36和2 020都是和谐数.理由如下:设a=(n+2)2-n2=(n+2-n)(n+2+n)=2(2n+2)=4(n+1),令36=4(n+1),解得n=8.∴36=102-82.同理:令2 020=4(n+1),解得n=504.∴2 020=5062-5042.第2课时运用完全平方公式因式分解知识点1完全平方式1.下列式子中是完全平方式的是(D)A.a2+ab+b2B.a2+2a+2C.a2-2b+b2D.a2+2a+12.(1)若x2-6x+k是完全平方式,则k=9;(2)若x2+kx+4是完全平方式,则k=±4;(3)若x2+2xy+m是完全平方式,则m=y2.知识点2直接运用完全平方公式因式分解3.下列各式中能用完全平方公式进行因式分解的是(D)A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-2x+14.把下列多项式因式分解,结果正确的是(A)A.4a2+4a+1=(2a+1)2B.a2-2a+4=(a-2)2C.a2-2a-1=(a-1)2D.a2-b2=(a-b)25.因式分解:(1)(2019·温州)m2+4m+4=(m+2)2;(2)a2-2ab+b2=(a-b)2.6.把下列完全平方式因式分解:(1)y2+y+1 4;解:原式=(y+1 2)2.(2)4x2+y2-4xy;解:原式=(2x)2+y2-2·2x·y=(2x-y)2.(3)(m-n)2+6( m-n)+9.解:原式=(m-n-3)2.知识点3先提公因式后运用完全平方公式因式分解7.把代数式3x3-12x2+12x因式分解,结果正确的是(D)A.3x(x2-4x+4)B.3x(x-4)2C.3x(x+2)(x-2)D.3x(x-2)28.因式分解:(1)(2019·威海)2x2-2x+12=12(2x-1)2;(2)(2019·绵阳)m2n+2mn2+n3=n(m+n)2;(3)(2019·眉山)3a3-6a2+3a=3a(a-1)2.9.把下列各式因式分解:(1)-x 2+6xy -9y 2;解:原式=-(x 2-6xy +9y 2)=-(x -3y )2.(2)a 3+9ab 2-6a 2b.解:原式=a(a 2+9b 2-6ab )=a(a -3b )2.易错点 对完全平方式理解不透10.在多项式4x 2+1中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是±4x 或4x 4.(写出一个即可)11.计算1252-50×125+252的结果为(C )A .100B .150C .10 000D .22 500 12.下列多项式中,能运用公式法因式分解的有①②④⑤.①-a 2+b 2;②4x 2+4x +1;③-x 2-y 2;④-x 2+8x -16;⑤x 4-1;⑥m 2+4m -4.13.若m =2n +1,则m 2-4mn +4n 2的值是1.14.(教材P94习题T4变式)将图1中两个全等的直角三角形和一个等腰直角三角形(它的直角边等于前两个三角形的斜边)拼接成一个梯形(如图2),请根据拼接前后面积的关系写出一个关于a ,b 的多项式的因式分解:ab +12(a 2+b 2)=12(a +b )2.15.把下列各式因式分解:(1)(a -b )2+4ab ;解:原式=a 2-2ab +b 2+4ab=a 2+2ab +b 2=(a +b )2.(2)-2a 3b 2+8a 2b 2-8ab 2;解:原式=-2ab 2(a 2-4a +4)=-2ab 2(a -2)2.(3)4x 2-(x 2+1)2;解:原式=(2x +x 2+1)(2x -x 2-1)=-(x +1)2(x -1)2.(4)25-30(x -y )+9(x -y )2;解:原式=52-2×5×3(x -y )+[3(x -y )]2=[5-3(x -y )]2=(5-3x +3y )2.(5)(x 2-2xy +y 2)+(-2x +2y )+1.解:原式=(x -y )2-2(x -y )+1=(x -y -1)2.16.(教材P105复习题T6变式)若a +b =-3,ab =1,求12a 3b +a 2b 2+12ab 3的值. 解:当a +b =-3,ab =1时,原式=12ab(a 2+2ab +b 2) =12ab(a +b )2 =12×1×(-3)2 =92.17.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程. 解:设x 2-4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2-4x +4)2.(第四步)(1)该同学第二步到第三步运用了因式分解的(C )A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否(填“是”或“否”).如果否,直接写出最后的结果(x-2)4;(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.解:原式=(x2-2x)2+2(x2-2x)+1=(x2-2x+1)2=(x-1)4.18.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴当x=-2时,(x+2)2的值最小,最小值是0.∴(x+2)2+1≥1.∴当x=-2时,x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x=3时,代数式x2-6x+12的最小值是3;(2)知识运用:若y=-x2+2x-3,当x=1时,y有最大值(填“大”或“小”),这个值是-2;(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值.解:∵-x2+3x+y+5=0,∴x+y=x2-2x-5=(x-1)2-6.∵(x-1)2≥0,∴(x-1)2-6≥-6.∴当x=1时,y+x的最小值为-6.第3课时运用特殊方法因式分解知识点1利用十字相乘法因式分解1.阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=(x+1)(x+4);(2)x2-6x+8=(x-2)(x-4);(3)x2+2x-3=(x+3)(x-1);(4)x2-6x-27=(x-9)(x+3).拓展训练:分解因式:(1)2x2+3x+1=(2x+1)(x+1);(2)3x2-5x+2=(x-1)(3x-2).2.分解因式:(1)x2-2x-8=(x+2)(x-4);(2)2x2-10x-12=2(x+1)(x-6).知识点2利用分组分解法因式分解3.【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+a2b)-(b3+ab2)=a2(a+b)-b2(a+b)=(a2-b2)(a+b)=(a-b)(a+b)2.【我也可以】分解因式:(1)4x2-2x-y2-y;解:原式=(4x2-y2)-(2x+y)=(2x-y)(2x+y)-(2x+y)=(2x+y)(2x-y-1).(2)a2+b2-9+2ab.解:原式=a2+2ab+b2-9=(a+b)2-32=(a+b+3)(a+b-3).4.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有(D)A.2个B.3个C.4个D.6个5.将下列多项式因式分解:(1)x3-7x2-30x;解:原式=x(x2-7x-30)=x(x+3)(x-10).(2)(2019·齐齐哈尔)a2+1-2a+4(a-1);解:原式=(a-1)2+4(a-1)=(a-1)(a-1+4)=(a-1)(a+3).(3)(m2+2m)2-7(m2+2m)-8;解:原式=(m2+2m-8)(m2+2m+1)=(m+4)(m-2)(m+1)2.(4)(a-b)2+3(a-b)(a+b)-10(a+b)2.解:原式=[(a-b)-2(a+b)][(a-b)+5(a+b)]=(-a-3b)(6a+4b)=-2(a+3b)(3a+2b).6.已知在△ABC中,三边长a,b,c满足a2+2b2+c2-2ab-2bc=0,请判断△ABC 的形状并证明你的结论.解:△ABC是等边三角形.证明如下:∵a2+2b2+c2-2ab-2bc=0,∴a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0.∴(a-b)2=0,(b-c)2=0,得a=b且b=c,即a=b=c.∴△ABC是等边三角形.【变式】变式点:变换条件若△ABC的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,则△ABC的形状是直角三角形.。

4.3 公式法 (解析版)-八年级数学下

4.3 公式法 (解析版)-八年级数学下

4.3公式法考点:因式分解公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a 2-b 2=(a+b)(a-b)②完全平方公式:a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)2题型一:判断是否能用公式法因式分解1.(2023秋·广东云浮·八年级统考期末)下列各式中,能用平方差公式分解因式的是()A .229x y -+B .229x y +C .2221x y -+D .229x y --【答案】A【分析】根据能用平方差公式分解因式的式子必须是两项平方项的差即可判断.【详解】解:A.229x y -+是x 与3y 的平方的差,能用平方差公式分解因式,故本选项正确,符合题意;B.229x y +两项的符号相同,不能用平方差公式分解因式,故本选项错误,不符合题意;C.2221x y -+是三项,不能用平方差公式分解因式,故本选项错误,不符合题意;D.229x y --两项的符号相同,不能用平方差公式分解因式,故本选项错误,不符合题意;故选:A .【点睛】本题考查了平方差公式分解因式,熟记能用平方差公式分解因式的式子必须是两项平方项的差是解题的关键.2.(2023春·八年级课时练习)下列多项式,能用公式法分解因式的有()个.①2233+x y ②22x y -+③22x y --④22x xy y ++⑤222x xy y +-⑥2244x xy y -+-A .2B .3C .4D .5【答案】A【分析】根据完全平方公式()2222a b a ab b ±=±+,平方差公式()()22a b a b a b +-=-进行判断即可.【详解】解:①2233+x y 不能用公式法分解因式,不符合题意;②()()22x y y x y x -+=+-,可以用平方差公式分解因式,符合题意;③()2222x y x y --=-+不能用公式法分解因式,不符合题意;④22x xy y ++不能用公式法分解因式,不符合题意;⑤222x xy y +-不能用公式法分解因式,不符合题意;⑥()()2222244442x xy y x xy y x y-+-=--+=--,可以用完全平方公式分解因式,符合题意;故选A .【点睛】本题主要考查了分解因式,熟知公式法分解因式是解题的关键.3.(2022秋·山东威海·八年级统考期中)下列多项式:①2216x y -+,②()222812()a ab b a b -+-+,③222139m mn n -+,④22x y --能用公式法因式分解的有个()A .1B .2C .3D .4【答案】C【分析】根据公式法因式分解的方法,逐一进行判断即可.【详解】解:()()221644x y x y x y -+=-++①,符合题意;()222812()a ab b a b -+-+②2281()()a b a b =--+()()()()99a b a b a b a b ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()45445a b a b =--,符合题意;22221393n m mn n m ⎛⎫-+=- ⎪⎝⎭③,符合题意;22x y --④,不能用公式法进行因式分解,不符合题意.故选C .【点睛】本题考查公式法因式分解.熟练掌握公式法因式分解是解题的关键.题型二:运用平方差公式因式分解4.(2023春·广东深圳·八年级校考期中)一次数学课上,老师出了下面一道因式分解的题目:41x -,请问正确的结果为()A .()()2211x x -+B .()()2211x x +-C .()()()2111x x x +-+D .()()311x x -+【答案】C【分析】根据平方差公式分解因式即可.【详解】解:()()()()()4222111111x x x x x x =-+--+=+,故C 正确.故选:C .【点睛】本题主要考查了分解因式,解题的关键是熟练掌握平方差公式,注意分解因式要分解到最后结果.5.(2022秋·全国·八年级专题练习)下列多项式中,在有理数范围内不能用平方差公式分解的是()A .22x y -+B .224()a a b -+C .228a b -D .221x y -【答案】C【分析】利用平方差公式的结果特征判断即可,能用平方差因式分解的式子的特点是:两项平方项,符号相反.【详解】在有理数范围内不能用平方差公式分解的是228a b -,A 、2222()()()x y x y x y x y -+=--=-+-,B 、[][]224()2()2()(3)()a a b a a b a a b a b a b -+=++-+=+-,D 、22221()1(1)(1)x y xy xy xy -=-=+-,故选:C .【点睛】本题考查了公式法分解因式,不仅要掌握平方差公式的特点,还要对有理数的范围把握好.6.(2022春·甘肃酒泉·八年级统考期末)下列多项式中,不能用平方差公式分解因式的是()A .22x y -B .22x y -+C .22x y --D .2281x y -【答案】C【分析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,根据平方差公式分解因式的特点进行分析即可.【详解】A.22x y -能用平方差公式因式分解,故不符合题意;B.22x y -+能用平方差公式因式分解,故不符合题意;C.22x y --不能用平方差公式因式分解,故符合题意;D.2281x y -能用平方差公式因式分解,故不符合题意;故选择:C【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式分解因式的特点.题型三:运用完全平方公式因式分解7.(2023春·全国·八年级期中)下列各式:①269x x -+;②225101a a +-;③244x x --;④2144x x -+,其中不能用完全平方公式因式分解的个数为()A .1B .2C .3D .4【答案】C【分析】能利用完全平方公式因式分解的整式需满足:整式是“两数平方和与这两个数积的2倍”.利用完全平方公式的结构特点逐个分析得结论.【详解】解:()22693x x x -+=-,故①能用完全平方公式因式分解;整式225101a a +-与244x x --不满足两数平方和,故②③不能用完全平方公式因式分解;整式2144x x -+的中间项x 不是2x 与12积的2倍,故④不能用完全平方公式因式分解.故选:C .【点睛】本题考查了整式的因式分解,掌握完全平方公式的结构特点是解决本题的关键.8.(2023春·浙江·八年级阶段练习)已知23,23x y =-=+,则代数式2224x xy y x y +++--的值为()A .32B .34C .31-D .512-【答案】C【分析】根据已知,得到232322,232323x y x y +=-++=-=---=-,整体思想带入求值即可.【详解】解:∵23,23x y =-=+,∴232322,232323x y x y +=-++=-=---=-,∴()()222244x xy y x y x y x y +++--=++--()222234=--8234=--423=-()23231=-+()231=-31=-.故选C .【点睛】本题考查二次根式的化简求值.熟练掌握二次根式的运算法则,利用整体思想进行求解,是解题的关键.9.(2023秋·山东威海·八年级统考期末)下列多项式,不能用完全平方公式分解的是()A .214x x -+B .22441a b ab -+C .21025y y +-D .22111934a ab b++【答案】C【分析】对每个选项进行因式分解即可做出判断.【详解】解:A .221142x x x ⎛⎫-+=- ⎪⎝⎭,故选项不符合题意;B .()22244121a b ab ab -+=-,故选项不符合题意;C .21025y y +-不能用完全平方公式分解,故选项符合题意;D .2221911321134a b a ab b ⎛⎫=+ ⎝+⎪⎭+,故选项不符合题意.故选:C .【点睛】此题考查了因式分解,熟练掌握完全平方公式是解题的关键.题型四:综合运行公式法因式分解10.(2023秋·湖北武汉·八年级统考期末)下列因式分解正确的是()A .26(2)(3)x x x -=-+B .2221(1)--=-x x xC .222()x y x y -=-D .2244(2)x x x ++=+【答案】D【分析】根据公式法分别判断即可.【详解】A .26(6)(6)x x x -=-+,故原选项错误;B .22)221(1)(12)(12x x x x x -=--=--+--,故原选项错误;C .22()()x y x y x y -=+-,故原选项错误;D .2244(2)x x x ++=+,故原选项正确;故选D .【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.11.(2023秋·湖北荆门·八年级统考期末)因式分解(1)()222224x y x y +-(2)22369xy x y y --【答案】(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +-()()222222x y xy xy xy=+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.12.(2022秋·河南南阳·八年级统考期中)分解因式:(1)()69x x -+;(2)()()2xx y y x -+-;(3)()22214x x +-.【答案】(1)()23x -(2)()()()11x y x x -+-(3)()()2211x x -+【分析】(1)先计算整式的乘法,再利用完全平方公式进行因式分解即可;(2)先提取公因式x y -,再利用平方差公式分解因式即可;(3)先利用平方差公式分解因式,再利用完全平方公式分解因式即可.【详解】(1)解:()69x x -+269x x =-+()23x =-;(2)()()2xx y y x -+-()()2x x y x y =---()()21x y x =--()()()11x y x x =-+-;(3)()22214x x +-()()221212x x x x =+++-()()2211x x =+-.【点睛】本题考查的是因式分解,掌握“利用提取公因式与利用公式法分解因式”是解本题的关键.题型五:因式分解在有理数简算的应用13.(2023秋·河北邢台·八年级统考期末)计算22222111111111123456⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值为().A .512B .12C .712D .1130【答案】C【分析】原式各括号利用平方差公式变形,约分即可得到结果.【详解】原式111111111111111111112233445566⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,13243546572233445566=⨯⨯⨯⨯⨯⨯⨯⨯⨯,1726=⨯,712=,故选:C .【点睛】本题考查的是平方差公式,掌握运算法则和平方差公式是解题关键.14.(2022秋·八年级单元测试)利用因式分解简便计算(1)22124252576⨯-⨯(2)2382438144+⨯+【答案】(1)240000(2)2500【分析】(1)先提取公因数25,然后利用平方差公式进行计算即可;(2)根据完全平方公式进行求解即可.【详解】(1)解:22124252576⨯-⨯()222512476=⨯-()()251247612476=⨯+⨯-2520048=⨯⨯500048=⨯240000=;(2)解:2382438144+⨯+22382123812=+⨯⨯+()23812=+250=2500=.【点睛】本题主要考查了因式分解的应用,熟知因式分解的方法是解题的关键.15.(2022秋·重庆合川·八年级校考期末)(1)先化简,再求值:()()()22a b a b a b +-++,其中1a =,2b =-;(2)已知()249x y -=,6xy =-,求32232x y x y xy ++的值.【答案】254a ab +,3-;150-【分析】(1)先根据平方差公式和完全平方公式进行计算,再进行同类项的合并,最后代入1a =,2b =-计算即可;(2)先提取公因式,再根据完全平方公式将原式进行因式分解,将原式转换为()24xy x y xy ⎡⎤-+⎣⎦,再将()249x y -=,6xy =-代入计算即可.【详解】解:(1)()()()22a b a b a b +-++=222244a b a ab b -+++=254a ab +,当12a b ==-,时,原式=()542+⨯-=58-=3-;(2)32232x y x y xy ++=()222xy x xy y ++ =()2224xy x xy y xy -++ =()24xy x y xy ⎡⎤-+⎣⎦=()(6)4924-⨯-=150-.一、单选题16.(2023春·全国·八年级专题练习)下列各式不能运用公式法进行因式分解的是()A .22a b -+B .221625m n -C .2292016p pq q -+D .()214a b a b ++++【答案】C【分析】根据平方差公式和完全平方公式因式分解,逐项分析即可.【详解】因为2222()()a b b a b a b a -+=-=+-,能因式分解,所以A 不符合题意;因为221625(45)(45)m n m n m n -=+-,能因式分解,所以B 不符合题意;因为2292016p pq q -+不能因式分解,所以C 不符合题意;因为222111()()()()442a b a b a b a b a b ++++=++++=++,能因式分解,所以D 不符合题意.故选:C .【点睛】本题主要考查了公式法因式分解,掌握公式法因式分解的方法是解题的关键.17.(2023秋·山东淄博·八年级统考期末)下列因式分解:①()322412412m m m m -+=--;②()()()421111x x x x -=++-;③()()224a b ab a b -+=+;④()23222a a b ab a a b -+=-,其中结果正确的有()A .4个B .3个C .2个D .1个【答案】B【分析】根据因式分解逐项分析判断即可求解.【详解】解:①()32241243m m m m -+=--,故①不正确;②()()()()()4222111111x x x x x x -=+-=++-,故②正确;③()()222242a b ab a ab b a b -+=++=+,故③正确;④()()23222222a a b ab a a ab b a a b -+=-+=-,故④正确,∴正确的有3个,故选:B .【点睛】本题考查了因式分解,灵活运用所学知识求解是解决本题的关键.18.(2023春·四川达州·八年级校考阶段练习)下列因式分解正确的是()A .2222444(4)4(2)(2)x y x y x y x -+=--=-+-B .323123(4)a a a a -=-C .4222241274(3)7x y x y x y x y -+=-+D .2425(25)(25)a a a -=+-【答案】D【分析】利用提公因式法,公式法进行分解,逐一判断即可解答.【详解】解:A 、2222444()4()()x y x y x y x y -+=--=-+-,故本选项不符合题意;B 、323123(4)3(2)(2)a a a a a a -=-=+-,故本选项不符合题意;C 、4222241274(3)7x y x y x y x y -+=-+,不是因式分解,故本选项不符合题意;D 、2425(25)(25)a a a -=+-,故本选项符合题意;故选:D .【点睛】本题考查了提公因式法与公因式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.19.(2023秋·福建福州·八年级福州三牧中学校考期末)已知a b c 、、是ABC 的三边,且满足()222220a b c b a c ++-+=,则此三角形的形状一定是()A .直角三角形B .等边三角形C .直角三角形或等腰三角形D .以上都不对【答案】B【分析】将原式整理为完全平方式,然后根据平方式的非负性即可得出答案.【详解】解:∵()222220a b c b a c ++-+=,∴2222220a b b ab bc c -+++-=,即22()()0a b b c -+-=,∴0a b -=,0b c -=,∴a b c ==,∴此三角形的形状一定是等边三角形,故选:B .【点睛】本题考查了完全平方公式及其非负性,熟练掌握完全平方公式的结构特点是解本题的关键.20.(2023春·全国·八年级专题练习)分解因式(1)211025t t ++;(2)21449m m -+;(3)214y y ++;(4)()()2244m n m m n m +-++;(5)2258064a a -+;(6)()()222a a b c b c ++++.【答案】(1)()215t +(2)()27m -(3)212y ⎛⎫+ ⎪⎝⎭(4)()2n m -(5)()258a -(6)()2a b c ++【分析】利用完全平方公式分解因式即可.【详解】(1)解:()221102515t t t ++=+;(2)解:()2214497m m m -+=-;(3)解:221142y y y ⎛⎫++=+ ⎪⎝⎭;(4)解:()()()()2222442m n m m n m m n m n m +-++=+-=-;(5)解:()2225806458a a a -+=-;(6)解:()()()2222a a b c b c a b c ++++=++.【点睛】本题考查了因式分解,熟练掌握完全平方公式分解因式是解题的关键.21.(2023秋·安徽阜阳·八年级统考期末)发现与探索.(1)根据小明的解答将21220a a -+因式分解;(2)根据小丽的思考,求代数式21220a a -+的最小值.【答案】(1)()()102a a --(2)16-【分析】(1)将21220a a -+改写为212363620a a -+-+,再根据完全平方公式和平方差公式进行因式分解;(2)根据题意,将21220a a -+化为()2616a --,即可进行解答.【详解】(1)解:21220a a -+212363620a a =-+-+()2264a =--()()102a a =--;(2)解:21220a a -+212363620a a =-+-+()2616a =--,无论a 取何值()26a -都大于等于0,再加上16-,则代数式()2616a --大于等于16-,则21220a a -+的最小值为16-.【点睛】本题主要考查了利用平方差公式和完全平方公式进行因式分解,解题的关键是掌握()2222a b a ab b ±=±+,()()22a b a b a b -=+-.一、单选题22.(2023春·山东济南·八年级统考期末)下列各式能用完全平方公式进行因式分解的是()A .244x x -+B .21x x ++C .2441x x +-D .221x x +-【答案】A【分析】利用完全平方公式:()2222a ab b a b ±+=±,进而判断得出答案.【详解】解:A 、()22442x x x -+=-,能用完全平方公式进行因式分解;B 、21x x ++,不能用完全平方公式进行因式分解;C 、2441x x +-,不能用完全平方公式进行因式分解;D 、221x x +-,不能用完全平方公式进行因式分解;故选:A .【点睛】本题考查用完全平方公式进行因式分解,解题的关键是熟练运用完全平方公式.23.(2023秋·四川乐山·八年级统考期末)已知a 、b 、c 是ABC 三条边的长,且满足条件()222220a b c b a c ++-+=,则ABC 的形状是()A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形【答案】A【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据非负数的性质得到a b c ==,从而得到答案.【详解】解:∵()222220a b c b a c ++-+=,∴2222220a b c ab bc ++--=,∴()()2222220a ab b b bc c -++-+=,∴()()220a b b c -+-=,∵()()2200a b b c -≥-≥,,∴()()2200a b b c -=-=,,∴00a b b c -=-=,,∴a b c ==,∴ABC 是等边三角形,故选A .【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,解题的关键在于灵活利用因式分解建立与方程之间的关系来解决问题.24.(2023秋·河南安阳·八年级校考期末)王林是一位密码编译爱好者,在他的密码手册中有这样一条信息:1x -,a b -,3,21x +,a ,1x +分别对应六个字:南,爱,我,数,学,河,现将()()223131a x b x ---因式分解,结果呈现的密码信息可能是()A .我爱数学B .爱河南C .河南数学D .我爱河南【答案】D【分析】先把代数式分解因式,再对照密码手册求解.【详解】解:()()()()()223131311a x b x x x a b ---=+--,所以,结果呈现的密码信息可能是:我爱河南故选:D .【点睛】本题考查了因式分解的应用,分解因式是解题的关键.25.(2023秋·重庆永川·八年级统考期末)下列分解因式正确的是()A .()231x x x x -=-B .()()22x y x y x y +=+-C .()()22x y x y x y -=--+-D .2244121)x x x -+=-(【答案】D【分析】根据提公因式法和公式法分别分解因式,从而可判断求解.【详解】解:A 、应为()()()32111x x x x x x x -=-=+-,故选项错误,不符合题意;B 、22xy +不能分解,故选项错误,不符合题意;C 、22x y --不能分解,故选项错误,不符合题意;D 、()2244121x x x -+=-,故选项正确,符合题意.故选:D .【点睛】本题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.26.(2023秋·福建泉州·八年级统考期末)已知120212022a x =-+,120222022b x =-+,120232022c x =-+,那么,代数式222a b c ab bc ac ++---的值是()A .2022-B .2022C .3-D .3【答案】D【分析】先求解1a b -=-,1b c -=-,2a c -=-,再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦,再代入求值即可.【详解】解:∵120212022a x =-+,120222022b x =-+,120232022c x =-+,∴1a b -=-,1b c -=-,2a c -=-,∴222a b c ab bc ac++---()=++---22212222222a b c ab bc ac ()()()22212a b b c a c =-+-+-⎡⎤⎣⎦()11142=++3=;故选D .【点睛】本题考查的是利用完全平方公式分解因式,因式分解的应用,求解代数式的值,掌握“完全平方公式的应用”是解本题的关键.27.(2023秋·河北廊坊·八年级统考期末)小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:a b -,3x -,3x +,a b +,29x -,22a b -分别对应下列六个字:河,爱,我,香,游,美,现将()()222299x a x b ---因式分解,结果呈现的密码信息可能是()A .我爱美B .香河游C .我爱香河D .美我香河【答案】C【分析】将所给的多项式因式分解,然后与已知的密码相对应得出文字信息.【详解】解:∵()()222299x a x b---()()2229x a b =--()()()()33x x a b a b =+-+-又∵a b -,3x -,3x +,a b +,分别对应下列四个个字:河,爱,我,香,∴结果呈现的密码信息是:我爱香河.故选:C .【点睛】本题主要考查了因式分解的应用.解题的关键是将多项式因式分解,注意因式分解要分解到每一个因式都不能再分解为止.28.(2023秋·广东韶关·八年级统考期末)若+=3,+=1a b x y ,则代数式22+2++2 015a ab b x y --的值是()A .2019B .2017C .2024D .2023【答案】D【分析】把所给代数式变形后把+=3,+=1a b x y 代入计算即可.【详解】解:∵+=3,+=1a b x y ,∴22+2++2 015a ab b x y --()()2+2 015a b x y =+-+231+2 015=-2023=.故选D .【点睛】此题考查了因式分解的应用,代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.29.(2022秋·八年级单元测试)已知1x y +=,则2212x y 1xy+2+的值是()A .12B .1C .2-D .2【答案】A【分析】首先提公因式,再利用完全平方公式分解因式,然后将1x y +=代入计算即可.【详解】解:∵1x y +=,∴2212x y 1xy+2+()2212x xy y =+2+()212x y =+2112=⨯12=,故选A .【点睛】本题考查了综合提公因式法和公式法分解因式,代数式的求值,熟悉相关运算法则是解题的关键.二、填空题30.(2023春·全国·八年级期中)在实数范围内分解因式:28a b b -=______【答案】()()2222b a a +-【分析】首先提取公因式b ,再利用平方差公式分解即可求得答案.【详解】解:原式()28b a =-()()2222b a a =+-.故答案为:()()2222b a a +-.【点睛】本题考查了实数范围内的因式分解,掌握因式分解的步骤是关键.31.(2023春·全国·八年级期中)Rt ABC △的面积为5,斜边长为6,两直角边长分别为a ,b ,则代数式33a b ab +的值为___________.【答案】360【分析】根据两直角边乘积的一半表示出Rt ABC △的面积,把已知面积代入求出ab 的值,利用勾股定理得到2226a b +=,将代数式33a b ab +变形,把22a b +与ab 的值代入计算即可求出值.【详解】解:∵Rt ABC △的面积为5,∴152ab =,解得10ab =,根据勾股定理得:222636a b +==,则代数式332210363()60a b ab ab a b +=+=⨯=.故答案为:360.【点睛】此题考查了勾股定理,以及三角形面积求法,熟练掌握勾股定理是解本题的关键.32.(2023春·河北保定·八年级统考阶段练习)已知()222x =+,642y =-.(1)x 的值为______;22x y -的值为______;(2)若22160x nxy y ++=,则n 的值为______.【答案】642+##426+9626【分析】(1)利用完全平方公式求x 的值;利用平方差公式法因式分解求解即可;(2)利用完全平方公式和提公因式法因式分解,将等式分组因式分解成含有x y +、xy 的等式,将x y +、xy 的值代入等式即可求出n 的值.【详解】(1)解:()222x =+()222222+2=+⨯⨯=2+42+4=6+42;()()22=-+-x y x y x y ()()642642642642=++-+-+1282962=⨯=;故答案为:642+;962;(2)22160x nxy y ++= ,2222160x xy y xy nxy ∴++-+=,()()22160x y n xy ++-=,64264212x y +=++-= ,()()642642xy ∴=+-()22642=-3632=-4=;()()22160x y n xy ∴++-=,()21224160n +-⋅=,()2416014416n -⋅=-=,21644n ∴-=÷=,解得6n =,故答案为:6.【点睛】本题考查二次根式的运算、完全平方公式与平方差公式,由于直接代入计算复杂容易出错,因此可以考虑整体代入是解题的关键.33.(2022秋·山东济宁·八年级统考期末)若3x y +=,5xy =,则22x y xy +的值为______.【答案】15【分析】先提取公因式分解因式,在把3x y +=,5xy =,代入原式计算即可.【详解】解:22x y xy + ()xy x y =+,把3x y +=,5xy =,代入,原式5315=⨯=,故答案为:15.【点睛】本题主要考查了因式分解的应用,掌握取公因式分解因式的方法是解题关键.34.(2023秋·山东烟台·八年级统考期末)已知7,2ab a b =+=,则多项式222008a b ab ++的值为_______.【答案】2022【分析】将多项式中含有字母的式子因式分解,然后整体代入可得结果.【详解】解:()2220082008a ab a b b ab =++++,∵7,2ab a b =+=,∴原式7220081420082022=⨯+=+=.故答案为:2022.【点睛】本题主要考查了因式分解的应用,解题的关键是利用整体代入思想解决问题.35.(2023秋·重庆万州·八年级统考期末)若2463,5,7555m x n x k x =+=+=-,则代数式222222m n k mn mk nk +++--的值为___________.【答案】225【分析】根据完全平方公式因式分解进而即可求解.【详解】解:∵2463,5,7555m x n x k x =+=+=-∴24635715555m n k x x x +-=+++-+=∴222222m n k mn mk nk +++--()2m n k =+-215225==,故答案为:225.【点睛】本题考查了因式分解的应用,掌握()2222222a b c a b c ab ac bc ++=+++++是解题的关键.三、解答题36.(2023春·广东深圳·八年级期中)分解因式:(1)321025a a a ++;(2)()()224a b a b --+.【答案】(1)()25a a +(2)()()33a b a b --【分析】(1)先提公因式,再用完全平方公式进行因式分解即可;(2)利用平方差法进行因式分解即可.【详解】(1)解:原式()21025a a a =++()25a a =+;(2)解:原式()()()()22a b a b a b a b ⎡⎤⎡⎤=-++--+⎣⎦⎣⎦()()2222a b a b a b a b =-++---()()33a b a b =--.【点睛】本题考查因式分解.熟练掌握提公因式和公式法分解因式是解题的关键.37.(2023秋·山东滨州·八年级统考期末)因式分解:(1)()()2222221x x x x -+-+(2)()()22x m n y n m -+-;【答案】(1)4(1)x -(2)()()()m n x y x y -+-【分析】(1)把22x x -看作整体,先利用完全平方公式分解,再利用平方差公式即可;(2)先提取公因式()m n -,再利用平方差公式分解即可.【详解】(1)()()2222221x x x x -+-+()2221x x =-+22(1)x ⎡⎤=-⎣⎦()41x =-(2)()()22x m n y n m -+-()()22m n x y =--()()()m n x y x y =-+-【点睛】此题考查了因式分解,熟练掌握完全平方公式和平方差公式是解题的关键.38.(2023春·全国·八年级专题练习)(1)把一个多项式写成两数和(或差)的平方的形式叫做配方法.阅读下列有配方法分解因式的过程:222210925559a a a a ++=+⨯+-+()2254a =+-()()5454a a =+++-()()91a a =++仿照上面方法,将下式因式分解2627x x --;(2)读下列因式分解的过程,再回答所提出的问题:()()2111x x x x x +++++()()111x x x x =++++⎡⎤⎣⎦()()211x x =++()31x =+①上述分解因式的方法是,共应用了次.②若分解()()()220041111x x x x x x x ++++++⋯++,则需应用上述方法次,结果是.③分解因式:()()()21111nx x x x x x x ++++++⋯++(n 为正整数).【答案】(1)()()39x x +-;(2)①提取公因式,3;②2005,()20051x +;③()11n x ++【分析】(1)仿照材料中的方法,利用配方法、平方差公式进行因式分解;(2)观察可知,材料中采用了提取公因式法分解因式,()()()21111nx x x x x x x ++++++⋯++经过()1n +次提取公因式,可得()11n x ++.【详解】解:(1)2222627233327x x x x --=-⨯+--()2236x =--()()3636x x =-+--()()39x x =+-;(2)①上述分解因式的方法是提取公因式,共应用了3次;故答案为:提取公因式,3;②若分解()()()220041111x x x x x x x ++++++⋯++,则需应用上述方法2005次,结果是()20051x +,故答案为:2005,()20051x +;③由题意知:()()()21111nx x x x x x x ++++++⋯++()()()11111n x x x x x x -⎡⎤=+++++⋯++⎣⎦()()()221111n x x x x x x -⎡⎤=+++++⋯++⎣⎦()()11n x x =++()11n x +=+.【点睛】本题主要考查分解因式,解题的关键是看懂材料,能够仿照材料中的方法求解.39.(2023秋·四川眉山·八年级统考期末)已知对于任意实数x 代数式2x 的最小值是0,代数式2(3)x -,当3x =时的最小值是0.(1)求代数式21236x x ++的值是最小值时x 的值.(2)判断代数式2123x x -+-的值是有最大值,还是最小值,并求出代数式2123x x -+-的最大值或者最小值【答案】(1)6x =-(2)有最大值,最大值为7136-【分析】(1)根据完全平方公式因式分解,得出()26x +,即可求解;(2)根据完全平方公式因式分解,进而得出2171636x ⎛⎫--- ⎪⎝⎭,根据2106x ⎛⎫--≤ ⎪⎝⎭,即可求解.【详解】(1)解:∵21236x x ++()26x =+∴6x =-时,最小值为0;(2)解:∵2123x x -+-2112636x ⎛⎫=--+- ⎪⎝⎭2171636x ⎛⎫=--- ⎪⎝⎭∵2106x ⎛⎫--≤ ⎪⎝⎭∴2123x x -+-7136≤-,有最大值,最大值为7136-【点睛】本题考查了完全平方公式的应用,根据题意凑出平方项是解题的关键.40.(2023秋·陕西西安·八年级统考期末)请阅读下列材料:我们可以通过以下方法,求代数式223x x +-的最小值.22222232113(1)4x x x x x +-=++--=+-,∵2(1)0x +≥,∴当=1x -时,223x x +-有最小值4-.请根据上述方法,解答下列问题:(1)22222610233310()x x x x x a b ++=+⨯+-+=++,则=a ________,b =___________;(2)求证:无论x 取何值,代数式2235x x ++的值都是正数;(3)若代数式227x kx -+的最小值为3,求k 的值.【答案】(1)3,1(2)见解析(3)2k =或2-.【分析】(1)将2610x x ++配方,然后与22610()x x x a b ++=++比较,可得a 与b 的值,则问题得解;(2)先利用完全平方公式配方,再根据偶次方非负数的性质列式求解;(3)二次项系数为1的二次三项式配方时,常数项为一次项系数一半的平方,故先将代数式配方,然后根据代数式227x kx -+的最小值为3,可得关于k 的方程,求解即可.【详解】(1)2610x x ++222233310x x =+⨯+-+=2(3)1x ++∴22(3)1=()x a bx ++++∴3,1a b ==故答案为:3,1(2)证明:2235x x ++22223(3)(3)5x x =+⨯+-+2(3)2x =++,∵2(3)0x +≥∴22350x x ++>∴无论x 取何值,代数式2235x x ++的值都是正数;(3)2222222727()7x kx x kx k k x k k -+=-+-+=--+,∵2()0x k -≥,∴227x kx -+的最小值为27k -+,又∵代数式227x kx -+的最小值为3,∴273k -+=,解得2k =或2-.。

2023-2024学年秋季8年级上册数学人教版课时练《14.2.1 平方差公式》01(含答案)

2023-2024学年秋季8年级上册数学人教版课时练《14.2.1 平方差公式》01(含答案)

8年级上册数学人教版《14.2.1 平方差公式》课时练一、选择题(共10小题,满分27分)1.(3分)若a+b=3,则a2﹣b2+6b的值为()A.3B.6C.9D.122.(3分)3(22+1)(24+1)(28+1)…(232+1)+1的个位数是()A.4B.5C.6D.83.下列各式中,能用完全平方公式进行因式分解的是()A.x2﹣2x﹣2B.x2+1C.x2﹣4x+4D.x2+4x+14.(3分)一个长方形的长为2x﹣y,宽为2x+y,则这个长方形的面积是()A.4x2﹣y2B.4x2+y2C.2x2﹣y2D.2x2+y25.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),可以验证的一个等式是()A.a2﹣b2=(a+b)(a﹣b)B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣2ab+b2D.a(a+b)=a2+ab6.(3分)下列各数中,可以写成两个连续奇数的平方差的()A.520B.502C.250D.2057.(3分)(1﹣x)(1+x),(1﹣x)(1+x+x2),(1﹣x)(1+x+x2+x3)…通过计算,猜想:(1﹣x)(1+x+x2+…+x n)的结果是()A.1+x n B.1﹣x n C.1+x n+1D.1﹣x n+18.(3分)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32.即8,16均为“和谐数”),在不超过200的正整数中()A.2700B.2701C.2601D.26009.(3分)已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.1210.(3分)一个正方形的边长增加2cm,它的面积就增加了24cm2,这个正方形原来的边长是()A.5cm B.6cm C.8cm D.10cm二、填空题(共11小题,满分33分,每小题3分)11.(3分)利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=.12.(3分)已知x﹣y=2,x+y=﹣4,则x2﹣y2=.13.(3分)(3+1)×(32+1)×(34+1)×……×(332+1)+的值为.14.(3分)计算:(1﹣)×(1﹣)×…×(1﹣)=.15.(3分)若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为.16.(3分)已知x2﹣y2=18,x比y大3,则x+y=.17.(3分)计算:(2+3x)(﹣2+3x)=.18.(3分)求(2+1)(22+1)(24+1)…(232+1)﹣264的值是.19.(3分)如果(﹣x﹣y)•P=x2﹣y2,那么P等于.20.(3分)设某数为x,用含x的代数式表示“比某数的2倍多3的数”:.21.(3分)计算:2019×2021﹣20202=.三、解答题(共3小题)22.计算:(x﹣y﹣3)(x+y﹣3).23.因式分解(1)16x2﹣1;(2)(x2+9)2﹣36x2.24.计算:(a﹣b)(a+b).四、解答题(共1小题)25.如图①所示,边长为a的正方形中有一个边长为b(b<a)的小正方形(1)设图①中阴影部分的面积为S1,图②中阴影部分的面积为S2,请直接用含a,b的式子表示S1,S2;(2)请写出上述过程所揭示的公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)+1.参考答案一、选择题(共10小题,满分27分)1.C 2.C 3.C 4.A 5.A 6.A 7.D 8.D 9.C 10.A 二.填空题(共11小题,满分33分,每小题3分)11.解:(2+1)(62+1)(64+1)(38+1)+6,=(2﹣1)(5+1)(28+1)(23+1)(26+1)+1,=316.12.解:∵x﹣y=2,x+y=﹣4,∴x5﹣y2=(x﹣y)(x+y)=2×(﹣5)=﹣8.故答案为:﹣8.13.解:原式=(6﹣1)×(3+8)×(32+7)×(34+2)×……×(332+1)+=(32﹣2)×(32+4)×(34+7)×……×(332+1)+=(34﹣2)×(34+3)×……×(332+1)+=(38﹣3)×……×(332+1)+=(364﹣1)+=﹣+=.14.解:原式=(1﹣)(1+)(6+)(1+)(6+)=××××××…××=×=,故答案为:.15.解:因为a2﹣b2=﹣,所以(a+b)(a﹣b)=﹣,因为a+b=﹣,所以a﹣b=﹣÷(﹣.故答案为:.16.解:由题意可得:x﹣y=3,x2﹣y2=(x+y)(x﹣y)=18,把x﹣y=3代入得:3(x+y)=18,∴x+y=7,故答案为:6.17.解:原式=9x2﹣6.故答案为:9x2﹣8.18.解:原式=(2﹣1)(2+1)(23+1)(24+1)...(232+2)﹣264=(25﹣1)(22+1)(23+1)...(232+2)﹣264=(27﹣1)(24+1)...(232+8)﹣264=(23﹣1)...(232+3)﹣264=264﹣3﹣264=﹣1.故答案为:﹣3.19.解:∵x2﹣y2=(x+y)(x﹣y)=(﹣x﹣y)(﹣x+y).∴P=﹣x+y.故答案为:﹣x+y.20.解:根据题意得,“比某数的2倍多3的数“为7x+3.故答案为:2x+4.21.解:2019×2021﹣20202=(2000﹣1)×(2000+5)﹣20202=20202﹣2﹣20202=﹣1.故答案为:﹣8.三、解答题(共3小题)22.解:(x﹣y﹣3)(x+y﹣3)=(x﹣8)2﹣y2=x4﹣6x+9﹣y5.23.解:(1)原式=(4x+1)(7x﹣1);(2)原式=(x2+8+6x)(x2+6﹣6x)=(x+3)4(x﹣3)2.24.解:原式=a2﹣b2.四、解答题(共1小题)25.解:(1)图①的阴影部分的面积为边长为a的正方形与边长为b的正方形的面积差,即S1=a2﹣b4,图②是长为(a+b),宽为(a﹣b)的长方形2=(a+b)(a﹣b),所以S1=a3﹣b2,S2=(a+b)(a﹣b);(2)a4﹣b2=(a+b)(a﹣b);(3)原式=(2﹣7)(2+1)(32+1)(84+1)(78+1)(816+1)+1=(52﹣1)(72+1)(54+1)(78+1)(816+1)+1=(84﹣1)(24+1)(78+1)(716+1)+1=(88﹣1)(58+1)(616+1)+1=(516﹣1)(216+6)+1=232﹣5+1=232.。

北师大版八年级下册数学《4.3 第1课时 平方差公式》教案

北师大版八年级下册数学《4.3 第1课时 平方差公式》教案

北师大版八年级下册数学《4.3 第1课时平方差公式》教案一. 教材分析北师大版八年级下册数学《4.3 第1课时平方差公式》这一节主要让学生掌握平方差公式的推导和应用。

平方差公式是初中数学中的一个重要公式,也是后续学习多项式乘法、因式分解等知识的基础。

本节课的内容是在学生已经掌握了完全平方公式的基础上进行学习的,通过平方差公式的学习,让学生能够更好地理解和运用完全平方公式。

二. 学情分析学生在学习本节课之前,已经掌握了完全平方公式,对公式有一定的理解。

但在实际运用中,可能会对公式的灵活运用有所欠缺。

因此,在教学过程中,需要引导学生通过实际问题,运用平方差公式进行解答,提高学生对公式的理解和运用能力。

三. 教学目标1.知识与技能:让学生掌握平方差公式的推导和应用。

2.过程与方法:通过实际问题,引导学生运用平方差公式进行解答,提高学生的解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:平方差公式的推导和应用。

2.难点:平方差公式的灵活运用。

五. 教学方法采用问题驱动法,引导学生通过实际问题,自主探究平方差公式的推导和应用。

同时,运用小组合作学习法,让学生在团队合作中,提高对平方差公式的理解和运用能力。

六. 教学准备1.教学PPT2.教学黑板七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生运用已知的完全平方公式进行解答,从而引出平方差公式。

2.呈现(10分钟)教师通过PPT展示平方差公式的推导过程,让学生直观地理解平方差公式的来源。

3.操练(15分钟)学生分组进行练习,运用平方差公式进行解答。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)教师通过PPT呈现一些典型的练习题,让学生独立解答,巩固对平方差公式的理解和运用。

5.拓展(10分钟)教师引导学生运用平方差公式解决一些实际问题,提高学生解决问题的能力。

6.小结(5分钟)教师引导学生总结本节课所学的内容,巩固对平方差公式的理解和运用。

平方差公式练习题精选(答案)

平方差公式练习题精选(答案)

平方差公式1、利用平方差公式计算: (1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算 (1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)5、利用平方差公式计算(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2(2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)22利用完全平方公式计算:(1)(21x-32y 2)2(2)(1.2m-3n)2(3)(-21a+5b)2(4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。

4.3 第1课时 平方差公式

4.3 第1课时 平方差公式

4.3 公式法第1课时 平方差公式学习目标:1.了解运用公式法分解因式的意义;2.会用平方差公式进行因式分解;本节重难点:用平方差公式进行因式分解中考考点:正向、逆向运用平方差公式。

预习作业:请同学们预习作业教材P54~P55的内容:1. 平方差公式字母表示: .2. 结构特征:项数、次数、系数、符号活动内容:填空:(1)(x+3)(x –3) = ;(2)(4x+y )(4x –y )= ; (3)(1+2x )(1–2x )= ;(4)(3m +2n )(3m –2n )= .根据上面式子填空:(1)9m 2–4n 2= ;(2)16x 2–y 2= ;(3)x 2–9= ;(4)1–4x 2= .结论:a 2–b 2=(a+b )(a –b )平方差公式特点:系数能平方,指数要成双,减号在中央例1: 把下列各式因式分解:(1)25–16x 2 (2)9a 2–241b变式训练:(1)24420.1649a b m n - (2)2219a b -+例2、将下列各式因式分解:(1)9(x –y )2–(x +y )2 (2)2x 3–8x变式训练:(1)22()()x m n y n m -+- (2)5a a -注意:1、平方差公式运用的条件:(1)二项式(2)两项的符号相反(3)每项都能化成平方的形式2、公式中的a 和b 可以是单项式,也可以是多项式3、各项都有公因式,一般先提公因式。

例3:已知n 是整数,证明:2(21)1n +-能被8整除。

拓展训练:1、计算:2、分解因式:22122x y-3、已知a,b,c 为△ABC 的三边,且满足222244a c b c a b -=-,试判断△ABC 的形状。

)1)......(1)(1)(1(22221001413121----。

北师大版八年级下册数学《4.3 第1课时 平方差公式》教学设计

北师大版八年级下册数学《4.3 第1课时 平方差公式》教学设计

北师大版八年级下册数学《4.3 第1课时平方差公式》教学设计一. 教材分析北师大版八年级下册数学《4.3 第1课时平方差公式》教材,主要介绍了平方差公式的概念、性质及应用。

平方差公式是初中数学中的一个重要公式,它不仅可以帮助学生简化二次方程的求解过程,还能应用于解决实际问题。

本节课的内容是学生学习二次方程及函数的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、完全平方公式等基础知识,具备了一定的数学运算能力。

但部分学生对于公式的理解和运用还不够熟练,对于一些概念性的内容还容易混淆。

因此,在教学过程中,需要关注学生的学习差异,有针对性地进行教学,提高学生的数学素养。

三. 教学目标1.知识与技能目标:让学生掌握平方差公式的概念、性质及运用,能够运用平方差公式解决实际问题。

2.过程与方法目标:通过自主学习、合作交流等环节,培养学生独立思考、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:平方差公式的概念、性质及运用。

2.难点:平方差公式的推导过程及运用。

五. 教学方法1.自主学习法:引导学生独立思考,自主探究,培养学生解决问题的能力。

2.合作交流法:学生进行小组讨论,分享学习心得,提高学生的合作能力。

3.案例分析法:通过典型例题,讲解平方差公式的应用,使学生更好地理解和掌握知识。

六. 教学准备1.教学PPT:制作精美的教学PPT,展示平方差公式的相关内容。

2.例题及练习题:准备一些典型例题和练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,引导学生思考如何运用数学知识解决这些问题。

从而引出本节课的主题——平方差公式。

2.呈现(10分钟)通过PPT呈现平方差公式的定义、性质及推导过程。

北师大版数学八年级下册4.3《平方差公式》(第1课时)教学设计

北师大版数学八年级下册4.3《平方差公式》(第1课时)教学设计

北师大版数学八年级下册4.3《平方差公式》(第1课时)教学设计一. 教材分析北师大版数学八年级下册4.3《平方差公式》(第1课时)是学生在学习了完全平方公式的基础上进行学习的,本节课的主要内容是平方差公式的探究和运用。

平方差公式是代数中的一个重要公式,它不仅在数学学习中有着广泛的应用,而且在日常生活和工作中也有着重要的作用。

二. 学情分析学生在学习本节课之前,已经学习了完全平方公式,对公式有一定的理解,同时学生的思维能力和探究能力也有了一定的发展。

但学生对平方差公式的理解和运用还需要进一步的提高。

因此,在教学过程中,需要教师引导学生通过探究、实践,加深对平方差公式的理解,提高运用公式解决问题的能力。

三. 教学目标1.理解平方差公式的含义,掌握公式的运用。

2.培养学生的思维能力和探究能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.重点:平方差公式的理解和运用。

2.难点:平方差公式的推导和灵活运用。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过自主学习、合作探究,提高对平方差公式的理解和运用。

六. 教学准备1.准备相关的学习材料和案例。

2.准备教学课件和板书设计。

3.准备相关的问题和练习题。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾完全平方公式,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示平方差公式的推导过程,让学生理解和掌握公式的推导方法。

3.操练(10分钟)教师通过出示一些例子,让学生运用平方差公式进行计算,巩固对公式的理解和运用。

4.巩固(10分钟)教师通过一些练习题,让学生进一步巩固对平方差公式的理解和运用。

5.拓展(5分钟)教师通过一些生活中的实际问题,让学生运用平方差公式进行解决,提高学生运用数学知识解决实际问题的能力。

6.小结(5分钟)教师引导学生对所学内容进行小结,总结平方差公式的理解和运用。

7.家庭作业(5分钟)教师布置一些练习题,让学生回家进行练习,巩固所学知识。

北师大版八年级下册数学课件公式法第1课时平方差公式

北师大版八年级下册数学课件公式法第1课时平方差公式

课堂导练
*12.若 xn-1=(x+1)(x-1)(x2+1)(x4+1),则 n 等于( D )
A.16
B.4 C.6 D.8
【点拨】∵(x+1)(x-1)(x2+1)(x4+1)=(x2-1)(x2+1)(x4+1)= (x4-1)(x4+1)=x8-1=xn-1,∴n=8.
课堂导练
13.(中考·凉山州)多项式 3x2y-6y 在实数范围内分解因式正确
精彩一题 19.分解因式:x2-4y2-2x+4y.细心观察这个式子就会发现,
前两项满足平方差公式的应用条件,后两项可提取公因式, 前、后两部分分别分解因式后会产生公因式,然后提取公因 式就可以完成整个式子的分解因式.具体过程:x2-4y2-2x +4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种 分解因式的方法叫做分组分解法.请利用这种方法解决下列 问题:
解:原式=25×(1012-992) =25×(101+99)×(101-99) =25×200×2=10 000;
课后训练 (2)251202-0020482;
解:原式=(252+248)10×00(0 252-248)=510000×004=5;
1 (3)5011
2-4911102.
原式=50111+491110×50111-491110=100×121=21010.
课堂导练
3.下列多项式中,不能用平方差公式分解的是( A ) A.-m4-n4 B.-16x2+y2 C.1.96-x2 D.a2-14b2
课堂导练
4.(2019·贺州)把多项式 4a2-1 分解因式,结果正确的是( B ) A.(4a+1)(4a-1) B.(2a+1)(2a-1) C.(2a-1)2 D.(2a+1)2

人教版八年级数学14.3 《因式分解》专题提升练习(平方差公式)

人教版八年级数学14.3 《因式分解》专题提升练习(平方差公式)

《因式分解》复习微专题靶向专题提升练习(平方差公式)易错点警示:平方差公式的特点(1)等号的左边是一个二项式,两项都是平方的形式且符号相反.(2)等号的右边是两个二项式的积,其中一个二项式是这两个数的和,另一个二项式是这两个数的差.靶向专题练习一.选择题。

1.下列各多项式中,能用平方差公式分解因式的是 ( )A.-x2+16B.x2+9C.-x2-4D.x2-2y2. 下列各式中不能用平方差公式分解的是( )A.-a2+b2B.49x2y2-m2C.-x2-y2D.16m4-25n23.把多项式4a2-1分解因式,结果正确的是( )A.(4a+1)(4a-1)B.(2a+1)(2a-1)C.(2a-1)2D.(2a+1)24.将a3b-ab进行因式分解,正确的是( )A.a(a2b-b)B.ab(a-1)2C.ab(a+1)(a-1)D.ab(a2-1)5. 把多项式4m2-25分解因式正确的是( )A.(4m+5)(4m-5)B.(2m+5)(2m-5)C.(m-5)(m+5)D.m(m-5)(m+5)6.某同学粗心大意,分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1B.16,2C.24,3D.64,87. 若n 为任意整数,(n+11)2-n 2的值总可以被k 整除,则k 等( )A.11B.22C.11或22D.11的倍数8.若2m+n=25,m-2n=2,则(m+3n)2-(3m-n)2的值为 ( )A.200B.-200C.100D.-1009.一个多项式分解因式的结果是(b 3+2)(2-b 3),那么这个多项式是( )A.b 6-4B.4-b 6C.b 6+4D.4-b 910.113-11不能被下列哪个数整除? ( )A.13B.12C.11D.10二.填空题。

1.因式分解:x 2-1= .2.因式分解:2x 2-2y 2= .3.分解因式3x 2-27y 2= .4.因式分解3a 4-3b 4= .5.已知|x-y+2|+√=0,则x 2-y 2的值为 .6.已知a,b,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状是 .二.解答题。

八年级-人教版-数学-上册-第1课时-平方差公式

八年级-人教版-数学-上册-第1课时-平方差公式
解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2.
当x=1,y=2时,原式=5×12-5×22=-15.
观察下列动图,进一步巩固对平方差公式的理解和记忆.
观察下列动图,进一步巩固对平方差公式的理解和记忆.
平方差公式
平方差公式的定义 平方差公式的几何意义
平方差公式的应用
观察下列动图,验证平方差公式.
观察下列动图,验证平方差公式.
计算下列各组算式,并观察它们的共同特点.
7×9=__6_3__; 8×8=__6_4__;
11×13=_1_4_3__; 12×12=_1_4_4__;
79×81=_6_3_9_9_; 80×80=_6_4_0_0_.
7×9 =(8-1)(8+1)=82-12=64-1=63; 11×13 =(12-1)(12+1) =122-12=144-1=143; 79×81=(80-1)(80+1) =802-12=6 400-1=6 399.
你能对发现的规律进行推导吗?
(a b)(a b)
=a2 ab ab b2 =a2 b2.
所以,对于具有与此式相同形式的多项式相乘,我们可以 直接写出运算结果.
(a b)(a b) a2 b2. 两个数的和与这两个数的差的积,等于这两个数的平方差.
这个公式叫做(乘法的)平方差公式.
7.依次计算不漏项,符号变化记心间 将多项式除以单项式转化为单项式除以单项式时,应注意 _逐__项__计算,不要__漏__项__;并且要注意_符__号__的__变__化___,最后的结 果按某一字母_升__幂__或__降__幂___的顺序排列.
之前我们学习了整式的乘法,知道了多项式与多项式相乘的 法则.根据所学知识,计算下列多项式的积,你能发现什么规律?

平方差公式同步检测练习题(含答案)初中数学

平方差公式同步检测练习题(含答案)初中数学

平方差公式同步检测练习题1.下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x 2-6C.(x+y)2=x 2+y 2D.6(x-2)+x(2-x)=(x-2)(x-6)2.下列运算正确的是( )A.x 2+x 2=2x 4B.a 2·a 3= a 5C.(-2x 2)4=16x 6D.(x+3y)(x-3y)=x 2-3y 23.下列计算正确的是( )A.(-4x)·(2x 2+3x-1)=-8x 3-12x 2-4xB.(x+y)(x 2+y 2)=x 3+y 3C.(-4a-1)(4a-1)=1-16a 2D.(x-2y)2=x 2-2xy+4y 24.(x+2)(x-2)(x 2+4)的计算结果是( )A.x 4+16B.-x 4-16C.x 4-16D.16-x 45.19922-1991×1993的计算结果是( )A.1B.-1C.2D.-26.对于任意的整数n ,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.( )(5a +1)=1-25a 2,(2x-3) =4x 2-9,(-2a 2-5b)( )=4a 4-25b 28.99×101=( )( )= .9.(x-y+z)(-x+y+z)=[z+( )][ ]=z 2-( )2.10.多项式x 2+kx+25是另一个多项式的平方,则k= .11.(a +b)2=(a -b)2+ ,a 2+b 2=[(a +b)2+(a -b)2]( ),a 2+b 2=(a +b)2+ ,a 2+b 2=(a -b)2+ .12.计算.(1)(a +b)2-(a -b)2; (2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;(4)1.23452+0.76552+2.469×0.7655; (5)(x+2y)(x-y)-(x+y)2.13.已知m 2+n 2-6m+10n+34=0,求m+n 的值14.已知a +a 1=4,求a 2+21a 和a 4+41a的值.15.已知(t+58)2=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知a =1990x+1989,b=1990x+1990,c=1990x+1991,求a 2+b 2+c 2-a b-a c-bc 的值.18.(2003·郑州)如果(2a +2b+1)(2a +2b-1)=63,求a +b 的值.19.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值.20.化简(x+y)+(2x+21⨯y )+(3x+32⨯y )+…+(9x+98⨯y ),并求当x=2,y=9时的值.21.若f(x)=2x-1(如f(-2)=2×(-2)-1,f(3)=2×3-1),求2003)2003()2()1(f f f +++ 的值.22.观察下面各式:12+(1×2)2+22=(1×2+1)222+(2×2)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……(1)写出第2005个式子;(2)写出第n 个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a 2x+3 -2a 2+5b8.100-1 100+1 99999.x-y z-(x-y) x-y 10.±10 11.4a b 21 - 2a b 2a b 12.(1)原式=4a b ;(2)原式=-30xy+15y ;(3)原式=-8x 2+99y 2;(4)提示:原式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y2.13.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m 2+n 2-6m+10n+34=0,∴(m 2-6m+9)+(n 2+10n+25)=0,即(m-3)2+(n+5)2=0,由平方的非负性可知,⎩⎨⎧=+=-,05,03n m ∴⎩⎨⎧-==.5,3n m ∴m+n=3+(-5)=-2. 14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.∵a +a 1=4,∴(a +a1)2=42. ∴a 2+2a ·a 1+21a =16,即a 2+21a+2=16. ∴a 2+21a =14.同理a 4+41a=194. 15.提示:应用整体的数学思想方法,把(t 2+116t)看作一个整体.∵(t+58)2=654481,∴t 2+116t+582=654481.∴t 2+116t=654481-582.∴(t+48)(t+68)=(t 2+116t)+48×68=654481-582+48×68=654481-582+(58-10)(58+10)=654481-582+582-102=654481-100=654381.16.x <23 17.解:∵a =1990x+1989,b=1990x+1990,c=1990x+1991,∴a -b=-1,b-c=-1,c-a =2.∴a 2+b 2+c 2-a b-a c-be =21(2a 2+2b 2+2c 2-2a b-2bc-2a c) =21[(a 2-2a b+b 2)+(b 2-2bc+c 2)+(c 2-2a c+a 2)] =21[(a -b 2)+(b-c)2+(c-a)2]=21[(-1)2+(-1)2+22] =21(1+1+4) =3.18.解:∵(2a +2b+1)(2a +2b-1)=63,∴[(2a +2b)+1][(2a +2b)-1]=63,∴(2a +2b)2-1=63,∴(2a +2b)2=64,∴2a +2b=8或2a +2b=-8,∴a +b=4或a +b=-4,∴a +b 的值为4或一4.19.a 2+b 2=70,a b=-5. 20.提示:去括号后合并同类项,然后应用S n =2)1(+n n 与111)1(1+-=+n n n n 解决问题. 原式=x+y+2x+21⨯y +3x+32⨯y +…+9x+98⨯y =(x+2x+3x+…+9x)+(y+21⨯y +32⨯y +…+98⨯y ) =(1+2+3+…+9)x+(1+21⨯y +32⨯y +…+98⨯y )y =2)19(9+·x+(1+1-21+21-31+…+71-81+81-91)y =45x+(1-91)y =45x+917y. 当x=2,y=9时,原式=45×2+917×9=107. 21.∵f(x)=2x-1,∴f(1)+f(2)+f(3)+…+f(2003)=(2×1-1)+(2×2-1)+(2×3-1)+…+(2×2003-1)=(2×1+2×2+2×3+…+2×2003)-1×2003=2(1+2+3+…+2003)-2003=2×2)12003(2003+⨯-2003 =20032+2003-2003=20032∴原式=200320032=2003. 22.解:(1)当n=1时,12+(1×2)2+22=(1×2+1)2;当n=2时,22+(2×3)2+32=(2×3+1)2;当n=3时,32+(3×4)2+42=(3×4+1)2;……第2005个式子即当n=2005时,有20052+(2005×2006)2+20062=(2005×2006+1)2.(2)第n个式子为n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.证明如下:∵n2+[n(n+1)]2+(n+1)2=n2+n2(n+1)2+(n2+2n+1)=n2+n2(n2+2n+1)+(n2+2n+1)=n2+n4+2n3+n2+n2+2n+1=n4+2n3+3n2+2n+1,且[n(n+1)+1]2=[n(n+1)2]+2[n(n+1)]·1+12=n2(n+1)2+2n(n+1)+1=n2(n2+2n+1)+2n2+2n+1=n4+2n3+n2+2n2+2n+1=n4+2n3+3n2+2n+1,∴n2+[n(n+1)]2+(n+1)2=[n(n+1)+1]2.。

4.3第1课时平方差公式(教案)

4.3第1课时平方差公式(教案)
还有一个值得注意的问题是,在总结回顾环节,虽然大多数学生能够掌握今天的学习内容,但也有少数学生表示仍有疑问。我意识到,可能需要更加个性化的辅导来满足这些学生的学习需求。我计划在课后设置一个答疑时间,鼓励他们提出问题,以便我能够针对性地帮助他们。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平方差公式的概念、推导、重要性和应用。通过实践活动和小组讨论,我们加深了对平方差公式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用组讨论和实验操作环节,学生们非常积极参与,能够将平方差公式应用到解决实际问题中。这让我感到欣慰,因为他们能够将理论知识与实际情境联系起来。然而,我也注意到有些小组在展示成果时表达不够清晰,可能需要我在未来教学中加强对学生表达能力的培养。
此外,我在教学中也尝试了引导学生通过自己的思考来发现问题、解决问题。这种开放式的讨论方式让学生们能够更主动地学习,但我发现部分学生在面对开放性问题时显得有些无所适从。这提示我,在未来的教学中,我应该更多地提供思维框架和策略,帮助他们逐步培养解决问题的能力。
-学生在运用平方差公式时,可能会出现符号混淆、计算错误等问题。
举例解释:
-为了帮助学生理解“两数之和与两数之差”,可以通过图形化表示,如边长为a和b的两个正方形拼接成一个长方形,通过计算长方形的面积差异来直观展示平方差公式。
-在应用方面,可以设计一些与生活相关的题目,如计算田地的面积变化,让学生通过解决实际问题来加深对平方差公式的理解。
本节课旨在让学生掌握平方差公式,并能够熟练运用公式进行相关计算,提高学生的运算能力和解决问题的能力。
二、核心素养目标

八年级-人教版-数学-上册-[能力提升]第1课时-平方差公式

八年级-人教版-数学-上册-[能力提升]第1课时-平方差公式

第1课时平方差公式1.下列计算中,正确的是().A.(x-2)(2+x)=x2-2B.(x+2)(3x-2)=3x2-4 C.(ab-c)(ab+c)=a2b2-c2D.(-x-y)(x+y)=x2-y2 2.在下列多项式的乘法中,可以用平方差公式计算的是().A.(x+1)(1+x) B.11 22a b b a ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭C.(-a+b)(a-b) D.(x2-y)(x+y2)3.如图所示,小明家有一块L形的菜地,要把L形的菜地按图中所示的样子分成面积相等的两个梯形,种上不同的蔬菜,已知这两个梯形的上底都是a m,下底都是b m,高是(b-a)m.请你给小明家算一算,小明家的菜地的面积是多大?当a=10,b=30时,面积是多少平方米?4.计算:(1)a(a-3)-(-a+7)(-a-7);(2)1122a b a b⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭-(3a-2b)(2b+3a);(3)2 0222-2 021×2 023.参考答案1.【答案】C【解析】A项错误,(x-2)(2+x)=(x-2)(x+2)=x2-4;B项错误,(x+2)(3x-2)=3x2-2x+6x-4=3x2+4x-4;C项正确,(ab-c)(ab+c)=(ab)2-c2=a2b2-c2;D项错误,(-x-y)·(x+y)=-(x+y)(x+y)=-(x2+xy+xy+y2)=-x2-2xy-y2.2.【答案】B【解析】两个二项式相乘,只有当其中一项相同、另一项互为相反数时,才能用平方差公式.3.【答案】解:1()()2a b b a+-⎡⎤⎢⎥⨯⎣⎦×2=(b+a)(b-a)=b2-a2.当a=10,b=30时,b2-a2=900-100=800.答:小明家的菜地面积为(b2-a2)m2.当a=10,b=30时,其面积为800 m2.4.【答案】解:(1)a(a-3)-(-a+7)(-a-7)=a2-3a-(a2-72)=49-3a;(2)1122a b a b⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭-(3a-2b)(2b+3a)=a2-14b2-(9a2-4b2)=-8a2+154b2;(3)2 0222-2 021×2 023=2 0222-(2 022-1)(2 022+1)=2 0222-(2 0222-12)=2 0222-2 0222+1=1.。

14.2.1平方差公式+练习题2023-2024学年人教版数学八年级上册

14.2.1平方差公式+练习题2023-2024学年人教版数学八年级上册

14.2.1平方差公式 练习题一、单选题 1.下列运算正确的是( )A .2242a a a +=B .422a a a -=C .()()23369a a a a +-=-+D .()23639a a -= 2.下列运算中,可以运用平方差公式进行计算的是( )A .(﹣2m +x )(﹣2x ﹣m )B .(m +x )(﹣m +x )C .(﹣m +x )(m ﹣x )D .(m +x )(m ﹣2x )3.若﹣1<y <0,则式子y (1﹣y )(1+y )的值是( )A .负数B .正数C .0D .不能确定4.下列各式能用平方差公式进行计算的是( )A .()()x y x y +-+B .(2)(2)x y x y -+C .(23)(23)m n m n --D .(2)(2)x y y x -+--5.如图①,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开,拼接后得到图②,根据面积相等,甲同学写出一个等式22()(),a b a b a b -=+-乙同学也写出一个等式222()2,a b a ab b -=-+则( )A .甲乙都正确B .甲乙都不正确C .甲正确,乙不正确D .甲不正确,乙正确6.设()()224343a b a b N +=-+,则N 为( )A .12abB .24abC .36abD .48ab 7.若(a ﹣b ﹣2)2+|a+b+3|=0,则a 2﹣b 2的值是( )A .﹣1B .1C .6D .﹣68.小王叔叔改建一个边长为a 米的正方形养鸡场,计划纵向扩大2米,横向缩短2米,则改建后养鸡场面积的变化情况是( )A .面积减少4m 2B .面积增加4m 2C .面积增加2m 2D .面积不变二、填空题 1.设22014A =,则20132015⨯= (用含A 的代数式表示).2.把10298⨯写成公式的形式:10298⨯= .3.若(2x +3y )(mx -ny )=9y 2-4x 2,则m +n 的值为 .4.121302930(30333⎛⎫⨯=+- ⎪⎝⎭ 22118)30900899399⎛⎫=-=-= ⎪⎝⎭5.若(a +b )2=9,(a -b )2=4,则a 2+b 2= .6.某工人师傅要制作一个底面为正方形的无盖长方体盒子,他在一块边长为a 的正方形铁皮的四个角,各剪去一个边长为b (a b >),如图所示,若 3.6a =,0.8b =,则剩余部分的面积是 .三、解答题1.利用平方差公式计算:(1)()()66a a +-;(2)()()11x x +-;(3)()()2020x y x y -+;(4)()()()2339a a a -++.2.化简:2a •3a ﹣(2a +3)(2a ﹣3).3.命题“两个连续整数的平方差必是奇数”是真命题还是假命题?若是真命题请证明,若是假命题请举反例.4.先化简,再求值:()()()211x x x x -++-,其中10x =.5.正方形的边长是cm a ,若将一边增加3cm ,另一边减小3cm ,那么改变后的面积与原正方形的面积哪个大?。

八年级数学上册《平方差公式》课文练习含答案

八年级数学上册《平方差公式》课文练习含答案

八年级数学上册《平方差公式》课文练习含答案14‘2‘1 平方差公式课前预习要点感知 [a +b][a -b]=________.即两个数的和与这两个数的差的积,等于这两个数的________.这个公式叫做________公式.预习练习1-1 在下列多项式的乘法中,可以用平方差公式进行计算的是[ ] A .[x +1][1+x] B .[12a +b][b -12a]C .[-a +b][a -b]D .[x 2-y][x +y 2]1-2 计算:[1][x +3][x -3]; [2][a +2b][a -2b].当堂训练知识点1 用面积法证明平方差公式1.将图1中阴影部分的小长方形变换到图2位置,你根据两个图形的面积关系得到的数学公式是________________________.图1 图2 2.如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.图1 图2[1]设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1,S 2;[2]请写出上述过程所揭示的乘法公式.知识点2 直接利用平方差公式计算 3.计算:[1][14a -1][14a +1];[2][2m +3n][2m -3n].4.先化简,再求值:[1+3x][1-3x]+x[9x +2]-1,其中x =12‘知识点3 利用平方差公式解决问题 5.计算:[1]1 007×993;[2]2 014×2 016-2 0152‘课后作业6.下列各式中,能用平方差公式计算的是[ ] ①[7ab -3b][7ab +3b];②73×94;③[-8+a][a -8];④[-15-x][x -15].A .①③B .②④C .③④D .①④7.对于任意正整数n ,能整除式子[m +3][m -3]-[m +2][m -2]的整数是[ ] A .2 B .3 C .4 D .58.计算[x 2+14][x +12][x -12]的结果为[ ]A .x 4+116B .x 4-116C .x 4-12x 2+116D .x 4-18x 2+1169.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是________.10.已知[a +b -3]2+[a -b +5]2=0,则a 2-b 2=________. 11.计算:[1][-12x 2+2][-12x 2-2];[2][-x -y][x -y];[3][a +2b][a -2b]-12b[a -8b];[4]2132-214×212‘12.[贵阳中考]先化简,再求值:[x +1][x -1]+x 2[1-x]+x 3,其中x =2‘13.解方程:[3x]2-[2x +1][3x -2]=3[x +2][x -2].挑战自我14.已知x ≠1,计算:[1+x][1-x]=1-x 2,[1-x][1+x +x 2]=1-x 3,[1-x][1+x +x 2+x 3]=1-x 4‘[1]观察以上各式并猜想:[1-x][1+x +x 2+…+x n]=________;[n 为正整数] [2]根据你的猜想计算:①[1-2][1+2+22+23+24+25]=________;②2+22+23+ (2)=________[n 为正整数];③[x -1][x 99+x 98+x 97+…+x 2+x +1]=________; [3]通过以上规律请你进行下面的探索: ①[a -b][a +b]=________;②[a -b][a 2+ab +b 2]=________;③[a -b][a 3+a 2b +ab 2+b 3]=________.参考答案要点感知 a 2-b 2平方差 平方差预习练习1-1 B 1-2 [1]原式=x 2-9‘ [2]原式=a 2-[2b]2=a 2-4b 2‘ 当堂训练1.[a +b]·[a -b]=a 2-b 2 2‘[1]S 1=a 2-b 2,S 2=12[2b +2a][a -b]=[a +b][a -b]. [2][a +b][a -b]=a 2-b 2‘ 3‘[1]原式=116a 2-1‘ [2]原式=[2m]2-[3n]2=4m2-9n 2‘ 4‘原式=1-9x 2+9x 2+2x -1=2x ‘当x =12时,原式=2×12=1‘5.[1]原式=[1 000+7]×[1 000-7]=1 0002-72=999 951‘ [2]原式=[2 015-1]×[2 015+1]-2 0152=2 0152-1-2 0152=-1‘ 课后作业6.D 7‘D 8‘B 9‘10 10‘-15 11‘[1]原式=[-12x 2]2-22=14x 4-4‘ [2]原式=[-y]2-x 2=y 2-x 2‘ [3]原式=a 2-[2b]2-12ab +4b 2=a 2-12ab ‘ [4]原式=2132-[213+1]×[213-1]=2132-[2132-1]=1‘ 12‘原式=x 2-1+x 2-x 3+x 3=2x 2-1‘当x =2时,原式=2×22-1=7‘ 13‘9x 2-[6x 2-4x +3x -2]=3[x 2-4],9x 2-6x 2+4x -3x +2=3x 2-12,x =-14‘ 挑战自我14.[1]1-x n +1 [2]①-63 ②2n +1-2 ③x 100-1 [3]①a 2-b 2②a 3-b 3 ③a 4-b 4 提示:[2]②原式=2[1+2+22+…+2n -1]=-2[1-2][1+2+22+…+2n -1]=-2[1-2n ]=-2+2·2n =2n +1-2‘③原式=-[1-x][1+x +x 2+…+x 97+x 98+x 99]=-[1-x 100]=x 100-1‘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3 公式法
第1课时平方差公式
一.精心选一选
1.下列多项式能用平方差公式分解的因式有()
(1)a2+b2 (2)x2-y2 (3)-m2+n2 (4)-a2b2 (5)-a6+4
A.2个
B.3个
C.4个
D.5个
2下列因式分解正确的是()
A .9a2+4b2=(9a+4b)(9a-4b) B.-s2-t2=(-s+t)(-s-t)
C.m2+(-n)2=(m+n)(m-n)
D.-9+4y2=(3+2y)(2y-3)
3.对于任整数n.多项式(4n+5)2-9都能()
A.被6整除
B.被7整除
C.被8整除 D。

被6或8整除
4.将多项式x n+3-x n+1分解因式,结果是()
A.x n(x3-x)
B.x n(x3-1)
C.x n+1(x2-1)
D. X n+1(x+1)(x-1)
5.在边长为a的正方形中挖去一个边为b的小正方形(a>b)( 如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()
A.(a+b)2=a2+2ab+b2
B.(a-b)= a-2ab+b
C. a2+b2=(a+b)(a-b)
D. (a+2b)(a-b)= a2+ab-2b2
6.下列分解因式中错误是()
A. a2-1=(a+1)(a-1)
B.1-4b2=(1+2b)(1-2b)
C.81a2-64b2=(9a+8b)(9a-8b)
D.(-2b)2-a2=(-2b+a)(2b+a)
7.化简(a+1)2-(a-1)2的结果是()
A.2
B.4
C.4a
D.2a2+2
8.若a,b,c是三角形的三边之长,则代数式a2-2bc+c2-b2的值()
A.小于0
B.大于0
C.等于0
D.以上三种情况均有可能
二、细心填一填
9.分解因式92-144y2=
10.观察下列等式12-02=1,22-12=3,32-22=5,42-32=7…试用n的等式表示这种规律为(n≥1且为正整数)
11.分解因式1
2
m2n2-8=
12、分解因式 x²-y²-3x-3y=
13、运用公式法计算:
1812-612
3022-1822
结果是
14、已知ab=2,则(a+b)2-(a-b)2的值是
15、若|2a-18|+(4-b)2=0,则am2-bn2分解因式为
16、若m2-n2=6且m-n=3,则m+n=
17、(1-1
22
)(1-
1
32
) (1)
1
92
)(1-
1
102
)=
18、设n是任意正整数,带入式子n3-n中计算时,四名同学算出如下四个结果,其中正确的结果可能是()。

A、388947
B、388944
C、388953
D、388949
三、解答题
19、分解因式:169(a-b)2-196(a+b)2
20、分解因式:a2(a-b)+b2(b-a)
21、已知a+b=8,a2-b2=48,求a和b的值。

22、已知a=3
4
,b=
4
3
,求:(a2-b2)2-(a2+b2)的值。

23如图,有一块边长为a的正方形纸板的四周,各剪去一个边长为b(b<a
2
)的正
方形。

(1)用代数式表示阴影部分的面积。

(2)利用因式分解的方法计算,当a=15.4 b=3.7时,阴影部分的面积。

相关文档
最新文档