最新四川省2020年中考数学模拟卷一

合集下载

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

四川省成都市2020年中考数学模拟卷一含解析

四川省成都市2020年中考数学模拟卷一含解析

中考数学模拟卷(一)A卷(共100分)第I卷(共30分)、选择题(每小题3分,共30分)1. (2019 ・山东中考模^在实数1、0、-1、-2中,最小的实数是()A. -2【答案】A 【解析】Q 1>0>-1>-2 B. -1C. 1D. 0最小的实数是-2.故选A.本题考查了实数的大小比较,熟练掌握比较法则是解题的关键2. (2019 •浙江中考模拟)据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为()A. 4.6 108B. 46 108C. 4.69 【答案】D【解析】4 600 000 000 用科学记数法表示为:4.6X10 9.故选D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为D. 4.6 109ax 10n的形式,其中1W|a| v 10, n为整数,表示时关键要正确确定a的值以及n的值.3. (2019 •北京中考模拟)某个几何体的三视图如图所示,该几何体是। r~H ।A.【答案】A【解析】由该几何体的主视图可以判断C项错误,由该几何体的俯视图可以判断B和D错误,所以选择A项. 【点睛】本题考查由三视图判断几何体,解题的关键是掌握根据三视图判断几何体^4.(2019 ・广东中考模拟)下列运算正确的是()A.3a-a = 3B. a6 + a2=a32C. - a (1- a) = - a+a?D. 1 22【答案】C【解析】解:A.3a=a=2a,故A错误;B.a6+a2=a4,故B错误;C.- a (1- a) = - a+a2,故C正确; 2D.-=4,故D错误.2故选:C.【点睛】本题考查了合并同类项,同底数哥的除法,负整数指数哥,积的乘方等多个运算性质,需同学们熟练掌握.45.(2019 •上海中考模拟)关于反比例函数y —,下列说法正确的是()A.函数图像经过点(2, 2);B.函数图像位于第一、三象限;C.当x 0时,函数值y随着x的增大而增大;D.当x 1时,y 4.【答案】C【解析】A、关于反比例函数y=- 4,函数图象经过点(2,-2),故此选项错误;x、,一 ,一一,, 4B 、关于反比例函数 y=- 4,函数图象位于第二、四象限,故此选项错误;x C 、关于反比例函数 y=- 4,当x>0时,函数值y 随着x 的增大而增大,故此选项正确; x D 、关于反比例函数 y=- 4,当x>1时,y>-4,故此选项错误;x故选C.此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.ABCM, E 是AC 的中点,EF// CB 交 AB 于点F,如果EF=3,那【答案】A 【解析】【详解】.口是AC 中点,. EF// BG 交 AB 于点 F, ・•.EF 是△ ABC 的中位线, BC=2EF=2 3=6,・•・菱形ABC 曲周长是4X6=24, 故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键^7. (2019 •山东中考模拟)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数232341则这些运动员成绩的中位数、众数分别为 ()C. 12D. 96. (2019 •甘肃中考模拟)如图,在菱形A. 1.70 , 1.75B. 1.70 , 1.70C. 1.65, 1.75D. 1.65, 1.70【答案】A 【解析】15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70 ,所以中位数是1.70,同一成绩运动员最多的是 1.75,共有4人, 所以,众数是1.75 .因此,中位数与众数分别是 1.70, 1.75, 故选A.【点睛】 本题考查了中位数与众数,熟练掌握中位数及众数的定义以及求解方法是解题的关键400件医疗器械的订单,由于生产线系统升级,实际每月则下列方程正确的是(8. (2019 •云南中考模拟)某医疗器械公司接到生产能力比原计划提高了 30%结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,400A.——x400=4(1 30%) x8.400 (1 30%) x 400 =4X400 C.—— x400 =4(1 30%) xD.400 (1 30%) x400 4 x设每月原计划生产的医疗器械有 x 件,根据题意,得:400 400x 1 30% x故选A.本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意, 设出未知数,找出合适的等量关系, 列方程.9. (2019 •江苏中考模^如图, AB 是。

精品模拟2020年四川省成都市中考数学模拟试卷一解析版

精品模拟2020年四川省成都市中考数学模拟试卷一解析版

2020年四川省成都市中考数学模拟试卷一一.选择题(共10小题,满分30分,每小题3分)1.有一透明实物如图,它的主视图是()A.B.C.D.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.184.已知反比例函数y=﹣,下列结论中错误的是()A.图象在二,四象限内B.图象必经过(﹣2,4)C.当﹣1<x<0时,y>8D.y随x的增大而减小5.如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于()A.25°B.35°C.50°D.65°6.三角形两边长分别为2和4,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.10B.8或10C.8D.8和107.如图,正方形ABCD的边长为4cm,则它的外接圆的半径长是()A.cm B.2cm C.3cm D.4cm8.某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是()A.B.C.D.9.关于x的方程mx2+2x+1=0有实数根,则m的取值范围是()A.m≤1B.m≥1C.m<1D.m≤1且m≠010.在方格图中,称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.如图,在5×5的正方形方格中,每个小正方形的边长都是1,△ABC是格点三角形,sin∠ACB的值为()A.B.C.D.二.填空题(共4小题,满分16分,每小题4分)11.已知,则xy=.12.如图,已知▱ABCD中,点E在CD上,=,BE交对角线AC于点F.则=.13.已知A(﹣2,y1)、B(﹣3,y2)是抛物线y=(x﹣1)2+c上两点,则y1y2.(填“>”、“=”或“<”)14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.三.解答题(共2小题,满分18分)15.(12分)(1)计算:()﹣1﹣6cos30°﹣()0+(2)解方程:4x2+x﹣3=0.16.(6分)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽鄂尔多斯”的号召,康巴什区某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)扇形统计图中投稿篇数为3所对应的扇形的圆心角的度数是;该校八,九年级各班在这一周内投稿的平均篇数是;并将该条形统计图补充完整.(2)如果要求该校八、九年级的投稿班级个数为30个,估计投稿篇数为5篇的班级个数.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个班级中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A 的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)18.(8分)如图,正方形ABCD的对角线AC,BD相交于点O,点P是BC延长线上一点,连接AP,分别交BD,CD于点E,F,过点B作BG⊥AP于G,交线段AC于H.(1)若∠P=25°,求∠AHG的大小;(2)求证:AE2=EF•EP.五.解答题(共2小题,满分20分,每小题10分)19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.20.(10分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.六.填空题(共5小题,满分20分,每小题4分)21.设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.22.如图,四边形ABCD内接于⊙O,对角线AC过圆心O,且AC⊥BD,P为BC延长线上一点,PD⊥BD,若AC=10,AD=8,则BP的长为.23.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为.24.如图,AC是▱ABCD的对角线,且AC⊥AB,在AD上截取AH=AB,连接BH交AC于点F,过点C作CE平分∠ACB交BH于点G,且GF=,CG=3,则AC=.25.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.七.解答题(共1小题,满分8分,每小题8分)26.(8分)嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y (万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)八.解答题(共1小题,满分10分,每小题10分)27.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)九.解答题(共1小题,满分12分,每小题12分)28.(12分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解答】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.【点评】本题考查了立体图形的三视图,要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.2.【分析】由抛物线解析式即可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.3.【分析】先根据∠C=90°,AC=5,cos∠A=,即可得到AB的长,再根据勾股定理,即可得到BC的长.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.4.【分析】依据反比例函数的性质以及图象进行判断,即可得到错误的选项.【解答】解:∵反比例函数y=﹣中,k=﹣8<0,∴图象在二,四象限内,故A选项正确;∵﹣2×4=﹣8,∴图象必经过(﹣2,4),故B选项正确;由图可得,当﹣1<x<0时,y>8,故C选项正确;∵反比例函数y=﹣中,k=﹣8<0,∴在每个象限内,y随x的增大而增大,故D选项错误;故选:D.【点评】本题主要考查了反比例函数的图象与性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5.【分析】直接利用菱形的性质得出∠C的度数,再利用等腰三角形的性质得出答案.【解答】解:∵在菱形ABCD中,∠A=130°,∴∠C=130°,BC=DC,∴∠DBC=∠CDB=(180°﹣130°)=25°.故选:A.【点评】此题主要考查了菱形的性质以及等腰三角形的性质,正确应用菱形的性质是解题关键.6.【分析】利用因式分解法求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边为2,2,4,不能构成三角形,舍去;当x=4时,三角形三边为2,4,4,周长为2+4+4=10,故选:A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.7.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=2cm,OE=2cm.在Rt△ADE中,OD==2cm.故选:B.【点评】本题需仔细分析图形,利用勾股定理即可解决问题.8.【分析】由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是;故选:D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.【分析】分两种情况考虑:当m=0时,方程为一元一次方程,有实数根,符合题意;当m不为0时,方程为一元二次方程,得到根的判别式大于等于0,求出m的范围,综上,得到满足题意m的范围.【解答】解:当m=0时,方程化为2x+1=0,解得:x=﹣,符合题意;当m≠0时,得到△=4﹣4m≥0,解得:m≤1,综上,m的取值范围是m≤1且m≠0.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.【分析】根据题意,作出合适的辅助线,然后根据等积法可以求得BD的长,然后根据锐角三角函数即可解答本题.【解答】解:作BD⊥AC于点D,作CE⊥AB交AB的延长线于点E,如右图所示,∵每个小正方形的边长都是1,∴AB=2,CE=1,AC=,BC=,∵,∴BD=,∴sin∠ACB==,故选:C.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共4小题,满分16分,每小题4分)11.【分析】根据两内项之积等于两外项之积解答即可.【解答】解:∵=,∴xy =6.故答案为:6.【点评】本题主要考查比例的性质,可根据比例的基本性质直接求解.12.【分析】根据平行四边形的性质可得出CD ∥AB ,CD =AB ,由=可得出CE =AB ,由CD ∥AB ,可得出△CEF ∽△ABF ,再利用相似三角形的性质即可求出的值. 【解答】解:∵四边形ABCD 为平行四边形,∴CD ∥AB ,CD =AB .∵点E 在CD 上,=,∴CE =CD =AB .∵CD ∥AB ,∴△CEF ∽△ABF∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,利用平行四边形的性质找出△CEF ∽△ABF 及CE =AB 是解题的关键.13.【分析】根据二次函数的性质得到x <1时,y 随y 的增大而减小,然后根据自变量的大小得到对应函数值的大小.【解答】解:抛物线的对称轴为直线x =1,而x <1时,y 随y 的增大而减小,所以y 1<y 2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,据此可得出BD的长,进而可得出结论.【解答】解:如图,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.由题可知BC=CD=4,CE是线段BD的垂直平分线,∴∠CDB=∠CBD=60°,DF=BD,∴AD=CD=BC=4,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故答案为:6.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三.解答题(共2小题,满分18分)15.【分析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)方程利用因式分解法求出解即可.【解答】解:(1)原式=2﹣6×﹣1+3=1;(2)分解因式得:(4x﹣3)(x+1)=0,解得:x=或x=﹣1.【点评】此题考查了解一元二次方程﹣因式分解法,以及实数的运算,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解;(2)由12个班级中5篇所占的比值即可估算出班级个数为30个时,投稿篇数为5篇的班级个数;(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)投稿班级的总个数为:3÷25%=12(个),∴×360°=30°.∵投稿5篇的班级有12﹣1﹣2﹣3﹣4=2(个),∴各班在这一周内投稿的平均篇数为×(2+3×2+5×2+6×3+9×4)=×72=6(篇),该条形统计图补充完整为:故答案为:30°,6篇;(2)30××100%=5(个);(3)画树状图如下:总共12画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:=.【点评】本题考查的是条形统计图和扇形统计图以及用树状图法求概率的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)根据题意作出合适的辅助线,然后根据题意和锐角三角函数可以求得城门大楼的高度;(2)根据(1)中的结果和锐角三角函数可以求得A,B之间所挂彩旗的长度.【解答】解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.18.【分析】(1)由∠ACB=∠P+∠CAP,求出∠CAP即可解决问题;(2)连接EC,证明△ECF∽△EPC即可解决问题;【解答】(1)解:∵四边形ABCD是正方形,∴∠ACB=45°,∵∠ACB=∠P+∠CAP,∴∠CAP=20°,∵BG⊥AP,∴∠AGH=90°,∴AHG=90°﹣20°=70°.(2)证明:∵四边形ABCD是正方形,∴A,C关于BD对称,∠ACB=∠ACD=45°,∴EA=EC,∴∠EAC=∠ECA,∵∠ACB=∠P+∠CAE=45°,∠ECF+∠ECA=45°,∴∠ECF=∠P,∵∠CEF=∠PEC,∴△CEF∽△PEC,∴=,∴EC2=EF•EP,∴EA2=EF•EP.【点评】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)把A (﹣1,n )代入y =﹣2x ,可得A (﹣1,2),把A (﹣1,2)代入y =,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.六.填空题(共5小题,满分20分,每小题4分)21.【分析】先利用一元二次方程的定义得到m2=m+2019,m3=2020m+2019,所以m3+2020n﹣2019=2020(m+n),然后利用根与系数的关系得到m+n=1,最后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣2019=0的根,∴m2﹣m﹣2019=0,∴m2=m+2019,m3=m2+2019m=m+2019+2019m=2020m+2019,∴m3+2020n﹣2019=2020m+2019+2020n﹣2019=2020(m+n),∵m,n是方程x2﹣x﹣2019=0的两实数根,∴m+n=1,∴m3+2020n﹣2019=2020.故答案为2020.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.22.【分析】根据圆周角定理得到∠ADC=90°,根据勾股定理得到CD==6,推出点C是PB的中点,根据直角三角形的性质即可得到结论.【解答】解:∵AC是⊙O的直径,∴∠ADC=90°,∵AC=10,AD=8,∴CD==6,∵AC⊥BD,∴AC平分BD,∵PD⊥BD,∴AC∥PD,∴点C是PB的中点,∴PB=2CD=12,故答案为:12.【点评】本题考查了圆周角定理,垂径定理,平行线的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.23.【分析】延长EF交CO于G,依据反比例函数图象上点的坐标特征,即可得到点E的横坐标为5,点E的纵坐标为3,再根据勾股定理可得EF的长,设OP=x,则PG=3﹣x,分两种情况讨论,依据Rt△FGP中,FG2+PG2=PF2,即可得到x的值,进而得出点P的坐标.【解答】解:如图所示,延长EF交CO于G,∵EF∥x轴,∴∠FGP=90°=∠AEF,∵双曲线y=(k≠0)经过矩形OABC的边BC的中点D,点B的坐标为(5,6),∴点D(,6),∴k=15,又∵点E的横坐标为5,∴点E的纵坐标为=3,即AE=3,①当点F在AB左侧时,由折叠可得,AF=AO=5,∴Rt△AEF中,EF===4,∴GF=5﹣4=1,设OP=x,则PG=3﹣x,∵Rt△FGP中,FG2+PG2=PF2,∴12+(3﹣x)2=x2,解得x=,∴点P的坐标为(0,);②当点F在AB右侧时,同理可得EF=4,∴GF=5+4=9,设OP=x,则PG=x﹣3,∵Rt△FGP中,FG2+PG2=PF2,∴92+(x﹣3)2=x2,解得x=15,∴点P的坐标为(0,15);故答案为:(0,)或(0,15).【点评】本题考查了反比例函数图象上点的坐标特征,翻折变换、勾股定理等知识的综合运用,解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.24.【分析】如图,连接AG,作GN⊥AC于N,FM⊥EC于M.想办法证明等G是△ABC的内心,推出∠FGN=∠CAG=45°,解直角三角形即可解决问题.【解答】解:如图,连接AG,作GN⊥AC于N,FM⊥EC于M.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AHB=∠HBC,∵AB=AH,∴∠ABH=∠AHB,∴∠ABH=∠CBH,∵∠ECA=∠ECB,∠ABC+∠ACB=90°,∴∠GBC+∠GCB=45°,∴∠FGC=∠GBC+∠GCB=45°,∵FM⊥CG,GN⊥AC,FG=,∴FM=GM=1,∵CG=3,∴CM=2,∴tan∠FCM===,∴CN=2CG,∴GN=,CN=,∵BG,CG是△ABC的角平分线,∴AG也是△ABC的角平分线,∴∠NAG=45°,∴AN=GN=,∴AC=AN+NC=.故答案为.【点评】本题考查平行四边形的性质,解直角三角形,三角形的内心等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.七.解答题(共1小题,满分8分,每小题8分)26.【分析】(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,即可求解;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,即可求解;(3)分6≤y≤10、10≤y≤18两种情况,分别求解即可.【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19,即:此时的售价为15或19元;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=﹣(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.八.解答题(共1小题,满分10分,每小题10分)27.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AKA′=90°,∵OA′=,∠OA′K=30°,∴OK=OA′=,A′K=OK=,∴A′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.九.解答题(共1小题,满分12分,每小题12分)28.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用x1,t=﹣2,即可得出直线QH过定点(0,﹣2).待定系数法和韦达定理可求得a=x2﹣【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,x1)=ka,∴y2﹣y1=a(x1+x2),即k(x2﹣x1,∴a=x2﹣∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.。

2020年四川省成都市中考数学模拟试卷(一)

2020年四川省成都市中考数学模拟试卷(一)

C.12
D.-12
第2页
2.如图,桌面上有一个一次性纸杯,它的主视图应是( D )
3.成都市获得2021年第31届世界大学生夏季运动会的举办权,龙泉驿东安湖
体育中心被确定为“大运会”开闭幕式的主场馆,它包括一座四万座的甲级体育
场、热身训练场、疏散广场及配套绿化等,预计总投资约11.3亿元.其中11.3亿用
第 14 页
18.(本小题满分8分)如图,一艘轮船以每小时40海里的速度在海面上航行,当 该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后 到 达 A 处 , 此 时 发 现 灯 塔 C 在 它 的 北 偏 东 75° 方 向 上 , 求 此 时 轮 船 与 灯 塔 C 的 距 离.(结果保留根号)
第5页
8.某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额, 统计了这15人某月的销售量,如下表所示:
每人销售件数 1800 510 250 210 150 120
人数
1
1
3
5
3
2
那么这15位销售人员该月销售量的平均数、众数、中位数分别是( B )
A.320,210,230
B.320,210,210
17.(本小题满分8分)房山某中学改革学生的学习模式,变“老师要学生学习” 为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪 种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个 不完整的统计图.
(1)这次抽样调查中,共调查了___5_0_0___名学生; (2)补全两幅统计图;
C.206,210,210
D.206,210,230
第6页
9.已知⊙O是正六边形ABCDEF的外接圆,P为⊙O上除C、D外任意一点,则 ∠CPD的度数为( C )

2020年四川省中考数学模拟试题与答案

2020年四川省中考数学模拟试题与答案

2020年四川省市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

) 1.-61的倒数是( ) A .6B .61 C .-61 D .﹣62.计算(﹣x 2)3的结果是( )A A .﹣x 6B .x 6C .﹣x 5D .﹣x 83. 一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( ) A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075. 如图,直线a ∥b ,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为( ) A.20° B.40° C.30° D. 25°6. 已知坐标平面内点M(a ,b)在第三象限,那么点N(b,-a)在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分B .20分,17分C .20分,19分D .20分,20分9.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)10.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是()A.x>2 B.x>﹣1 C.﹣1<x<2 D.x<﹣111.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④ C.①② D.②③④12.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c =0(a≠0)的两根之和()A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(本题共6小题,满分18分。

【2020年】四川省中考数学模拟试卷含答案

【2020年】四川省中考数学模拟试卷含答案

2020年四川省中考数学模拟试卷含答案一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。

四川省2020年中考数学模拟试题含答案

四川省2020年中考数学模拟试题含答案

中考数学模拟试题班级 姓名 学号A 卷(共100分) 第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每个小题均有四个选项,其中只有一项符合题目要求) 1.下列实数中,是无理数的是( ) A .0 B .﹣3C .13D .√3【答案】D .2.如图,数轴的单位长度为1,如果点A 表示的数是1 ,那么点B 表示的数是( )A .0B .1C .2D .3【答案】D3.海口市首条越江隧道——文明越江通道项目将于2020年4月份完工,该项目总投资3710000000元.数据3710000000用科学记数法表示为( ) A.371×107 B.37.1×108 C.3.71×108 D.3.71×109 【答案】D4. 计算(a 2b )3的结果是( ) A .a 2b 3 B .a 5b 3C .a 6bD .a 6b 3【答案】D5. 把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A .3种 B .4种C .5种D .9种【答案】B6.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( ) A .2019年 B .2020年C .2021年D .2022年【答案】B7. 函数y =√2x −4的自变量x 的取值范围是( ) A .x <2 B .x ≤2C .x >2D .x ≥2【答案】D8. 《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( ) A.⎩⎨⎧=+=+y x y x 166119 B.⎩⎨⎧=-=-y x y x 166119 C.⎩⎨⎧=-=+y x y x 166119 D.⎩⎨⎧=+=y x yx 16611-9【答案】D.9.如图,将e O 沿弦AB 折叠,»AB恰好经过圆心O,若e O 的半径为3,则»AB 的长为( ) A.12π B.π C.2π D.3π第9题图 【答案】C 10.如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2AD BD =,6BC =,则线段CD 的长为( )A .B .C .D .5【答案】C .第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分) 11. 因式分解:3ax 2-3ay 2= . 【答案】3a (x +y )(x -y ).12. “学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”,三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是 . 【答案】13. 13.已知线段a=4,b=16,线段c 是a 、b 的比例中项,那么c 等于 . 【答案】8.14. 如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是 .【答案】2√6三、解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算:|-3|-2tan60°113-(). (2)先化简,再求值:22332121x x x x x --+-+,其中x =12.【答案】解:(1)原式=3-3=6. (2)原式=()()22313332111x x x x x x --==-+--,当x =时,原式=31x -=-6. 16.(本小题满分6分)如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F .求证:△ADF ≌△CEF .证明:∵DE ∥BC ,CE ∥AB , ∴四边形DBCE 是平行四边形, ∴BD =CE , ∵D 是AB 的中点, ∴AD =BD , ∴AD =EC , ∵CE ∥AD ,∴∠A =∠ECF ,∠ADF =∠E ,∴△ADF≌△CEF(ASA).17.(本小题满分8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)T<2520025≤T<30250T≥30400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?【答案】解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为=;(3)250×8﹣350×4+100×1=730(元),答:估计这一天销售这种鲜奶所获得的利润为730元.18.(本小题满分8分)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD 为1.7米,他站在D 处测得塔顶的仰角∠ACG 为45°,小琴的目高EF 为1.5米,她站在距离塔底中心B 点a 米远的F 处,测得塔顶的仰角∠AEH 为62.3°.(点D 、B 、F 在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9) (1)求小亮与塔底中心的距离BD ;(用含a 的式子表示) (2)若小亮与小琴相距52米,求慈氏塔的高度AB .【答案】解:(1)在Rt △AEH 中,∠AEH =62.3°,tan 62.3AHEH︒=. ∴AH =EH ·tan 62.3°=BF ·tan 62.3°=1.9a . ∵GH =GB -HB =CD -EF =1.7-1.5=0.2, ∴AG =AH -GH =1.9a -0.2. 在Rt △ACG 中, ∵∠ACG =45°,∴CG =AG =1.9a -0.2. ∴BD = CG =1.9a -0.2.所以小亮与塔底中心的距离BD 为(1.9a -0.2)米. (2)∵DF =BD +BF , ∴1.9a -0.2+a =52. 解得:a =18∴AB =AH +BH =1.9a +1.5=1.9×18+1.5=35.7(米). 所以慈氏塔的高度AB 为35.7米. 19.(本小题满分10分)如图,在平面直角坐标系中,一次函数y=-x+m 的图像与反比例函数(0)ky x x=>的图像交于A 、B 两点,已知A (2,4) (1)求一次函数和反比例函数的解析式; (2)求B 点的坐标;(3)连接AO 、BO ,求△AOB 的面积.【答案】(1)将A (2,4)代入y=-x+m 与ky x=中,∴m=6,k=8,∴一次函数的解析式为y=-x+6,反比例函数的解析式为8y x=; (2)解方程组68y x y x =-+⎧⎪⎨=⎪⎩得x 1=2,x 2=4,∴B (4,2); (3)设直线y=-x+6 与x 轴,y 轴交于C ,D 点,易得D(0,6),∴OD=6, ∴S △AOB =S △DOB -S △AOD =11646222⨯⨯-⨯⨯=6.20.(本小题满分10分)设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形.以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD . 求证:(1)AD 是⊙B 的切线; (2)AD=AQ ; (3)BC 2=CF •EG .【解答】证明:(1)连接BD,∵四边形BCDE是正方形,∴∠DBA=45°,∠DCB=90°,即DC⊥AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠DBA=45°,∴∠ADB=90°,即BD⊥AD,∵BD为半径,∴AD是⊙B的切线;(2)∵BD=BG,∴∠BDG=∠G,∵CD∥BE,∴∠CDG=∠G,∴∠G=∠CDG=∠BDG=∠BCD=22.5°,∴∠ADQ=90°﹣∠BDG=67.5°,∠AQB=∠BQG=90°﹣∠G=67.5°,∴∠ADQ=∠AQD,∴AD=AQ;(3)连接DF,在△BDF中,BD=BF,∴∠BFD=∠BDF,又∵∠DBF=45°,∴∠BFD=∠BDF=67.5°,∵∠GDB=22.5°,在Rt△DEF与Rt△GCD中,∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,∴Rt△DCF∽Rt△GED,∴,又∵CD=DE=BC,∴BC2=CF•EG.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21.(1)已知x﹣2y=13,xy=﹣12,则x2+4y2﹣1的值是.【解析】首先对所求多项式进行变形,然后将x﹣2y=13,xy=﹣12整体代入即可求解.【解答】解:(1)∵x﹣2y=13,xy=﹣12,∴原式=(x﹣2y)2+4xy﹣1=169﹣48﹣1=140;22.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x <n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.【解析】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.【答案】13≤x<15.23.观察以下等式:第1个等式:211 =111+,第2个等式:311 =226+,第3个等式:211=5315+,第4个等式:211=7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)211=11666+;(2)21121(21)n n n n=+--,见解析.【分析】观察各式子的分母之间的关系发现:等式左边式子的分母的值从1开始,后一项的值比前一个分母的值大2,分子不变,等式右边分子不变,第一个式子的分母等序增加,第二个分母的值依次为:1,6,15,28,45,根据顺序关系可以记作第n组式子对应的分母为n (2n+1),然后解题即可.解:(1)第6个等式:211= 11666+(2)211=2n-1n n2n-1+()证明:∵右边112n-1+12====n n2n-1n2n-12n-1+()()左边.∴等式成立24.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为52.【解析】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+12EC=1+32=52【答案】52.25.如图,函数y =k x(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =2+√3;④若MF =25MB ,则MD =2MA . 其中正确的结论的序号是 ①③④ .(只填序号)【解答】解:①设点A (m ,km ),M (n ,kn),则直线AC 的解析式为y =−kmn x +k n +km , ∴C (m +n ,0),D (0,(m+n)k mn),∴S △ODM =12×n ×(m+n)k mn =(m+n)k 2m ,S △OCA =12×(m +n )×k m =(m+n)k2m, ∴△ODM 与△OCA 的面积相等,故①正确; ∵反比例函数与正比例函数关于原点对称, ∴O 是AB 的中点, ∵BM ⊥AM , ∴OM =OA ,∴k =mn ,∴A (m ,n ),M (n ,m ),∴AM =√2(n ﹣m ),OM =√m 2+n 2,∴AM 不一定等于OM ,∴∠BAM 不一定是60°,∴∠MBA 不一定是30°.故②错误,∵M 点的横坐标为1,∴可以假设M (1,k ),∵△OAM 为等边三角形,∴OA =OM =AM ,1+k 2=m 2+k 2m 2, ∴m =k ,∵OM =AM ,∴(1﹣m )2+(k −k m )2=1+k 2,∴k 2﹣4k +1=0,∴k =2±√3,∵m >1,∴k =2+√3,故③正确,如图,作MK ∥OD 交OA 于K .∵OF ∥MK ,∴FM BM =OK KB =25, ∴OK OB =23,∵OA =OB ,∴OK OA =23, ∴OK KA =21,∵KM ∥OD ,∴DM AM =OK AK =2,∴DM=2AM,故④正确.故答案为①③④.二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【解答】解:(1)根据题意得,y=−12x+50;(2)根据题意得,(40+x)(−12x+50)=2250,解得:x1=50,x2=10,∵每件利润不能超过60元,∴x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(−12x+50)=−12x2+30x+2000=−12(x﹣30)2+2450,∵a=−12<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.27.(本小题满分10分) 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,△APC=△BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由.【分析】(1)连接AD、BC,利用SAS可判定△APD△△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到△EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.(3分)理由:连接AD,BC.(4分)△△APC=△BPD,△△APC+△CPD=△BPD+△CPD.即△APD=△CPB.又△PA=PC,PD=PB,△△APD△△CPB(SAS)△AD=CB.(6分)△E、F、G、H分别是AC、AB、BD、CD的中点,△EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.△EF=BC,FG=AD,GH=BC,EH=AD.△EF=FG=GH=EH.△四边形EFGH是菱形.(7分)(3)补全图形,如答图.(8分)判断四边形EFGH是正方形.(9分)理由:连接AD,BC.△(2)中已证△APD△△CPB.△△PAD=△PCB.△△APC=90°,△△PAD+△1=90°.又△△1=△2.△△PCB+△2=90°.△△3=90°.(11分)△(2)中已证GH,EH分别是△BCD,△ACD的中位线,△GH△BC,EH△AD.△△EHG=90°.又△(2)中已证四边形EFGH是菱形,△菱形EFGH是正方形.(12分)28.(本小题满分12分) 如图,抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)、B(1,0),与y轴交于点C(0,2).(1)求抛物线的表达式;(2)将△ABC绕AB中点E旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点F,使△AEF与△BAD相似?若存在,求所有满足条件的F点的坐标;若不存在,请说明理由.【解析】(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的表达式;(2)①过点D作DH⊥x轴于点H,根据旋转的性质可得出DH、AH的长度,结合点A的坐标,即可求出点D的坐标;②利用旋转的性质可得出AC=BD、AD=BC,由平行四边形的判定定理可得出四边形ADBC是平行四边形,由点A、B、C的坐标可得出AB、AC、BC的长度,利用直角三角的逆定理可得出∠ACB=90°,进而可得出四边形ADBC是矩形;(3)由点A、B的坐标可得出抛物线的对称轴,分△AEF∽△ADB和△FEA∽△ADB两种情况考虑,利用相似三角形的性质可求出点F的纵坐标,此题得解.【解答】解:(1)将A(﹣4,0)、B(1,0)、C(0,2)代入y=ax2+bx+c,得:,解得:,∴抛物线的表达式为y=﹣x2﹣+2.(2)①过点D作DH⊥x轴于点H,如图1所示.∵将△ABC绕AB中点E旋转180°,得到△BAD,∴△ADH≌△BOC,∴DH=OC=2,AH=BO=1,∴OH=4﹣1=3,∴点D的坐标为(﹣3,﹣2).②四边形ADBC是矩形,理由如下:∵将△ABC绕AB中点E旋转180°,得到△BAD,∴AC=BD,AD=BC,∴四边形ADBC是平行四边形.∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴∠ACB=90°,∴四边形ADBC是矩形.(3)∵A(﹣4,0)、B(1,0),∴对称轴为直线x=﹣.由题意可得:BD=2,AD=,∴=.当△AEF∽△ADB时,==,∴=,∴EF=5,∴点F的坐标为(﹣,5)或(﹣,﹣5);当△FEA∽△ADB时,==,∴=,∴EF=,∴点F的坐标为(﹣,)或(﹣,﹣).综上所述:点F的坐标为(﹣,5)或(﹣,﹣5)或(﹣,)或(﹣,﹣).。

2020年四川中考数学模拟卷01(原卷版)

2020年四川中考数学模拟卷01(原卷版)

2020年四川中考数学模拟卷01班级___________ 姓名___________ 学号____________ 分数____________(考试时间:120分钟试卷满分:150分)一、选择题(本大题共12小题,共48.0分)1.已知x2=5,那么在数轴上与x对应的点可能是()A.P2B.P2或P4C.P1或P5D.P1或P32.我国倡导的“一带一路”建设将促进我国与世界上的一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000,这个数用科学记数法表示为A.44×108B.4.4×108C.4.4×109D.4.4×10103.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.下表是某校合唱团成员的年龄分布表:对于不同的x,下列关于该校合唱团成员年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差5.如图,把△ABC经过一定的变化得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P,的坐标为()A.(−x,y−2)B.(−x+2,y+2)C.(−x+2,−y)D.(−x,y+2)6.等腰△ABC中,它的腰和底边的长是方程x2−4x+3=0的两个根,则其周长是A.5 B.7 C.9 D.5或77.把一元二次方程(x+3)2=x(3x−1)化成一般形式,正确的是()A.2x2−7x−9=0B.2x2−5x−9=0.C.4x2+7x+9=0D.2x2−6x−10=0.8.如果a<0,b>0,a+b<0,那么下列各式中大小关系正确的是().A.−b<a<b<−a B.−a<−b<a<bC.a<−a<−b<b D.a<−b<b<−a9.在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=kx(k≠0)的图象大致是() A.B.C.D.10.若等腰△ABC的周长是50cm,一腰长为xcm,底边长为ycm,则y与x的函数关系式及自变量x 的取值范围是()A.y=50−2x(0<x<50)B.y=12(50−2x)(0<x<50)C.y=50−2x(252<x<25)D.y=12(50−2x)(252<x<25)11.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km12.如图,BD是菱形ABCD的对角线,CE⊥AB于点E,且点E是AB的中点,EC交BD于F,则tan∠BFE 的值是()A.12B.√33C.2 D.√3二、填空题(本大题共6小题,共24.0分)13.如图,∠B的同位角是__________,内错角是__________,同旁内角是__________.14.一组数据5,1,x,6,4的众数是4,这组数据的方差是__________.15.若多项式x2+mx+4能用完全平方公式分解因式,则m的值是______ .16.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有____________.种.17.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC于点E,则AE的长度是____.18.如图,点M是直线y=2x+3上的动点,过点M作MN⊥x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标________________.三、解答题(本大题共7小题,共78.0分)19.(8分)先化简,再求值:x2+4x+4x+1÷(3x+1−x+1),其中x=sin30°+2−1+√4+tan45°20.(10分)已知:如图,四边形ABCD中,AD//BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.21.(10分)2019年3月16日,由中国科协主办的第六届全国青年科普创新实验暨作品大赛启动,重点围绕“智能,环保、教育”三大主题,某中学派出甲、乙两组队伍参加本次大赛,有四个命题供他们选择:①智能:智能控制及人工智能命题(用A表示);②环保:包括生物环境、风能两个命题(分别用B1、B2表示);③教育:未来教育命题(用C表示).若甲、乙两组队伍各随机从四个命题中选一个报名.(1)请用列表或画树状图的方法表示出所有可能出现的结果;(2)求出他们都选择“环保”主题的概率.22.(12分)如图,直线y1=−x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.(12分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60∘,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45∘.已知山坡AB的坡度i=1:√3(斜坡的铅直高度与水平宽度的比),经过测量AB=10,AE=15.(1)求点B到地面的距离;(2)求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)24.(12分)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BM的长.25.(14分)如图,抛物线y=ax2+bx+c的图象与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C(0,−3),顶点为D.(1)求此抛物线的解析式;(2)求此抛物线顶点D的坐标和ΔABD的面积;(3)若点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.求线段PQ的最大值.。

2020年四川省成都市中考数学模拟试卷1解析版

2020年四川省成都市中考数学模拟试卷1解析版

2020年四川省成都市中考数学模拟试卷1、选择题(每小题 3分,本题满分30分)(3分)如图是由六个棱长为 1的小正方体搭成的几何体,其俯视图的面积为((3分)要使二次根式•二」有意义,贝U x 应满足((3分)平行四边形一定具有的性质是( 1. (3分)在下列各数中,有理数是(C .2. (3分)我国将在2020年发射火星探测器, 开展火星全球性和综合性探测. 已知地球与 火星的最近距离约为 5500万千米,将数据 “ 5500万”用科学记数法可表示为(A . 5.5X 106B . 5.5X 107C . 55 X 10D . 0.55X 1083. C . 54. A . x > 6B . x > 6C . x w 6D . x v 6(3分)如图,等边△ ABC 中,点D 、E 分别为边 AB 、AC 的中点, 则/ DEC 的度数为B . 60° 120 ° D . 150°(3分)已知a 丰0, F 列计算正确的是( A . a 2+a 3= a 5B . a 2?a 3= a 6a 3* a 2= a D . (a 2) 3= a(3分)一组数据 4、4、4、5、 5、6、7 的众数和中位数分别是 (3分)关于x 的 元二次方程x 2+4x+k = 0有两个实数根,则k 的取值范围是(A . k w — 4B . k v — 4C . k w 4D . k v 4A .内角和为180°B .是中心对称图形B . 4A . 30°13. (4分)如图,△ ABC 中,AB = AC ,以点C 为圆心,CB 长为半径画弧,交 AB 于点B 和点D ,再分别以点B 、D 为圆心,大于*BD 长为半径画弧,两弧相交于点M ,作射线14. (4分)已知抛物线y =- x 2+mx+4经过(-2, n )和(4, n )两点,则m 的值为 三、解答题(本大题共 6个题,共54分) (6 分)计算:2cos60° + 2 1(12分)(1)计算:(七-一)a-1 a(2)解方程:x 2- 4x - 2= 0.17. ( 8分)一个盒子里有3个相同的小球,将 里随机取出1个小球且取后放回,预计取球 得分,则前八次的取球得分情况如下表所示 次数 1234 得分2112(1)设第1次至第8次取球得分的平均数为 3个小球分别标示号码 1、2、3,每次从盒子 10次.若规定每次取球时,取出的号码即为56 7 89102323「,求-的值:(2)求事件“第9次和第10次取球得分的平均数等于 [”发生的概率;(列表法或树O状图)18. (8分)汽车驾驶员坐在驾驶座位上,其视线观察不到的地方叫“汽车盲区”.如图是10. (3分)当x v 0时,函数y =-—的图象在( ) A .第一象限B .第二象限C .第三象限D .第四象限、填空题:(每小题4分,本题满分16 分) 11. (4分) 计算:5+ (- 3) 12. (4分) 15. 16分式方程=1的解为辆汽车的“车头盲区”示意图,其中 AC 丄BC , DE 丄BC ,驾驶员所处位置的高度 AC 为1.4米,驾驶员座位 AC 与车头DE 之间距离为2米,当驾驶员从 A 点观察车头D 点时,(2)求“车头盲区”点B 、E 之间的距离.(结果精确到0.1米)参考数据:sin12° = 0.20, cas12°= 0.99, tan 12°= 0.2119. (10分)如图,在平面直角坐标系 xOy 中,双曲线y =丄二与直线y =- 2x+1交于点A (-1, a )(1 )求a , m 的值;(2)点P 是双曲线二上的一点,且 OP 与直线y =- 2x+1平行,求点P 的横坐标.J720. (10分)如图,菱形 ABCD 中,AB = 5,连接BD , sin /ABD = _,点P 是射线BC 上5一点(不与点 B 重合),AP 与对角线BD 交于点E ,连接EC .(1) 求证:AE = CE ;(2) 当点P 在线段BC 上时,设BP = n (0v n v 5),求厶PEC 的面积;(用含n 的代数 式表示)其视线的俯角为12°,点A 、D 、B 在同一直线上.(3)当点P在线段BC的延长线上时,若△ PEC是直角三角形,请直接写出BP的长.一、填空题:(每小题4分,共20分)B卷(共50分)221. (4分)关于x的方程x+mx- 2n= 0的两根之和为-2,两根之积为1,贝U m+n的值为.22. (4分)如图,将菱形纸片ABCD固定后进行投针训练.已知纸片上AE丄BC于E, CF丄AD于F , sinD=d •如果随意投出一针命中菱形纸片,则命中矩形区域的概率5是.23. (4分)抛物线y= ax2(0)沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线y= x2沿直线y= x向上平移,平移距离为.二时,那么它的“同簇抛物线”的表达式是__________ .24. (4分)如图,Rt△ AOB中,/ AOB= 90°,顶点A, B分别在反比例函数y =-二(x> 0)宜与y =-二(xv 0)的图象上,贝U tan/BAO的值为 __________ .25. (4分)如图是由五个边长为1的小正方形拼成的图形,点P是其中四个小正方形的公共顶点,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度为________ .、解答题:(本大题共3个小题,共30分)26. (8分)绿色植物销售公司打算销售某品种的“赏叶植物”,在针对这种“赏叶植物”进行市场调查后,绘制了以下两张函数图象•其中图象①为一条直线,图象 ②为一条抛物(1)如果公司在3月份销售这种“赏叶植物”,单株获利多少元; (2 )请直接写出图象①中直线的解析式; (3) 请你求出公司在哪个月销售这种“赏叶植物”,单株获利最大?(备注:单株获利=单株售价-单株成本)27. (10 分)△ ABC 中,AB = AC ,/ ABC = a,过点 A 作直线 MN ,使 MN // BC ,点 D 在直 线MN 上,作射线BD ,将射线BD 绕点B 顺时针旋转角 a 后交直线AC 于点E .限内的一点,直线 OP 交该抛物线对称轴于点 B ,直线CP 交x 轴于点A .(1)如图①,当a= 60 °,且点D 在射线 曰¥方 量天糸.(2)如图②,当a= 45°,且点D 在射线 关系,并说明理由.AN 上时,直接写出线段 AB , AD , AE 的数AN 上时,直写出线段 AB 、AD 、AE 的数量D 在射线 AM 上,/ ABE = 15 ,AD = 「:- 1,请直接写出线28. (12分)如图,已知抛物线2y = ax +bx 的顶点为 C (1, - 1), P 是抛物线上位于第一象(3 )当a= 30°时,若点 段AE 的长度.(1 )求该抛物线的表达式;(2) 如果点P的横坐标为m,试用m的代数式表示线段BC的长;(3) 如果△ ABP的面积等于△ ABC的面积,求点P坐标.参考答案与试题解析一、选择题(每小题 3分,本题满分30分) 1. ( 3分)在下列各数中,有理数是( )A 5B . hC._iD . n【分析】根据有理数的意义,可得答案. 【解答】解:-5是有理数, 故选:A .2. ( 3分)我国将在2020年发射火星探测器,开展火星全球性和综合性探测.已知地球与 火星的最近距离约为 5500万千米,将数据“ 5500万”用科学记数法可表示为( )A . 5.5X 106B . 5.5X 107C . 55X 106D . 0.55X 108【分析】科学记数法的表示形式为 a X I0n 的形式,其中1 w |a|v 10, n 为整数.确定 n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相 同.当原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数.【解答】解:5500 万=55000000 = 5.5 X 107, 故选:B .1的小正方体搭成的几何体,其俯视图的面积为(【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形, 看分别得到几个面,据此解答即可.【解答】解:从上面看,可以看到 4个正方形,面积为 4 . 故选:B .4. ( 3分)要使二次根式有意义,则x 应满足()【分析】本题主要考查自变量的取值范围,根据二次根式的意义,被开方数是非负数. 【解答】解:根据题意得: x - 6 > 0,A . x > 6B . x > 6C . x w 6D . x v 63. ( 3分)如图是由六个棱长为A . 35,解得x >6. 故选:A .5. (3 分)如图,等边△ ABC 中,点D 、E 分别为边AB 、AC 的中点,则/ DEC 的度数为(A . 30°B . 60°C . 120°D . 150°【分析】根据等边三角形的性质,可得/ C 的度数,根据三角形中位线的性质,可得 与BC 的关系,根据平行线的性质,可得答案. 【解答】解:由等边△ ABC 得/ C = 60°, 由三角形中位线的性质得 DE // BC ,•••/ DEC = 180°—/ C = 180°— 60°= 120°, 故选:C .6. ( 3分)已知a 丰0,下列计算正确的是( )A . a 2+a 3= a 5B . a 2?a 3= a 6C . a 3* a 2= aD . (a 2) 3= a 5【分析】结合选项分别进行同底数幕的乘法、同底数幕的除法、幕的乘方的运算,选出 正确答案.【解答】解:A 、a 2和a 3不是同类项,不能合并,故本选项错误; B 、 a 2?a 3= a 5,原式计算错误,故本选项错误; C 、 a 3* a 2= a ,计算正确,故本选项正确; D 、 (a 2) 3= a 6,原式计算错误,故本选项错误. 故选:C . 7.( 3分)一组数据4、4、4、5、5、6、7的众数和中位数分别是( ) A . 4 和 4B . 4 和 5C . 7 和 5D . 7 和 6【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要 把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:在这一组数据中 4是出现次数最多的,故众数是 4; 而将这组数据从小到大的顺序排列(4、4、4、5、5、6、7),处于中间位置的数是DE那么由中位数的定义可知,这组数据的中位数是 5 ;5,2& (3分)关于x的一元二次方程x+4x+k= 0有两个实数根,则k的取值范围是()A . k w- 4B . k v- 4 C. k< 4 D. k v 4【分析】根据判别式的意义得△=42- 4k> 0,然后解不等式即可.【解答】解:根据题意得厶= 42- 4k > 0,解得k< 4.故选:C.9. (3分)平行四边形一定具有的性质是()A .内角和为180°B .是中心对称图形C .邻边相等D .对角互补【分析】直接利用平行四边形的性质分别分析得出答案.【解答】解:A、平行四边形的内角和为360 °,故此选项错误;B、平行四边形是中心对称图形,故此选项正确;C、平行四边形的对角相等,邻边不一定相等,故此选项错误;D、平行四边形的对角相等,但不一定互补,故此选项错误;故选:B.10. (3分)当x v 0时,函数y=-—的图象在()xA .第一象限B .第二象限C.第三象限 D .第四象限【分析】根据反比例函数的性质:k v 0,反比例函数图象在第二、四象限内进行分析.【解答】解:函数y=-二的图象在第二、四象限,当x v 0时,图象在第二象限,故选:B.二、填空题:(每小题4分,本题满分16分)11. (4 分)计算:5+ (- 3)0= 6 .【分析】根据a0= 1 (a z 0)求出(-3)0的值,再与5相加即可得出答案.【解答】解:5+ (- 3)0= 5+1 = 6;故答案为:6 .12 . (4分)分式方程-—:—=1的解为x=- 1 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:2x - 1 = x -2 2x - x =- 2+1 x =- 1,经检验x =- 1是原方程的解, 所以原方程的解为:x =- 1, 故答案为:x =- 113. (4分)如图,△ ABC 中,AB = AC ,以点C 为圆心,CB 长为半径画弧,交 AB 于点B 和点D ,再分别以点B 、D 为圆心,大于二BD 长为半径画弧,两弧相交于点 M ,作射线CM 交AB 于点E .若AE = 2,BE = 1,贝U EC 的长度是【分析】利用基本作图得到 CE 丄AB ,再根据等腰三角形的性质得到 AC = 3,然后利用勾股定理计算CE 的长.【解答】解:由作法得 CE 丄AB ,则/ AEC = 90°, AC = AB = BE+AE = 2+1 = 3, 在 Rt △ ACE 中,CE =J 护.护=血, 故答案为:.;14. (4分)已知抛物线y =- x 2+ mx+4经过(-2,门)和(4,n )两点,贝U m 的值为2.【分析】根据(-2,门)和(4,n )可以确定函数的对称轴 可求解;【解答】解:抛物线y =- x 2+ bx+4经过(-2,门)和(4,n )两点, 可知函数的对称轴 x = 1,m 4 2X C-1) —1 ,/• m = 2; 故答案为2.x =三、解答题(本大题共6个题,共54分)15. (6分)计算:【分析】根据分母有理化、负整数指数幕以及特殊角的三角函数值分别进行计算即可得出答案.【解答】解:.?- 2cos60° + (=-)-2+|1- . :':|= 3 :■:- 1+2+ :■: - 1= 4. ■:.16. (12 分)(1)计算:(一+ ---- )—乱亠',其中a=M"§;a_1 a a -2a+l(2)解方程:x2- 4x- 2= 0.【分析】(1)直接将括号里面通分运算,进而利用分式的混合运算法则化简得出答案;(2)直接利用配方法解方程得出答案.【解答】解:(1)原式=&:*-” ?(旷1辺a (a-1)a+1当a = 「:时,原式=一一;(2)x2- 4x - 2 = 0x2- 4x+4 = 6,(x- 2)2= 6,故x - 2=± _ ■, 解得:x1= 2+心,x2= 2 - . ' ■.17. (8分)一个盒子里有3个相同的小球,将里随机取出1个小球且取后放回,预计取球得分,则前八次的取球得分情况如下表所示次数1234得分2112(1)设第1次至第8次取球得分的平均数为(2)求事件“第9次和第10次取球得分的平均3个小球分别标示号码1、2、3,每次从盒子10次•若规定每次取球时,取出的号码即为5678910 2323'',求. ,的值:x/Hj- 2cos60° +数等于丫”发生的概率;(列表法或树状图)【分析】(1)根据平均数的计算方法进行计算即可;(2)用列表法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.【解答】解:(1) ,8=( 2+1+1+2+2+3+2+3 ) - 8 = 2;(2)用表格列出所有可能出现的情况如下:若“第9次和第10次取球得分的平均数等于「”也就是两次抽出的数的和为4,共有9种情况,其中和为4的有3种,• P . = J…P(两次发的和为4)= =—,■:答:事件“第9次和第10次取球得分的平均数等于 [”发生的概率为18. (8分)汽车驾驶员坐在驾驶座位上,其视线观察不到的地方叫“汽车盲区”.如图是一辆汽车的“车头盲区”示意图,其中AC丄BC , DE丄BC,驾驶员所处位置的高度AC为1.4米,驾驶员座位AC与车头DE之间距离为2米,当驾驶员从A点观察车头D点时,其视线的俯角为12°,点A、D、B在同一直线上.(1) 请直接写出/ ABC的度数;(2) 求“车头盲区”点B、E之间的距离.(结果精确到0.1米)参考数据:sin12° = 0.20,cas12°= 0.99, tan 12°= 0.21【分析】(1)由俯角的概念,并结合图形可得答案;(2)先求出BC = AC - tan/ ABC= 6.67 (米),再由BE= BC - CE 可得答案.【解答】解:(1)由题意知/ ABC = 12°;(2)在 Rt △ ABC 中,BC = AC - tan /ABC =1.4-0.21 =6.67 (米),••• BE = BC - CE = 6.67 - 2〜4.7 (米), 答:“车头盲区”点 B 、E 之间的距离4.7米.19. ( 10分)如图,在平面直角坐标系 xOy 中,双曲线y =厶与直线y =- 2x+1交于点A (- 1, a )标代入y =- 2x+1中可以求得a 的值,然后再代入反比例函数解析式中即可求得 (2)根据OP 与直线y =- 2x+1平行,可以直接得到直线 OP 的解析式,再根据点 P 是双曲线y =丄上的一点,即可求得点 P 的横坐标.x【解答】解:(1)V 双曲线与直线y =- 2x+1交于点A (- 1, a ), •••将 x =- 1 代入 y =- 2x+1,得 y =- 2X( - 1) +1 = 2+1 = 3, •••点 A (- 1 , 3) •- a = 3,•.•点A (- 1 , 3)在双曲线y =—上, • 3 = 得 m =- 3,-1即a 的值是3, m 的值是-3;的横坐标.A 的横纵坐m 的值;(1 )求a , m 的值;求点P ),将点(2 )T OP与直线y =- 2x+1平行,•••直线OP的解析式为y=- 2x,•••点P在双曲线y = 丄上,解得,x =即点P的横坐标是^或.2 220. (10分)如图,菱形ABCD中,AB = 5,连接BD , sin/ABD = _,点P是射线BC上s一点(不与点B重合),AP与对角线BD交于点E,连接EC.D(2)当点P在线段BC上时,设BP = n (O v n v 5),求厶PEC的面积;(用含n的代数式表示)(3)当点P在线段BC的延长线上时,若△ PEC是直角三角形,请直接写出BP的长.【分析】(1)由菱形的性质得出BA = BC, / ABD = Z CBD .由SAS证明△ ABECBE , 即可得出结论.(2)联结AC,交BD于点O,过点A作AH丄BC于H,过点E作EF丄BC于F,由菱形的性质得出AC丄BD .由三角函数求出AO= OC= H, BO = OD = 2一匚.由菱形面积得出AH = 4, BH= 3.由相似三角形的性质得出丄=二,求出EF的长,即可得出答案.EP BP(3)因为点P在线段BC的延长线上,所以/ EPC不可能为直角.分情况讨论:①当/ECP = 90°时,②当/ CEP = 90°时,由全等三角形的性质和相似三角形的性质即可得出答案.【解答】(1)v 四边形ABCD是菱形,• BA= BC,/ ABE = / CBE .在厶ABE和厶CBE中,fBA=BCI ZABE=ZCBE , [BE =BE又••• BE = BE ,••• AE = CE .(2)连接AC ,交BD 于点O ,过点A 作AH 丄BC ,过点E 作EF 丄BC ,如图1所示: 垂足分别为点H 、F . •••四边形ABCD 是菱形, • AC 丄 BD .•/ AB = 5, sin / ABD = _', • - AO = OC = 1, BO = OD = 2 ,.•——AC?BD = BC?AH , 2 AH = 4, BH = 3.•/ AD// BC ,AEAEEP^E+EP = ^D+BEP APBP EP EP X X APi+5•/ EF // AH ,EFPE AAP(3)因为点P 在线段BC 的延长线上,所以/ EPC 不可能为直角.如图 ①当/ ECP = 90°时•••/ BAE =Z BCE = 90°,(5 - x )(O v x v 5).2所示:…y =②当/ CEP = 90°时,ABE ◎△ CBE , •••/ AEB =/ CEB = 45°, AO = OE =••• ED = _ -, BE = 3 .; •/ AD // BP ,AD DEBP 5BE VBP• BP = 15..(4分)关于x 的方程x 2+mx - 2n = 0的两根之和为-2,两根之积为1,贝U m+n 的值为3 2—与n 的值,然后计算即可得出答案.【解答】解:•方程 x 2+mx - 2n = 0的两根之和为-2,两根之积为1,m =- 2,- 2n = 1,=Af =BH BP AB■/ cos / ABPBP••• BP =—3综上所述,当△ EPC 是直角三角形时,线段BP 的长为21【分析】根据根与系数的关系 X 1 + x 2 =-B 卷(共50分)m =- 2,- 2n = 1,求出 mX故答案为:22. (4分)如图,将菱形纸片 ABCD 固定后进行投针训练.已知纸片上AE 丄BC 于E , CF.如果随意投出一针命中菱形纸片'则命中矩形区域的概率是_【分析】根据题意可以分别求得矩形的面积和菱形的面积,从而可以解答本题. 【解答】解:设CD = 5a ,• CF = 4a , DF = 3a , • AF = 2a ,•妲巴坦_=z ;故答案为:二.23. (4分)抛物线y = ax 2 (0)沿某条直线平移一段距离,我们把平移后得到的新抛物 线叫做原抛物线的“同簇抛物线”.如果把抛物线y = x 2沿直线y = x 向上平移,平移距离 为.二时,那么它的“同簇抛物线”的表达式是y =(x - 1) 2+1 .【分析】沿直线 y = x 向上平移,平移距离为.「则相当于抛物线 y = ax 2 (a ^ 0)向右平 移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【解答】解:•••抛物线 y = x 2沿直线y = x 向上平移,平移距离为.二,相当于抛物线y = ax 2 (a丰0 )向右平移1个单位,向上平移1个单位,•••根据平移的规律得到:“同簇抛物线”的表达式是 y =( x - 1) 2+1 . 故答案为:y =(x - 1) 2+1.24. (4分)如图,Rt △ AOB 中,/ AOB = 90°,顶点A , B 分别在反比例函数 y =— (x > 0)/• m = 2, n =-—/• m+n = 2 -2 1_3. 丄AD 于 F ,inD = •••四边形ABCD 是菱形, AE 丄 BC 于 E , CF 丄 AD 于 F , sinD与y (xv 0)的图象上,贝U tan /BAO 的值为_ n_ •【分析】过A 作AC 丄x 轴,过B 作BD 丄x 轴于D ,于是得到/ BDO = / ACO = 90°,根 据反比例函数的性质得到S A BDO =丄,S A AOC = :,根据相似三角形的性质得到2 2)2=—= 5,求得丄=口,根据三角函数的定义即可得到结论.0A !_0A2【解答】解:过A 作AC 丄x 轴,过B 作BD 丄x 轴于D , 则/ BDO = / ACO = 90°, •••顶点A , B 分别在反比例函数51 --S A BDO =—, S A AOC =—,22•// AOB = 90 ° , •••/ BOD+ / DBO = / BOD+ / AOC = 90 ° , •••/ DBO = / AOC ,• A BDO sA OCA ,§~2一 5,2•- tan / BAO =—— 0A故答案为:.,•(x v 0)的图象上,^ABODSA0AC2(25. (4分)如图是由五个边长为1的小正方形拼成的图形,点P是其中四个小正方形的公共顶点,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度为I【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得PM = AB, 利用勾股定理即可求得.【解答】解:如图,经过P、Q的直线则把它剪成了面积相等的两部分,由图形可知△ AMC ◎△ FPE ◎△ BPD,••• AM = PB,••• PM = AB,••• PM =也2十]2=呵,• AB= . Il,二、解答题:(本大题共3个小题,共30分)26. (8分)绿色植物销售公司打算销售某品种的“赏叶植物”,在针对这种“赏叶植物”进行市场调查后,绘制了以下两张函数图象•其中图象①为一条直线,图象②为一条抛物线,且抛物线顶点为(6, 1),请根据图象解答下列问题:~r t里株雪价元卜单株售介元f6i、S ' \?44-_______ J____ >:\ J1■ :2 1耳I Li■1•I月份I- ■ *9I-i012 3 4 5 6 7 80::3 4 5 6.7 ?图①囲②(1)如果公司在3月份销售这种“赏叶植物”,单株获利多少元;(2 )请直接写出图象①中直线的解析式;(3)请你求出公司在哪个月销售这种“赏叶植物”,单株获利最大?(备注:单株获利=单株售价-单株成本)【分析】(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5-4 = 1 (元),即可求解;(2 )点(3, 5)、( 6, 3)为一次函数上的点,求得直线的表达式为:『1=-£ x+7;3(3)求得y2的解析式后计算y1 - y2的值,配方可得结论.【解答】解:(1)从左图看,3月份售价为5元,从右图看,3月份的成本为4元,则每株获利为5- 4= 1 (元),故答案为:1;(2)设直线的表达式为:y1 = kx+b (k z 0), 把点(3, 5)、(6, 3)代入上式得:r 3k+b=s 16k+b=3•••直线的表达式为:y1=-二x+7 ;•-1(3)设:抛物线的表达式为:y2= a (x- m) 2+n,•••顶点为(6, 1),则函数表达式为:y2= a (x - 6) 2+1 , 把点(3, 4)代入上式得:214= a (3 - 6) +1,解得:a=:-,x = 5时,函数取得最大值, 故:5月销售这种植物,单株获利最大.27. (10 分)△ ABC 中,AB = AC ,/ ABC = a,过点 A 作直线 MN ,使 MN // BC ,点 D 在直 BD ,将射线BD 绕点B 顺时针旋转角 a 后交直线AC 于点E .曰.¥ W 量关糸.关系,并说明理由.段AE 的长度. 【分析】(1 )当a= 60°时,可得△ ABC 是等边三角形,判定△ BAD BCE ,即可得 至U AD = CE ,进而得至U AE = AC+CE = AB+AD ;(2)当a= 45°时,可得△ ABC 是等腰直角三角形,判定△ BAD BCE ,可得 CE = 卜汇AD ,进而得出 AE = AC+CE = AB+ :?AD ;(3)分两种情况:点 E 在线段AC 上,点E 在CA 的延长线上,分别画出图形,依据/ ABE = 15°, AD =#;— 1,即可得到线段 AE 的长度.【解答】解:(1)v 当 a= 60° 时,/ ABC =Z DBE = 60°, •••/ ABD = / CBE , 又••• AB = AC ,• △ ABC 是等边三角形, ••• AB = CB ,/ ACB = 60°,丄可1 12 -x+7 ; y 2=- (x —6) +1, (3) y 1 — y 2=— - x+7 — 则抛物线的表达式为:y 2=2(X — 6)故答案为:y i = — (x - 6) 2 — 1 = __二(x — 5) 2+工3-a =—0,线MN 上,作射线 (1)如图①,当a= 60 ,且点D 在射线 AN 上时,直接写出线段 AB ,AD ,AE 的数(2)如图②,当a= 45 ,且点D 在射线AN 上时,直写出线段 AB 、AD 、AE 的数量(3 )当a= 30°时,若点 D 在射线AM 上, / ABE = 15°, AD =「:- 1,请直接写出线.VCB图③•••/ BCE= 120° ,•/ MN // BC,•••/ BAD = 180° -Z ABC = 120° , •••/ BAD = Z BCE ,•△BAD◎△ BCE ,•AD = CE,• AE= AC+CE= AB+AD ;(2) AE = AB+ 二AD .理由:当a= 45。

四川省2020年中考数学模拟卷(解析版)

四川省2020年中考数学模拟卷(解析版)

2020年中考数学模拟卷本文档含有大量公式,在网页中显示可能会出现位置错误的情况,下载后在word 中均可正常显示,欢迎下载!A 卷 100分,B 卷50分A 卷(共100分)第Ⅰ卷(共30分)一、选择题(每小题3分,共30分)1. 2-的相反数是( ) A .22- B .22 C .2- D .2【答案】D【解析】-2的相反数是2,2.如图所示的几何体的俯视图是( )A .B .C .D .【答案】D【解析】从上往下看,该几何体的俯视图与选项D 所示视图一致.3.电影《流浪地球》从2月5日上映以来,凭借其气势磅礴的特效场面与动人的父子情获得大众的喜爱与支持,截止3月底,中国电影票房高达4559000000元.数据4559000000用科学记数法表示为( )A .845.5910⨯;B .945.5910⨯;C .94.55910⨯;D .104.55910⨯.【答案】C【解析】4559000000=4.559×109,4.下列运算正确的是().A.B.C.D.【答案】C【解析】根据合并同类项法则,可知,故本选项错误;根据同底数幂相乘法则,可知,故本选项错误;根据同底数幂相除法则,可知,故本选项正确;根据二次根式运算法则,故本选项错误.5.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解析】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;A是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,6.如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是()A.x=-3 B.x=4 C.x=43-D.x=34-【答案】A【解析】方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(-3,0),∴方程ax+b=0的解是x=-3,7.如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是( )A.∠ABC=90°B.∠BCD=90°C.AB=CD D.AB∥CD【答案】C【解析】A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠BCD=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;D、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;8.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【答案】A【解析】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,9.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.3D.5【答案】D【解析】∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E ,∵CD=8, ∴CE=DE=12CD=4, 连接OC ,则OC=OA=5,在Rt△OCE 中,OE=222254OC CE -=-=3,∴AE=AO+OE=8,则AC=22224845CE AE +=+=,10.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc<0;②b 2﹣4ac >0;③3a+c>0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】 ①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+<故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 4的算术平方根是 .【答案】2.【解析】∵224=,∴4算术平方根为2.故答案为2.12.如图,D 、E 分别为△ABC 的边BA 、CA 延长线上的点,且DE ∥BC .如果35DE BC =,CE =16,那么AE 的长为_______【答案】6∵DE∥BC, ∴DE EA BC AC =. ∵35DE BC =,CE=16, ∴3 165AE AE -=,解得AE=6. 13.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 【答案】k>3【解析】因为正比例函数y=(k-3)x 的图象经过第一、三象限,所以k-3>0,解得:k >3,故答案为:k >3.14.一个不透明的袋中只装有1个红球和2个白球,它们除颜色外其余均相同. 现随机从袋中摸出两个球,颜色是一红一白的概率是____.【答案】23【解析】画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球,颜色是一红一白的有4种情况, ∴颜色是一红一白的概率为4263=, 故答案是:23. 三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15.(1)计算:201(31)4sin 603-︒⎛⎫+- ⎪⎝⎭【答案】3解:原式=9+1-342⨯ =10-23. (2)解方程:22161242x x x x +-=--+ 【答案】5x =-【解析】()22162x x +-=-23100x x +-=解得15x =-,22x =经检验:2x =不符合题意.原方程的解为: 5.x =-16.先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 【答案】213(m 3m)+.13-. 【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可.试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 17.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【答案】(1)20;(2)作图见试题解析;(3)12.【解析】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:31 62 .18.如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)【答案】(1)55;(2)不符合要求.【解析】解:(1)∵Rt△ABC中,tanA=,∴AB===55(cm);(2)延长FE交DG于点I.则DI=DG﹣FH=100﹣72=28(cm).在Rt△DEI中,sin∠DEI=,∴∠DEI=69°,∴∠β=180°﹣69°=111°≠100°,∴此时β不是符合科学要求的100°.19.如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.【答案】(1)4yx;(2)5【解析】解:(1)∵CD∥y轴,CD=43,∴点D的坐标为:(m+2,43),∵A,D在反比例函数y=kx(x>0)的图象上,∴4m=43(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=4x;(2)过点A作AE⊥y轴于点E,并延长AE到F,使AE=FE=1,连接BF交y轴于点P,则PA+PB的值最小.∴PA+PB=PF+PB=BF=2222AB AF4225+=+=.20.已知:BD为⊙O的直径,O为圆心,点A为圆上一点,过点B作⊙O的切线交DA的延长线于点F,点C为⊙O上一点,且AB=AC,连接BC交AD于点E,连接AC.(1)如图1,求证:∠ABF=∠ABC;(2)如图2,点H为⊙O内部一点,连接OH,CH若∠OHC=∠HCA=90°时,求证:CH=12 DA;(3)在(2)的条件下,若OH=6,⊙O的半径为10,求CE的长.【答案】(1)见解析;(2)见解析;(3)215. 【解析】 ()1BD Q 为O e 的直径,90BAD ∴∠=o ,90D ABD ∴∠+∠=o ,FB Q 是O e 的切线,90FBD ∴∠=o ,90FBA ABD ∴∠+∠=o ,FBA D ∴∠=∠,AB AC =Q ,C ABC ∴∠=∠,C D ∠=∠Q ,ABF ABC ∴∠=∠;()2如图2,连接OC ,90OHC HCA ∠=∠=o Q ,//AC OH ∴,ACO COH ∴∠=∠,OB OC =Q ,OBC OCB ∴∠=∠,ABC CBO ACB OCB ∴∠+∠=∠+∠,即ABD ACO ∠=∠,ABC COH ∴∠=∠,90H BAD ∠=∠=o Q ,ABD ∴V ∽HOC V ,2AD BD CH OC∴==, 12CH DA ∴=; ()3由()2知,ABC V ∽HOC V ,2AB BD OH OC∴==, 6OH =Q ,O e 的半径为10,212AB OH ∴==,20BD =,16AD ∴==,在ABF V 与ABE V 中,90ABF ABE AB AB BAF BAE ∠=∠⎧⎪=⎨⎪∠=∠=⎩o , ABF ∴V ≌ABE V ,BF BE ∴=,AF AE =,90FBD BAD ∠=∠=o Q ,2AB AF AD ∴=⋅,212916AF ∴==, 9AE AF ∴==,7DE ∴=,15BE ==,AD Q ,BC 交于E ,AE DE BE CE ∴⋅=⋅,9721155AE DE CE BE ⋅⨯∴===. B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.【答案】34.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=34;故答案为34.22.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=(1)1(1)a aa≥-⎧⎨--⎩<,根据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为_____.【答案】29 32x≤≤【解析】∵max{3,5﹣3x,2x﹣6}=M{1,5,3}=3,∴533 263xx-≤⎧⎨-≤⎩,∴29 32x≤≤,故答案为29 32x≤≤.23.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有2HM;③无论点M运动到何处,∠CHM一定大于135°.其中正确结论的序号为_____.【答案】①②③【解析】由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AH,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故③正确,故答案为:①②③.24.如图,点A是射线y═54x(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=kx交CD边于点E,则DEEC的值为_____.【答案】5 4【解析】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=54x得:y=54m,则点A的坐标为:(m,54m),线段AB的长度为54m,点D的纵坐标为54m,∵点A在反比例函数y=kx上,∴k=54m2,即反比例函数的解析式为:y=254mx,∵四边形ABCD为正方形,∴四边形的边长为54 m,点C,点D和点E的横坐标为m+54m=94m,把x=94m代入y=254mx得:y=59 m,即点E的纵坐标为59 m,则EC=59m,DE=54m﹣59m=2536m,∴54DE EC故答案为:5 425.婷婷在发现一个门环的示意图如图所示.图中以正六边形ABCDEF的对角线AC的中点O 为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=123cm,则该圆的半径为_____cm.【答案】36+【解析】连接OB,OP,∵AB=BC,O为AC的中点,∴OB⊥AC,∵AQ是⊙O的切线,∴OP⊥AQ,设该圆的半径为r,∴OB=OP=r,∵∠ABC=120°,∴∠BAO=30°,∴AB=BC=CD=2r,AO3r,∴AC=3r,∴sin∠PAO=OPAO3r3==过Q作QG⊥AC于G,过D作DH⊥QG于H,则四边形DHGC是矩形,∴HG=CD,DH=CG,∠HDC=90°,∴sin∠PAO =Q QG 1A 1233G Q ==,∠QDH =120°﹣90°=30°, ∴QG =12, ∴AG =22AQ QG 122-=,∴QH =12﹣2r ,DH =23122r -,∴tan∠QDH =tan30°=1223323122QH r DH r -==-, 解得r =36+,∴该圆的半径为36+cm ,故答案为36+.二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表:时间(天)1 3 6 10 36 … 日销售量(件) 94 90 84 76 24 … 未来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t 为整数).下面我们来研究 这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.27.已知,正方形ABCD,∠EAF=45°,(1)如图1,当点E,F分别在边BC,CD上,连接EF,求证:EF=BE+DF;(2)如图2,点M,N分别在边AB,CD上,且BN=DM,当点E,F分别在BM,DN上,连接EF,请探究线段EF,BE,DF之间满足的数量关系,并加以证明;(3)如图3,当点E,F分别在对角线BD,边CD上,若FC=2,则BE的长为.【答案】(1)见解析;(2)EF2=BE2+DF2;理由见解析;(3)2【解析】(1)证明:如图1中,将△ADF绕点A顺时针旋转90°,得△ABG,∴△ADF≌△ABG,∴AF=AG,DF=BG,∠DAF=∠BAG,∵正方形ABCD,∴∠D=∠BAD=∠ABE=90°,AB=AD,∴∠ABG=∠D=90°,即G、B、C在同一直线上,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°,即∠EAG=∠EAF,∴△EAG≌△EAF(SAS),∴EG=EF,∵BE+DF=BE+BG=EG,∴EF=BE+DF.(2)结论:EF2=BE2+DF2,理由:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)∴△ADF≌△ABH,∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH,∵∠EAF=45°,∴∠DAF+∠BAE=90°﹣45°=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°,即∠EAH=∠EAF,∴△EAH≌△EAF(SAS),∴EH=EF,∵BN=DM,BN∥DM,∴四边形BMDN是平行四边形,∴∠ABE=∠MDN,∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°,∴EH2=BE2+BH2,∴EF2=BE2+DF2,(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3).∵∠ADF=90°,∴AF为⊙O直径,∵BD为正方形ABCD对角线,∴∠EDF=∠EAF=45°,∴点E在⊙O上,∴∠AEF=90°,∴△AEF为等腰直角三角形,∴AE=EF,∴△ABE≌△CBE(SAS),∴AE=CE,∴CE=EF,∵EM⊥CF,CF=2,∴CM=12CF=1,∵EN⊥BC,∠NCM=90°,∴四边形CMEN是矩形∴EN=CM=1,∵∠EBN=45°,∴BE EN.28.如图,抛物线y=﹣34x2+bx+c与x轴交于A、B两点,与y轴交于C.直线y=34x+3经过点A、C.(1)求抛物线的解析式;(2)P是抛物线上一动点,过P作PM∥y轴交直线AC于点M,设点P的横坐标为t.①若以点C、O、M、P为顶点的四边形是平行四边形,求t的值.②当射线MP,AC,MO中一条射线平分另外两条射线的夹角时,直接写出t的值.【答案】(1)239344y x x =--+;(2)①满足条件的t 的值为2或﹣2或﹣2﹣2;②综合以上可得t 的值为72122,,255--- 【解析】(1)在y =34x+3中,令x =0,y =3;令y =0,x =﹣4,得A (﹣4,0),C (0,3), 代入抛物线y=-34x 2+bx+c 解析式得:943b c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式239344y x x =--+; (2)设P (t ,239344x x --+), ∵四边形OCMP 为平行四边形,∴PM=OC =3,PM∥OC,∴M 点的坐标可表示为(t ,34t+3), ∴PM=2334t t --, ∴|2334t t --=3, 当﹣34t 2﹣3t =3,解得t =2, 当﹣34t 2﹣3t =﹣3,解得t 1=﹣2t 2=﹣2﹣2, 综上所述,满足条件的t 的值为2或﹣22﹣2;(3)如图1,若当MP 平分AC 、MO 的夹角,则∠AMN=∠OMN,∵PN⊥OA,∴AN=ON ,∴t 的值为﹣2;如图2,若AC 平分MP 、MO 的夹角,过点C 作CH⊥OA,CG⊥MP,则CG =CH , ∵1122ACO S OM CH OC CG =⋅=⋅V , ∴OM=OC =3,∵点M 在直线AC 上,∴M(t ,34t+3), ∴MN 2+ON 2=OM 2,可得,223(3)94t ++=,解得t =﹣7225, 如图3,若MO平分AC、MP的夹角,则可得∠NMO=∠OMC,过点O作OK⊥AC,∴OK=ON,∵∠AKO=∠AOC=90°,∠OAK=OAC,∴△AOK∽△ACO,∴AO OK AC OC=,∴453OK =,∴OK=125,∴t=﹣125,综合以上可得t的值为7212 2,,255---.。

【2020年】四川省中考数学模拟试卷(解析版)

【2020年】四川省中考数学模拟试卷(解析版)

2020年四川省中考数学模拟试卷含答案一、选择题(本大题共10小题,共30分)1.比1小2的数是A. B. C. D. 1【答案】A【解析】解:.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、应为,故本选项错误;B、应为,故本选项错误;C、,正确;D、应为,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A. 米B. 米C.米 D. 米【答案】D【解析】解:米故选D.先将25100用科学记数法表示为,再和相乘.中,a的整数部分只能取一位整数,此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A. B. C. D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是,故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.7.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A. B. C. D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A、,,,所以正确.B、,,EDB正确.D、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,是的外接圆,已知,则的大小为A.B.C.D.【答案】A【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知∽且::2,则AB:______.【答案】1:【解析】解:∽,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知一个正数的平方根是和,则这个数是______.【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16.将绕点B逆时针旋转到,使A、B、在同一直线上,若,,,则图中阴影部分面积为______.【答案】【解析】解:,,,,,,,阴影部分面积.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C在点B的北偏西方向上.是否穿过原始森林保护区,为什么?参考数据:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.名称三棱柱四棱柱五棱柱六棱柱图形顶点数a61012棱数b912面数c58观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为,则它有个侧面,共有个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有个面,2n个顶点和3n条棱是解题关键.22.如图,在方格纸中请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.求从中随机抽取出一个黑球的概率是多少?若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x轴相切于点D.求直线l的解析式;将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26.如图,已知抛物线经过,两点,顶点为D.求抛物线的解析式;将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N的坐标.【答案】解:已知抛物线经过,,,解得,所求抛物线的解析式为;,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点,将原抛物线沿y轴向下平移1个单位后过点C.平移后的抛物线解析式为:;点N在上,可设N点坐标为,将配方得,其对称轴为直线.时,如图,,,此时,点的坐标为.当时,如图,同理可得,,此时,点N的坐标为.当时,由图可知,N点不存在,舍去.综上,点N的坐标为或.【解析】利用待定系数法,将点A,B的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。

2020年四川省成都市中考数学全真模拟试卷1解析版

2020年四川省成都市中考数学全真模拟试卷1解析版

2020年四川省成都市中考数学全真模拟试卷1解析版一.选择题(共10小题,满分30分,每小题3分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.设a、b是两个整数,若定义一种运算“△”,a△b=a2+b2+ab,则方程(x+2)△x=1的实数根是()A.x1=x2=1B.x1=0,x2=1C.x1=x2=﹣1D.x1=1,x2=﹣23.下列事件中一定不会发生的是()A.抛掷硬币10次全部正面朝上B.明天会下雨C.小李昨天还是15岁,今天就16岁了D.一天有25个小时4.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个5.在相同条件下重复试验,若事件A发生的概率是,则下列说法正确的是()A.说明在相同条件下做100次试验,事件A必发生50次B.说明在相同条件下做多次这种试验,事件A发生的频率必是50%C.说明在相同条件下做两个100次这种试验,事件A平均发生50次D.说明在相同条件下做100次这种试验,事件A可能发生50次6.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠27.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹8.如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针方向旋转60°到OD,则PD的长为()A.B.C.D.29.扇形的弧长为20πcm,面积为240πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分24分,每小题3分)11.点(2,3)关于原点对称的点的坐标是.12.x1,x2是方程x2+2x﹣3=0的两个根,则代数式x12+3x1+x2=.13.如图,四边形ABCD内接于⊙O,延长CO交⊙O于点E,连接BE.若∠A=100°,∠E=60°,则∠ECD=°.14.如图,在等腰Rt△ABC中,∠C=90°,AC=2,以BC边的中点D为圆心,以CD的长为半径作弧,交AB于点E;以点A为圆心,以AC的长为半径作弧,交AB于点F,则阴影部分的面积为.15.李明有红、黑、白3件运动上衣和白、黑2条运动短裤,则穿着“衣裤同色”的概率是.16.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为.17.如图,已知⊙O是△ABC的内切圆,且∠ABC=60°,∠ACB=80°,则∠BOC的度数为.18.如果抛物线L:y=ax2+bx+c(其中a、b、c是常数,且a≠0)与直线l都经过y轴上的同一点,且抛物线的顶点P在直线l上,那么称该直线l是抛物线L的“梦想直线”如果直线l:y=nx+1(n是常数)是抛物线L:y=x2﹣2x+m(m是常数)的“梦想直线”,那么m+n的值是.三.解答题(共2小题,满分14分)19.解方程.(1)(x﹣1)2﹣4=0(2)x2﹣2x﹣2=0(3)x2﹣6x+9=020.先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的代入求值.四.解答题(共4小题,满分32分,每小题8分)21.某区为了解全区2800名九年级学生英语口语考试成绩的情况,从中随机抽取了部分学生的成绩(满分24分,得分均为整数),制成下表:(1)填空:①本次抽样调查共抽取了名学生;②学生成绩的中位数落在分数段;③若用扇形统计图表示统计结果,则分数段为x≤16的人数所对应扇形的圆心角为°;(2)如果将21分以上(含21分)定为优秀,请估计该区九年级考生成绩为优秀的人数.22.在平面直角坐标系中,△ABC的位置如图所示,(每个小方格都是边长为1个单位长度的正方形).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点A顺时针旋转180°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标.23.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数.24.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?五.解答题(共1小题,满分10分,每小题10分)25.如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.六.解答题(共1小题,满分10分,每小题10分)26.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】根据题中的新定义将所求方程化为普通方程,左边化为完全平方式,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:∵a△b=a2+b2+ab,∴(x+2)△x=(x+2)2+x2+x(x+2)=1,整理得:x2+2x+1=0,即(x+1)2=0,解得:x1=x2=﹣1.故选:C.【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.【分析】根据随机事件的定义对各选项进行逐一分析即可.【解答】解:A、抛掷硬币10次全部正面朝上是随机事件,故本选项错误;B、明天会下雨是随机事件,故本选项错误;C、小李昨天还是15岁,今天就16岁了是随机事件,故本选项错误;D、一天有25小时是一定不会发生的事件,故本选项正确.故选:D.【点评】本题考查的是随机事件与不可能事件,熟记随机事件与不可能事件的定义是解答此题的关键.4.【分析】函数是一种最基本的二次函数,画出图象,直接判断.【解答】解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.【点评】本题考查了抛物线y=ax2的性质:①图象是一条抛物线;②开口方向与a有关;③对称轴是y轴;④顶点(0,0).5.【分析】根据概率的意义作答.理解概率只表示可能性的大小,并不表示事件一定为必然事件.【解答】解:A、说明在相同条件下做100次试验,事件A可能发生50次,故本选项错误;B、说明在相同条件下做多次这种试验,事件A发生的频率必稳定在50%附近,故本选项错误;C、说明在相同条件下做两个100次这种试验,事件A平均发生50次,不是概率的意义,故本选项错误;D、说明在相同条件下做100次这种试验,事件A可能发生50次,故本选项正确.故选:D.【点评】本题考查了概率的意义,明确概率依赖于事件,根据事件是必然事件还是随机事件解答.6.【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.7.【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、天空划过一道流星是“点动成线”,故本选项不合题意;B、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项符合题意.C、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项不合题意;D、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项不合题意;故选:B.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.8.【分析】作DE⊥CB于E,根据题意先求得∠AOP=60°,∠DOC=60°.利用三角函数可求DE=,EO=.根据勾股定理即可求PD的值.【解答】解:如图,作DE⊥CB于E.∵OB=PB=1,∴OA=1.又∵PA切⊙O于点A,则OA⊥AP,∴∠AOP=60°.又∵OA绕点O逆时针方向旋转60°,∴∠DOC=60°.∴DE=1×sin60°=,EO=.∴PD==.故选:A.【点评】考查了勾股定理和解直角三角形的知识及切线的性质.9.【分析】根据扇形面积公式和扇形的弧长公式之间的关系:S=lr,把对应的数值代入即可扇形求得半径r的长.=lr【解答】解:∵S扇形∴240π=•20π•r∴r=24 (cm)故选:C.=lr.【点评】解此类题目的关键是掌握住扇形面积公式和扇形的弧长公式之间的等量关系:S扇形10.【分析】①由x=2时,y<0即可判断;②方程ax2+bx+c=0两根分别为1,3;③当x<2时,函数为增函数y随x的增大而减小,当x>2时,函数为增函数y随x的增大而增大;④由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=2>0,b<0即可判断.【解答】解:①由x=2时,y=4a+2b+c,由图象知:y=4a+2b+c<0,故正确;②方程ax2+bx+c=0两根分别为1,3,都大于0,故正确;③当x<2时,由图象知:y随x的增大而减小,故错误;④由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C.【点评】本题考查了二次函数图象与系数的关系,属于基础题,关键是正确获取图象信息进行解题.二.填空题(共8小题,满分24分,每小题3分)11.【分析】根据平面内关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意易得答案.【解答】解:根据平面内关于原点对称的点,横坐标与纵坐标都互为相反数,故点(2,3)关于原点对称的点的坐标是(﹣2,﹣3),故答案为:(﹣2,﹣3).【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.12.【分析】先根据根与系数的关系得到x1+x2=﹣2,再利用x1是方程x2+2x﹣3=0的根得到x12+2x1﹣3=0,即x12+2x1=3,则x12+3x1+x2=x12+2x1+x1+x2,然后利用整体代入得方法计算.【解答】解:∵x1,x2是方程x2+2x﹣3=0的两个根,∴x12+2x1﹣3=0,即x12+2x1=3,x1+x2=﹣2,则x12+3x1+x2=x12+2x1+x1+x2=3﹣2=1,故答案为:1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.13.【分析】根据圆周角定理得到∠EBC=90°,求出∠BCE,根据圆内接四边形的性质得到∠BCD =180°﹣∠A=80°,计算即可.【解答】解:∵EC是⊙O的直径,∴∠EBC=90°,∴∠BCE=90°﹣∠E=30°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠A=80°,∴∠ECD=∠BCD﹣∠BCE=50°,故答案为:50【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.14.【分析】连接DE,如图,利用圆周角定理得到∠CEB=90°,再根据等腰直角三角形的性质得∠A=∠B=45°,所以∠CDE=90°,根据扇形面积公式和计算出S由AC、AE和弧CE所围成的图形=S△ABC﹣S扇形CDE﹣S△BDE=﹣,然后利用阴影部分的面积=S扇形CAF﹣S由AC、AE和弧CE所围成的图形进行计算.【解答】解:连接DE,如图,∵点D为BC的中点,即BC为直径,∴∠CEB=90°,∴CE⊥AB,而△ACB为等腰直角三角形,∴∠A=∠B=45°,∴∠CDE =90°,S 由AC 、AE 和弧CE 所围成的图形=S △ABC ﹣S 扇形CDE ﹣S △BDE=×2×2﹣﹣×1×1=﹣, ∴阴影部分的面积=S 扇形CAF ﹣S 由AC 、AE 和弧CE 所围成的图形=﹣(﹣)=π﹣.故答案为π﹣.【点评】本题考查了扇形面积的计算:设圆心角是n °,圆的半径为R 的扇形面积为S ,则S 扇形=或S 扇形lR (其中l 为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等腰直角三角形的性质.15.【分析】列举出所有等情况数,看穿着“衣裤同色”的情况数占总情况数的多少即可.【解答】解:根据题意画图如下:共有6种等情况数,“衣裤同色”的情况数有2种,所以所求的概率为=.故答案为:.【点评】此题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.16.【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数为x(x﹣1),即可列方程.【解答】解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.17.【分析】根据三角形的内心的概念得到∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,根据三角形内角和定理计算即可.【解答】解:∵⊙O是△ABC的内切圆,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°,故答案为:110°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握三角形的内心是三角形三个内角角平分线的交点是解题的关键.18.【分析】由直线可求得与y轴的交点坐标,代入抛物线可求得n的值,再由抛物线解析式可求得其顶点坐标,代入直线解析式可求得m的值.【解答】解:在y=nx+1中,令x=0可求得y=1,在y=x2﹣2x+m中,令x=0可得y=m,∵直线与抛物线都经过y轴上的一点,∴m=1,∴抛物线解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线顶点坐标为(1,0),∵抛物线顶点在直线上,∴0=n+1,解得n=﹣1,∴m+n=0,故答案为:0.【点评】本题考查了二次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,理解题目中“梦想直线”的定义是解题的关键.三.解答题(共2小题,满分14分)19.【分析】(1)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可;(3)先分解因式,再开方,即可得出一元一次方程,求出方程的解即可.【解答】解:(1)(x﹣1)2﹣4=0(x﹣1)2=4,x﹣1=±2,x1=﹣1,x2=3;(2)x2﹣2x﹣2=0,b2﹣4ac=(﹣2)2﹣4×1×(﹣2)=12,x=,x1=1+,x2=1﹣;(3)x2﹣6x+9=0,(x﹣3)2=0,x﹣3=0,即x1=x2=3.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.20.【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定x的值,代入计算即可.【解答】解:原式=1﹣×=1﹣=﹣=﹣,由题意得,x≠﹣1,0,1,当x=3时,原式=﹣【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.四.解答题(共4小题,满分32分,每小题8分)21.【分析】(1)①将每一个分数段的学生数相加即可得到抽取的总人数;②根据学生数确定中位数落在哪两名学生的身上,然后找到这两名学生落在哪一小组即可;③用x≤16小组的学生数除以总人数乘以360°即可得到该组所占圆心角的度数.(2)用优秀学生数除以抽查学生数乘以总人数即可.【解答】解:(1)①∵10+15+35+112+128=300人,∴本次一共抽查了300名学生;②∵一共抽查了300名学生,∴中位数应该是第150名和第151名学生的平均数,∵第150名和第151名学生在21≤x≤22小组,∴中位数落在21≤x≤22小组;③∵=12°,∴其所占圆心角为12°;(2)∵成绩在21分以上的有112+128=240人,∴2800×=2240人,∴估计该区九年级考生成绩为优秀2240人.【点评】本题考查了两种统计图的应用,解题的关键是正确的识图,并将两种图形结合起来从中整理出进一步解题的信息.22.【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;(2)分别作出点B、C绕着点A顺时针旋转180°所得对应点,顺次连接可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,B2的坐标为(﹣2,﹣2),C2的坐标为(﹣3,1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.【分析】根据切线长定理得等腰△PAB,运用三角形内角和定理求解即可.【解答】解:根据切线的性质得:∠PAC=90°,所以∠PAB=90°﹣∠BAC=90°﹣20°=70°,根据切线长定理得PA=PB,所以∠PAB=∠PBA=70°,所以∠P=180°﹣70°×2=40°.【点评】此题主要考查了切线长定理和切线的性质,得出PA=PB是解题关键.24.【分析】(1)先确定B点和C点坐标,然后利用待定系数法求出抛物线解析式,再利用配方法确定顶点D的坐标,从而得到点D到地面OA的距离;(2)由于抛物线的对称轴为直线x=6,而隧道内设双向行车道,车宽为4m,则货运汽车最外侧与地面OA的交点为(2,0)或(10,0),然后计算自变量为2或10的函数值,再把函数值与6进行大小比较即可判断;(3)抛物线开口向下,函数值越大,对称点之间的距离越小,于是计算函数值为8所对应的自变量的值即可得到两排灯的水平距离最小值.【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.【点评】本题考查了二次函数的应用:构建二次函数模型解决实际问题,利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.五.解答题(共1小题,满分10分,每小题10分)25.【分析】欲证明DE是⊙O的切线,只要证明DO⊥DE即可【解答】证明:∵点E为AC的中点,OC=OB,∴OE∥,∴∠EOC=∠B∠EOD=∠ODB,又∵OD=OB,∴∠ODB=∠B,∴∠EOC=∠EOD,又∵OC=OD,OE=OE,∴△OCE≌△ODE,∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.【点评】此题考查切线的判定,三角形的中位线,等腰三角形的性质,三角形全等的判定与性质等知识点.六.解答题(共1小题,满分10分,每小题10分)26.【分析】(1)可根据OB、OC的长得出B、C两点的坐标,然后用待定系数法即可求出抛物线的解析式.(2)可将四边形ACPQ分成直角三角形AOC和直角梯形CQPC两部分来求解.先根据抛物线的解析式求出A点的坐标,即可得出三角形AOC直角边OA的长,据此可根据上面得出的四边形的面积计算方法求出S与m的函数关系式.(3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,据此可设出N点的坐标,然后用坐标系中两点间的距离公式分别表示出CM 、MN 、CN 的长,然后分三种情况进行讨论:①CM =MN ;②CM =CN ;③MN =CN .根据上述三种情况即可得出符合条件的N 点的坐标.【解答】解:(1)∵OB =OC =3,∴B (3,0),C (0,3)∴,解得1分 ∴二次函数的解析式为y =﹣x 2+2x +3;(2)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,M (1,4)设直线MB 的解析式为y =kx +n ,则有解得 ∴直线MB 的解析式为y =﹣2x +6∵PQ ⊥x 轴,OQ =m ,∴点P 的坐标为(m ,﹣2m +6)S 四边形ACPQ =S △AOC +S 梯形PQOC =AO •CO +(PQ +CO )•OQ (1≤m <3)=×1×3+(﹣2m +6+3)•m =﹣m 2+m +;(3)线段BM 上存在点N (,),(2,2),(1+,4﹣)使△NMC 为等腰三角形CM =,CN =,MN =①当CM =NC 时,,解得x 1=,x 2=1(舍去)此时N (,)②当CM =MN 时,,解得x1=1+,x2=1﹣(舍去),此时N(1+,4﹣)③当CN=MN时,=解得x=2,此时N(2,2).【点评】本题主要考查二次函数解析式的确定、图形的面积求法、函数图象交点、等腰三角形的判定等知识及综合应用知识、解决问题的能力.考查学生分类讨论、数形结合的数学思想方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档