2020年高考物理考点练习6.23 与圆周运动相关的功能问题(提高篇)(解析版)

合集下载

高考物理生活中的圆周运动答题技巧及练习题(含答案)及解析

高考物理生活中的圆周运动答题技巧及练习题(含答案)及解析

高考物理生活中的圆周运动答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

(完整版)圆周运动高考题(含答案),推荐文档

(完整版)圆周运动高考题(含答案),推荐文档

1 f; T匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为v =s=2r t T其方向沿轨迹切线,国际单位制中单位符号是m/s;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为==2t T在国际单位制中单位符号是rad/s;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是Hz;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r/min.2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v=rω.T =,v =2,= 2 f 。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为v 2 a n=r 公式:=2r 42rT 21. 线速度V=s/t=2πr/T ;== v 2. 角速度 ω=Φ/t =2π/T =2πf 3. 向心加速度 a =V 2/r =ω2r =(2π/T)2r4. 向心力 F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5. 周期与频率:T =1/f6. 角速度与线速度的关系:V =ωr7. 角速度与转速的关系 ω=2πn (此处频率与转速意义相同)8. 主要物理量及单位:弧长 s:米(m);角度 Φ:弧度(rad );频率 f :赫(Hz );周期 T :秒(s );转速n :r/s ;半径 r :米(m );线速度 V :(m/s );角速度 ω:(rad/s );向心加速度:(m/s 2)。

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧分析及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C与B点的水平距离;(2)小球通过管道上B点时对管道的压力大小和方向.【答案】(1)0.9m;(2)1N【解析】【分析】(1)根据平抛运动时间求得在C点竖直分速度,然后由速度方向求得v,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)根据平抛运动的规律,小球在C点竖直方向的分速度v y=gt=10m/s水平分速度v x=v y tan450=10m/s则B点与C点的水平距离为:x=v x t=10m(2)根据牛顿运动定律,在B点N B+mg=m2 v R解得 N B=50N根据牛顿第三定律得小球对轨道的作用力大小N, =N B=50N方向竖直向上【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.4.如图所示,竖直平面内有一光滑的直角细杆MON,其中ON水平,OM竖直,两个小物块A和B分别套在OM和ON杆上,连接AB的轻绳长为L=0.5m,.现将直角杆MON绕过OM的轴O1O2缓慢地转动起来.已知A的质量为m1=2kg,重力加速度g取10m/s2。

2020年高考物理考点练习6.16 与体育娱乐相关的功能问题(解析版)

2020年高考物理考点练习6.16 与体育娱乐相关的功能问题(解析版)

2020年高考物理100考点最新模拟题千题精练第六部分机械能专题6.16与体育娱乐相关的功能问题一.选择题1.(6分)(2019陕西榆林四模)乘坐摩天轮观光是广大青少年喜爱的一种户外娱乐活动,如图所示,某同学乘坐摩天轮随座舱在竖直面内做匀速圆周运动。

下列说法正确的是()A.该同学运动到最低点时,座椅对他的支持力大于其所受重力B.上升程中,该同学所受合外力为零C.摩天轮转动过程中,该同学的机械能守恒D.摩天轮转动一周的过程中,该同学所受重力的冲量为零【参考答案】A【名师解析】圆周运动过程中,由重力和支持力的合力提供向心力F,在最低点,向心力指向上方,所以F =N﹣mg,则支持力N=mg+F,所以支持力大于重力,故A正确,B错误;机械能等于重力势能和动能之和,摩天轮运动过程中,做匀速圆周运动,乘客的速度大小不变,则动能不变,但高度变化,所以机械能在变化,故C错误;转动一周,重力的冲量为I=mgT,不为零,故D错误。

2.(2017·天津卷)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一。

摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动。

下列叙述正确的是()A. 摩天轮转动过程中,乘客的机械能保持不变B. 在最高点,乘客重力大于座椅对他的支持力C. 摩天轮转动一周的过程中,乘客重力的冲量为零D. 摩天轮转动过程中,乘客重力的瞬时功率保持不变【参考答案】B【名师解析】乘客的机械能包括动能和重力势能,摩天轮做匀速圆周运动,所以动能不变,重力势能时刻改变,即机械能时刻改变,故A项错误;在最高点对乘客进行受力分析,列牛顿第二定律方程,得所以,故B项正确;根据冲量,重力不为零,作用时间不为零,所以重力的冲量不为零,故C项错误;乘客重力的瞬时功率,指线速度和竖直方向的夹角,转动过程中、不变,角不断变化,重力瞬时功率不断变化,故D项错误。

【分析】因为动能不变,重力势能时刻变化,判出机械能不断变化;根据牛顿第二定律计算重力与支持力的关系;冲量是力在时间上的积累,力的作用时间不为零,冲量就不为零;根据计算瞬时功率。

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C 点时mg =m 则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

2020年高考物理《圆周运动与动能定理的综合考查》专题训练及答案解析

2020年高考物理《圆周运动与动能定理的综合考查》专题训练及答案解析

高考物理《圆周运动与动能定理的综合考查》专题训练1.(2015·全国卷Ⅰ,17)如图,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平。

一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道。

质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小。

用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功。

则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离【答案】:C【解析】:根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg -mg =m v 2R ,所以N 点动能为E k N =3mgR 2,从P 点到N 点根据动能定理可得mgR -W =3mgR 2-mgR ,即克服摩擦力做功W =mgR2。

质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR 2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确。

2.如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g 。

质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A.14mgR B.13mgR C.12mgR D.π4mgR 【答案】 C【解析】 在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有FN -mg =m v2R ,FN =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -Wf =12mv2,解得Wf =12mgR ,所以克服摩擦力做功12mgR ,C 正确。

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

2020年高考物理专题复习:圆周运动含解析

2020年高考物理专题复习:圆周运动含解析

[课时作业] 单独成册 方便使用[基础题组]一、单项选择题1.在冬奥会短道速滑项目中,运动员绕周长仅111 m 的短道竞赛.运动员比赛过程中在通过弯道时如果不能很好地控制速度,将发生侧滑而摔离正常比赛路线.图中圆弧虚线Ob 代表弯道,即正常运动路线,Oa 为运动员在O 点时的速度方向(研究时可将运动员看成质点).下列论述正确的是( ) A .发生侧滑是因为运动员受到的合力方向背离圆心 B .发生侧滑是因为运动员受到的合力大于所需要的向心力 C .若在O 点发生侧滑,则滑动的方向在Oa 左侧D .若在O 点发生侧滑,则滑动的方向在Oa 右侧与Ob 之间解析:运动员发生侧滑是因为运动员受到指向圆心的合力小于所需要的向心力,A 、B 错误.若在O 点发生侧滑,如果向心力突然消失,则沿切线Oa 运动,而现在是由于所提供的向心力小于所需要的向心力,因此滑动的方向在Oa 与Ob 之间,D 正确. 答案:D2.如图是自行车传动结构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮.假设脚踏板的转速为n ,则自行车前进的速度为( )A.2πnr 1r 3r 2B.πnr 2r 3r 1C.πnr 1r 3r 2D .2πnr 2r 3r 1解析:前进速度即为Ⅲ轮的线速度,由同一个轮上的点角速度相等,同一链条上的点线速度大小相等可得:ω1r 1=ω2r 2,ω3=ω2,又有ω1=2πn ,v =ω3r 3,所以v =2πnr 1r 3r 2,A 正确.答案:A3.如图所示,圆弧形凹槽固定在水平地面上,其中ABC 是以O 为圆心的一段圆弧,位于竖直平面内.现有一小球从一水平桌面的边缘P 点向右水平飞出,该小球恰好能从A 点沿圆弧的切线方向进入圆轨道.OA 与竖直方向的夹角为θ1,P A 与竖直方向的夹角为θ2.下列关系式正确的是( ) A .tan θ1tan θ2=2 B .cot θ1tan θ2=2 C .cot θ1cot θ2=2D .tan θ1cot θ2=2解析:小球在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,小球在A 点时速度与水平方向的夹角为θ1,tan θ1=v y v 0=gt v 0,位移与竖直方向的夹角为θ2,tan θ2=x y =v 0t 12gt 2=2v 0gt ,则tan θ1tan θ2=2.故A 正确,B 、C 、D 错误. 答案:A4.(2018·安徽合肥高三模拟)如图所示,在粗糙水平木板上放一个物块,使木板和物块一起在竖直平面内沿逆时针方向做匀速圆周运动,ab 为水平直径,cd 为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则( )A .物块始终受到三个力作用B .只有在a 、b 、c 、d 四点,物块受到合外力才指向圆心C .从a 到b ,物块所受的摩擦力先增大后减小D .从b 到a ,物块处于超重状态解析:在c 点处,物块可能只受重力作用,在d 点处,物块只受重力和支持力作用,在其他位置处,物块受到重力、支持力、静摩擦力作用,选项A 错误;物块做匀速圆周运动,合外力提供向心力,且始终指向圆心,选项B 错误;从a 运动到b ,向心力的水平分量先减小后增大,所以摩擦力先减小后增大,选项C 错误;从b 运动到a ,向心加速度有向上的分量,所以物块处于超重状态,选项D 正确. 答案:D5.如图所示,长为L 的细绳一端固定在O 点,另一端拴住一个小球.在O 点的正下方与O 点相距2L3的地方有一枚与竖直平面垂直的钉子A .把球拉起使细绳在水平方向伸直,由静止开始释放,当细绳碰到钉子后的瞬间(细绳没有断),下列说法中正确的是( )A .小球的向心加速度突然增大到原来的3倍B .小球的线速度突然增大到原来的3倍C .小球的角速度突然增大到原来的1.5倍D .细绳对小球的拉力突然增大到原来的1.5倍解析:细绳碰到钉子的瞬间,线速度不变,B 错误.圆周运动的半径由L 变为L3,由a =v 2r 知,a 增大到原来的3倍,A 正确.根据v =rω知,角速度ω增大到原来的3倍,C 错误.细绳碰到钉子前瞬间T -mg =m v 2L ,碰后瞬间T ′-mg =m v 2L 3,再根据机械能守恒有mgL =12m v 2,由此可得T ′=73T ,D 错误. 答案:A 二、多项选择题6.(2018·安徽皖江名校高三模拟)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O 、O ′分别为两轮盘的轴心,已知两个轮盘的半径之比r 甲∶r 乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的滑块A 、B ,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O 、O ′的间距R A =2R B .若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是( )A .滑块A 和B 在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3 B .滑块A 和B 在与轮盘相对静止时,向心加速度的比值为a A ∶a B =2∶9C .转速增加后滑块B 先发生滑动D .转速增加后两滑块一起发生滑动解析:假设轮盘乙的半径为R ,由题意可知两轮盘边缘的线速度大小相等,有ω甲(3R )=ω乙R ,得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A 、B 的角速度之比为1∶3,A 正确;滑块相对轮盘滑动前,根据a =ω2r 得A 、B 的向心加速度之比为a A ∶a B =2∶9,B 正确;据题意可得滑块的最大静摩擦力分别为f a =μm A g ,f b =μm B g ,最大静摩擦力之比为f a ∶f b =m A ∶m B ,滑块相对轮盘滑动前所受的静摩擦力之比为f a ′∶f b ′=(m A a A )∶(m B a B )=m A ∶(4.5 m B ),综上分析可得滑块B 先达到最大静摩擦力,先开始滑动,C 正确,D 错误. 答案:ABC7.(2018·江苏如皋质检)质量为m 的小球由轻绳a 和b 分别系于一轻质细杆的A 点和B 点,如图所示,绳a 与水平方向成θ角,绳b 在水平方向且长为l ,当轻杆绕轴AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是( )A .a 绳的张力不可能为零B .a 绳的张力随角速度的增大而增大C .当角速度ω2>gl tan θ,b 绳将出现弹力D .若b 绳突然被剪断,则a 绳的弹力一定发生变化解析:对小球受力分析可得a 绳的弹力在竖直方向的分力平衡了小球的重力,解得T a =mgsin θ,为定值,A 正确,B 错误.当T a cos θ=mω2l ,即ω=gl tan θ时,b 绳的弹力为零,若角速度大于该值,则b绳将出现弹力,C 正确.由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,D 错误. 答案:AC8.如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,要使小球不脱离圆轨道运动,v 0应当满足(g 取10 m/s 2)( ) A .v 0≥0 B .v 0≥4 m/s C .v 0≥2 5 m/sD .v 0≤2 2 m/s解析:要使小球不脱离轨道运动,则需越过最高点或不越过四分之一圆周.越过最高点的临界情况:mg =m v 2r ,得v =gr =2 m/s ,由动能定理得-mg ·2r =12m v 2-12m v 20,解得v 0=2 5 m/s ;若不通过四分之一圆周,根据机械能守恒定律有mgr =12m v 20,解得v 0=2 2 m/s.所以v ≥2 5 m/s 或v ≤2 2 m/s 均符合要求,C 、D 正确,A 、B 错误. 答案:CD[能力题组]一、选择题9.如图所示,竖直面内的光滑圆轨道处于固定状态,一轻弹簧一端连接在圆轨道圆心的光滑转轴上,另一端与圆轨道上的小球相连,小球的质量为1 kg ,当小球以2 m/s 的速度通过圆轨道的最低点时,球对轨道的压力为20 N ,轨道的半径r =0.5 m ,重力加速度g 取10 m/s 2,则小球要能通过圆轨道的最高点,小球在最高点的速度至少为( ) A .1 m/s B .2 m/s C .3 m/sD .4 m/s解析:设小球在轨道最低点时所受轨道支持力为F 1、弹簧弹力大小为N ,则F 1-mg -N =m v 21r ,求得N =2 N ,可判断出弹簧处于压缩状态.小球以最小速度通过最高点时,球对轨道的压力刚好为零,则mg -N =m v 22r ,求得v 2=2 m/s ,B 项正确. 答案:B10.如图所示,细绳长为L ,挂一个质量为m 的小球,小球离地面的高度h =2L ,当绳受到大小为2mg 的拉力时就会断裂,绳的上端系一质量不计的环,环套在光滑水平杆上.现让环与小球一起以速度v =gL 向右运动,在A 处环被挡住而立即停止,A 离墙的水平距离也为L ,小球在以后的运动过程中,小球第一次碰撞点离墙角B 点的距离是ΔH (不计空气阻力),则( ) A .ΔH =12L B .ΔH =53L C .ΔH =23LD .ΔH =32L解析:环被A 挡住时,小球做圆周运动,受到重力和绳子的拉力作用,两者的合力充当向心力,故有T -mg =m v 2L ,因为v =gL ,代入解得T =2mg ,故绳子会断开,断开之后小球做平抛运动,设小球直接落地,则h =12gt 2,小球的水平位移x =v t =2L >L ,所以小球先与墙壁碰撞.设小球平抛后经时间t ′与墙壁碰撞,则t ′=L v =L g ,小球下落高度h ′=12gt ′2=L 2,碰撞点距B 的距离ΔH =2L -L 2=32L ,故D 正确. 答案:D11.(多选)(2018·湖南长沙高三联考)如图所示,质量为m 的小球在竖直放置的光滑圆形管道内做圆周运动,下列说法正确的有( ) A .小球通过最高点的速度可能小于gRB .小球通过最低点时对轨道的压力大小等于小球的重力C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力解析:小球在光滑圆形管道内做圆周运动,只受重力和弹力,两者的合力提供向心力.小球通过最高点时,速度可以无限接近于零,选项A 正确;小球通过最低点时,受到重力和弹力,两者合力提供向心力,有N -mg =m v 2R ,选项B 错误;小球在水平线ab 以下管道中运动时,受到重力和弹力,合力沿半径方向的分力提供向心力,由于重力有背离圆心的分量,所以弹力一定指向圆心,因此外侧管壁必然对小球有作用力,选项C 正确;同理,小球在水平线ab 以上管道中运动时,由于重力有指向圆心的分量,所以弹力可以背离圆心,也可以指向圆心,选项D 错误.答案:AC二、非选择题12.(2018·陕西西安质检)某工厂生产流水线示意图如图所示,半径R =1 m 的水平圆盘边缘E 点固定一小桶,在圆盘直径DE 正上方平行放置的水平传送带沿顺时针方向匀速转动,传送带右端C 点与圆盘圆心O 在同一竖直线上,竖直高度h =1.25 m .AB 为一个与CO 在同一竖直平面内的四分之一光滑圆轨道,半径r =0.45 m ,且与水平传送带相切于B 点.一质量m =0.2 kg 的滑块(可视为质点)从A 点由静止释放,滑块与传送带间的动摩擦因数μ=0.2,当滑块到达B 点时,圆盘从图示位置以一定的角速度ω绕通过圆心O 的竖直轴匀速转动,滑块到达C 点时恰与传送带同速并水平抛出,刚好落入圆盘边缘的小桶内.取g =10 m/s 2,求:(1)滑块到达圆弧轨道B 点时对轨道的压力N B ; (2)传送带BC 部分的长度L ;(3)圆盘转动的角速度ω应满足的条件. 解析:(1)滑块从A 到B 过程中,由动能定理有 mgr =12m v 2B解得v B =2gr =3 m/s滑块到达B 点时,由牛顿第二定律有 N B ′-mg =m v 2B r 解得N B ′=6 N根据牛顿第三定律,滑块到达B 点时对轨道的压力大小为6 N ,方向竖直向下. (2)滑块离开C 点后做平抛运动,h =12gt 21 解得t 1=2hg =0.5 sv C =Rt 1=2 m/s滑块由B 到C 过程中,根据动能定理,有 -μmgL =12m v 2C -12m v 2B解得L =v 2B -v 2C2μg =1.25 m(3)滑块由B 到C 过程中,根据运动学公式,有 L =v B +v C 2t 2解得t 2=2Lv B +v C =0.5 s则t =t 1+t 2=1 s圆盘转动的角速度ω应满足条件 t =n ·2πω(n =1,2,3,…)解得ω=2n π rad/s(n =1,2,3,…). 答案:(1)6 N ,方向竖直向下 (2)1.25 m (3)ω=2n π rad/s(n =1,2,3,…)13.(2018·湖南六校联考)如图所示为水上乐园的设施,由弯曲滑道、竖直平面内的圆形滑道、水平滑道及水池组成,圆形滑道外侧半径R =2 m ,圆形滑道的最低点的水平入口B 和水平出口B ′相互错开,为保证安全,在圆形滑道内运动时,要求紧贴内侧滑行.水面离水平滑道高度h =5 m .现游客从滑道A 点由静止滑下,游客可视为质点,不计一切阻力,重力加速度g 取10 m/s 2,求:(1)起滑点A 至少离水平滑道多高?(2)为了保证游客安全,在水池中放有长度L =5 m 的安全气垫MN ,其厚度不计,满足(1)的游客恰落在M 端,要使游客能安全落在气垫上,安全滑下点A 距水平滑道的高度取值范围为多少? 解析:(1)游客在圆形滑道内侧恰好滑过最高点时,有 mg =m v 2R ①从A 到圆形滑道最高点,由机械能守恒,有 mgH 1=12m v 2+mg ×2R ② 解得H 1=52R =5 m ③(2)落在M 点时抛出速度最小,从A 到C 由机械能守恒 mgH 1=12m v 21④ v 1=2gH 1=10 m/s ⑤水平抛出,由平抛运动规律可知 h =12gt 2⑥ 得t =1 s 则s 1=v 1t =10 m落在N 点时s 2=s 1+L =15 m 则对应的抛出速度v 2=s 2t =15 m/s ⑧ 由mgH 2=12m v 22 得H 2=v 222g =11.25 m安全滑下点A 距水平滑道高度范围为5 m ≤H ≤11.25 m ⑨ 答案:(1)5 m (2)见解析。

高中物理(新人教版)必修第二册同步习题:圆周运动的动力学问题(同步习题)【含答案及解析】

高中物理(新人教版)必修第二册同步习题:圆周运动的动力学问题(同步习题)【含答案及解析】

第六章圆周运动专题强化练3圆周运动的动力学问题一、选择题1.(2020广东深圳高级中学高三上测试,)转笔是一项深受广大中学生喜爱的休闲活动,其中也包含了许多的物理知识。

如图所示,假设某同学将笔套套在笔杆的一端,在转笔时让笔杆绕其手指上的某一点O在竖直平面内做匀速圆周运动,则下列叙述中正确的是( )A.笔套做圆周运动的向心力是由笔杆对它的摩擦力提供的B.笔杆上离O点越近的点,做圆周运动的向心加速度越大C.当笔杆快速转动时,笔套有可能被甩走D.由于匀速转动笔杆,笔套受到的摩擦力大小不变2.(2020天津静海一中高一上期末,)如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动且未相对滑动。

当圆筒以较大的角速度ω匀速旋转以后,下列说法正确的是( )A.物体受到4个力的作用,其中弹力增大,摩擦力也增大了B.物体受到4个力的作用,其中弹力增大,摩擦力减小了C.物体受到3个力的作用,其中弹力和摩擦力都减小了D.物体受到3个力的作用,其中弹力增大,摩擦力不变3.(2020河北鸡泽一中高一下测试,)(多选)质量均为m的小球A、B分别固定在一长为L的轻杆的中点和一端点,如图所示。

当轻杆绕另一端点O在光滑水平面上做角速度为ω的匀速圆周运动时,则( )A.处于中点的小球A的线速度为LωB.处于中点的小球A的加速度为Lω2C.处于端点的小球B所受的合外力为mω2LD.轻杆OA段中的拉力与AB段中的拉力之比为3∶24.(2020福建厦门六中高三上模拟,)如图所示,A、B、C三个物体放在水平旋转平台上随平台一起做匀速圆周运动,三个物体与旋转平台间的动摩擦因数均为μ,已知A的质量为2m,B、C的质量均为m,A、B离转轴的距离均为R,C距离转轴2R,以下说法正确的是( )A.若转速加快,A最先相对平台滑动B.若转速加快,C一定不会最先相对平台滑动C.若都没相对平台滑动,则向心加速度a A=a C>a BD.若都没相对平台滑动,则摩擦力f A=f C>f B5.(2020浙江东阳中学高三上月考,)如图所示,金属环M、N用不可伸长的细线连接,分别套在水平粗糙细杆和竖直光滑细杆上,当整个装置以竖直杆为轴、以不同大小的角速度匀速转动时,两金属环一直相对杆不动,下列判断正确的是( )A.转动的角速度越大,细线中的拉力越大B.转动的角速度越大,环M与水平杆之间的弹力越大C.转动的角速度越大,环N与竖直杆之间的弹力越大D.转动的角速度不同,环M与水平杆之间的摩擦力大小可能相等二、非选择题6.(2020天津静海一中高一上期末,)如图所示,水平圆盘中心放一质量为M的物块,一根细绳一端连接物块,另一端绕过光滑的圆盘边缘后连接一个质量为m的小球,圆盘以角速度ω匀速转动时,小球随着一起转动,此时小球距圆盘中轴线的距离为r,物块恰好没有滑动,重力加速度大小为g。

2020年高考物理6.23 与圆周运动相关的功能问题(提高篇)(含解析)

2020年高考物理6.23 与圆周运动相关的功能问题(提高篇)(含解析)

专题6。

23与圆周运动相关的功能问题(提高篇)一.选择题1.(2019吉林长春四模)(6分)如图所示,两个内壁光滑的圆形管道竖直固定,左侧管道的半径大于右侧管道半径。

两个小球A 、B 分别位于左、右管道上的最高点,A 球的质量小于B 球质量,两球的半径都略小于管道横截面的半径.由于微小的扰动,两个小球由静止开始自由滑下,当它们通过各自管道最低点时,下列说法正确的是( )A .A 球的速率一定等于B 球的速率B .A 球的动能一定等于B 球的动能C .A 球的向心加速度一定等于B 球的向心加速度D .A 球对轨道的压力一定等于B 球对轨道的压力【参考答案】C【命题意图】以小球沿竖直面内内壁光滑的圆形管道的圆周运动为背景,考查动能定理、牛顿运动定律和学生的分析综合能力。

【解题思路】设小球的质量为m,管道半径为R ,由动能定理,则小球下落到最低点时的动能Ek=12mv2=2mgR ,解得速度大小2gR =v 由于竖直面内内壁光滑的圆形管道的半径R 不同,所以A 球的速率大于B 球的速率,A 球的动能大于B 球的动能,选项AB 错误;两球的向心加速度大小24a g R ==v n ,即A 球的向心加速度一定等于B 球的向心加速度,选项C正确;设小球通过各自管道最低点时所受的支持力为FN,由牛顿第二定律FN—mg=man,解得FN=5mg,由牛顿第三定律可知小球对轨道压力大小为FN=FN’=5mg,与小球质量有关,由于A球的质量小于B球质量,所以A球对轨道的压力一定小于B球对轨道的压力,选项D错误。

【规律总结】对于竖直面内的圆周运动,求运动到最高点或最低点的速度,一般运用动能定理列方程求解;计算运动到最高点或最低点受到的弹力,一般运用牛顿第二定律列方程得出。

2.(2018·安徽第三次联考)如图所示,光滑轨道由AB、BCDE两段细圆管平滑连接组成,其中AB段水平,BCDE段为半径为R的四分之三圆弧,圆心O及D点与AB等高,整个轨道固定在竖直平面内,现有一质量为m,初速度v0=错误!的光滑小球水平进入圆管AB,设小球经过轨道交接处无能量损失,圆管孔径远小于R,则(小球直径略小于圆管内径)()A.小球到达C点时的速度大小vC=错误!B.小球能通过E点且抛出后恰好落至B点C.无论小球的初速度v0为多少,小球到达E点时的速度都不能为零D.若将DE轨道拆除,则小球能上升的最大高度与D点相距2R 【参考答案】B【名师解析】对小球从A点至C点过程,由机械能守恒有错误!mv02+mgR=错误!mvC2,解得vC=错误!,选项A错误;对小球从A点至E 点的过程,由机械能守恒有错误!mv02=错误!mvE2+mgR,解得vE=错误!,小球从E点抛出后,由平抛运动规律有x=vEt,R=错误!gt2,解得x=R,则小球恰好落至B点,选项B正确;因为圆管内壁可提供支持力,所以小球到达E点时的速度可以为零,选项C错误;若将DE轨道拆除,设小球能上升的最大高度为h,则有错误!mvD2=mgh,又由机械能守恒可知vD=v0,解得h=54R,选项D错误。

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动

高一物理课后习题精准解析(新教材人教版必修第二册)第6章__圆周运动高一物理课后习题精准解析(新教材人教版必修第二册)第6章圆周运动第一节引言圆周运动是物理学中一个重要的概念,它广泛应用于生活中的各个领域。

在高中物理教学中,掌握圆周运动的基本原理和相关习题解析是十分重要的。

本文将对高一物理课后习题中第6章圆周运动的题目进行精准解析和讲解。

第二节基本概念和公式在解析习题之前,我们首先回顾一下圆周运动的基本概念和公式。

圆周运动是指物体在作匀速运动的同时,沿着一个圆形轨道运动。

圆周运动涉及到的关键概念有圆的半径、圆周和角度。

圆的半径表示圆的大小,圆周是指沿着圆形轨道运动的总路径长度,而角度则表示物体在圆周上行进的程度。

对于圆周运动的速度和加速度,有着重要的公式。

其中,线速度(v)表示物体沿圆周的线速度大小,它是圆周的长度除以所需时间。

角速度(ω)则表示物体在圆周运动中单位时间内所转过的角度大小。

加速度(a)则表示物体在圆周运动中的加速度大小,它与线速度和半径的乘积成正比。

第三节习题解析1. 如图所示,一个半径为R的圆盘以角速度ω沿垂直于其平面的轴作圆周运动。

求圆盘边缘点A的线速度和加速度大小。

解答:根据题意,我们知道圆盘的半径为R,并且给出了角速度ω。

线速度(v)可以通过半径和角速度的乘积得到,即v = Rω。

所以点A的线速度大小为Rω。

加速度(a)可以通过线速度和半径的乘积得到,即a = vω,带入已知条件可得a = Rω²。

所以点A的加速度大小为Rω²。

2. 一个半径为4m的车轮以每秒5转的角速度转动。

求车轮上一个点的线速度和加速度大小。

解答:根据题意,我们知道车轮的半径为4m,并且给出了角速度ω=5转/秒。

线速度可以通过半径和角速度的乘积得到,即v = Rω。

所以点的线速度大小为4m × 5转/秒 = 20m/秒。

加速度可以通过角速度和半径的乘积得到,即a = Rω²,带入已知条件可得a = 4m × (5转/秒)² = 100m/秒²。

高中物理:圆周运动提升试题及详解、答案

高中物理:圆周运动提升试题及详解、答案

高中物理:圆周运动提升试题及解析、答案一、单选题(本大题共12小题,共36.0分)1.当物体做匀速圆周运动时,以下说法正确的是A. 物体速度保持不变B. 物体加速度保持不变C. 物体所受合外力大小保持不变D. 物体所受合外力为恒力2.关于向心力的说法中错误的是A. 向心力总是沿半径指向圆心,且大小不变,向心力是一个恒力B. 向心力是沿着半径指向圆心方向的合力,是根据力的作用效果命名的C. 向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某个力的分力D. 向心力只改变物体线速度的方向,不可能改变物体线速度的大小3.关于质点做匀速圆周运动的说法,以下正确的是A. 因为,所以向心加速度与转动半径成反比B. 因为,所以向心加速度与转动半径成正比C. 因为,所以角速度与转动半径成反比D. 因为为转速,所以角速度与转速成正比4.关于匀速圆周运动和平抛运动正确的是A. 做匀速圆周运动和平抛运动的物体合力都恒定B. 匀速圆周运动是匀变速曲线运动C. 匀速圆周运动和平抛运动都是变加速曲线运动D. 平抛运动匀变速曲线运动5.如图所示。

小物块A与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动。

下列关于A的受力情况说法正确的是A. 受重力、支持力B. 受重力、支持力和指向圆心的摩擦力C. 受重力、支持力、与运动方向相反的摩擦力和向心力D. 受重力、支持力和与运动方向相反的摩擦力6.如图所示,一个球绕中心轴线以角速度转动,则A. A、B两点的角速度相等B. A、B两点的线速度相等C. 若,则::1D. 若,则::7.如图所示,A、B两点分别位于大、小轮的边缘上,大轮半径是小轮半径的2倍,它们之间靠摩擦传动,接触面不打滑,则A,B两点的角速度之比:为A. 1:2B. 1:4C. 2:1D. 1:18.公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”如图所示,汽车通过凹形桥的最低点时A. 车的加速度为零,受力平衡B. 车对桥的压力比汽车的重力大C. 车对桥的压力比汽车的重力小D. 车的速度越大,车对桥面的压力越小9.如图所示,质量相同的A,B两小球用轻质细线悬挂在同一点O,在同一水平面上做匀速圆周运动.则下列说法错误的是A. A的角速度一定比B的角速度大B. A的线速度一定比B的线速度大C. A的加速度一定比B的加速度大D. A所受细线的拉力一定比B所受的细线的拉力大10.所示,质量相等的A、B两物体可视为质点放在圆盘上,到圆心的距离之比是3:2,圆盘绕圆心做匀速圆周运动,两物体相对圆盘静止.则A、B两物体做圆周运动的向心力之比为A. 1:1B. 3:2C. 2:3D. 4:911.如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点。

2020年高考物理考点练习6.22 与圆周运动相关的功能问题(基础篇)(解析版)

2020年高考物理考点练习6.22 与圆周运动相关的功能问题(基础篇)(解析版)

2020年高考物理100考点最新模拟题千题精练第六部分 机械能专题6.22与圆周运动相关的功能问题(基础篇)一.选择题1.一小球以一定的初速度从图示5位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R ,圆轨道2的半径是轨道1的1.8倍,小球的质量为m ,若小球恰好能通过轨道2的最高点B ,则小球在轨道1上经过A 处时对轨道的压力为( )A.2mgB.3mgC.4mgD.5mg【参考答案】C【名师解析】 小球恰好能通过轨道2的最高点B 时,有mg =m v 2B 1.8R,小球在轨道1上经过A 处时,有F +mg =m v 2A R ,根据机械能守恒定律,有 1.6mgR +12mv 2B =12mv 2A ,解得F =4mg ,由牛顿第三定律可知,小球对轨道的压力F ′=F =4mg ,选项C 正确。

2.如图所示,质量相同的可视为质点的甲、乙两小球,甲从竖直固定的14光滑圆弧轨道顶端由静止滑下,轨道半径为R ,圆弧底端切线水平,乙从高为R 的光滑斜面顶端由静止滑下。

下列判断正确的是( )A.两小球到达底端时速度相同B.两小球由静止运动到底端的过程中重力做功不相同C.两小球到达底端时动能相同D.两小球到达底端时,甲小球重力做功的瞬时功率大于乙小球重力做功的瞬时功率【参考答案】C【名师解析】 根据机械能守恒定律可得两小球到达底端时速度大小v =2gR ,但方向不同,所以选项A 错误;两小球由静止运动到底端的过程中重力做功相同,则两小球到达底端时动能相同,所以选项C 正确,B 错误;两小球到达底端时,甲小球重力做功的瞬时功率为零,乙小球重力做功的瞬时功率大于零,所以选项D错误。

二.计算题1.(2019湖南衡阳三模)如图所示,电动机带动倾角为θ=37°的传送带以v=8m/s的速度逆时针匀速运动,传送带下端点C与水平面CDP平滑连接,B、C间距L=20m;传送带在上端点B恰好与固定在竖直平面内的半径为R=0.5m的光滑圆弧轨道相切,一轻质弹簧的右端固定在P处的挡板上,质量M=2kg可看做质点的物体靠在弹簧的左端D处,此时弹簧处于原长,C、D间距x=1m,PD段光滑,DC段粗糙。

高一物理下册 圆周运动(提升篇)(Word版 含解析)

高一物理下册 圆周运动(提升篇)(Word版 含解析)

一、第六章 圆周运动易错题培优(难)1.如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。

C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。

已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )A .当23grμω=时,A 、B 即将开始滑动 B .当2grμω=32mgμ C .当grμω=C 受到圆盘的摩擦力为0D .当25grμω=C 将做离心运动 【答案】BC 【解析】 【详解】A. 当A 开始滑动时有:2033A f mg m r μω==⋅⋅解得:0grμω=当23ggrrμμω=<AB 未发生相对滑动,选项A 错误;B. 当2ggrrμμω=<时,以AB 为整体,根据2F mr ω向=可知 29332F m r mg ωμ⋅⋅=向= B 与转盘之间的最大静摩擦力为:23Bm f m m g mg μμ=+=()所以有:Bm F f >向此时细线有张力,设细线的拉力为T , 对AB 有:2333mg T m r μω+=⋅⋅对C 有:232C f T m r ω+=⋅⋅解得32mg T μ=,32C mgf μ= 选项B 正确;C. 当ω=时,AB 需要的向心力为:2339AB Bm F m r mg T f ωμ'⋅⋅=+==解得此时细线的拉力96Bm T mg f mg μμ'-== C 需要的向心力为:2326C F m r mg ωμ⋅⋅==C 受到细线的拉力恰好等于需要的向心力,所以圆盘对C 的摩擦力一定等于0,选项C 正确;D. 当ω=C 有: 212325C f T m r mg ωμ+=⋅⋅=剪断细线,则1235C Cm f mg f mg μμ=<= 所以C 与转盘之间的静摩擦力大于需要的向心力,则C 仍然做匀速圆周运动。

2020届高考物理二轮复习疯狂专练6圆周运动规律的应用含解析

2020届高考物理二轮复习疯狂专练6圆周运动规律的应用含解析
向夹角为 θ ,则有: mgtan θ= mRsin θ ·ω 2,即为:
g ,当绳恰好伸直时有: θ = 60°,对应
Rcos
1
2g ,故 A、B 正确;设在 ω1< ω < ω 2 时绳中有张力且小于
2mg,此时有:FNcos
60°= mg+ FTcos
60 °,
R
FNsin 60°+ FTsin 60°= mω 2Rsin 60°当 FT取最大值 2mg时代入可得: 2
k(1.5 r + r - 1.5 r ) + μ mg= mω 2·1.5 r ,解得: ω =
2k 3m+
2μ 3r
g =
2km+μr
g ,即
A、B 同时开始滑动,故
D
正确。
11.【解析】 (1) 汽车恰好不受路面摩擦力时, v2
θ = mr
由重力和支持力的合力提供向心力,
解得: v≈38.7 m/s 。
A
点,若小于这个速度,则不能回到 A 点, C错误。
10.【答案】 BD
【解析】当 B受到的摩擦力为 0 时,由弹簧弹力提供向心力, 则有 k(1.5 r +r - 1.5 r ) = 2mω 2r ,解得:ω =
k 2m,
故 A 错误;当 A受到的摩擦力为 0 时,由弹簧弹力提供向心力,则有 k(1.5 r + r -1.5 r ) =mω 2·1.5 r ,解得:
T Ta
Ta
次,故 A、B 均错误。设每隔时间
π
π
t , a、 b、c 共线一次,则
( ω a- ω b) t =π ,所以
t

ω
a-
ω

b

2π =

高考物理高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)

高考物理高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)

高考物理高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨;(3)由④式可知:214/1A AB m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

(物理)高考必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端分别拴着质量为m 、2m 的小球A 和小物块B ,开始时B 静止在细管正下方的水平地面上。

高考物理生活中的圆周运动提高训练含解析

高考物理生活中的圆周运动提高训练含解析

高考物理生活中的圆周运动提高训练含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,竖直平面内有一光滑的直角细杆MON ,其中ON 水平,OM 竖直,两个小物块A 和B 分别套在OM 和ON 杆上,连接AB 的轻绳长为L =0.5m ,.现将直角杆MON 绕过OM 的轴O 1O 2缓慢地转动起来.已知A 的质量为m 1=2kg ,重力加速度g 取10m/s 2。

(1)当轻绳与OM 的夹角θ=37°时,求轻绳上张力F 。

(2)当轻绳与OM 的夹角θ=37°时,求物块B 的动能E kB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考物理100考点最新模拟题千题精练
第六部分 机械能
专题6.23与圆周运动相关的功能问题(提高篇)
一.选择题
1.(2019吉林长春四模)(6分)如图所示,两个内壁光滑的圆形管道竖直固定,左侧管道的半径大于右侧管道半径。

两个小球A 、B 分别位于左、右管道上的最高点,A 球的质量小于B 球质量,两球的半径都略小于管道横截面的半径。

由于微小的扰动,两个小球由静止开始自由滑下,当它们通过各自管道最低点时,下列说法正确的是( )
A .A 球的速率一定等于
B 球的速率
B .A 球的动能一定等于B 球的动能
C .A 球的向心加速度一定等于B 球的向心加速度
D .A 球对轨道的压力一定等于B 球对轨道的压力
【参考答案】C
【命题意图】以小球沿竖直面内内壁光滑的圆形管道的圆周运动为背景,考查动能定理、牛顿运动定律和学生的分析综合能力。

【解题思路】设小球的质量为m ,管道半径为R ,由动能定理,则小球下落到最低点时的动能
Ek=12
mv2=2mgR ,解得速度大小=v ,由于竖直面内内壁光滑的圆形管道的半径R 不同,所以A 球的速率大于B 球的速率,A 球的动能大于B 球的动能,选项AB 错误;两球的向心加速度大小2
4a g R
==v n ,即A 球的向心加速度一定等于B 球的向心加速度,选项C 正确;设小球通过各自管道最低点时所受的支持力为FN ,由牛顿第二定律FN-mg=man ,解得FN=5mg ,由牛顿第三定律可知小球对轨道压力大小为FN=FN’=5mg ,与小球质量有关,由于A 球的质量小于B 球质量,所以A 球对轨道的压力一定小于B 球对轨道的压力,选项D 错误。

【规律总结】对于竖直面内的圆周运动,求运动到最高点或最低点的速度,一般运用动能定理列方程求解;计算运动到最高点或最低点受到的弹力,一般运用牛顿第二定律列方程得出。

2.(2018·安徽第三次联考)如图所示,光滑轨道由AB 、BCDE 两段细圆管平滑连接组成,其中AB 段水平,BCDE 段为半径为R 的四分之三圆弧,圆心O 及D 点与AB 等高,整个轨道固定在竖直平面内,现有一质
量为m ,初速度v0=10gR 2的光滑小球水平进入圆管AB ,设小球经过轨道交接处无能量损失,圆管孔径远
小于R ,则(小球直径略小于圆管内径)( )
A .小球到达C 点时的速度大小vC =3gR 2
B .小球能通过E 点且抛出后恰好落至B 点
C .无论小球的初速度v0为多少,小球到达E 点时的速度都不能为零
D .若将D
E 轨道拆除,则小球能上升的最大高度与D 点相距2R
【参考答案】B
【名师解析】 对小球从A 点至C 点过程,由机械能守恒有12mv02+mgR =12mvC2,解得vC =32gR 2,选
项A 错误;对小球从A 点至E 点的过程,由机械能守恒有12mv02=12mvE2+mgR ,解得vE =2gR 2,小球从
E 点抛出后,由平抛运动规律有x =vEt ,R =12gt2,解得x =R ,则小球恰好落至B 点,选项B 正确;因为
圆管内壁可提供支持力,所以小球到达E 点时的速度可以为零,选项C 错误;若将DE 轨道拆除,设小球
能上升的最大高度为h ,则有12mvD2=mgh ,又由机械能守恒可知vD =v0,解得h =54R ,选项D 错误。

3.(2018•天津)滑雪运动深受人民群众喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )
A. 所受合外力始终为零 B 所受摩擦力大小不变
C. 合外力做功一定为零
D. 机械能始终保持不变
【参考答案】C
【名师解析】因为运动员做曲线运动,所以合力一定不为零,A不符合题意;
运动员受力如图所示,重力垂直曲面的分力与曲面对运动员的支持力的合力充当向心力,故有
,运动过程中速率恒定,且在减小,所以曲面对运动员
的支持力越来越大,根据可知摩擦力越来越大,B不符合题意;
运动员运动过程中速率不变,质量不变,即动能不变,动能变化量为零,根据动能定理可知合力做功为零,C符合题意;
因为克服摩擦力做功,机械能不守恒,D不符合题意;
考查了曲线运动合力特点;受力分析,圆周运动向心力公式;动能定理;机械能守恒条件。

4.(2017·全国卷Ⅱ,14)如图4所示,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环。

小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力()
A.一直不做功
B.一直做正功
C.始终指向大圆环圆心
D.始终背离大圆环圆心
【参考答案】A
【名师解析】因为大圆环光滑,所以大圆环对小环的作用力只有弹力,且弹力的方向总是沿半径方向,与速度方向垂直,故大圆环对小环的作用力一直不做功,选项A正确,B错误;开始时大圆环对小环的作用力背离圆心,到达圆心等高点及下方,大圆环对小环的作用力指向圆心,故选项C、D错误。

5.如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度为g)()。

相关文档
最新文档