2014年北京市海淀区高三一模试题(理数)_及答案
2024海淀区高三一模地理考试试题
选择题下列哪个选项正确描述了我国东部季风区降水分布的特点?A. 自东向西递减B. 自南向北递减C. 夏季多雨,冬季少雨D. 全年均匀分布地球自转产生的地理现象不包括:A. 昼夜交替B. 四季变化C. 地方时差异D. 地球形状近似球体下列哪项是地壳板块边界常见的活动现象?A. 火山喷发和地震B. 山脉形成和海洋扩张C. 河流侵蚀和沉积D. 冰川运动和消融下列哪个城市因其独特的地理位置成为国际航运中心?A. 北京B. 上海C. 成都D. 广州下列哪种农业地域类型以大规模机械化生产为特点?A. 季风水田农业B. 商品谷物农业C. 乳畜业D. 热带种植园农业下列哪项措施对减少城市热岛效应最有效?A. 增加城市绿地B. 提高建筑物高度C. 扩大城市规模D. 增加交通流量简答题描述并解释地球公转产生的地理意义。
分析影响我国降水分布的主要因素,并举例说明。
简述城市化进程对自然环境的影响,并提出相应的缓解措施。
解释为什么我国北方地区冬季比南方地区寒冷,并给出证据支持。
阐述可持续发展理念在农业生产中的应用,并举例说明。
分析河流对地理环境的影响,包括地形、气候、生物等方面。
填空题地球自转一周所需的时间大约为____小时。
亚洲与非洲的分界线是____运河。
热带雨林气候的主要特征是终年高温多雨,其分布区域主要集中在____带。
城市化进程中,城市人口增加导致____用地扩张,进而引发一系列环境问题。
农业生产中,____是土壤肥力的重要来源,对农作物生长至关重要。
北京市海淀区2014届一模语文解析
北京市海淀区2014届高三下学期期中练习语文试题本试卷8页,共150分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、本大题共7小题,共17分。
阅读下面文字,按要求完成1-6题。
有一天,忽然意识到,古人比今人多一股冲动:逢高即上,遇巍则攀。
奇峰巨顶自不必说,即便丘峦高阁,他们也要上去站一站,“倚槛苍茫千古事,____①____”,临风凭栏,感慨一番。
所以,凡山亭江楼,词赋楹句总是爆满。
王勃的《滕王阁序》、陈子昂的《登幽州台歌》、崔颢的《黄鹤楼》、王安石的《登飞来峰》……皆为“高高在上”所得。
在古人那儿,登高眺远,_____②____。
“前不见古人,后不见来者。
念天地之悠悠,独怆然而涕下。
”高,带来大势大象,带来疏旷与飘逸,带来不羁与宏放,带来对生命时空的全景式阅读。
因此于诗家墨客而言,“高处”具有强烈的召唤力,成了【】千年的诱惑。
然而,“登高”又并非文人独嗜,百姓对此亦兴味索然....。
秋收毕,....,尤其在九九重阳节这个特殊的日子里,更是乐此不疲仓廪实,人心悦,少不了邀友约醉,醍醐(tíhú酥酪上凝聚的油佛教用以比喻佛性。
比喻美酒)一场。
秋高气爽、丹桂飘香的【】,若不去登高望远,游目骋怀....,实在辜负天地、有愧人生。
古人登高的去处,一般是山、塔、楼,所以,在一座古城,大凡能将风景揽入怀中的高处,几朝下来,皆成了名胜。
“江南三大楼”之黄鹤楼、岳阳楼、滕王阁,皆受驱于重阳雅集、登高览景的欲望,一旦矗起,则声名大噪....,“游必于是,宴必于是”。
因为古人认为自己是自然之子,他们心目中有“高”,他们崇高、尊高、仰高。
从“登高”意义上说,“重阳”几乎是个绝版的节日,今人仅视为“敬老节”,无疑让它的美折损大半,伤了筋,动了骨。
1.填入文中两处【】内词语的字形和加点字的读音全都正确的一项是(2分)A。
风糜良辰怆(chuàng)然召(zhāo)唤B。
2014海淀高三英语一模试题
海淀区高三年级第二学期期中练第二部分:知识运用(共两节,45分)21. She calls back whenever someone ______ her a message.A. leftB. leavesC. had leftD. will leave22. The purpose of the article is to draw public attention ______ the problem.A. toB. onC. inD. for23. ______ the task in time, we had to work late into the night.A. FinishedB. FinishingC. To finishD. Having finished24. I know little about the accident because not much ______ about it up to now.A. has saidB. has been saidC. had saidD. had been said25. She ______ have attended that meeting, for she was doing paperwork in the office then.A. shouldn‟tB. mustn‟tC. wouldn‟tD. couldn‟t26. We‟re advised not to leave the water ______ after using it.A. runB. runningC. to runD. having run27. Mr. Smith couldn‟t open the door because his naughty boy ______ it from the inside.A. would lockB. was lockingC. has lockedD. had locked28. —Jeff, what‟s up? You are not yourself today.— Oh, mom. I really wish I ______ the chance but I failed.A. had gotB. would getC. will getD. got29. This kind of cell phone is very common and I also have ______.A. oneB. itC. thatD. another30. The paintings ______ from the National Gallery last week have been found.A. stealingB. to stealC. stolenD. to be stolen31. You cannot take back your words ______ they are out of your mouth.A. beforeB. whetherC. onceD. while32. The App WeChat provides a networking platform ______ communication is faster and easier.A. whichB. whereC. whenD. why33. —Did you sleep well last night?— No, the loud noise from the street ______ me awake for hours.A. had keptB. is keepingC. has keptD. kept34. — Have you told your parents about your decision?— Not yet. I can hardly imagine ______ they will react.A. whatB. thatC. howD. when35. I think the biggest problem in banning smoking is ______ people can buy cigarettes easily.A. thatB. whetherC. whereD. how第二节完形填空(共20小题;每小题1.5分,共30分)The Little AngelSally jum ped up the moment she saw the surgeon come out of the operating room. She asked, “How is my little boy?”The surgeon said, “I‟m __36__. We did all we could, but your boy didn‟t __37__ it.”Sally __38__into the chair. The surgeon asked, “Would you like so me time with your son before he was transported to the __39__?” Sally nodded. While saying goodbye, she ran her fingers __40__ through his thick curly hair. “Would you like a lock of his hair?” the surgeon asked. Sally nodded yes. The surgeon cut a few hai rs, and handed them to Sally. The mother said, “It was Jimmy‟s idea to __41__ his body to the university for study. He said it might __42__ somebody else. “I said no at first, __43__ Jimmy said, …Mom, I won‟t be using it after I die. Maybe it will help som e other little boy spend one more day with his Mom.”“My Jimmy had a heart of __44__, always thinking of someone else, always wanting to help others if he could.” she went on.Sally walked out of the hospital. She put the bag with Jimmy‟s __45__ on the sea t beside her in the car. The drive home was __46__. It was even harder to enter the __47__ house. She carried Jimmy‟s belongings, and the lock of his hair to her son‟s room. She started placing the model cars and other personal things back in his room __48__ where he had always kept them. She lay down across his bed and, hugging his pillow, __49__ herself to sleep.It was around midnight when Sally __50__. Lying beside her on the bed was a letter. The letter said,“Dear Mom,I know you‟re going to __51__ m e, and me too. I will always love you, Mom, even more __52__ each passing day. Someday we will see each other again. Until then, if you want to __53__a little boy so you won‟t be so lonely, that‟s OK with me. He can have my room and old toys to play with.Don‟t be sad thinking about me. I don‟t hurt any more. The cancer is all __54__. I don‟t have to stand that __55__any more. The angels in Heaven are so tender. They say I‟m a Special Angel! I love you, Mom.”36. A. worried B. sorry C. happy D. grateful37. A. make B. pass C. win D. like38. A. knocked B. looked C. sank D. got39. A. house B. church C. hospital D. university40. A. anxiously B. lovingly C. patiently D. angrily41. A. donate B. move C. show D. lend42. A. affect B. help C. protect D. impress43. A. for B. and C. so D. but44. A. gold B. stone C. wisdom D. bravery45. A. toys B. clothes C. belongings D. letters46. A. long B. smooth C. difficult D. dangerous47. A. empty B. familiar C. big D. old48. A. roughly B. exactly C. especially D. possibly49. A. put B. sent C. cried D. buried50. A. wrote B. spoke C. slept D. awoke51. A. understand B. forgive C. leave D. miss52. A. with B. around C. on D. in53. A. save B. host C. visit D. adopt54. A. lost B. gone C. cured D. spotted55. A. depression B. sadness C. pain D. stress第三部分:阅读理解(共两节,40分)CEverywhere I look outside my home I see people busy on their high-tech devices, while driving, walking, shopping, even sitting in toilets. When connected electronically, they are away from physical reality.People have been influenced to become technology addicted. One survey reported that “addicted” was the word most commonly used by people to describe their relationship to iPad and similar devices. One study found that people had a harder time resisting the allure of social media than they did for sleep, cigarettes and alcohol.The main goal of technology companies is to get people to spend more money and time on their products, not to actually improve our quality of life. They have successfully created a cultural disease. Consumers willingly give up their freedom, money and time to catch up on the latest information, to keep pace with their peers or to appear modern.I see people trapped in a pathological(病态的)relationship with time-sucking technology, where they serve technology more than technology serves them. I call this technology servitude. I am referring to a loss of personal freedom and independence because of uncontrolled consumption of many kinds of devices that eat up time and money.What is a healthy use of technology devices? That is the vital question. Who is really in charge of my life? That is what people need to ask themselves if we are to have any chance of breaking up false beliefs about their use of technology. When we can live happily without using so much technology for a day or a week, then we can regain control and personal freedom, become the master of technology and discover what there is to enjoy in life free of technology. Mae West is famous for proclai ming the wisdom that “too much of a good thing is wonderful.”But it‟s time to discover that it does not work for technology.Richard Fernandez, an executive coach at Google acknowledged that “we can be swept away by our technologies.”To break the grand digital connection people must consider how life long ago could be fantastic without today‟s overused technology.63. The underlined word “allure” in Paragraph 2 probably means ______.A. advantageB. attractionC. a daptionD. attempt64. From the passage, technology companies aim to ______.A. attract people to buy their productsB. provide the latest informationC. improve people‟s quality of lifeD. deal with cultural diseases65. It can be inferred from this passage that people ______.A. consider too much technology wonderfulB. have realized the harm of high-tech devicesC. can regain freedom without high-tech devicesD. may enjoy life better without overused technology66. What‟s the author‟s attitu de towards the overusing of high-tech devices?A. Neutral.B. Sceptical.C. Disapproving.D. Sympathetic.DDid you see American figure skater, Jeremy Abbott, crash to the ice during the short program at the Sochi Olympics, rolling into the wall, clutching his side in pain. Ten seconds later, he got up and continued his skate—despite the pain, embarrassment and fear. All I could think was: this kid‟s got courage. In business we have a word for it—resilience, the ability to gain strengths and confidence from overcoming unpleasant events.However, opposite examples appeared in Sochi Olympics as well. For them, failure is someone else‟s fault, because they do not accept personal responsibility. Therefore, they have to pay a high price for this attitude. After years of studying failure, I have learned one thing: modesty and open-mindedness in the face of mistakes is the single best thing you can do to improve results.Everyone fails, but not everyone recovers from failure. The key is to learn from it rather than get beaten by it.The good news is that each of us has the potential to live a resilient life on and off the job. It may be difficult, but that just makes it all the more powerful and important. If you believe the above paragraph t o be true, then you‟re probably more resilient than you think you are. It takes confidence to be resilient but that too much confidence is a killer is so true of leadership. For example, Ron Johnson, the ill-fated CEO of JC Penney, was so stubborn that he completely missed all sorts of signals from employees and customers and instead listened to all those who agreed with him, which failed his strategy. Bouncing back from failure requires that you recognize something has gone wrong, and you were the one who made it happen.The challenge of resilience is not just about our work. When parents help their kids deal with every challenging situation, they are doing an unhelpful action to their children. Parents want to protect their kids from failure, but doing so takes away the opportunity from them to practice not just a life skill but an essential work skill. When self-esteem becomes more important than results, we are accidently training young people to become less adaptable, not more.Resilience is not just about getting up off the floor, but also being ready for whatever comes next, even when you don‟t know what it is. Failures and setbacks are no longer unusual events, but regular features of a dynamic, competitive and highly demanding work environment. Getting up to finish your skate is no longer optional.67. The example of Jeremy Abbott shows that one should ______.A. recover from failureB. stick to his own viewpointC. take others‟ opinions to heartD. challenge difficulties bravely68. According to the author, what can best build up resilience?A. Being positive and powerful.B. Being competitive and helpful.C. Being modest and open-minded.D. Being confident and responsible.69. Which of the following examples shows us resilience?A. A teacher offers students timely help and care.B. A determined athlete practices skating hard every day.C. A confident leader persuades his staff to follow his plan.D. A student has got a low grade but continues to work hard.70. Which might be the best title for the passage?A. An Example of Resilience: Ron JohnsonB. Resilience: A Lesson from SochiC. Optional Challenges of ResilienceD. Resilience in Family Education第二节(共5小题;每小题2分,共10分)There is distinction between reading for information and reading for understanding. ____71_____The first sense is the one in which we read newspapers, magazines, or anything else. ____72_____ Such materials may increase our store of information, but they cannot improve our understanding. And clearly we don‟t have any difficulty in gaining the new information, for our understanding was equal to them before we started. Otherwise, we would have felt the shock of puzzlement.The second sense is the one in which we read something that at first we do not completely understand. Here the thing to be read is at the first sight better or higher than the reader. The writer is communicating something that can increase the reader‟s understanding. _____73_____ Otherwise one person could never learn from another. Here “learning” means understanding more, not remembering more information.What are the conditions in this kind of reading? First, there is inequality in understanding. _____74_____ Besides, his book must convey something he possesses and his potential readers lack. Second, the reader must be able to overcome this inequality in some degree. And he should always try to reach the same level of understanding with the writer. If the equality is approached, success of communication is achieved._____75_____ It is the least demanding and requires the least amount of effort. Everyone who knows how to read can read for entertainment if he wants to. In fact, any book that can be read for understanding or information can probably be read for entertainment as well.A. The writer should have a better communicating skill.B. Such communication between unequals must be possible.C. We can get access to the content of those materials easily.D. The writer must be “superior” to the reader in understanding.E. Thus, we can employ the word “reading” in two distinct senses.F. Reading for entertainment is capable of increasing our understanding for information.G. Besides gaining information and understanding, there‟s another goal of reading—entertainment.第四部分:书面表达(共两节,35分)第一节(15分)你们班同学打算周六去爬香山。
2014北京市海淀区初三(一模)数学
的
图象相交于点 B(m , 1). ( 1)求点 B 的坐标及一次函数的解析式; ( 2)若点 P 在 y 轴上,且△ PAB为直角三角形,请直接写出点 P 的坐标.
四、解答题(本题共 20 分,每小题 5 分) 19.( 5 分)如图,在△ ABC中,∠ ACB=90°,∠ ABC=30°,BC=2 ,以 AC为边在△ ABC的外部作等边△ ACD,连接 BD. ( 1)求四边形 ABCD的面积; ( 2)求 BD 的长.
3.5
3.5
15.5
16.5
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择(
)
A.甲 B.乙 C.丙 D.丁
7.(4 分)如图,在平行四边形 ABCD中,∠ ABC的平分线交 AD 于 E,∠ BED=150°,则∠ A 的大小为(
)
A.150 °B. 130 °C. 120 °D. 100 °
17.( 5 分)列方程(组)解应用题: 某市计划建造 80 万套保障性住房, 用于改善百姓的住房状况. 开工后每年建造保障性住房的套数比原计划增加 结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?
25%,
18.( 5 分)如图,在平面直角坐标系中,一次函数
y=ax﹣ a( a 为常数)的图象与 y 轴相交于点 A,与函数
2014 北京市海淀区初三(一模)数
学
一、选择题(本题共 32 分,每小题 4 分)下面各题均有四个选项,其中只有一个是符合题意的.
1.(4 分)﹣ 的绝对值是(
)
A.3 B.
C.﹣ D.﹣ 3
2.(4 分)据教育部通报, 2014 年参加全国硕士研究生入学考试的人数约为
2014北京市海淀区高考化学一模试题及答案解析
2014北京市海淀区高考化学一模试题及答案解析2014.4.9答题可能用到的相对原子质量:H-1 N-14 O-166.下列用品的主要成分及用途对应不正确...的是..A .碳酸的酸性强于苯酚:CO 2+H 2O+O -OH+HCO 3-B .工业上用氧化铝冶炼金属铝:2Al 2O 3(熔融) === 4Al + 3O 2↑C .浓硫酸具有强氧化性:C + 2H 2SO 4(浓)=== 2SO 2↑+ CO 2↑+ 2H 2OD .金属铜能溶解于稀硝酸:Cu + 4H ++ 2NO 3- === Cu 2++ 2NO 2↑+ 2H 2O 8.下列实验装置或操作正确的是向容量瓶中转移液体实验室制取乙酸乙酯实验室制乙烯分离酒精和水9.如图所示的钢铁腐蚀中,下列说法正确的是电解 冰晶石△A.碳表面发生氧化反应B.钢铁被腐蚀的最终产物为FeO C.生活中钢铁制品的腐蚀以图①所示为主D.图②中,正极反应式为O2 + 4e- + 2H2O === 4OH-10.下列颜色变化与氧化还原反应无关..的是A.将乙醇滴入酸性K2Cr2O7溶液中,溶液由橙色变为绿色B.将SO2通入滴有酚酞的NaOH溶液中,溶液红色褪去C.将H2C2O4溶液滴入酸性KMnO4溶液中,溶液紫色褪去D.将乙醛加入新制Cu(OH)2悬浊液中并加热至沸腾,出现红色沉淀11.实验:①向2 mL 1 mol·L-1 NaBr溶液中通入少量氯气,溶液变为黄色;②取①所得溶液滴加到淀粉KI试纸上,试纸变蓝;③向①所得溶液继续通入氯气,溶液由黄色变成橙色。
下列分析不正确...的是A.仅根据实验①能说明还原性:Br- > Cl-B.仅根据实验②能说明氧化性:Br2> I2C.上述实验验证了Cl2、Br2、I2的氧化性相对强弱D.向实验③所得溶液中加CCl4,充分振荡,下层为橙红色12. 根据下列操作及现象,所得结论正确的是25.(16分)高分子材料PET 聚酯树脂和PMMA 的合成路线如下:2CCH 3COOCH 3n PMMA )已知:Ⅰ. RCOOR’+ R’’18OHRCO 18OR’’+R’OH (R 、R’、R’’代表烃基)Ⅱ. -2+R C ORR C COOH OH (R 、R ’代表烃基)(1)①的反应类型是________。
【2014海淀一模】北京市海淀区2014届高三下学期期中练习数学文扫描版含答案
海淀区高三年级第二学期期中练习参考答案数学(文科)2014.4 阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共8小题,每小题5分,共40分.1.B2.B3.C4.C5.A6.D7. C8.B二、填空题:本大题共6小题,每小题5分,共30分.9. 1 10. 方案三11. 35,712. ③,2()817f x x x=-+13. 15214.π[0,)2{说明:两空的第一空3分,第二空2分;14题的第二空若写成π(0,)2不扣分}三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.解:(Ⅰ)ππππ()sin sin()6663f=-----------------------------------1分ππsin sin()66=-----------------------------------2分ππsin sin66=+---------------------------------3分π2sin16==---------------------------------4分(Ⅱ)1()sin sin22f x x x x=-+---------------------------------6分1sin2x x=+sin()3xπ=+--------------------------------8分因为ππ22x-≤≤所以ππ5π636x-≤+≤--------------------------------10分所以1πsin()123x -≤+≤ --------------------------------12分所以()f x 的取值范围是1[,1]2- --------------------------------13分16.解:(Ⅰ)答对题目数小于9道的人数为55人,记“答对题目数大于等于9道”为事件A55()10.45100P A =-= --------------------------------5分 (Ⅱ)设答对题目数少于8道的司机为 A 、B 、C 、D 、E ,其中A 、B 为女司机 ,选出两人包含AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE 共10种情况,至少有1名女驾驶员的事件为AB 、AC 、AD 、AE 、BC 、BD 、BE 共7种.记“随机选出的两人中至少有1名女驾驶员”为事件M ,则7()0.710P M == --------------------------------13分 17.解:(Ⅰ)因为D ,M 分别为,AC BD 中点,所以DM //EF ---------------------2分 又1EF A EF ⊂平面,1DM A EF ⊄平面所以1//DM A EF 平面. -----------------------4分 (Ⅱ)因为1A E BD ⊥,EF BD ⊥且1A EEF E =所以1BD A EF ⊥平面 -------------7分 又11A F A EF ⊂平面所以1BD A F ⊥ ------------------------9分(Ⅲ)直线1A B 与直线CD 不能垂直 ---------------------------------------10分因为1A BD BCD ⊥平面平面,1A BDBCD BD =平面平面,EF BD ⊥,EF CBD ⊂平面,所以 1EF A BD ⊥平面. ---------------------------------------12分 因为11A B A BD ⊂平面,所以1A B EF ⊥, 又因为//EF DM ,所以1A B DM ⊥. 假设1A B CD ⊥,因为1A B DM ⊥,CDDM D =,所以1A B BCD ⊥平面, ------------------------------------------13分 所以1A B BD ⊥,这与1A BD ∠为锐角矛盾所以直线1A B 与直线CD 不能垂直. ---------------------------------------14分18.解:(Ⅰ) 定义域为()0,+∞ ------------------------------------1分'()ln 1f x x =+ ------------------------------------2分令'()0f x =,得 1ex =------------------------------------3分 '()f x 与()f x 的情况如下:分所以()f x 的单调减区间为1(0,)e ,单调增区间为1(,)e+∞--------------------------6分 (Ⅱ) 证明1:设1()ln g x x x=+,0x > ------------------------------------7分 22111'()x g x x x x-=-= -------------------------------8分 '()g x 与()g x 的情况如下:所以()(1)1g x g ≥=,即 1ln 1x x+≥在0x >时恒成立, ----------------------10分 所以,当1k ≤时,1ln x k x+≥, 所以ln 1x x kx +≥,即ln 1x x kx ≥-,所以,当1k ≤时,有()1f x kx ≥-. ------------------------13分 证明2:令()()(1)ln 1g x f x kx x x kx =--=-+ ----------------------------------7分'()ln 1g x x k =+- -----------------------------------8分令'()0g x =,得1e k x -= -----------------------------------9分'()g x 与()g x 的情况如下:分()g x 的最小值为11(e )1e k k g --=- -------------------11分当1k ≤时,1e 1k -≤,所以11e 0k --≥故()0g x ≥ -----------------------------12分 即当1k ≤时,()1f x kx ≥-. ------------------------------------13分 19.解:(Ⅰ)证明:因为,A B 在椭圆上,所以2211222224,2 4.x y x y ②①ìï+=ïíï+=ïî -----------------------------------1分 因为,A B 关于点(1,0)M 对称,所以12122,0x x y y +=+=, --------------------------------2分将21212,x x y y =-=-代入②得2211(2)24x y -+= ③,由①和③消1y 解得11x =, ------------------------------------------4分 所以 121x x ==. ------------------------------------------5分 (Ⅱ)当直线AB不存在斜率时,(0,A B -,可得AB MA ==∆ABM 不是等边三角形. -----------------------6分当直线AB 存在斜率时,显然斜率不为0.设直线AB :3y kx =+,AB 中点为00(,)N x y ,联立2224,3,x y y kx ⎧+=⎨=+⎩ 消去y 得22(12)12140k x kx +++=, ------------------7分2221444(12)143256k k k ∆=-+⋅=-由0∆>,得到274k >① -----------------------------------8分 又1221212kx x k -+=+, 1221412x x k⋅=+ 所以0002263,31212k x y kx k k -==+=++, 所以 2263(,)1212k N k k-++ -------------------------------------------10分 假设∆ABM 为等边三角形,则有⊥MN AB , 又因为(1,0)M ,所以1MNk k ⨯=-, 即2231216112k k kk +⨯=---+, ---------------------11分 化简 22310k k ++=,解得1=-k 或12k =----------------12分 这与①式矛盾,所以假设不成立.因此对于任意k 不能使得⊥MN AB ,故∆ABM 不能为等边三角形. ------------14分 20.解:(Ⅰ)有序整点列123(0,2),(3,0),(5,2)A A A 与123(0,2),(2,5),(5,2)B B B 互为正交点列.-------------------------1分理由如下:由题设可知 1223(3,2),(2,2)=-=A A A A ,1223(2,3)(33)B B B B ==-,,, 因为 12120=A A B B ,23230=A A B B 所以 12122323⊥⊥A A B B A A B B ,.所以整点列123(0,2),(3,0),(5,2)A A A 与123(0,2),(2,5),(5,2)B B B 互为正交点列. ----------------------------3分 (Ⅱ)证明 :由题意可得 122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)B B B B B B λλλ=-==-,,123λλλ∈,,Z 因为1144,与与A B A B 相同,所以有λλλλλλ⎧⎪⎨⎪⎩123123-+-=9①3+3+3=1②因为λλλ∈123,,Z ,方程②不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列.----------8分 (Ⅲ)存在无正交点列的整点列(5)A . -------------------------------------------9分当5n =时,设1(,),,,i i i i i i A A a b a b +=∈Z 其中,i i a b 是一对互质整数,1,2,3,4i = 若有序整点列12345,,,,B B B B B 是点列12345,,,,A A A A A 的正交点列, 则1(,),1,2,3,4i i i i i B B b a i λ+=-= ,由441i+1=11+==∑∑i i i i i A AB B得44=1144=11,.i i i i i i i i i i b a a b λλ==⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑①②取1,(0,0)A =3,1,2,3,4i a i =,12342,1,1,1b b b b ==-==- 由于12345,,,,B B B B B 是整点列,所以有,1,2,3,4i i λ∈=Z .等式②中左边是3的倍数,右边等于1,等式不成立,所以存在无正交点列的整点列(5)A . -----------------------------------13分。
2018海淀区高中数学(理)一模试卷及答案
海淀区高三年级第二学期期中练习数学(理科)2018. 4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{0,},{12}A a B x x ==-<< | ,且A B ⊆,则a 可以是 (A)1- (B) 0 (C) 1 (D) 2(2)已知向量(1,2),(1,0)==-a b ,则+2=a b(A) (1,2)- (B) (1,4)- (C) (1,2) (D) (1,4) (3)执行如图所示的程序框图,输出的S 值为 (A) 2 (B) 6 (C) 8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为,M 且(,)P x y 为M 中任意一点,则y x -的最大值为(A) 1 (B) 2(C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a >,1b >”是“lg lg 0a b +>”的( )(A)充分而不必要条件(B) 必要而不充分条件(C)充分必要条件(D) 既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S ,则S 的值不可能是(A) 1 (B)65(C)43(D)32(7)下列函数()f x 中,其图象上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是(A) 3()f x x = (B) ()f x = (C) ()e 1x f x =- (D) ()ln(1)f x x =+(8)已知点M 在圆221:(1)(1)1C x y -+-=上,点N 在圆222:(1)(1)1C x y +++=上,则下列说法错误的是(A )OM ON ⋅u u u u r u u u r的取值范围为[3--(B )||OM ON +u u u u r u u u r的取值范围为[0,(C )||OM ON -u u u u r u u u r的取值范围为2,2]+(D )若OM ON λ=u u u u r u u u r,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区2024届高三下学期期中练习(一模)数学试题(解析版)
海淀区2023—2024学年第二学期期中练习高三数学本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{|22}U x x =-≤≤,集合{}12A x x =-≤<,则U A =ð()A.(2,1)--B.[2,1]--C.(2,1){2}-- D.[2,1){2}-- 【答案】D 【解析】【分析】根据给定条件,利用补集的定义求解即得.【详解】全集{|22}U x x =-≤≤,集合{}12A x x =-≤<,所以[2,1){2}U A =-- ð.故选:D2.若复数z 满足i 1i z =+,则z 的共轭复数是()A.1i --B.1i +C.1i -+D.1i-【答案】B 【解析】【分析】根据复数代数形式的除法运算求出复数z 即可求解结果.【详解】解:复数z 满足i 1i z =+,所以()21i 1i 1i1i i i i 1z ++-+====--.所以z 的共轭复数是1i +.故选:B .3.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A.4B.5C.6D.7【答案】B 【解析】【分析】利用等差数列的通项公式求出1a 和d 的关系,代入0m S =计算可得m 的值.【详解】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去)故选:B.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A.π6B.π3C.2π3 D.5π6【答案】C 【解析】【分析】将||2a b +=两边同时平方,将条件带入计算即可.【详解】由已知||2,2a b ==,所以()22224222cos ,44a b a b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选:C.5.若双曲线22221(0,0)x y a b a b-=>>上的一点到焦点(的距离比到焦点的距离大b ,则该双曲线的方程为()A.2214x y -= B.2212x y -= C.2212y x -= D.2214y x -=【答案】D 【解析】【分析】根据题意及双曲线的定义可知2a b =,c =,再结合222+=a b c ,求出,a b ,即可求出结果.【详解】由题知c =,根据题意,由双曲线的定义知2a b =,又222+=a b c ,所以255a =,得到221,4a b ==,所以双曲线的方程为2214y x -=,故选:D.6.设,αβ是两个不同的平面,,l m 是两条直线,且,m l αα⊂⊥.则“l β⊥”是“//m β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】通过面面平行的性质判断充分性,通过列举例子判断必要性.【详解】l β⊥,且l α⊥,所以//αβ,又m α⊂,所以//m β,充分性满足,如图:满足//m β,,m l αα⊂⊥,但l β⊥不成立,故必要性不满足,所以“l β⊥”是“//m β”的充分而不必要条件.故选:A .7.已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为()A.1,1B.1,2C.2,1D.2,2【答案】B 【解析】【分析】借助分段函数性质计算可得m ,借助导数的几何意义及零点的存在性定理可得n .【详解】令()0f x =,即0x ≤时,30x =,解得0x =,0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x -=-,有()3200023x x x -=-,整理可得301x =-,即01x =-,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x -=-++,有()()000l 2g elg 11x x x -+=-+,整理可得()()()000221lg 10lg e x x x ++-++=,令()()()()()2l 0g 2l 1e 1g g x x x x x =++-++>,则()()2lg 1g x x '=-+,令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增,当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减,由()()992lg e 99220099lg e 0g =+⨯+-=>,()02020g =-=>,故()g x 在()0,99x ∈上没有零点,又()()9992lg e 999210003999lg e 10000g =+⨯+-⨯=-<,故()g x 在()99,999上必有唯一零点,即当00x >时,亦可有一条切线符合要求,故2n =.故选:B.8.在平面直角坐标系xOy 中,角α以Ox 为始边,终边在第三象限.则()A.sin cos tan ααα-≤B.sin cos tan ααα-≥C.sin cos tan ααα⋅<D.sin cos tan ααα⋅>【答案】C 【解析】【分析】对A 、B :举出反例即可得;对C 、D :借助三角函数的商数关系及其值域计算即可得.【详解】由题意可得sin 0α<、cos 0α<,tan 0α>,对A :当sin 0α-→时,cos 1α→-,则sin cos 1αα-→,tan 0α→,此时sin cos tan ααα->,故A 错误;对B :当5π4α=时,1sin cos sinc 5π5π5π0tan 44os 4αα-=-=<=,故B 错误;对C 、D :22sin sin cos cos cos tan cos ααααααα⋅=⋅=⋅,由1cos 0α-<<,故()2cos 0,1α∈,则2cos tan tan ααα⋅<,即sin cos tan ααα⋅<,故C 正确,D 错误.故选:C.9.函数()f x 是定义在(4,4)-上的偶函数,其图象如图所示,(3)0f =.设()f x '是()f x 的导函数,则关于x 的不等式(1)()0f x f x '+⋅≥的解集是()A.[0,2]B.[3,0][3,4)-C.(5,0][2,4)-D.(4,0][2,3)- 【答案】D 【解析】【分析】借助函数图象与导数的关系计算即可得.【详解】由(3)0f =,且()f x 为偶函数,故(3)0f -=,由导数性质结合图象可得当()4,0x ∈-时,()0f x '<,当()0,4x ∈时,()0f x '>,当0x =时,即()00f '=,则由(1)()0f x f x '+⋅≥,有41444x x -<+<⎧⎨-<<⎩,解得43x -<<,亦可得()()100f x f x ⎧+>>'⎪⎨⎪⎩,或()()100f x f x ⎧+<<'⎪⎨⎪⎩,或()10f x +=,或()0f x '=,由()()100f x f x ⎧+>>'⎪⎨⎪⎩可得41304x x -<+<-⎧⎨<<⎩或31404x x <+<⎧⎨<<⎩,即23x <<,由()()100f x f x ⎧+<<'⎪⎨⎪⎩可得31340x x -<+<⎧⎨-<<⎩,即40x -<<,由()10f x +=,可得13x +=±,即2x =或4x =-(舍去,不在定义域内),由()0f x '=,可得0x =,综上所述,关于x 的不等式(1)()0f x f x '+⋅≥的解集为(4,0][2,3)- .故选:D.10.某生物兴趣小组在显微镜下拍摄到一种黏菌的繁殖轨迹,如图1.通过观察发现,该黏菌繁殖符合如下规律:①黏菌沿直线繁殖一段距离后,就会以该直线为对称轴分叉(分叉的角度约为60︒),再沿直线繁殖,…;②每次分叉后沿直线繁殖的距离约为前一段沿直线繁殖的距离的一半.于是,该组同学将整个繁殖过程抽象为如图2所示的一个数学模型:黏菌从圆形培养皿的中心O 开始,沿直线繁殖到11A ,然后分叉向21A 与22A 方向继续繁殖,其中21112260A A A ∠=︒,且1121A A 与1122A A 关于11OA 所在直线对称,112111221112A A A A OA ==….若114cm OA =,为保证黏菌在繁殖过程中不会碰到培养皿壁,则培养皿的半径r (*N r ∈,单位:cm )至少为()A.6B.7C.8D.9【答案】C 【解析】【分析】根据黏菌的繁殖规律可得每次繁殖在11OA 方向上前进的距离,结合无穷等比递缩数列的和的计算公式,即可判断答案.【详解】由题意可知,114cm OA =,只要计算出黏菌沿直线一直繁殖下去,在11OA 方向上的距离的范围,即可确定培养皿的半径的范围,依题意可知黏菌的繁殖规律,由此可得每次繁殖在11OA 方向上前进的距离依次为:1114,2,222482⨯⨯⨯ ,则31353842155722244+⨯++⨯=+>+=,黏菌无限繁殖下去,每次繁殖在11OA 方向上前进的距离和即为两个无穷等比递缩数列的和,即1311432164316841+281142282331144++⎛⎫⎛⎫++++++≈+⨯= ⎪ ⎪⎝⎭⎝⎭--,综合可得培养皿的半径r (*N r ∈,单位:cm )至少为8cm ,故选:C【点睛】关键点点睛:本题考查了数列的应用问题,背景比较新颖,解答的关键是理解题意,能明确黏菌的繁殖规律,从而求出每次繁殖在11OA 方向上前进的距离的和,结合等比数列求和即可.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.已知ln 2ab=,则22ln ln a b -=_______.【答案】4【解析】【分析】直接利于对数的运算性质求解.【详解】因为ln2ab=,所以22222ln ln ln ln 2ln 4a a a a b b b b ⎛⎫-==== ⎪⎝⎭.故答案为:4.12.已知22:(1)3C x y -+= ,线段AB 是过点(2,1)的弦,则AB 的最小值为_______.【答案】2【解析】【分析】借助直径与弦AB 垂直时,AB 有最小,计算即可得.【详解】由22(21)123-+=<,故点(2,1)在圆的内部,且该圆圆心为()1,0设圆心到直线AB 的距离为d ,由垂径定理可得2222AB r d ⎛⎫=- ⎪⎝⎭,即AB =,故当d 取最大值时,AB 有最小值,又max d ==故2AB =≥=.故答案为:2.13.若443243210(2)x a x a x a x a x a -=++++,则0a =_______;13024a a a a a +=++_______.【答案】①.16②.4041-【解析】【分析】借助赋值法,分别令0x =、1x =、=1x -计算即可得.【详解】令0x =,可得40(02)a -=,即40216a ==,令1x =,可得443210(12)a a a a a -=++++,即()44321011a a a a a ++++=-=,令=1x -,可得443210(12)a a a a a --=-+-+,即()443210381a a a a a -+-+=-=,则()()()4321043210420218182a a a a a a a a a a a a a +++++-+-+=++=+=,即42082412a a a ++==,则()42103114140a a a a a =-++==-+-,故130244041a a a a a +=-++.故答案为:16;4041-.14.已知函数π()sin sin 24f x x x ⎛⎫=+ ⎪⎝⎭,则5π4f ⎛⎫= ⎪⎝⎭_________;函数()f x 的图象的一个对称中心的坐标为_______.【答案】①.1-②.π(,0)4-(答案不唯一)【解析】【分析】根据函数表达式,代入即可求出5π4f ⎛⎫ ⎪⎝⎭的函数值,根据条件,先求出使()0f x =的一个取值π4x =-,再证明π(,0)4-是()f x 的一个对称中心即可.【详解】因为π()sin sin 24f x x x ⎛⎫=+⎪⎝⎭,所以55ππππsin()sin(214444f ⎛⎫=+⨯=- ⎪⎝⎭,因为()f x 定义域为R ,当π4x =-时,ππππ()sin sin()04442f ⎛⎫-=-+-= ⎪⎝⎭,下证π(,0)4-是()f x 的一个对称中心,在π()sin sin 24f x x x ⎛⎫=+ ⎪⎝⎭上任取点()00,P x y ,其关于π(,0)4-对称的点为00π(,)2P x y '---,又00000000ππππππ()sin sin 2()sin()sin(π2)sin()sin(2)224244f x x x x x x x y ⎛⎫--=--+--=----=-+=- ⎪⎝⎭,所以函数()f x 的图象的一个对称中心的坐标为π(,0)4-,故答案为:1-;π(,0)4-(答案不唯一)15.已知函数()f x =①函数()f x 是奇函数;②R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根;③已知P 是曲线()y f x =上任意一点,1,02A ⎛⎫-⎪⎝⎭,则12AP ≥;④设()11,M x y 为曲线()y f x =上一点,()22,N x y 为曲线()y f x =-上一点.若121x x +=,则1MN ≥.其中所有正确结论的序号是_________.【答案】②③④【解析】【分析】对①:计算定义域即可得;对②:对0k >与0k <分类讨论,结合二次函数求根公式计算即可得;对③:借助两点间的距离公式与导数求取最值计算即可得;对④:结合函数性质与③中所得结论即可得.【详解】对①:令30x x -≥,即有()()110x x x +-≥,即[][]1,01,x ∞∈-⋃+,故函数()f x 不是奇函数,故①错误;对②:0()f x kx kx -=-=kx =,当0x =00-=,故0是该方程的一个根;当0x ≠,0k >kx =,故0x >,结合定义域可得[]1,x ∞∈+,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有242k x +=或242k x -=(负值舍去),则20122k x ++=>=,故2210x k x --=必有一个大于1的正根,即0()f x kx -=必有一个大于1的正根;当0x ≠,0k <kx =,故0x <,结合定义域有[)1,0∈-x ,有322x x k x -=,即()2210x x k x --=,令2210x k x --=,440k ∆=+>,有242k x =或242k x +=(正值舍去),令244k t +=>,即24k t =-,则22211711744242412222k t x ⎫⎛⎫---⎪ ⎪--⎝⎭⎝⎭===>=-,即212k x =>-,故2210x k x --=在定义域内亦必有一根,综上所述,R k ∀∈,且0k ≠,关于x 的方程0()f x kx -=恰有两个不相等的实数根,故②正确;对③:令(),P x y,则有y =222321124AP x x x ⎛⎫=++=++⎪⎝⎭,令()3214g x x x =++,[][]1,01,x ∞∈-⋃+,()()23232g x x x x x =='++,当()21,1,3x ∞⎛⎫∈--⋃+ ⎪⎝⎭时,()0g x '>,当2,03x ⎛⎫∈- ⎪⎝⎭时,()0g x '<,故()g x 在21,3⎛⎫--⎪⎝⎭、()1,∞+上单调递增,在2,03⎛⎫- ⎪⎝⎭上单调递减,又()1111144g -=-++=,()110044g =+=,故()14g x ≥恒成立,即214AP ≥,故12AP ≥,故③正确;对④:当12x x =时,由[][]1,01,x ∞∈-⋃+,121x x +=,故1212x x ==-,此时,124y y =-==,则12MN =≥,当12x x ≠时,由()y f x =与()y f x =-关于x 轴对称,不妨设12x x <,则有1210x x -≤<≤或121012x x -≤≤<≤≤,当121012x x -≤≤<≤≤时,由2121x x x -≥≥,有121MN x x =≥-≥,故成立;当1210x x -≤<≤时,即有211x x =-,由③知,点M 与点N 在圆2211:24A x y ⎛⎫++= ⎪⎝⎭上或圆外,设点()1,M x m '与点()2,N x n '在圆上且位于x 轴两侧,则1M N ''=,故1MN M N ''≥=;综上所述,1MN ≥恒成立,故④正确.故答案为:②③④.【点睛】关键点点睛:结论④中的关键点在于借助结论③,结合函数的对称性,从而得到当1x 、2x 都小于零时,MN 的情况.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC 中,sin cos 2b C B c =.(1)求B ∠;(2)若4a b c =+=,求ABC 的面积.【答案】(1)π6(2【解析】【分析】(1)根据条件,利用正弦定理边转角得到sin 2B B +=,再利用辅助角公式及特殊角的三角函数值,即可求出结果;(2)根据(1)中π6B =及条件,由余弦定理得到22126c b c +-=,再结合4b c +=,即可求出2c =,再利用三角形面积公式,即可求出结果.【小问1详解】因为sin cos 2b C B c =,由正弦定理可得sin sin cos 2sin B C C B C =,又(0,π)C ∈,所以sin 0C ≠,得到sin 2B B +=,即π2sin(23B +=,所以πsin()13B +=,又因为(0,π)B ∈,所以2ππ3B +=,得到π6B =.【小问2详解】由(1)知π6B =,所以2223cos 22a cb B ac +-==,又a =,得到22126c b c +-=①,又4b c +=,得到4b c =-代入①式,得到2c =,所以ABC 的面积为11πsin 2sin 226ABC S ac B ==⨯⨯= .17.如图,在四棱锥P ABCD -中,,AD BC M //为BP 的中点,//AM 平面CDP .(1)求证:2BC AD =;(2)若,1PA AB AB AP AD CD ⊥====,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使四棱锥P ABCD -存在且唯一确定.(i )求证:PA ⊥平面ABCD ;(ⅱ)设平面CDP ⋂平面BAP l =,求二面角C l B --的余弦值.条件①:BP DP =;条件②:AB PC ⊥;条件③:CBM CPM ∠=∠.注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)证明见解析(2)(i )证明见解析;(ⅱ)77【解析】【分析】(1)借助线面平行的性质定理与中位线的性质即可得;(2)(i )借助线面垂直的判定定理即可得;(ⅱ)结合所给条件建立适当的空间直角坐标系后借助空间向量计算即可得.【小问1详解】取PC 的中点N ,连接,MN ND ,因为M 为BP 的中点,所以1,//2MN BC MN BC =,因为//AD BC ,所以//AD MN ,所以,,,M N D A 四点共面,因为//AM 平面CDP ,平面MNDA 平面CDP DN =,AM ⊂平面MNDA ,所以//AM DN ,所以四边形AMND 为平行四边形,所以MN AD =,所以2BC AD =;【小问2详解】(i )取BC 的中点E ,连接,AE AC ,由(1)知2BC AD =,所以EC AD =,因为//EC AD ,所以四边形AECD 是平行四边形,所以1,EC AD AE CD ===,因为1AB CD ==,所以112AE BC ==,所以90BAC ∠= ,即AB AC ⊥,选条件①:BP DP =,因为1,AB AD PA PA ===,所以PAB 与PAD 全等,所以PAB PAD ∠=∠,因为AB PA ⊥,所以90PAB ∠=o ,所以90PAD ∠= ,即AP AD ⊥,又因为AB AC A ⋂=,AB 、AC ⊂平面ABCD ,所以AP ⊥平面ABCD ;(ⅱ)由(i )知AP ⊥平面ABCD ,而AC ⊂平面ABCD ,所以AP AC ⊥,因为,1PA AB AP ⊥=,建立如图所示空间直角坐标系A xyz -,则()()10,0,1,0,,,22P C D ⎛⎫- ⎪ ⎪⎝⎭,所以()1313,,0,,,12222CD PD AC ⎛⎫⎛⎫=--=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,设平面PDC 的法向量为(),,n x y z = ,则0n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩,即102213022x y x y z ⎧--=⎪⎪⎨⎪-+-=⎪⎩,令x =,则1,y z =-=,于是1,n =-,因为AC 为平面PAB 的法向量,且7cos ,7AC n AC n AC n ⋅===-⋅,所以二面角C l B --的余弦值为77.选条件③:CBM CPM ∠=∠,(i)因为CBM CPM ∠=∠,所以CB CP =,因为1,AB AP CA CA ===,所以ABC 与APC △全等,所以90∠=∠= PAC BAC ,即PA AC ⊥,因为PA AB ⊥,又因为AB AC A ⋂=,AB 、AC ⊂平面ABCD ,所以PA ⊥平面ABCD ;(ii)同选条件①.不可选条件②,理由如下:由(i )可得AB AC ⊥,又PA AB ⊥,PA AC A = ,PA 、AC ⊂平面PAC ,所以AB ⊥平面PAC ,又因为PC ⊂平面PAC ,所以AB PC ⊥,即AB PC ⊥是由已知条件可推出的条件,故不可选条件②.18.某学校为提升学生的科学素养,要求所有学生在学年中完成规定的学习任务,并获得相应过程性积分.现从该校随机抽取100名学生,获得其科普测试成绩(百分制,且均为整数)及相应过程性积分数据,整理如下表:科普测试成绩x科普过程性积分人数90100x ≤≤4108090x ≤<3a 7080x ≤<2b 6070x ≤<123060x ≤<02(1)当35a =时,(i )从该校随机抽取一名学生,估计这名学生的科普过程性积分不少于3分的概率;(ⅱ)从该校科普测试成绩不低于80分的学生中随机抽取2名,记X 为这2名学生的科普过程性积分之和,估计X 的数学期望()E X ;(2)从该校科普过程性积分不高于1分的学生中随机抽取一名,其科普测试成绩记为1Y ,上述100名学生科普测试成绩的平均值记为2Y .若根据表中信息能推断12Y Y ≤恒成立,直接写出a 的最小值.【答案】(1)(i )0.45;(ⅱ)589;(2)7.【解析】【分析】(1)(i )求出科普过程性积分不少于3分的学生数,再求出频率,并用频率估计概率即得;(ⅱ)求出X 的所有可能值,由(i )的结论结合独立重复试验的概率问题求出各个取值的概率,再求出期望即得.(2)求出1Y 的最大值,再求出100名学生科普测试成绩的平均值2Y 的最小值,由题设信息列出不等式求解即得.【小问1详解】当35a =时,(i )由表知,科普过程性积分不少于3分的学生人数为103545+=,则从该校随机抽取一名学生,这名学生的科普过程性积分不少于3分的频率为450.45100=,所以从该校随机抽取一名学生,这名学生的科普过程性积分不少于3分的概率估计为0.45.(ⅱ)依题意,从样本中成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为3分的频率为35735109=+,所以从该校学生科普测试成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为3分的概率估计为79,同理,从该校学生科普测试成绩不低于80分的学生中随机抽取一名,这名学生的科普过程性积分为4分的概率估计为29,X 的所有可能值为6,7,8,7749(6)9981P X ==⨯=,7228(7)29981P X ==⨯⨯=,224(8)9981P X ==⨯=,所以X 的数学期望4928458()6788181819E X =⨯+⨯+⨯=.【小问2详解】由表知,10232100a b ++++=,则65b a =-,从该校科普过程性积分不高于1分的学生中随机抽取一名,其科普测试成绩记为1Y ,则1Y 的最大值为69,100名学生科普测试成绩的平均值记为2Y ,要12Y Y ≤恒成立,当且仅当2min ()69Y ≥,显然2Y 的最小值为各分数段取最小值求得的平均分,因此2min 1683()108070(65)602302]10010a Y a a +=⨯++-+⨯+⨯=,则6836910a+≥,解得7a ≥,所以根据表中信息能推断12Y Y ≤恒成立的a 的最小值是7.19.已知椭圆22:G x my m +=的离心率为12,,2A A 分别是G 的左、右顶点,F 是G 的右焦点.(1)求m 的值及点F 的坐标;(2)设P 是椭圆G 上异于顶点的动点,点Q 在直线2x =上,且PF FQ ⊥,直线PQ 与x 轴交于点M .比较2MP 与12MA MA ⋅的大小.【答案】(1)2m =,()1,0F (2)122MA A MP M <⋅【解析】【分析】(1)借助离心率计算即可得;(2)设()00,P x y ,表示出M 与Q 点坐标后,可得2MP 、12MA MA ⋅,借助作差法计算即可得.【小问1详解】由22:G x my m +=,即22:1x G y m+=,由题意可得1m >,故2=,解得2m =,故22:12x G y +=1=,故()1,0F ;【小问2详解】设()00,P x y ,00,0x y ≠,0x <<,有220012x y +=,由PF FQ ⊥,则有()()001210Q x y y -⋅-+⋅=,即01Q x y y -=,由0PQ k ≠,故有0002Q My y y x x x -=--,即有()()()2000000000200000022211M Q y x y x y x x x x x x y y x y y y ---=-=-=------()200320000022000012222422x x x x x x x x x x x ⎛⎫-- ⎪--+⎝⎭=-=---()()32320000002200000002222242222x x x x x x x x x x x x x ----+=-==---,由22:12x G y +=可得()1A、)2A ,则22222222000000022200002444441322x x MP x y x y x x x x x ⎛⎫=-+=-++=-++-=-+ ⎪⎝⎭,1220002242MA MA x x x ⎛⋅==- ⎝,则222001222004432122x x MP MA MA x x -⋅=-+-+=-,由0x <<,故20102x -<,即212MP MA MA <⋅.20.已知函数12()ea x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+∈+∞存在最大值,求a 的取值范围.【答案】(1)()f x 的增区间为(),2∞-,减区间为(2,)+∞(2)1a ≥-【解析】【分析】(1)对函数求导,得到121(1))e 2(a x f x x -=-',再求出()0f x '>和()0f x '<对应的x 取值,即可求出结果;(2)令2()()e h x f x a -=+,对()h x 求导,利用导数与函数单调性间的关系,求出()h x 的单调区间,进而得出()h x 在(0,)+∞上取值范围,从而将问题转化成1222ee e a a a ---+≥成立,构造函数12()e e x m x x --=+,再利用()m x 的单调性,即可求出结果.【小问1详解】易知定义域为R ,因为12()ea x f x x -=,所以11122211(1)()e2e e 2a x a x a x x x x f ----=-'=,由()0f x '=,得到2x =,当2x <时,()0f x '>,当2x >时,()0f x '<,所以,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+.【小问2详解】令2()()e h x f x a -=+,则()()h x f x ''=,由(1)知,函数()f x 的单调递增区间为(),2∞-,单调递减区间为()2,∞+,所以()h x 在2x =时取得最大值12(2)2e e a h a --=+,所以当2x >时,1222()e e e (0)a x h x x a a h ---=+>=,当02x <<时,()(0)h x h >,即当,()0x ∈+∞时,(]()(0),(2)h x h h ∈,所以函数122()ee a x g x x a --=+在(0,)+∞存在最大值的充要条件是1222e e e a a a ---+≥,即122122e e e e +e 02a a a a a -----++=≥,令12()e e x m x x --=+,则12()e e 0x m x --'=+>恒成立,所以12()e e x m x x --=+是增函数,又因为22(1)e e 0m ---=-=,所以12()e e 0a m a a --=+≥的充要条件是1a ≥-,所以a 的取值范围为[)1,-+∞.【点睛】关键点点晴:本题的关键在于第(2)问,构造函数122()e e a x h x x a --=+,利用函数单调性得到,()0x ∈+∞时,(]()(0),(2)h x h h ∈,从而将问题转化成1222e e e a a a ---+≥,构造函数12()e e x m x x --=+,再利用()m x 的单调性来解决问题.21.已知:()2*12:,,,2,m Q a a a m m ≥∈N为有穷正整数数列,其最大项的值为m ,且当0,1,,1k m =- 时,均有(1)km i km j a a i j m ++≠≤<≤.设00b =,对于{0,1,,1}t m ∈- ,定义{}1min ,t t n b n n b a t +=>>,其中,min M 表示数集M 中最小的数.(1)若:3,1,2,2,1,3,1,2,3Q ,写出13,b b 的值;(2)若存在Q 满足:12311b b b ++=,求m 的最小值;(3)当2024m =时,证明:对所有2023,20240Q b ≤.【答案】(1)11b =,36b =(2)4(3)证明见解析【解析】【分析】(1)结合定义逐个计算出1b 、2b 、3b 即可得;(2)当3m =时,可得12310b b b ++≤,故4m ≥,找到4m =时符合要求的数列Q 即可得;(3)结合题意,分两段证明,先证10122024b ≤,定义1120251012,2k k C C C ++⎡⎤==⎢⎥⎣⎦,再证得2024k C b k ≤,即可得证,【小问1详解】由:3,1,2,2,1,3,1,2,3Q ,00b =,则{}1min 0,0n b n n a =>>,故11b =,则{}2min 1,1n b n n a =>>,故23b =,则{}3min 3,2n b n n a =>>,故36b =;【小问2详解】由题意可知,3m ≥,当3m =时,由1n a ≥,{}1min 0,0n b n n a =>>,故11b =,则{}2min 1,1n b n n a =>>,由题意可得123a a a ≠≠,故2a 、3a 总有一个大于1,即22b =或23b =,{}32min ,2n b n n b a =>>,由456a a a ≠≠,故4a 、5a 、6a 总有一个大于2,故36b ≤,故当3m =时,12310b b b ++≤,不符,故4m ≥,当4m =时,取数列:4,1,3,2,1,2,3,4,1,2,3,4,1,2,3,4Q ,有11b =,23b =,37b =,即12311b b b ++=,符合要求,故m 的最小值为4;【小问3详解】因为{}11min ,,0,1,,2023t n b nn b a t t +=>>= ∣,所以11,0,1,,2023i b b t +>= ,(i)若12024t b +≤,则当1t n b +<时,至少以下情况之一成立:①n a t ≤,这样的n 至少有t 个,②存在,i i t b n ≤=,这样的n 至多有t 个,所以小于1t b +的n 至多有2t 个,所以1121t b t t t +≤++=+,令212024t +≤,解得11012t +≤,所以10122024b ≤,(ii)对*k ∈N ,若12024t t b k b +≤<,且()1202420241t l k b k ++<≤+,因为{}1min ,t l t l n b nn b a t l +++=>>+∣,所以当()12024,t l n k b ++∈时,至少以下情况之一成立:①n a t l ≤+,这样的n 至多有t l +个;②存在,i t i i l <≤+且i b n =,这样的n 至多有l 个,所以120241202421t l b k t l l k t l ++≤++++=+++,令212024t l ++≤,解得20232t l -⎡⎤≤⎢⎥⎣⎦,即202512t t l +⎡⎤++≤⎢⎥⎣⎦,其中[]x 表示不大于x 的最大整数,所以当12024t t b k b +≤<时,()2025220241t b k +⎡⎤⎢⎥⎣⎦≤+;综上所述,定义1120251012,2k k C C C ++⎡⎤==⎢⎥⎣⎦,则2024k C b k ≤,依次可得:2345671518,1771,1898,1961,1993,2009C C C C C C ======,89102017,2021,2023C C C ===,所以202320241020240b ≤⨯=.【点睛】关键点点睛:涉及数列新定义问题,关键是正确理解所给出的定义,由给定数列结合新定义探求出数列的相关性质,进行合理的计算、分析、推理等方法综合解决.。
2014海淀区高三一模数学试题参考答案(理科)
海淀区高三年级第二学期期中练习参考答案数 学 (理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共8小题,每小题5分,共40分.1. C2. D3. D4. A5. B6. B7. C8. B二、填空题:本大题共6小题,每小题5分,共30分.9. 96 10.16 11. 2 12. 34 13. 414. 9;3 (本题第一空3分,第二空2分)三、解答题: 本大题共6小题,共80分.15.解: (Ⅰ)π()sin3f x x = ---------------------------2分 (1)(0)(0)1f fg -=------------------------------3分πsinsin 032=-=. -------------------------------5分 (Ⅱ)(1)()π()sin()sin 1333f t f tg t t t t t ππ+-==+-+- ------------------------------6分πππsincos cos sin sin 33333t t t ππ=+- ------------------------------7分1ππsin 233t t =-+ ------------------------------8分 ππsin()33t =-- ------------------------------10分因为33[,]22t ∈-,所以ππ5ππ[,]3366t -∈-, ------------------------------11分 所以 π1s i n ()[1,]332t π-∈-, -----------------------------12分所以()g t 在33[,]22-上的取值范围是1[,1]2- -----------------------------13分16.解:(Ⅰ)甲公司员工A 投递快递件数的平均数为36,众数为33. --------------------------------2分(Ⅱ)设a 为乙公司员工B 投递件数,则当a =34时,X =136元,当a >35时,354(35)7X a =⨯+-⨯元,X 的可能取值为136,147,154,189,203 -------------------------------4分{说明:X 取值都对给4分,若计算有错,在4分基础上错1个扣1分,4分扣完为止} X分{说明:每个概率值给1分,不化简不扣分,随机变量值计算错误的此处不再重复扣分}13231()1361471541892031010101010E X =⨯+⨯+⨯+⨯+⨯ 1655==165.5()10元 --------------------------------------11分 (Ⅲ)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月收入4965元. ------------------------------------13分 17.(Ⅰ)因为平面ABD ⊥平面BCD ,交线为BD ,又在ABD ∆中,AE BD ⊥于E ,AE ⊂平面ABD所以AE ⊥平面BCD . --------------------------------------3分 (Ⅱ)由(Ⅰ)结论AE ⊥平面BCD 可得AE EF ⊥.由题意可知EF BD ⊥,又AE ⊥BD .如图,以E 为坐标原点,分别以,,EF ED EA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系E xyz---------------------------4分不妨设2AB BD DC AD ====,则1BE ED ==. 由图1条件计算得,AE =BC =BF =则(0,0,0),(0,1,0),(0,1,0),2,0)E DB A FC --------5分 (0,1,DC AD ==.由AE ⊥平面BCD 可知平面DCB 的法向量为EA. -----------------------------------6分 设平面ADC 的法向量为(,,)x y z =n ,则0,0.DC AD ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.y y +==⎪⎩ 令1z =,则1y x ==,所以1)=-n .------------------------------------8分 平面DCB 的法向量为EA所以cos ,5||||EA EA EA ⋅<>==-⋅n n n,所以二面角A DC B --------------------------------9分 (Ⅲ)设AM AF λ=,其中[0,1]λ∈.由于AF = ,所以AM AF λλ== ,其中[0,1]λ∈ --------------------------10分所以,0,(1EM EA AM λ=+=-⎝ --------------------------11分由0EM ⋅= n,即03λ=-(1- ---------------------------12分解得3=(0,1)4λ∈.-----------------------------13分 所以在线段AF 上存在点M 使EM ADC ∥平面,且34AM AF =.-------------14分 18.解(Ⅰ)e axy a '=, -----------------------------------2分因为曲线C 在点(0,1)处的切线为L :2y x m =+,所以120m =⨯+且0|2x y ='=. ----------------------------------4分解得1m =,2a = -----------------------------------5分 (Ⅱ)法1:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于 ∀x ,a R ∈,都有eaxax b >+,即∀x ,a ∈R ,e 0axax b -->恒成立, --------------------------------------6分 令()e axg x ax b =--, ----------------------------------------7分 ①若a=0,则()1g x b =-,所以实数b 的取值范围是1b <; ----------------------------------------8分 ②若0a ≠,()(e 1)axg x a '=-,由'()0g x =得0x =, ----------------------------------------9分 的情况如下:-----------------------------------------11分 所以()g x 的最小值为(0)1g b =-, -------------------------------------------12分 所以实数b 的取值范围是1b <;综上,实数b 的取值范围是1b <. --------------------------------------13分法2:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于∀x ,a R ∈,都有eaxax b >+,即∀x ,a ∈R ,e ax b ax <-恒成立, -------------------------------------------6分 令t ax =,则等价于∀t ∈R ,e tb t <-恒成立,令()e tg t t =-,则 ()e 1tg t '=-, -----------------------------------------7分 由'()0g t =得0t =, ----------------------------------------9分 '(),()g t g t 的情况如下:-----------------------------------------11分所以 ()e tg t t =-的最小值为(0)1g =, ------------------------------------------12分 实数b 的取值范围是1b <. --------------------------------------------13分 19.解:(Ⅰ) 设00(,)A x y ,00(,)-B x y , ---------------------------------------1分因为∆ABM为等边三角形,所以00|||1|3=-y x . ---------------------------------2分 又点00(,)A x y 在椭圆上,所以002200|||1|,3239,y x x y ⎧=-⎪⎨⎪+=⎩消去0y , -----------------------------------------3分 得到 2003280--=x x ,解得02=x 或043=-x ,----------------------------------4分 当02=x时,||3=AB ; 当043=-x时,||9=AB . -----------------------------------------5分{说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m , ------------------6分由0∆>得到 222960--<m k ① ----------------------------7分 所以122623+=-+kmx x k ,121224()223+=++=+my y k x x m k, ----------------------------8分 所以2232(,)2323-++km mN k k ,又(1,0)M如果∆ABM 为等边三角形,则有⊥MN AB , --------------------------9分所以1MN k k ⨯=-, 即2222313123mk k km k+⨯=---+, ------------------------------10分化简2320k km ++=,② ------------------------------11分由②得232k m k+=-,代入① 得2222(32)23(32)0k k k +-+<, 化简得 2340+<k ,不成立, -------------------------------------13分{此步化简成42291880k k k++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM 不能为等边三角形.-------------------------------------14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以||MA =----------------8分 设22(,)B x y,同理可得||MB =2[3,3]x ∈- -----------------9分 因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =, ---------------------------------11分 因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠, ---------------------------------13分 所以∆ABM 不可能为等边三角形. ---------------------------------14分20.解:(Ⅰ)设点列123(0,2),(3,0),(5,2)A A A 的正交点列是123,,B B B ,由正交点列的定义可知13(0,2),(5,2)B B ,设2(,)B x y ,1223(3,2),(2,2)=-= A A A A ,1223(,2)(5,2)=-=-- B B x y B B x y ,, 由正交点列的定义可知 12120A A B B ⋅= ,23230A A B B ⋅=,即32(2)0,,2(5)2(2)0x y x y --=⎧⎨-+-=⎩ 解得25=⎧⎨=⎩x y所以点列123(0,2),(3,0),(5,2)A A A 的正交点列是123(0,2),(2,5),(5,2)B B B .------3分(Ⅱ)由题可得 122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)λλλ=-==-B B B B B B ,,λλλ∈123,,Z 因为1144,A B A B 与与相同,所以有λλλλλλ⎧⎪⎨⎪⎩123123-+-=9,(1)3+3+3=1.(2)因为λλλ∈123,,Z ,方程(2)显然不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列;---------------8分 (Ⅲ)5n n ∀≥∈,N ,都存在整点列()A n 无正交点列. -------------------------9分5n n ∀≥∈,N ,设1(,),i i i i A A a b +=其中,i i a b 是一对互质整数,1,2,3,1i n =-若有序整点列123,,, n B B B B 是点列123,,,n A A A A 正交点列,则1(,),1,2,3,,1λ+=-=-i i i i i B B b a i n ,则有 11=1111=11,(1).(2)n n i i i i i n n i i i i i b a a b λλ--=--=⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑①当n 为偶数时,取1,(0,0)A 1,=3=,1,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数.由于123,,, n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =- . 等式(2)中左边是3的倍数,右边等于1,等式不成立, 所以该点列123,,,n A A A A 无正交点列; ②当n 为奇数时,取1,(0,0)A 11=3,2=a b ,1,=3=,2,3,,1-1⎧=-⎨⎩ i ii a b i n i 为奇数,,为偶数, 由于123,,, n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =- .等式(2)中左边是3的倍数,右边等于1,等式不成立, 所以该点列123,,,n A A A A 无正交点列.综上所述,5n n ∀≥∈,N ,都不存在无正交点列的有序整数点列()A n ----------13分。
2014年北京市海淀区高三一模数学(文)试题和答案
海淀区高三年级第二学期期中练习数学 (文科) 2014.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i - 2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则 A.{}1- B.{}0 C. {}1 D.Æ 3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B.3C.5D. 75. 函数()2sin f x x x =+的部分图象可能是A BCD6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为 A.1 B.2C.12D.3 7. 已知()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为 A .0 B .1 C .2 D .4二、填空题:本大题共6小题,每小题5分,共30分.9.双曲线221 3x y m -=的离心率为2,则m =__________.10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一: 方案二: 方案三:11. 在ABC ∆中,3a =,5b =,120C =,则s i n ______,_______.s i n Ac B==12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型: ①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++. 能较准确反映商场月销售额()f x 与月份x 关系的函数模型为 _________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________. 13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 若1Ω与2Ω有且只有一个公共点,则a = ;(2) 记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.O y x O y xO yxO y x 俯视图主视图侧视图求()f x 在[,]22-上的取值范围.16.(本小题满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ABC=90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. (Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF ;(Ⅱ)求证:BD ⊥1A F ;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.18. (本小题满分13分)已知函数()ln f x x x =.(Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 19. (本小题满分14分)已知1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 关于点(1,0)M 对称时,求证:121x x ==;(Ⅱ)当直线AB 经过点(0,3) 时,求证:MAB ∆不可能为等边三角形. 20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,nA A A A 与()B n :123,,,,nB B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;(Ⅱ)求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ;(Ⅲ)是否存在无正交点列(5)B 的有序整数点列(5)A ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(文科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2014北京市海淀区高考历史一模试题及答案解析
2014北京市海淀区高考历史一模试题及答案解析2014.412.先秦一位思想家说,“君无术则蔽于上,臣无法则乱于下,此不可一无,皆帝王之具也”。
这位思想家是A.老子B.孔子C.孟子D.韩非子13.北魏太和年间(477年─499年),政府校比户籍,清查隐漏人口,导致户口增加,进而形成了新置与恢复州、郡、县的高潮。
与这一现象出现相关的政策是A.建立俸禄制B.设立三长制C.实行宗主督护制D.推行门阀等级制14.乾隆二十四年(1759年),两广总督的奏折中写道“外洋各国夷船到粤,贩运出口货物,均以丝货为重。
每年贩卖湖丝(湖州等地出产的生丝)并绸缎等货,一岁之中,价值(白银)七八十万两,或百余万两。
其货物均系江浙等省商民贩运来粤,转售外夷”。
材料说明①乾隆年间广州是对外通商口岸②中外间“丝──银”贸易兴盛③江南地区的桑蚕丝绸生产发达④官营手工业垄断了丝绸的生产A.①②③B.②③④C.①③④D.①②④15.晚清时期,部分官僚士大夫讲求“实学”,“经世致用”开始表现为“精于机器”“性喜制造”,这反映的思想观念是A.工商皆本B.师夷长技C.实业救国D.立宪改良16.新三民主义是第一次国共合作的政治基础,它与中国共产党民主革命纲领的一致性主要是A.驱逐帝国主义势力,打倒军阀B.推翻资产阶级政权,消灭私有制C.平均地权,满足农民土地要求D.召集国民会议,废除不平等条约17.国民政府统治的某个时期,沿海工厂企业迁移到西南和西北地区,西部工厂数增加。
如图所示。
下列表述正确的是A.推动了国民革命在全国的展开B.目的是改变中国近代工业布局C.意在促进民族资本主义的发展D.保障了抗日战争所需物品供给18.1949年7月,中共中央指示:“凡三万人口以上的城市,在解放两个月至迟三个月后,即应召开各界代表会议,以为党和政府密切联系人民群众的重要方法之一。
”这一指示A.为渡江作战进行战前总动员B.执行了政治协商会议的决议C.有利于建立和巩固人民政权D.标志人民代表大会制度建立19.1972年2月,美国总统尼克松访华,中美双方在上海签署了《中美联合公报》(简称《上海公报》)该公报A.确认了只有一个中国的原则B.宣告了中美两国正式建交C.提出了以互信求安全的主张D.促进了亚太地区经济合作20.《十二铜表法》第六表第一条规定,经济活动中缔结契约,“其所用的法定语言就是当事人之间的法律”。
2014北京市海淀区高考政治一模试题及答案解析
2014北京市海淀区高考政治一模试题及答案解析24学史可以着成败、鉴得失、知兴替;学诗可以情飞扬、志高昂、人灵秀;学伦理可以知廉耻、懂荣辱、辨是非。
这说明A.文化对人的影响是深远持久的B.科学文化修养决定思想道德修养C自觉接受优秀文化熏陶,能促进人的发展 D.世屏观、人生观、价值观是文化素养的核心25郫县豆瓣、分道扬镳、醒醐灌顶……这些字,你会念,还会写吗?提笔忘字,已成为互联网时代国人的一个通病旨在倡导“书写的文明传递,民族的未雨绸缪”的《中国汉字听写大会》节目一经播出,便吸引了越来越多人的关注。
这一活动的举办①有利于传承和弘扬我国的优秀传统文化②有利于引导全社会树立文化自觉和文化自信③说明传统文化会随着社会生活的变迁而发展④说明创新文化传播方式是实现文化繁荣的根本途径A.①②B.①③C.②④D.③④26.我国的许多名言名句中蕴含着丰富的哲理。
下列名言名句与其所蕴含的哲理对应正确的是①无所不备,则无所不寡----集中力量抓主要矛盾②尽信书,则不如无书—-发挥科学理论的指导作用③见贤思齐焉,见不贤而内自省也—-正确发挥意识的能动作用④九仞之积,犹亏一篑之功—要坚信前途是光明的,准备走曲折的路A.①②B.①③C②④ D.③④27雷锋精神,人人可学;奉献爱心,处处可为。
帮助孤寡老人做家务,义务为贫困生辅导功课…现在,全国各地有一大批青年志愿者长期坚持开展志愿者活动,关爱他人,践行雷锋精神。
这告诉我们A价值观是人生的正确向导 B.要在奉献中实现人生价值C社会意识随着社会存在的发展而发展 D.价值判断和价值选择具有社会历史性买新车要交定金排队,买ipad也要等候…这种“饥饿营销”的做法是通过限制供货量,造成供不应求的热销现象,把潜在的消费者吸引过来,从而提高售价,赚取更高的利润。
回答第28、29题。
28下到因素能直接影响“饥饿营销”发挥作用的是①消费心理②品牌知名度③社会劳动生产率④货币发行量A.①②B①③ C.②④ D.③④29.“饥饿营销”是一把双刃剑。
北京市海淀区2014届下学期高三年级一模考试理综试卷 有答案
北京市海淀区2014届下学期高三年级一模考试理综试卷本试卷共300分。
考试时长150分钟。
以下数据可供解题时参考:可能用到的相对原子质量:H 1 N 14 O 16第一部分(选择题共120分)本部分共20小题,每小题6分,共120分,在每小题列出的四个选项中,选出最符合题目要求的一项。
1. 下列生命活动过程中,不消耗A TP的是A. 叶绿体基质中将C3还原为糖B. 突触前膜向胞外释放神经递质C. 线粒体内膜上[H]与氧结合生成水D. 植物根细胞逆浓度吸收矿质离子2. 在细胞的生命历程中,不可能发生的是A. 细胞通过表面的蛋白质接收来自其他细胞的信号B. 基因的选择性表达使分化的细胞遗传物质发生改变C. 以亲代DNA为模板合成相同的两个子代DNAD. 细胞的生理功能减退和紊乱引起细胞衰老3. 研究者探究不同光强条件下,两种不同浓度CO2对某种蓝藻生长的影响,结果如下图所示。
下列关于实验的叙述,不正确的是A. “●”和“▲”分别表示高浓度和低浓度CO2下的测量结果B. 若相同条件下测量O2释放量,可得到相似的实验结果C. 低光强时,不同的CO2浓度对干重增加的影响不显著D. 高浓度CO2时,不同的光强对干重增加的影响不显著4. 沟酸浆属植物中有两个亲缘关系很近的物种,一种开粉红花,被红色的蜂鸟传粉,另一种开黄花,被大黄蜂传粉。
将两物种控制花色的一对基因互换,两物种的传粉者也会随之互换。
由此无法推断出的是A. 花色是其传粉者长期自然选择的结果B. 传粉者在传粉时被捕食的概率较低C. 传粉者不同是两种植物间隔离的形式之一D. 两物种的性状差异一定不是少数基因决定的 5. 下列生物学实验操作,能够顺利达到实验目的的是 A. 在固体培养基上涂布稀释的大肠杆菌培养液获得单菌落 B. 在接种酵母菌的新鲜葡萄汁中通入无菌空气制作果酒 C. 土壤浸出液接种于牛肉膏蛋白胨培养基上筛选分解尿素的细菌 D. 将切下的胡萝卜外植体直接接种在培养基上获得愈伤组织 6. 下列用品的主要成分及用途对应不正确...的是..A. 碳酸的酸性强于苯酚:B. 工业上用氧化铝冶炼金属铝:232Al O (熔融)电解冰晶石===24Al 3O +↑ C. 浓硫酸具有强氧化性:24C 2H SO +(浓)2222SO CO 2H O ∆↑+↑+ D. 金属铜能溶解于稀硝酸:2322Cu 4H 2NO Cu 2NO 2H O +-+++=+↑+8. 下列实验装置或操作正确的是A. 碳表面发生氧化反应B. 钢铁被腐蚀的最终产物为FeOC. 生活中钢铁制品的腐蚀以图①所示为主D. 图②中,正极反应式为22O 2H O 4e 4OH --++= 10. 下列颜色变化与氧化还原反应无关..的是 A. 将乙醇滴入酸性K 2Cr 2O 7溶液中,溶液由橙色变为绿色 B. 将SO 2通入滴有酚酞的NaOH 溶液中,溶液红色褪去 C. 将H 2C 2O 4溶液滴入酸性KMnO 4溶液中,溶液紫色褪去D. 将乙醛加入新制Cu (OH )2悬浊液中并加热至沸腾,出现红色沉淀 11. 实验:①向2 mL 1 mol ·1L -NaBr 溶液中通入少量氯气,溶液变为黄色; ②取①所得溶液滴加到淀粉KI 试纸上,试纸变蓝; ③向①所得溶液继续通入氯气,溶液由黄色变成橙色。
2014海淀区初一(上)期末数学含答案
2014海淀区初一(上)期末数学考生须知:1.本试卷满分100分。
2.在试卷和答题卡上准确填写学校、班级、姓名和学号。
3.试题答案一律填写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。
5.考试结束时,将本试卷、答题卡一并交回。
一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.(3分)﹣2的相反数是()A.﹣B.﹣2C.D.22.(3分)全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×1083.(3分)下列各式结果为正数的是()A.﹣(﹣2)2B.(﹣2)3C.﹣|﹣2|D.﹣(﹣2)4.(3分)下列计算正确的是()A.5a+2a=7a2B.5a﹣2b=3abC.5a﹣2a=3D.﹣ab3+2ab3=ab35.(3分)如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点确定一条线段C.两点之间,直线最短D.两点之间,线段最短6.(3分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球7.(3分)若2是关于x的方程x+a=﹣1的解,则a的值为()A.0B.2C.﹣2D.﹣68.(3分)有理数a,b在数轴上的位置如图所示,则下列各式成立的是()A.b﹣a>0B.﹣b>0C.a>﹣b D.﹣ab<09.(3分)已知x﹣3y=3,则5﹣x+3y的值是()A.8B.2C.﹣2D.﹣810.(3分)已知线段AB=6cm,若M是AB的三等分点,N是AM的中点,则线段MN的长度为()A.1cm B.2cm C.1.5cm D.1cm或2cm二.填空题(本大题共24分,每小题3分)11.(3分)比较大小:﹣2﹣3.12.(3分)写出一个解为1的一元一次方程.13.(3分)若∠α=20°40′,则∠α的补角的大小为.14.(3分)商店上月收入为a元,本月的收入比上月的2倍还多5元,本月的收入为元(用含a的式子表示).15.(3分)若|a﹣2|+(b+3)2=0,则a﹣2b的值为.16.(3分)将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为.17.(3分)已知关于x的方程kx=7﹣x有正整数解,则整数k的值为.18.(3分)有一组算式按如下规律排列,则第6个算式的结果为;第n个算式的结果为(用含n的代数式表示,其中n是正整数).三.解答题(本大题共18分,第19题6分,第20题各4分,第21题各8分)19.(6分)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.20.(12分)如图,平面上四个点A,B,C,D.按要求完成下列问题:(1)连接AD,BC;(2)画射线AB与直线CD相交于E点;(3)用量角器度量得∠AED的大小为(精确到度).21.(16分)解方程:(1)2x﹣(x+10)=6x;(2)=3+.四.解答题(本大题共12分,每小题4分)22.(4分)先化简,再求值:a2+(5a2﹣2a)﹣2(a2﹣3a),其中a=﹣5.23.(4分)点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.24.(4分)列方程解应用题:甲种铅笔每支0.4元,乙种铅笔每支0.6元,某同学共购买了这两种铅笔30支,并且买乙种铅笔所花的钱是买甲种铅笔所花的钱的3倍,求该同学购买这两种铅笔共花了多少钱?五.解答题(本大题共16分,第25题5分,第26题各5分,第27题各6分)25.(5分)如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右平移的T字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426?若能,请求出这五个数;若不能,请说明理由.26.(5分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.27.(10分)如图1,∠AOB=α,∠COD=β,OM,ON分别是∠AOC,∠BOD的角平分线.(1)若∠AOB=50°,∠COD=30°,当∠COD绕着点O逆时针旋转至射线OB与OC重合时(如图2),则∠MON的大小为;(2)在(1)的条件下,继续绕着点O逆时针旋转∠COD,当∠BOC=10°时(如图3),求∠MON的大小并说明理由;(3)在∠COD绕点O逆时针旋转过程中,∠MON=.(用含α,β的式子表示).2014海淀区初一(上)期末数学参考答案一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.【解答】﹣2的相反数是2,故选:D.2.【解答】将15 000 000用科学记数法表示为:1.5×107.故选:B.3.【解答】A、原式=﹣4,不合题意;B、原式=﹣8,不合题意;C、原式=﹣2,不合题意;D、原式=2,符合题意,故选D4.【解答】A、系数相加字母部分不变,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.5.【解答】因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:D.6.【解答】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.7.【解答】把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C8.【解答】A、由大数减小数得正,得b﹣a>0,故A正确;B、b>0,﹣b<0,故B错误;C、由|b|<|a|,得a<﹣b,故C错误;D、由ab异号得,ab<0,﹣ab>0,故D错误;故选:A.9.【解答】∵x﹣3y=3,∴5﹣x+3y=5﹣(x﹣3y)=5﹣3=2.10.【解答】由线段AB=6cm,若M是AB的三等分点,得AM=2,或AM=4.当AM=2cm时,由N是AM的中点,得MN=AM=×2=1(cm);当AM=4cm时,由N是AM的中点,得MN=AM=×4=2(cm);故选:D.二.填空题(本大题共24分,每小题3分)11.【解答】在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】设a=1,则方程可化为:x+b=0;把x=1代入上式得到:1+b=0,解得b=﹣1;所以,方程是:x﹣1=0.13.【解答】∵∠α=20°40′,∴∠α的补角=180°﹣20°40′=159°20′,故答案为:159°20′.14.【解答】本月的收入为(2a+5)元.故答案为:2a+5.15.【解答】∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3,则a﹣2b=2+6=8,故答案为:8.16.【解答】∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为:160°.17.【解答】将原方程变形得kx+x=7即(k+1)x=7,∵关于x的方程kx=7﹣x的解为正整数,∴k+1也为正整数且与x的乘积为7,可得到k+1=7k+1=1,解得k=6或k=0.故k可以取得的整数解为0或6.故答案是:0或6.18.【解答】第6个算式的结果为﹣(2×6﹣1)2=﹣121;第n个算式的结果为(﹣1)n+1(2n﹣1)2.故答案为:﹣121;(﹣1)n+1(2n﹣1)2.三.解答题(本大题共18分,第19题6分,第20题各4分,第21题各8分)19.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=4﹣54=﹣50.20.【解答】解:(1)(2)如图所示:;(3)测量可得∠AED=30°.故答案为:30°.21.【解答】解:(1)方程去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x,去括号得:2x+2=12+2﹣x,移项合并得:3x=12,解得:x=4.四.解答题(本大题共12分,每小题4分)22.【解答】解:原式=a2+5a2﹣2a﹣2a2+6a=4a2+4a,当a=﹣5时,原式=100﹣20=80.23.【解答】解:由于AC:BC=3:1,设BC=x,则AC═3x 第一种情况:当点C在线段AB上时,AC+BC=AB.因为AB=8,所以3x+x=8解得x=2所以BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为AB=8,所以3x﹣x=8解得x=4所以BC=4综上,BC的长为2或4.24.【解答】解:设该同学购买甲种铅笔x支,则购买乙种铅笔(30﹣x)支.根据题意可列方程:0.6(30﹣x)=3×0.4x,解得:x=10,则0.6(30﹣10)+0.4×10=16(元).答:该同学购买这两种铅笔共花了16元.五.解答题(本大题共16分,第25题5分,第26题各5分,第27题各6分)25.【解答】解:这五个数的和能为426.原因如下:设最小数为x,则其余数为:x+10,x+12,x+14,x+20.由题意得,x+(x+10)+(x+12)+(x+14)+(x+20)=426,解方程得:x=74.所以这五个数为74,84,86,88,94.26.【解答】解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.27.【解答】解:(1)如图2,∵OM,ON分别是∠AOC,∠BOD的角平分线,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=(∠AOB+∠BOD).又∵∠AOB=50°,∠COD=30°,∴∠MON=(∠AOB+∠BOD)=×(50°+30°)=40°.故答案是:40°;(2)如图3,∵∠BOD=∠BOC+∠COD=10°+30°=40°,ON平分∠BOD,∴∠BON=∠BOD=×40°=20°.∵∠AOC=∠BOC+∠AOB=10°+50°=60°,OM平分∠AOC,∴∠COM=∠AOC=×60°=30°.∴∠BOM=∠COM﹣∠BOC=30°﹣10°=20°.∴∠MON=∠MOB+∠BON=20°+20°=40°;(3)∵OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β,∴∠MON=α+β=(α+β);故答案是:。
北京市海淀区2014年中考英语一模试题
北京海淀2014中考一模英语四.单项填空(共15分,每小题1分)22. M iss Lin is handing out the exam papers. Let's go and help_____.A. himB. herC. youD. them23. -Shall we meet ______ the school gate tomorrow afternoon?-No problem!A. fromB. overC. onD. at24. T here is ______ wrong w ith my watch. Can you tell me the time?A. everythingB. somethingC. anythingD. nothing25. I think Wechat makes us ______ closer.A. feelB. feltC. feelingD. to feel26. T ina _______ outgoing. She has many friends in her class.A. areB. isC. wereD. was27. -Hello, _______ I speak to Lily?-Hold on, please.A. mayB. mustC. needD. should28. B e quiet! Your little brother ______ in the bedroom now.A. sleptB. sleepsC. will sleepD. is sleeping29. —Which hat do you like___, the blue one or the brown one?—The brown one.A. goodB. betterC. bestD. the best30. —Would you like to hang out with me this weekend?—I'd love to, ______I have a lot of things to do.A. soB. orC. butD. and31. —______ is the bridge over there?—It's about 480 meters long.A. How longB. How soonC. How manyD. How much32. G ina_____ a lot since she joined the art club.A. learnsB. learnedC. will learnD. has learned33. A. party _______ in our school next month. I'm looking forward to it.A. heldB. holdsC. is heldD. will be held34. —Do you know _____ now, Steven?—In Australia.A. Where Sarah livedB. where did Sarah liveC. where Sarah livesD. where does Sarah live五.完形填空(共12分,每小题1分)I stood in line to sign up for the middle school track(田径)team.“Track isn't an 35 sport.” the coach said. “Are you ready to practice hard every day?”“Oh, yes. I love running.” I replied.“Well, that's good,” the coach said.“ 36 starts tomorrow after school.”I was a little nervous about running with mostly older students, but I decided to face my fear.“Welcome to the first day of practice.” the coach ordered everyone to the bottom of a sand hill. “Okay.”, he said, “This is the 37_ practice we'll do all season. You are going to run up and down the sand hill ten times as fast as you can. If you can't 38_ it, move to the si de.” We all lined up, legs ready.“Go!”the coach shouted, and 39 we went.I considered myself a bit small but strong. Running up that hill, however, was harder than I had imagined it would be. The sand kept falling down under my feet and it was hard to keep balance(平衡). I tried 40 my feet in deeper, but people kept passing me shouting “Look out!” and “Move off to the side!”“Don't cry,” I told myself as tears filled my eyes. I had to step aside. I went home from practice feeling like a(an) 41.That night my dad noticed sad face and asked what was wrong. The story came pouring out. Dad listened quietly and then asked, “How 42 do you want to run?”“I really want to run,” I whi spered through my tears.“Then, run,” he said. “Everyone will respect you if you don't stop and give 43 all you have. I know how strong-mined you can be when you set your mind to it.”The next day the hill looked as hard as it had been the day before, but I had a new attitude and something to 44. “Go!” the coach shouted. Several older students ran by me as we started up the hill. I still fell in the sand, and I still wanted to leave every step of the way; but I kept 45 slowly and progressively. When I reached the top, I gave a silent cheer and headed back down again. My dad was right. I won 46 that day and became a part of the team. On my last time down, everyone clapped and cheered.六.阅读下列短文,根据短文内容,从短文后各题所给的A,B,C,D四个选项中,选择最佳选项(共26分,每小题2分)AGrade 9Welcomes You to Parents’Night!Welcome to Parents' Night at Johnson School On Tuesday night. We will share some of our work with you.Please spend some time lookin g around our classroom. Here are some of the things you will find:A class book, the Bare Facts about Bears, that we just published. Each student wrote one page about a bear of his or her choice.Some of the bears you will about polar bears.Maps of the countries we are studying. Through our maps, you will learn about India, Mexico, and France. You will also know about the different countries and languages of these countries.Models of the planets in our solar system. We used small balls and colored paper to build a model of planets and the sun.Our classroom store. Here we buy and sell things. We learn about money and also practice math skills.47. W hen is Parents' Night?A. On TuesdayB. On FridayC. On ThursdayD. On Monday48. W hich country will parents learn about through the map?A. ChinaB. FranceC. The UKD. The USA49. W hat do students do at the classroom store?A. They make a bear book.B. They see planet models.C. They draw a lot of maps.D. They buy and sell things.BTom and his best friend Rob were out of school for the summer. They had been swimming, gone to the movies, played video games, and even built a castle out of some old cardboard boxes. But today they were so bored. “At least we would have something to do.” Tom thought for a while and suggested, “Let’s make some popcorn and lemonade and sell it outside.”The boys went to the kitchen and asked Tom’s mom if she woul d help them make some lemonade while they popped the popcorn. Tom’s mom got the lemons from the refrigerator and also a small amount of sugar. She mixed up the lemonade while the boys started popping the popcorn.Tom and Rob got a small table from the garage and set it up near the sidewalk. They made a red sign telling everyone that popcorn and lemonade was for sale. The boys sat for about ten minutes before they got their first sale. Mrs. Jenkins, one of their neighbors, was walking her dog. “It’s so hot today.” “I sure can use a drink,” she said. Soon the boys were busy handing out popcorn to Mr. Baker. He was walking down the street sending the mail. “I need a break,” he said. “Walking all over the neighborhood gave me an appetite.”The boys had only three popcorn bags left and enough lemonade for three more cups. “Wow, I didn’t think the popcorn and lemonade would sell that fast. We made six dollars,” said Tom. “If we get bored again before school starts, we can try selling more lemonade with cookies(饼干) next time,” laughed Rob.50. W hat did Tom suggest?A. Swimming with their friends.B. Buying some sugar and cookies.C. Making some popcorn and lemonade.D. Going to the movies and playing games.51. W here did Tom and Rob set up the table?A. Near the sidewalk.B. In the kitchen.C. At the supermarket.D. Outside the school.52. W hat did Tom and Rob learn from this experience?A. People might prefer to buy things on sale.B. They could do something new to have fun.C. Mr. Baker liked sending mails very much.D. Mrs. Jenkins needed help to walk the dog.CMost of the things around you will be replaced or thrown away someday. Where will they go when they are thrown out? What kinds of waste will t hey create, and how will it affect the environmentMost of our crash goes to places called landfills. A LANDFILL is a low area of land that is filled with garbage(垃圾).Most modern landfills are lined with a cover of plastic to keep dangerous liquids(液体)from polluting earth and ground water supply. The problem is that more than half of the states in this country are running out of places to landfill their garbage. Because of the unhealthy materials, landfills do not make good neighbors,and people don’t want to live near them. Many landfills are set in poor neig hborhoods.The Fresh Kills landfill on Staten Island, New York, was the largest garbage landfill in the world. For years, people who live nearby complained about air and water pollution caused by the enormous pile of trash. They say that the smoke have made people sick. The landfill closed inApril 2001.Now can a harmful waste—material that can pollute air, land, and water –be disposed of in a safe way.Another way to get rid of trash is to burn it. Trash is burned in an incinerator._ Because incinerators in operation can get rid of almost all of the trash, some communities would rather use incinerators than landfills. There is a problem, though. Leftover ash and smoke from burning trash may have dangerous chemicals, and even make it hard for some people to breathe. They can harm plants, animals, and people.You can help reduce(减少)waste by reusing bottles, batteries, and paper. You can also recycle newspaper, glass, and plastics t to provide materials for making other products.From recycled materials, many things are made. For example, from recycled paper we can get newspapers, boxes and so on. From recycled plastic we can get soda bottles, tables, and backpacks.53. W hy don’t landfills make good neighbors?A. Because there are unhealthy materials in them.B. Because people prefer to live in the city center.C. Because landfills are not big enough for trash.D. Because most states are running out of places.54. W hat does the underlined word “incinerator”_probably mean?A. An area to collect trash.B. A machine to burn trashC. A metho d that is used to burn trash.D.A station that is run by selling trash.55. W hat is probably the best title for the passage?A. How Is Trash Burned?B. What Can Be Reused.C. Why Is Waste Dangerous?D. Where Does Garbage Go?DNearly all kids have had the same experience. They are eating in a restaurant with their parents. They finished the spaghetti minutes ago. Now, t hey are bored. Their little brother is kicking them under the table. He is also complaining about the desserts(餐后甜点). Yet their parents are still eating and talking…and talking…and talking.“Be patient.” One parent says. “We’ll have dessert soon.”All kids know what happens next. After dessert, their parents drink coffee. Then they talk some more. Again, the children must wait. They have been in school all day and would rather be running and playing. Instead, they must sit in a chair and stare at a wall.Going to a restaurant doesn’t have to be this way. Many restaurants say they are “family-friendly”. Family restaurants, such as fast-food restaurants should play areas for children. At these restaurants, almost every pla y area is a big room full of climbing equipment. The room is usually, packed with happy kids. Parents can eat while the children play. Everyone is happy.The real problem begins when families want to eat a fancier meal(大餐). The parents don’t want to hurry through the meal but talk to each other. They do not have bored children pestering(烦扰) them about leaving. That’s no fun for kids either. Fo r them, going to a nicer restaurant means just one thing: sit still and be quiet.On family blogs across the Web, dozens of parents post the same question all the time; are there any nicer restaurants with play areas for kids? Research shows that some nicer restaurants do have play areas. In warmer cities, it is easier for restaurants to build play areas outside. For example, at one restaurant kids can sail tiny little motor boats in a small, shallow pond. Parents can sit on a beautiful yard and watch the kids play. Some nicer restaurants even have indoor play areas. Research also shows that these restaurants serve more than just burgers, chickens and fries.So, it’s possible for a restaurant to provide both food and a place where kids canplay. These restaurants seem to be popular, too. For some, families must have reservation days in advance. For oth ers, families might be forced to wait in long lines. Clearly, quality food and safe play areas are both good for business.56. W hy do children get unhappy at the restaurant?A. Because they can’t join in their parents’ talk.B. Because the dessert isn’t served in time.C. Because they can do nothing but wait.D. Because the food there isn’t delicious.57. W hat is the real problem mentioned in the passage?A. Children don’t like eating fancier food.B. Not many nicer restaurants provide play areas.C. Parents don’t trouble to comfort their bored kids.D. People have to wait for seats in nicer restaurants.58. W hat conclusion can we draw from the research?A. It’s common for nicer restaurants to provide good food and play areas.B. Building play areas is more difficult for restaurants in colder cities.C. Serving more kinds of foods may help restaurants to make more money.D. It’s possible for restaurant s to find a balance to make both happy.59. W hat does the writer mainly want to tell us?A. Cities need to help develop restaurant business.B. Children are supposed to be much more patient.C. Restaurants are supposed to give kids some space.D. Parents need to care more about their kids when eating.七.阅读短文,根据短文内容回答问题。
2014年北京市海淀区高三一模数学(理)试题和答案
海淀区高三年级第二学期期中练习数学(理科) 2014.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭集合则 A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ2.复数()()1i 1i z =+-在复平面内对应的点的坐标为 A. (1,0) B. (0,2) C.()1,0 D. (2,0)1((2)f >的只可能是A BC D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有 A. 4种 B.5种 C.6种 D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为 线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点 的个数为a ,则 A .0a = B .1a = C .2a = D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______. 10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______. 11.如图,AB 切圆O 于B ,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=________. 14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sincos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t .(Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围. 16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、10天的数据,制表如下:35件以内(含35AB D俯视图主视图侧视图件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望; (Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费. 17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB=30°,∠ABC=90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1) 处的切线为2y x m =+,求实数a 和m 的值;(Ⅱ)对任意实数a , 曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围. 19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点, 点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长;(Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
北京市海淀区2014届高三一模 数学(理)试题 Word版含解析
一、选择题:1.已知集合{}211,2,,,,2A B y y x x A AB ⎧⎫===∈=⎨⎬⎩⎭集合则 ( )A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ2.复数()()1i 1i z =+-在复平面内对应的点的坐标为 ( ) A. (1,0) B. (0,2) C.()1,0 D. (2,0)3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是( )【解析】4.已知直线l 的参数方程为1,1x t y t =+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为( )A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有( ) A. 4种 B.5种C.6种D.9种考点:枚举法计数7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( ) A.1 B.2 C.3D.48.已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则( ) A .0a = B .1a = C .2a = D .2a >二、填空题9.一个空间几何体的三视图如图所示,该几何体的体积为______.10.函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.11.如图,AB 切圆O 于B ,3AB =,1AC =,则AO 的长为_______.考点:切割线定理12.已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______.13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.【解析】。
北京市海淀区2017届高三一模数学(理)试题【含答案】
北京海淀区高三年级2016-2017学年度第一次综合练习数学试卷(理科)2017.3一、选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合(){}10A x x x =+≤,集合{}0B x x =>,则A B =( )A .{}1x x ≥-B .{}1x >-C .{}0x x ≥D .{}0x x >2.已知复数()()z i a bi a b R =+∈,),则“z 为纯虚数”的充分必要条件为( ) A .220a b +≠B .0ab =C .00a b =≠,D .00a b ≠=,3.执行如图所示的程序框图,输出的x 值为( ) A .0B .3C .6D .84.设a b R ∈,若a b >,则( ) A .11a b> B .22a b> C .lg lg a b >D .sin sin a b >5.已知1a xdx =⎰,12b x dx =⎰,0c =⎰,则a b c 、、的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<6.已知曲线2:2x C y a ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),()()1010A B -,、,,若曲线C 上存在点P 满足0AP BP ⋅=,则实数a 的取值范围为( )A.22⎡-⎢⎣⎦,B .[]11-,C.⎡⎣D .[]22-,7.甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为( ) A .12B .40C .60D .808.某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查''''OM ON O M O N ===; 项目③:打开过程中(如图2),检查''''OK OL O K O L ===; 项目④:打开后(如图3),检查123490∠=∠=∠=∠=; 项目⑤:打开后(如图3),检查''''AB A B C D CD ===.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( ) A .①②③ B .②③④C .②④⑤D .③④⑤二、填空题(每题5分,满分30分,将答案填在答题纸上)9.若等比数列{}n a 满足24548a a a a ==,,则公比q =________,前n 项和n S =________. 10.已知()()122020F F -,、,,满足122PF PF -=的动点P 的轨迹方程为________. 11.在ABC ∆中,cos c a B =.①A =________;②若1sin 3C =,则()cos B π+=________. 12.若非零向量a ,b 满足()0a a b ⋅+=,2a b =,则向量a ,b 夹角的大小为________.13.已知函数()210cos 0x x f x x x π⎧-≥=⎨<⎩,,,若关于x 的方程()0f x a +=在()0+∞,内有唯一实根,则实数a 的最小值是________.14.已知实数u v x y ,,,满足221u v +=,102202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩,则z ux vy =+的最大值是________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分13分)已知3π是函数()22cos sin 21f x x a x =++的一个零点. (Ⅰ)求实数a 的值;(Ⅱ)求()f x 的单调递增区间.据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).如图,由直三棱柱111ABC A B C -和四棱锥11D BB C C -构成的几何体中,90BAC ∠=,1AB =,12BC BB ==,1C D CD ==1CC D ⊥平面11ACC A .(Ⅰ)求证:1AC DC ⊥;(Ⅱ)若M 为1DC 的中点,求证://AM 平面1DBB ;(Ⅲ)在线段BC 上是否存在点P ,使直线DP 与平面1BB D 所成的角为3π?若存在,求BPBC 的值,若不存在,说明理由.已知函数()()()2241ln 1f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]01,上恒成立,求a 的取值范围.已知椭圆22:12x G y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A B 、两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C D 、两点.(Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2AM CM DM =⋅成立?若存在,求出直线l 的方程;若不存在,请说明理由.已知含有n 个元素的正整数集{}()12123n n A a a a a a a n =<<<≥,,,,具有性质P :对任意不大于()S A (其中()12n S A a a a =+++)的正整数k ,存在数集A 的一个子集,使得该子集所有元素的和等于k .(Ⅰ)写出12a a ,的值;(Ⅱ)证明:“12n a a a ,,,成等差数列”的充要条件是“()()12n n S A +=”; (Ⅲ)若()2017S A =,求当n 取最小值时n a 的最大值.2017年北京市海淀区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x(x+1)≤0},集合B={x|x>0},则A∪B=()A.{x|x≥﹣1} B.{x|x>﹣1} C.{x|x≥0} D.{x|x>0}【解答】解:∵集合A={x|x(x+1)≤0}={x|﹣1≤x≤0},集合B={x|x>0},∴A∪B={x|x≥﹣1}.故选:A.2.(5分)已知复数z=i(a+bi)(a,b∈R),则“z为纯虚数”的充分必要条件为()A.a2+b2≠0 B.ab=0 C.a=0,b≠0 D.a≠0,b=0【解答】解:复数z=i(a+bi)=ai﹣b(a,b∈R),则“z为纯虚数”的充分必要条件为﹣b=0,a≠0.故选:D.3.(5分)执行如图所示的程序框图,输出的x值为()A.0 B.3 C.6 D.8【解答】解:x=0,y=9,≠,x=1,y=8,≠,x=2,y=6,=4≠,x=3,y=3,3=,输出x=3,故选:B.4.(5分)设a,b∈R,若a>b,则()A.<B.2a>2b C.lga>lgb D.sina>sinb【解答】解:a,b∈R,a>b,当a>0,b<0时,A不成立,根据指数函数的单调性可知,B正确,根据对数函数的定义,可知真数必需大于零,故C不成立,由于正弦函数具有周期性和再某个区间上为单调函数,故不能比较,故D不成立,故选:B.5.(5分)已知a=xdx,b=x2dx,c=dx,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【解答】解:a=xdx=|=,b=x2dx=|=,c=dx=|=,则b<a<c,故选:C6.(5分)已知曲线C:(t为参数),A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,则实数a的取值范围为()A.,B.[﹣1,1] C.,D.[﹣2,2]【解答】解:∵A(﹣1,0),B(1,0),若曲线C上存在点P满足•=0,∴P的轨迹方程是x2+y2=1.曲线C:(t为参数),普通方程为x﹣y+a=0,由题意,圆心到直线的距离d=≤1,∴,故选C.7.(5分)甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为()A.12 B.40 C.60 D.80【解答】解:根据题意,分2种情况讨论:①、甲和乙都排在丙的左侧,将甲乙安排在丙的左侧,考虑甲乙之间的顺序,有2种情况,排好后有4个空位,在4个空位中选一个安排丁,有4种情况,排好后有5个空位,在5个空位中选一个安排戊,有5种情况,则甲和乙都排在丙的左侧的情况有2×4×5=40种,②、甲和乙都排在丙的右侧,同理有40种不同的排法;故甲和乙都排在丙的同一侧的排法种数为40+40=80种;故选:D.8.(5分)某折叠餐桌的使用步骤如图所示,有如图检查项目:项目①:折叠状态下(如图1),检查四条桌腿长相等;项目②:打开过程中(如图2),检查OM=ON=O'M'=O'N';项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L';项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°;项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”()A.①②③B.②③④C.②④⑤D.③④⑤【解答】解:项目①:折叠状态下(如图1),四条桌腿长相等时,桌面与地面不一定平行;项目②:打开过程中(如图2),若OM=ON=O'M'=O'N',可以得到线线平行,从而得到面面平行;项目③:打开过程中(如图2),检查OK=OL=O'K'=O'L',可以得到线线平行,从而得到面面平行;项目④:打开后(如图3),检查∠1=∠2=∠3=∠4=90°,可以得到线线平行,从而得到面面平行项目⑤:打开后(如图3),检查AB=A'B'=C'D'=CD.桌面与地面不一定平行;故选:B.二、填空题(每题5分,满分30分,将答案填在答题纸上)9.(5分)若等比数列{a n}满足a2a4=a5,a4=8,则公比q=2,前n项和S n=2n﹣1.【解答】解:∵等比数列{a n}满足a2a4=a5,a4=8,∴,解得a1=1,q=2,∴前n项和S n==2n﹣1.故答案为:2,2n﹣1.10.(5分)已知F1(﹣2,0),F2(2,0),满足||PF1|﹣|PF2||=2的动点P的轨迹方程为.【解答】解:根据题意,F1(﹣2,0),F2(2,0),则|F1F2|=4,动点P满足||PF1|﹣|PF2||=2,即2<4,则P的轨迹是以F1、F2为焦点的双曲线,其中c=2,2a=2,即a=1,则b2=c2﹣a2=3,双曲线的方程为:;故答案为:.11.(5分)在△ABC中,c=acosB.①A=90°;②若sinC=,则cos(π+B)=﹣.【解答】解:①∵c=acosB.∴cosB==,整理可得:a2=b2+c2,∴A=90°;②∵sinC=,A=90°,∴B=90°﹣C,∴cos(π+B)=﹣cosB=﹣sinC=﹣故答案为:90°,.12.(5分)若非零向量,满足•(+)=0,2||=||,则向量,夹角的大小为120°.【解答】解:设向量,的夹角为θ,则θ∈[0°,180°];又•(+)=0,2||=||,∴+•=0,即+||×2||cosθ=0,解得cosθ=﹣,∴θ=120°,即向量,夹角为120°.故答案为:120°.13.(5分)已知函数f(x)=,,<若关于x的方程f(x+a)=0在(0,+∞)内有唯一实根,则实数a的最小值是﹣.【解答】解:作出f(x)的函数图象如图所示:∵f(x+a)在(0,+∞)上有唯一实根,∴f(x)在(a,+∞)上有唯一实根,∴﹣≤a<1.故答案为.14.(5分)已知实数u,v,x,y满足u2+v2=1,,则z=ux+vy的最大值是2.【解答】解:约束条件的可行域如图三角形区域:A(2,1),B(2,﹣1),C(0,1),u2+v2=1 设u=sinθ,v=cosθ,目标函数经过A时,z=2sinθ+2cosθ=2sin().目标函数经过B时,z=2sinθ﹣cosθ=(θ+β)(其中tanβ=).目标函数经过C时,z=sinθ≤1.所以目标函数的最大值为:2.故答案为:.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知是函数f(x)=2cos2x+asin2x+1的一个零点.(Ⅰ)求实数a的值;(Ⅱ)求f(x)的单调递增区间.【解答】解:(Ⅰ)由题意可知,即,即,解得.(Ⅱ)由(Ⅰ)可得==,函数y=sinx的递增区间为,,k∈Z.由<<,k∈Z,得<<,k∈Z,所以,f(x)的单调递增区间为,,k∈Z.16.(13分)据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠8~10万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设X为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出X的数学期望(不需要计算过程).【解答】解:(Ⅰ)本次协议的投资重点为能源,因为能源投资为340亿,占总投资460亿的50%以上,所占比重大.(Ⅱ)设事件A:从12个月中任选一个月,该月超过55百万吨.根据提供的数据信息,可以得到天津、上海两港口的月吞吐量之和分别是:56,49,58,54,54,57,59,58,58,56,54,56,其中超过55百万吨的月份有8个,所以,.(Ⅲ)X的数学期望EX=8.17.(13分)如图,由直三棱柱ABC﹣A1B1C1和四棱锥D﹣BB1C1C构成的几何体中,∠BAC=90°,AB=1,BC=BB1=2,C1D=CD=,平面CC1D⊥平面ACC1A1.(Ⅰ)求证:AC⊥DC1;(Ⅱ)若M为DC1的中点,求证:AM∥平面DBB1;(Ⅲ)在线段BC上是否存在点P,使直线DP与平面BB1D所成的角为?若存在,求的值,若不存在,说明理由.【解答】解:(Ⅰ)证明:在直三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,故AC⊥CC1,由平面CC1D⊥平面ACC1A1,且平面CC1D∩平面ACC1A1=CC1,所以AC⊥平面CC1D,又C1D⊂平面CC1D,所以AC⊥DC1.(Ⅱ)证明:在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,所以AA1⊥AB,AA1⊥AC,又∠BAC=90°,所以,如图建立空间直角坐标系A﹣xyz,依据已知条件可得A(0,0,0),,,,,,,B(0,0,1),B1(2,0,1),,,,所以,,,,,,设平面DBB1的法向量为,,,由即令y=1,则,x=0,于是,,,因为M为DC1中点,所以,,,所以,,,由,,,,,可得,所以AM与平面DBB1所成角为0,即AM∥平面DBB1.(Ⅲ)解:由(Ⅱ)可知平面BB1D的法向量为,,.设,λ∈[0,1],则,,,,,.若直线DP与平面DBB1成角为,则<,>,解得,,故不存在这样的点.18.(13分)已知函数f(x)=x2﹣2ax+4(a﹣1)ln(x+1),其中实数a<3.(Ⅰ)判断x=1是否为函数f(x)的极值点,并说明理由;(Ⅱ)若f(x)≤0在区间[0,1]上恒成立,求a的取值范围.【解答】解:(Ⅰ)由f(x)=x2﹣2ax+4(a﹣1)ln(x+1)可得函数f(x)定义域为(﹣1,+∞),=,令g(x)=x2+(1﹣a)x+(a﹣2),经验证g(1)=0,因为a<3,所以g(x)=0的判别式△=(1﹣a)2﹣4(a﹣2)=a2﹣6a+9=(a﹣3)2>0,由二次函数性质可得,1是函数g(x)的异号零点,所以1是f'(x)的异号零点,所以x=1是函数f(x)的极值点.(Ⅱ)已知f(0)=0,因为,又因为a<3,所以a﹣2<1,所以当a≤2时,在区间[0,1]上f'(x)<0,所以函数f(x)单调递减,所以有f(x)≤0恒成立;当2<a<3时,在区间[0,a﹣2]上f'(x)>0,所以函数f(x)单调递增,所以f(a﹣2)>f(0)=0,所以不等式不能恒成立;所以a≤2时,有f(x)≤0在区间[0,1]恒成立.19.(14分)已知椭圆G:+y2=1,与x轴不重合的直线l经过左焦点F1,且与椭圆G相交于A,B两点,弦AB的中点为M,直线OM与椭圆G相交于C,D两点.(1)若直线l的斜率为1,求直线OM的斜率;(2)是否存在直线l,使得|AM|2=|CM|•|DM|成立?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(1)由已知可知F1(﹣1,0),又直线l的斜率为1,所以直线l的方程为y=x+1,设A(x1,y1),B(x2,y2),由解得或,所以AB中点,,于是直线OM的斜率为.(2)假设存在直线l,使得|AM|2=|CM|•|DM|成立.当直线l的斜率不存在时,AB的中点M(﹣1,0),所以,,矛盾;故直线的斜率存在,可设直线l的方程为y=k(x+1)(k≠0),联立椭圆G的方程,得(2k2+1)x2+4k2x+2(k2﹣1)=0,设A(x1,y1),B(x2,y2),则,,于是,点M的坐标为,,.直线CD的方程为,联立椭圆G的方程,得,设C(x0,y0),则,由题知,|AB|2=4|CM|•|DM|=4(|CO|+|OM|)(|CO|﹣|OM|)=4(|CO|2﹣|OM|2),即,化简,得,故,所以直线l的方程为,.20.(14分)已知含有n个元素的正整数集A={a1,a2,…,a n}(a1<a2<…<a n,n≥3)具有性质P:对任意不大于S(A)(其中S(A)=a1+a2+…+a n)的正整数k,存在数集A的一个子集,使得该子集所有元素的和等于k.(Ⅰ)写出a1,a2的值;(Ⅱ)证明:“a1,a2,…,a n成等差数列”的充要条件是“S(A)=”;(Ⅲ)若S(A)=2017,求当n取最小值时a n的最大值.【解答】解:(Ⅰ)由集合A={a1,a2,…,a n},}(a1<a2<…<a n,n≥3),由a n为正整数,则a1=1,a2=2.(Ⅱ)先证必要性:因为a1=1,a2=2,又a1,a2,…,a n成等差数列,故a n=n,所以;再证充分性:因为a1<a2<…<a n,a1,a2,…,a n为正整数数列,故有a1=1,a2=2,a3≥3,a4≥4,…,a n≥n,所以,又,故a m=m(m=1,2,…,n),故a1,a2,…,a n为等差数列.(Ⅲ)先证明(m=1,2,…,n).假设存在>,且p为最小的正整数.依题意p≥3,则a1+a2+…+a p﹣1≤1+2+…+2p﹣2=2p﹣1﹣1,又因为a1<a2<…<a n,故当k∈(2p﹣1﹣1,a p)时,k不能等于集合A的任何一个子集所有元素的和.故假设不成立,即(m=1,2,…,n)成立.因此,即2n≥2018,所以n≥11.因为S=2017,则a1+a2+…+a n﹣1=2017﹣a n,若2017﹣a n<a n﹣1时,则当k∈(2017﹣a n,a n)时,集合A中不可能存在若干不同元素的和为k,故2017﹣a n≥a n﹣1,即a n≤1009.此时可构造集合A={1,2,4,8,16,32,64,128,256,497,1009}.因为当k∈{2,2+1}时,k可以等于集合{1,2}中若干个元素的和;故当k∈{22,22+1,22+2,22+3}时,k可以等于集合{1,2,22}中若干不同元素的和;…故当k∈{28,28+1,28+2,…,28+255}时,k可以等于集合{1,2,…,28}中若干不同元素的和;故当k∈{497+3,497+4,…,497+511}时,k可以等于集合{1,2,…,28,497}中若干不同元素的和;故当k∈{1009,1009+1,1009+2,…,1009+1008}时,k可以等于集合{1,2,…,28,497,1009}中若干不同元素的和,所以集合A={1,2,4,8,16,32,64,128,256,497,1009}满足题设,所以当n取最小值11时,a n的最大值为1009.。
北京市海淀区2024年高三一模(理科综合)物理部分
北京市海淀区2024年高三一模(理科综合)物理部分一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题在光电效应实验中,用某一频率的光照射光电管阴极,发生了光电效应,下列方法可使光电子的最大初动能变大的是( )A.仅增大入射光的强度B.仅延长照射时间C.仅增大入射光的频率D.仅增大入射光的波长第(2)题“神舟十五号”载人飞船于2022年11月29日将航天员费俊龙、邓清明和张陆送入中国空间站,他们将完成空间站建设最后阶段的任务.如图所示,已知中国空间站在近地轨道绕地球做匀速圆周运动,则下列说法正确的是( )A.中国空间站运行周期小于24hB.中国空间站运行速度大于7.9km/sC.中国空间站运行角速度小于地球同步卫星的角速度D.中国空间站内的航天员处于完全失重状态,不受重力作用第(3)题如图所示,真空中有一个边长为L的正方体,正方体的两个顶点处分别放置一对电荷量都为q的正、负点电荷。
图中的a、b、c、d是其他的四个顶点,下列表述正确的是()A.a点电势高于c点电势B.a、c两点电场强度的比值为C.a、b、c、d四个顶点处电场方向不相同D.将正点电荷移到c点,b点的电场强度不变第(4)题光刻机是生产大规模集成电路的核心设备。
一个光刻机的物镜投影原理简化图如图所示,三角形ABC为一个等腰直角三棱镜,半球形玻璃砖的半径为R,球心为O,为玻璃砖的对称轴。
间距为的两条平行光线,从左侧垂直AB边射入三棱镜,经AC边反射后进入半球形玻璃砖,最后汇聚在硅片上M点。
已知半球形玻璃砖的折射率为,反射光线关于轴线对称。
则OM两点间距离为( )A.R B.C.D.第(5)题我国“人造太阳”实验装置(EAST)多次创造新的放电世界纪录,其内部发生轻核聚变的核反应方程之一为:,其中是( )A.质子,其粒子流有很强的电离作用B.质子,其粒子流有很强的穿透能力C.中子,其粒子流有很强的电离作用D.中子,其粒子流有很强的穿透能力第(6)题随着国产CT技术不断取得突破,国内医院不再依赖国外仪器,很大程度解决了老百姓看病难问题。
北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题(学生版) Word
北京市2014届高三理科数学一轮复习试题选编14:数列的综合问题一、选择题1 .(2013北京海淀二模数学理科试题及答案)若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 ( )A .若34a =,则m 可以取3个不同的值 B.若m =则数列{}n a 是周期为3的数列 C .T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列 D .Q m ∃∈且2m ≥,数列{}n a 是周期数列2 .(2013北京昌平二模数学理科试题及答案)设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->; ③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是 ( )A .①③B .①④C .②③D .②④二、填空题3 .(2013届北京市延庆县一模数学理)以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间]4,0[对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间]4,0[上(除两个端点外)的点,在第n 次操作完成后)1(≥n ,恰好被拉到与4重合的点所对应的坐标为)(n f ,则=)3(f ;=)(n f .4 .5 .(北京市石景山区2013届高三一模数学理试题)对于各数互不相等的整数数组(n i i i i ,,,,321⋅⋅⋅)(n 是不小于3的正整数),若对任意的q p ,∈{n ,,⋅⋅⋅3,2,1},当q p <时有q p i i >,则称q p i i ,是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(5,2,4,3,1) 2 4(3题图)6 .(2013朝阳二模数学理科)数列{21}n-的前n 项1,3,7,,21n - 组成集合{1,3,7,,21}()n n A n *=-∈N ,从集合n A 中任取k (1,2,3,,)k n = 个数,其所有可能的k 个数的乘积的和为k T (若只取一个数,规定乘积为此数本身),记12n n S T T T =+++ .例如当1n =时,1{1}A =,11T =,11S =;当2n =时,2{1,3}A =,113T =+,213T =⨯,213137S =++⨯=.则当3n =时,3S =______;试写出n S =______.7 .(2013届西城区一模理科)记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为m a x {,,}m i n {,a b ca tbc a b =⋅,}bc ca .(ⅰ)若△ABC 为等腰三角形,则t =______; (ⅱ)设1a =,则t 的取值范围是______.8 .(海淀区北师特学校13届高三第四次月考理科)对任意x ∈R ,函数()f x满足1(1)2f x +=,设)()]([2n f n f a n -=,数列}{n a 的前15项的和为3116-,则(15)f = . 9 .(北京市东城区2013届高三上学期期末考试数学理科试题)定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数对(,)m n 满足下述条件:①(,1)1f m =;②若n m >,(,)0f m n =;③(1,)[(,)(,1)]f m n n f m n f m n +=+-, 则(2,2)f = ,(,2)f n = .10.(2013北京东城高三二模数学理科)在数列{}n a 中,若对任意的*n ∈N ,都有211n n n na a t a a +++-=(t 为常数),则称数列{}n a 为比等差数列,t 称为比公差.现给出以下命题:①等比数列一定是比等差数列,等差数列不一定是比等差数列;②若数列{}n a 满足122n n a n-=,则数列{}n a 是比等差数列,且比公差12t =;③若数列{}n c 满足11c =,21c =,12n n n c c c --=+(3n ≥),则该数列不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是 .11.(北京市朝阳区2013届高三上学期期末考试数学理试题 )将整数1,2,3,,25 填入如图所示的5行5列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .12.(2013北京房山二模数学理科试题及答案)在数列{}n a 中,如果对任意的*n ∈N ,都有211n n n na a a a λ+++-=(λ为常数),则称数列{}n a 为比等差数列,λ称为比公差.现给出以下命题:①若数列{}n F 满足1212(3)n n n F F F F F n --=+≥=1,=1,,则该数列不是比等差数列; ②若数列{}n a 满足123-⋅=n n a ,则数列{}n a 是比等差数列,且比公差0=λ;③等比数列一定是比等差数列,等差数列一定不是比等差数列; ④若{}n a 是等差数列,{}n b 是等比数列,则数列{}n n a b 是比等差数列. 其中所有真命题的序号是____ .三、解答题13.(海淀区2013届高三上学期期中练习数学(理))已知数集12{,,A a a =,}n a 12(1a a =<<,2)n a n <≥具有性质P:对任意的(2)k k n ≤≤,,(1)i j i j n ∃≤≤≤,使得k i j a a a =+成立. (Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由; (Ⅱ)求证:122n a a a ≤++1(2)n a n -+≥;(Ⅲ)若72n a =,求数集A 中所有元素的和的最小值.14.(2013届北京海滨一模理科)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=. 已知0P 0000(,)(,)x y x y ∈ Z 为平面上一个定点,平面上点列{}i P 满足:1()i i P P τ-=,且点i P 的坐标为(,)i i x y ,其中1,2,3,...,i n =.(Ⅰ)请问:点0P 的“相关点”有几个?判断这些“相关点”是否在同一个圆上,若在同一个圆上,写出圆的方程;若不在同一个圆上,说明理由;(Ⅱ)求证:若0P 与n P 重合,n 一定为偶数;(Ⅲ)若0(1,0)P ,且100n y =,记0ni i T x ==∑,求T 的最大值.15.(西城区2013届高三上学期期末考试数学理科)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n = 表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.16.(2011年高考(北京理))若数列12:,,(2)n n A a a a n ≥ 满足1||1(1,2,,1)k k a a k n +-==- ,则称n A 为E 数列.记12()n n S A a a a =+++ (Ⅰ)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(Ⅱ)若112,2000a n ==,证明: E 数列n A 是递增数列的充要条件是2011n a =;(Ⅲ)对任意给定的整数(2)n n ≥,是否存在首项为0的E 数列n A ,使得()0n S A =?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.17.(2013丰台二模数学理科)已知等差数列{}n a 的通项公式为23-=n a n ,等比数列{}n b 中,1143,1b a b a ==+.记集合{},*,n A x x a n N ==∈ {},*n B x x b n N ==∈,U A B =⋃,把集合U 中的元素按从小到大依次排列,构成数列{}n c .(Ⅰ)求数列{}n b 的通项公式,并写出数列{}n c 的前4项;(Ⅱ)把集合U C A 中的元素从小到大依次排列构成数列{}n d ,求数列{}n d 的通项公式,并说明理由; (Ⅲ)求数列{}n c 的前n 项和.nS18.(北京市朝阳区2013届高三第一次综合练习理科数学)设1210(,,,)x x x τ= 是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义1011()|23|kk k S xx τ+==-∑,其中111x x =.(Ⅰ)若(10,9,8,7,6,5,4,3,2,1)τ=,求()S τ的值;(Ⅱ)求()S τ的最大值; (Ⅲ)求使()S τ达到最大值的所有排列τ的个数.19.(顺义13届高三第一次统练理科)已知数列{}n a 的前n 项和为n S ,且点()n S n ,在函数221-=+x y的图像上.(I)求数列{}n a 的通项公式;(II)设数列{}n b 满足:()*,011N ∈=+=+n a b b b n n n ,求数列{}n b 的前n 项和公式;(III)在第(II)问的条件下,若对于任意的*N ∈n 不等式1+<n n b b λ恒成立,求实数λ的取值范围20.(丰台区2013届高三上学期期末理 )已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形.(Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令1,2iy i i ib c a -==,是否存在正整数N ,当n≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值并证明;若不存在,说明理由.21.(海淀区2013届高三上学期期末理科)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为“一阶比增函数”;若2()f x y x=在(0,)+∞上为增函数,则称()f x 为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为1Ω,所有“二阶比增函数”组成的集合记为2Ω. (Ⅰ)已知函数32()2f x x hx hx =--,若1(),f x ∈Ω且2()f x ∉Ω,求实数h 的取值范围; (Ⅱ)已知0a b c <<<,1()f x ∈Ω且()f x 的部分函数值由下表给出,求证:(24)0d d t +->;(Ⅲ)定义集合{}2()|(),,(0,)(),f x f x k x f x k ψ=∈Ω∈+∞<且存在常数使得任取,请问:是否存在常数M ,使得()f x ∀∈ψ,(0,)x ∀∈+∞,有()f x M <成立?若存在,求出M 的最小值;若不存在,说明理由.22.(石景山区2013届高三上学期期末理)定义:如果数列{}n a 的任意连续三项均能构成一个三角形的三边长,则称{}n a 为“三角形”数列.对于“三角形”数列{}n a ,如果函数()y f x =使得()n n b f a =仍为一个“三角形”数列,则称()y f x =是数列{}n a 的“保三角形函数”(*)n N ∈.(Ⅰ)已知{}n a 是首项为2,公差为1的等差数列,若()(1)x f x k k =>是数列{}n a 的“保三角形函数”,求k 的取值范围;(Ⅱ)已知数列{}n c 的首项为2013,n S 是数列{}n c 的前n 项和,且满足+1438052n n S S -=,证明{}n c 是“三角形”数列;(Ⅲ)若()lg g x x =是(Ⅱ)中数列{}n c 的“保三角形函数”,问数列{}n c 最多有多少项?(解题中可用以下数据 :lg20.301,lg30.477,lg2013 3.304≈≈≈)23.(朝阳区2013届高三上学期期中考试(理))给定一个n 项的实数列12,,,(N)n a a a n *∈ ,任意选取一个实数c ,变换()T c 将数列12,,,n a a a 变换为数列12||,||,,||n a c a c a c --- ,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c 可以不相同,第(N )k k *∈次变换记为()k k T c ,其中k c 为第k 次变换时选择的实数.如果通过k 次变换后,数列中的各项均为0,则称11()T c ,22()T c ,,()k k T c 为 “k 次归零变换”.(Ⅰ)对数列:1,3,5,7,给出一个 “k 次归零变换”,其中4k ≤; (Ⅱ)证明:对任意n 项数列,都存在“n 次归零变换”;(Ⅲ)对于数列231,2,3,,nn ,是否存在“1n -次归零变换”?请说明理由.24.(2013届丰台区一模理科)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++= ;② 1231n a a a a ++++= . (Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某2k+1(*k N ∈)阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n = ,试证:(1)21≤k S ; (2)111.22ni i a in =≤-∑25.(2013北京昌平二模数学理科试题及答案)本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++ (其中k 、b 、p 是常数) .(I)当0k =,3b =,4p =-时,求123n a a a a ++++ ;(II)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式;(III)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++< .若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.26.(昌平区2013届高三上学期期末理)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = ,设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.27.(2013北京朝阳二模数学理科试题)已知实数12,,,n x x x (2n ≥)满足||1(1,2,3,,)i x i n ≤= ,记121(,,,)n i j i j nS x x x x x ≤<≤=∑.(Ⅰ)求2(1,1,)3S --及(1,1,1,1)S --的值; (Ⅱ)当3n =时,求123(,,)S x x x 的最小值; (Ⅲ)求12(,,,)n S x x x 的最小值. 注:1i j i j nx x ≤<≤∑表示12,,,n x x x 中任意两个数i x ,j x (1i j n ≤<≤)的乘积之和.28.(北京四中2013届高三上学期期中测验数学(理))已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线21=x 上,且.(1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.29.(2013北京海淀二模数学理科试题及答案)(本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值;(Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之 表2和与每列的各数之和均为非负整数?请说明理由.30.(2013北京房山二模数学理科试题)设3>m ,对于项数为m 的有穷数列{}n a ,令k b 为)(,,,21m k a a a k≤ 中的最大值,称数列{}n b 为{}n a 的“创新数列”.例如数列3,的创新数列为3,5,5,7.考查自然数)3(,,2,1>m m 的所有排列,将每种排列都视为一个有穷数列{}n c .(Ⅰ)若5m =,写出创新数列为3,5,5,5,5的所有数列{}n c ;(Ⅱ)是否存在数列{}n c 的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由; (Ⅲ)是否存在数列{}n c ,使它的创新数列为等差数列?若存在,求出所有符合条件的数列{}n c 的个数;若不存在,请说明理由.22221212a a a a a a a a ------31.(东城区2013届高三上学期期末考试数学理科)已知实数组成的数组123(,,,,)n x x x x 满足条件:①10nii x==∑; ②11ni i x ==∑.(Ⅰ) 当2n =时,求1x ,2x 的值; (Ⅱ)当3n =时,求证:123321x x x ++≤; (Ⅲ)设123n a a a a ≥≥≥≥ ,且1n a a >(2)n ≥,求证:111()2ni in i a xa a =≤-∑.32.(东城区普通校2013届高三3月联考数学(理)试题 )设1a ,2a ,…20a 是首项为1,公比为2的等比数列,对于满足190≤≤k 的整数k ,数列1b ,2b ,…20b 由⎩⎨⎧-++20k n k n a a 时,当时,当20-20201≤<-≤≤n k k n 确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第二学期期中练习数 学 (理科) 2014.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A AB ⎧⎫===∈=⎨⎬⎩⎭集合则A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ 2.复数()()1i 1i z =+-在复平面内对应的点的坐标为A. (1,0)B. (0,2)C.()1,0D. (2,0) 3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是A B C D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有A. 4种B.5种C.6种D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则A .0a =B .1a =C .2a =D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______.10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.11.如图,AB 切圆O 于B,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______.13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.俯视图主视图侧视图AB三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sincos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t .(Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围.16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.F1图 图 218. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1)处的切线为2y x m =+,求实数a 和m 的值; (Ⅱ)对任意实数a ,曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围.19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数 学 (理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题:本大题共8小题,每小题5分,共40分.1. C2. D3. D4. A5. B6. B7. C8. B二、填空题:本大题共6小题,每小题5分,共30分.9. 96 10. 16 11. 2 12. 34 13. 414. 9;3 (本题第一空3分,第二空2分)三、解答题: 本大题共6小题,共80分.15.解: (Ⅰ)π()sin3f x x = ---------------------------2分 (1)(0)(0)1f fg -=------------------------------3分πsinsin 032=-=. -------------------------------5分(Ⅱ)(1)()π()sin()sin 1333f t f tg t t t t t ππ+-==+-+- ------------------------------6分πππsincos cos sin sin 33333t t t ππ=+- ------------------------------7分1ππsin233t t =- ------------------------------8分 ππsin()33t =-- ------------------------------10分因为33[,]22t ∈-,所以ππ5ππ[,]3366t -∈-, ------------------------------11分所以 π1s i n ()[1,]332t π-∈-, -----------------------------12分所以()g t 在33[,]22-上的取值范围是1[,1]2- -----------------------------13分 16.解:(Ⅰ)甲公司员工A 投递快递件数的平均数为36,众数为33. --------------------------------2分(Ⅱ)设a 为乙公司员工B 投递件数,则当a =34时,X =136元,当a >35时,354(35)7X a =⨯+-⨯元,X 的可能取值为136,147,154,189,203 -------------------------------4分{说明:X 取值都对给4分,若计算有错,在4分基础上错1个扣1分,4分扣完为止} X--------------------------------------9分{说明:每个概率值给1分,不化简不扣分,随机变量值计算错误的此处不再重复扣分}13231()1361471541892031010101010E X =⨯+⨯+⨯+⨯+⨯ 1655==165.5()10元 --------------------------------------11分(Ⅲ)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月收入4965元. ------------------------------------13分17.(Ⅰ)因为平面ABD ⊥平面BCD ,交线为BD ,又在ABD ∆中,AE BD ⊥于E ,AE ⊂平面ABD所以AE ⊥平面BCD . --------------------------------------3分(Ⅱ)由(Ⅰ)结论AE ⊥平面BCD 可得AE EF ⊥.由题意可知EF BD ⊥,又AE ⊥BD .如图,以E 为坐标原点,分别以,,EF ED EA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系E xyz ---------------------------4分 不妨设2AB BD DC AD ====,则1BE ED ==. 由图1条件计算得,AE =BC =BF =则(0,0,0),(0,1,0),(0,1,0),(3E D B AF C --------5分(3,1,0),(0,1,DC AD ==.由AE ⊥平面BCD 可知平面DCB 的法向量为EA . -----------------------------------6分 设平面ADC 的法向量为(,,)x y z =n ,则0,0.DC AD ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.y y +==⎪⎩令1z =,则1y x ==,所以(11)=-n .------------------------------------8分 平面DCB 的法向量为EA所以cos ,||||EA EA EA ⋅<>==⋅n n n ,所以二面角A DC B -- ------------------------------9分 (Ⅲ)设AM AFλ=,其中[0,1]λ∈.由于3(AF =, 所以(AM AF λλ==,其中[0,1]λ∈ --------------------------10分 所以3,0,(1EM EA AM λ⎛=+=- ⎝--------------------------11分由0EM ⋅=n 0λ=-(1- ---------------------------12分 解得3=(0,1)4λ∈.-----------------------------13分所以在线段AF 上存在点M 使EM ADC ∥平面,且34AM AF =.-------------14分 18.解(Ⅰ)e axy a '=, -----------------------------------2分因为曲线C 在点(0,1)处的切线为L :2y x m =+,所以120m =⨯+且0|2x y ='=. ----------------------------------4分 解得1m =,2a = -----------------------------------5分 (Ⅱ)法1:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于 ∀x ,a R ∈,都有e ax ax b >+,即∀x ,a ∈R ,e 0ax ax b -->恒成立, --------------------------------------6分 令()e axg x ax b =--, ----------------------------------------7分 ①若a=0,则()1g x b =-,所以实数b 的取值范围是1b <; ----------------------------------------8分 ②若0a ≠,()(e 1)axg x a '=-,由'()0g x =得0x =, ----------------------------------------9分 '(),()g x g x 的情况如下:-----------------------------------------11分 所以()g x 的最小值为(0)1g b =-, -------------------------------------------12分 所以实数b 的取值范围是1b <;综上,实数b 的取值范围是1b <. --------------------------------------13分 法2:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于∀x ,a R ∈,都有e axax b >+,即∀x ,a ∈R ,e axb ax <-恒成立, -------------------------------------------6分令t ax =,则等价于∀t ∈R ,e tb t <-恒成立,令()e t g t t =-,则 ()e 1tg t '=-, -----------------------------------------7分 由'()0g t =得0t =, ----------------------------------------9分 '(),()g t g t 的情况如下:-----------------------------------------11分 所以 ()e tg t t =-的最小值为(0)1g =,------------------------------------------12分 实数b 的取值范围是1b <. --------------------------------------------13分19.解:(Ⅰ) 设00(,)A x y ,00(,)-B x y , ---------------------------------------1分因为∆ABM 为等边三角形,所以00|||1|=-y x . ---------------------------------2分 又点00(,)A x y 在椭圆上,所以002200|||1|,3239,y x x y ⎧=-⎪⎨⎪+=⎩ 消去0y , -----------------------------------------3分 得到 2003280--=x x ,解得02=x 或043=-x ,----------------------------------4分 当02=x 时,||=AB 当043=-x 时,||=AB . -----------------------------------------5分 {说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m , ------------------6分由0∆>得到 222960--<m k ① ----------------------------7分所以122623+=-+kmx x k ,121224()223+=++=+my y k x x m k, ----------------------------8分所以2232(,)2323-++km mN k k,又(1,0)M 如果∆ABM 为等边三角形,则有⊥MN AB , --------------------------9分所以1MN k k ⨯=-, 即2222313123mk k km k+⨯=---+, ------------------------------10分化简2320k k m ++=,②------------------------------11分由②得232k m k+=-,代入① 得2222(32)23(32)0k k k +-+<, 化简得 2340+<k ,不成立, -------------------------------------13分{此步化简成42291880k k k++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM不能为等边三角形.-------------------------------------14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以||MA ===,----------------8分设22(,)B x y,同理可得||MB =2[3,3]x ∈- -----------------9分因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =, ---------------------------------11分因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠, ---------------------------------13分所以∆ABM 不可能为等边三角形. ---------------------------------14分20.解:(Ⅰ)设点列123(0,2),(3,0),(5,2)A A A 的正交点列是123,,B B B ,由正交点列的定义可知13(0,2),(5,2)B B ,设2(,)B x y ,1223(3,2),(2,2)=-=A A A A ,1223(,2)(5,2)=-=--B B x y B B x y ,,由正交点列的定义可知 12120A A B B ⋅=,23230A A B B ⋅=,即32(2)0,,2(5)2(2)0x y x y --=⎧⎨-+-=⎩ 解得25=⎧⎨=⎩x y 所以点列123(0,2),(3,0),(5,2)A A A 的正交点列是123(0,2),(2,5),(5,2)B B B .------3分(Ⅱ)由题可得 122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)λλλ=-==-B B B B B B ,,λλλ∈123,,Z因为1144,A B A B 与与相同,所以有λλλλλλ⎧⎪⎨⎪⎩123123-+-=9,(1)3+3+3=1.(2)因为λλλ∈123,,Z ,方程(2)显然不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列;---------------8分(Ⅲ)5n n ∀≥∈,N ,都存在整点列()A n 无正交点列. -------------------------9分5n n ∀≥∈,N ,设1(,),i i i i A A a b +=其中,i i a b 是一对互质整数,1,2,3,1i n =- 若有序整点列123,,,n B B B B 是点列123,,,n A A A A 正交点列,则1(,),1,2,3,,1λ+=-=-i i i i i B B b a i n ,则有 11=1111=11,(1).(2)n n i i i i i n n i i i i i b a a b λλ--=--=⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑ ①当n 为偶数时,取1,(0,0)A 1,=3=,1,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数. 由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-.等式(2)中左边是3的倍数,右边等于1,等式不成立,所以该点列123,,,n A A A A 无正交点列; ②当n 为奇数时,取1,(0,0)A 11=3,2=a b ,1,=3=,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数, 由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-. 等式(2)中左边是3的倍数,右边等于1,等式不成立,所以该点列123,,,n A A A A 无正交点列.综上所述,5n n ∀≥∈,N ,都不存在无正交点列的有序整数点列()A n ----------13分。