高一下期末数学试卷及答案

合集下载

高一下期末数学试卷含答案解析

高一下期末数学试卷含答案解析
则0≤α<π,且tanα= ,故α=60°,
故选B.
3.在正项等比数列{an}中,若a2=2,a4﹣a3=4,则公比为( )
A.2B.1C. D.
【考点】等比数列的通项公式.
【分析】利用等比数列的通项公式及其性质即可得出,
【解答】解:设正项等比数列{an}的公比为q>0,
∵a2=2,a4﹣a3=4,∴ =2q2﹣2q=4,
22.已知A(﹣1,0),B(1,0),圆C:x2﹣2kx+y2+2y﹣3k2+15=0.
(Ⅰ)若过B点至少能作一条直线与圆C相切,求k的取值范围.
(Ⅱ)当k= 时,圆C上存在两点P1,P2满足∠APiB=90°(i=1,2),求|P1P2|的长.
-学年河北省沧州市高一(下)期末数学试卷
参考答案与试题解析
化为q2﹣q﹣2=0,解得q=2.
故选;A.
4.若a>b,则下列不等式成立的是( )
A.a2>b2B. C.lga>lgbD.
【考点】不等关系与不等式.
【分析】利用不等式的性质和指数函数的单调性就看得出.
【解答】解:∵a>b,∴2a>2b>0,∴ ,
故D正确.
故选D.
5.若直线l∥平面α,直线m⊂α,则l与m的位置关系是( )
A. B. C. D.3
【考点】由三视图求面积、体积.
【分析】由三视图知该几何体是一个长方体截去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.
【解答】解:由三视图知几何体是一个长方体截去一个三棱锥所得的组合体,
且长方体长、宽、高分别是1、1、3,
三棱锥的底面是等腰直角三角形、直角边是1,三棱锥的高是1,
A.2B.1C. D.

2023-2024学年北京市朝阳区高一下学期期末考试数学试卷+答案解析

2023-2024学年北京市朝阳区高一下学期期末考试数学试卷+答案解析

2023-2024学年北京市朝阳区高一下学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若复数z满足,则()A. B. C. D.2.已知向量,,则()A. B. C.3 D.53.如图,八面体的每个面都是正三角形,并且4个顶点A,B,C,D在同一平面内,若四边形ABCD是边长为2的正方形,则这个八面体的表面积为()A.8B.16C.D.4.已知m,n是平面外的两条不同的直线,若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.在中,,,,则()A. B. C. D.6.李华统计了他爸爸2024年5月的手机通话明细清单,发现他爸爸该月共通话60次,他按每次通话时间长短进行分组每组为左闭右开的区间,画出了如图所示的频率分布直方图.则每次通话时长不低于5分钟且小于15分钟的次数为()A.18B.21C.24D.277.已知向量,不共线,,,若与同向,则实数t的值为()A. B. C.3 D.或38.近年来,我国国民经济运行总体稳定,延续回升向好态势.下图是我国2023年4月到2023年12月规模以上工业增加值同比增长速度以下简称增速统计图.注:规模以上工业指年主营业务收入2000万元及以上的工业企业.下列说法正确的是()A.4月,5月,6月这三个月增速的方差比4月,5月,6月,7月这四个月增速的方差大B.4月,5月,6月这三个月增速的平均数比4月,5月,6月,7月这四个月增速的平均数小C.连续三个月增速的方差最大的是9月,10月,11月这三个月D.连续三个月增速的平均数最大的是9月,10月,11月这三个月9.在梯形ABCD中,,,,,,则与夹角的余弦值为()A. B. C. D.10.已知,,若动点P,Q与点A,M共面,且满足,,则的最大值为()A.0B.C.1D.2二、填空题:本题共6小题,每小题5分,共30分。

2023-2024学年安徽省六安一中高一(下)期末数学试卷+答案解析

2023-2024学年安徽省六安一中高一(下)期末数学试卷+答案解析

2023-2024学年安徽省六安一中高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若复数为纯虚数,则复数z的共轭复数为()A. B.2024i C. D.2025i2.已知向量,若,则()A. B. C.1 D.23.已知,,是不共面的三个向量,则能构成空间的一个基底的一组向量是()A.,,B.,,C.,,D.,,4.某不透明的袋中有3个红球,2个白球,它们除颜色不同,质地和大小都完全相同.甲、乙两同学先后从中各取一个球,先取的球不放回,则他们取到不同颜色球的概率为()A. B. C. D.5.已知样本数据,,,…,的平均数为x,方差为,若样本数据,,,…,的平均数为,方差为,则平均数()A.1B.C.2D.6.已知,,,则M到直线AB的距离为()A. B. C.1 D.7.PA,PB,PC是从点P出发的三条射线,每两条射线的夹角均为,那么直线PC与平面PAB所成角的正弦值是()A. B. C. D.8.中国古代数学瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体扇环是指圆环被扇形截得的部分现有一个如图所示的曲池,其中底面ABCD,底面扇环所对的圆心角为,扇环对应的两个圆的半径之比为1:2,,,E是的中点,则异面直线BE与所成角的余弦值为()A. B. C. D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.2021年11月10日,中国和美国在联合国气候变化格拉斯哥大会期间发布《中美关于在21世纪20年代强化气候行动的格拉斯哥联合宣言》以下简称《宣言》承诺继续共同努力,并与各方一道,加强《巴黎协定》的实施,双方同意建立“21世纪20年代强化气候行动工作组”,推动两国气候变化合作和多边进程.为响应《宣言》要求,某地区统计了2020年该地区一次能源消费结构比例,并规划了2030年一次能源消费结构比例,如图所示:经测算,预估该地区2030年一次能源消费量将增长为2020年的倍,预计该地区()A.2030年煤的消费量相对2020年减少了B.2030年天然气的消费量是2020年的5倍C.2030年石油的消费量相对2020年不变D.2030年水、核、风能的消费量是2020年的倍10.下列对各事件发生的概率判断正确的是()A.某学生在上学的路,上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为C.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是11.如图,已知正方体的棱长为1,P为底面ABCD内包括边界的动点,则下列结论正确的是()A.不存在点P,使平面B.三棱锥的体积为定值C.若,则P点在正方形底面ABCD内的运动轨迹长为D.若点P是AD的中点,点Q是的中点,过P,Q作平面平面,则平面截正方体的截面面积为三、填空题:本题共3小题,每小题5分,共15分。

江西省部分学校2023-2024学年高一下学期6月期末考试 数学含答案

江西省部分学校2023-2024学年高一下学期6月期末考试 数学含答案

江西省2023~2024学年高一6月期末教学质量检测数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:必修第一册、第二册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 在复平面内对应点的坐标为()1,1-,则2iz -=()A.31i 22+ B.11i 22+ C.13i 22+ D.1i+2.若一圆锥的侧面展开图的圆心角为5π6,则该圆锥的母线与底面所成角的余弦值为()A.45B.35C.512D.5133.已知0.32a -=,0.213b -⎛⎫= ⎪⎝⎭,2ln3c =,则()A .a b c>> B.b a c>> C.a c b>> D.b c a>>4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则()A.若,a b αβ⊂⊂,且a b ,则αβ∥B.若,a ααβ⊥⊥,则a β∥C.若,,a b a αβαβ⊥=⊥ ,则b α⊥D.若,a b 为异面直线,,a ααβ⊥∥,则b 不垂直于β5.已知集合{}()210R M x ax x a =-+=∈,则“14a =”是“集合M 仅有1个真子集”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件6.35cos cos cos777πππ的值为A.14B.14-C.18D.18-7.在ABC 中,点O 为ABC 的外心,3AB =,72AO BC ⋅= ,6AB AC ⋅=,则ABC 的面积为()A.B. C. D.8.掷两枚骰子,观察所得点数.设“两个点数都是偶数”为事件E ,“两个点数都是奇数”为事件F ,“两个点数之和是偶数”为事件M ,“两个点数之积是偶数”为事件N ,则()A.事件E 与事件F 互为对立事件B.事件M 与事件N 相互独立C.事件E 与事件M N ⋂互斥D.事件F 与事件M N ⋃相互独立二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据11.3233.84.56.37.88.610,,,,,,,,,的第80百分位数是7.8B.一组样本数据35,911x ,,,的平均数为7,则这组数据的方差是8C.用分层随机抽样时,个体数最多的层里的个体被抽到的概率最大D.若1210,,,x x x ⋅⋅⋅的标准差为2,则121031,31,,31x x x ++⋅⋅⋅+的标准差是610.下列结论正确的是()A.y =的值域为11,22⎡⎤-⎢⎥⎣⎦B.2211sin cos y x x=+的最小值为4C.若()lg lg a b a b =≠,则2+a b 的最小值为D.若0a b >>,R c ∈,则a c bc>11.如图,在正方体1111ABCD A B C D -中,AC BD O = ,E F G H ,,,分别为线段OA OB OC OD ,,,的中点,几何体1111A B C D EFGH -的体积为1123,P 为线段1BD 上一点,点P A B C D ,,,,均在球M 的表面上,则()A.1AB PC⊥B.PC PD +的最小值为3C.若P 为1BD 的中点,则球M 的表面积为9π2D.二面角1A HE A --的余弦值为1717三、填空题:本题共3小题,每小题5分,共15分.12.若函数()212xxk f x k -=+⋅为奇函数,则k =_________13.在四面体ABCD 中,2AD BC ==,AD 与BC 所成的角为60°,若E ,F 分别为棱AC ,BD 的中点,则线段EF 的长等于______.14.已知点O 是ABC 的重心,内角A ,B ,C 所对的边长分别为a ,b ,c ,且23203aOA bOB cOC ++=,则A =______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在复平面内,复数()i ,R z a b a b =+∈对应的点为(),Z a b ,连接OZ (O 为坐标原点)可得向量OZ,则称复数z 为向量OZ 的对应复数,向量OZ为复数z 的对应向量.(1)若复数12i z x =+,()()211i R z x x =+-∈的对应向量共线,求实数x 的值;(2)已知复数113i sin z x =⋅,2cos 22i cos z x x =+的对应向量分别为1OZ 和2OZ,若()12f x OZ OZ =⋅,求()f x 的最小正周期和单调递增区间.16.一中学为了解某次物理考试的成绩,随机抽取了50名学生的成绩,根据这50名学生的成绩(成绩均在[]40,100之间),将样本数据分为6组:[)40,50、[)50,60、…、[)80,90、[]90,100,绘制成频率分布直方图(如图所示).(1)求频率分布直方图中a 的值,并估计这50名学生的物理成绩的平均数(同一组中的数据以该组数据所在区间中点的值作代表);(2)在样本中,从成绩在[)40,60内的学生中,随机抽取2人,求这2人成绩都在[)50,60内的概率.17.如图,已知菱形ABCD 的边长为4,π3ABC ∠=,PA ⊥平面ABCD ,2PA =,E ,F 分别为BC ,CD 的中点,AC 交EF 于点G.(1)求证:平面PEF ⊥平面PAG ;(2)求点B 到平面PEF 的距离.18.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos 3sin a C a C b c +=+.(1)求A ;(2)若ABC 为锐角三角形,且43b c +=,求a 的取值范围.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒,将ABC 分别以AB ,BC ,AC 所在的直线为旋转轴旋转一周,得到三个旋转体1Ω,2Ω,3Ω,设1Ω,2Ω,3Ω的体积分别为1V ,2V ,3V .(1)若2a =,3b =,求1Ω的表面积S ;(2)若123V y V V =+,求y 的最大值.江西省2023~2024学年高一6月期末教学质量检测数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:必修第一册、第二册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 在复平面内对应点的坐标为()1,1-,则2iz -=()A.31i 22+ B.11i 22+ C.13i 22+ D.1i+【答案】A 【解析】【分析】由题意写出复数z 的代数形式,代入所求式,运用复数的四则运算计算即得.【详解】依题意,1i z =-,则2i 2i (2i)(1i)3i 31i 1i (1i)(1i)222z ---++====+--+.故选:A.2.若一圆锥的侧面展开图的圆心角为5π6,则该圆锥的母线与底面所成角的余弦值为()A.45B.35C.512D.513【答案】C 【解析】【分析】设圆锥的底面圆半径为r ,母线长为l ,利用侧面展开图条件建立l 与r 的关系式,作出圆锥轴截面图,证明并求出线面所成角的余弦值即可.【详解】作出圆锥的轴截面图SAB ,设圆锥的底面圆半径为r ,母线长为l ,依题意可得,5π2π6l r =,即512r l =,因顶点S 在底面的射影即底面圆圆心O ,故母线SB 与底面所成的角即SBO ∠.在Rt SOB △中,5cos 12r SBO l ∠==.故选:C.3.已知0.32a -=,0.213b -⎛⎫= ⎪⎝⎭,2ln3c =,则()A.a b c >>B.b a c>> C.a c b>> D.b c a>>【答案】B 【解析】【分析】利用指数函数与对数函数的性质比较大小即可.【详解】因为2x y =在R 上递增,且0.30-<,所以0.30022-<<,即0.3021-<<,所以01a <<,因为13xy ⎛⎫= ⎪⎝⎭在R 上递减,且0.20-<,所以0.211133-⎛⎫⎛⎫>= ⎪⎪⎝⎭⎝⎭,即1b >,因为ln y x =在(0,)+∞上递增,且213<,所以2lnln103<=,即0c <,所以b a c >>.故选:B4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则()A.若,a b αβ⊂⊂,且a b ,则αβ∥B.若,a ααβ⊥⊥,则a β∥C.若,,a b a αβαβ⊥=⊥ ,则b α⊥D.若,a b 为异面直线,,a ααβ⊥∥,则b 不垂直于β【答案】D 【解析】【分析】由平面平行的判定定理可判断A 错误,由线面垂直性质可判断B 错误,利用面面垂直的性质定理可判断C 错误;由反证法可得D 正确.【详解】对于A ,由平面平行的判定定理易知当两个平面内的两条直线平行时,不能得出两平面平行,即A 错误;对于B ,若,a ααβ⊥⊥,则可得a β∥或a β⊂,故B 错误;对于C ,由面面垂直的性质知,两个平面垂直时,仅当直线在一个平面内且与交线垂直时才能确保直线与另一个平面垂直,而C 中直线b 与平面β的关系不确定,故b 与α不一定垂直,故C 错误;对于D ,若b β⊥,由条件易得a b ,与二者异面矛盾,故D 正确.故选:D .5.已知集合{}()210R M x ax x a =-+=∈,则“14a =”是“集合M 仅有1个真子集”的()A .必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】由集合M 仅有1个真子集的条件,结合充分条件和必要条件的定义判断.【详解】集合{}210M x ax x =-+=仅有1个真子集,即集合M 只有一个元素,若0a =,方程210ax x -+=等价于10x -+=,解得1x =,满足条件;若0a ≠,方程210ax x -+=要满足140a ∆=-=,有14a =,则集合{}210M x ax x =-+=仅有1个真子集,有0a =或14a =,则14a =时满足集合M 仅有1个真子集,集合M 仅有1个真子集时不一定有14a =,所以“14a =”是“集合M 仅有1个真子集”的充分不必要条件.故选:B.6.35cos cos cos 777πππ的值为A.14B.14-C.18D.18-【答案】D 【解析】【分析】根据诱导公式以及余弦的降幂扩角公式即可容易求得.【详解】∵cos37π=-cos 47π,cos 57π=-cos 27π,∴cos7πcos 37πcos 57π=cos 7πcos 27πcos47π=248sincos cos cos 77778sin7πππππ=2244sin cos cos7778sin7ππππ=442sin cos778sin7πππ=8sin78sin7ππ=-18.故选:D.【点睛】本题考查诱导公式以及降幂扩角公式,属中档题.7.在ABC 中,点O 为ABC 的外心,3AB =,72AO BC ⋅= ,6AB AC ⋅=,则ABC 的面积为()A.B.C.D.【答案】A【解析】【分析】设D ,E 分别是AB ,AC 的中点,根据ABC 外心性质可得到212AO AC AC ⋅= ,同理可得212AO AB AB ⋅= ,解得AC ,根据向量乘法可求得sin BAC ∠,代入到1sin 2ABC S AB AC BAC=⋅∠可求得.【详解】设D ,E 分别是AB ,AC 的中点,根据ABC 外心性质可得到()21122AO AC AE EO AC AC EO AC AC ⎛⎫⋅=+⋅=+⋅= ⎪⎝⎭,同理可得212AO AB AB ⋅= ,又因72AO BC ⋅= ,可得()72AO AC AB AO AC AO AB ⋅-=⋅-⋅= ,可解得4AC =,61cos 342AB AC BAC AB AC ⋅∠===⨯ ,所以3sin 2BAC ∠=,则113sin 43222ABC S AB AC BAC =⋅∠=⨯⨯⨯= .故选:A8.掷两枚骰子,观察所得点数.设“两个点数都是偶数”为事件E ,“两个点数都是奇数”为事件F ,“两个点数之和是偶数”为事件M ,“两个点数之积是偶数”为事件N ,则()A.事件E 与事件F 互为对立事件B.事件M 与事件N 相互独立C.事件E 与事件M N ⋂互斥D.事件F 与事件M N ⋃相互独立【答案】D 【解析】【分析】用(,)x y 表示掷两枚骰子得到的点数,列出相关事件包含的样本点.对于A ,运用对立事件的定义判断;对于B ,分别计算,,M N M N 的概率,利用独立事件的概率乘法公式检验即得;对于C ,根据E 与M N ⋂的交集是否为空集判断;对于D ,与选项B 同法判断.【详解】依题意,可用(,)x y 表示掷两枚骰子得到的点数,则{(,)|,{1,2,3,4,5,6}}x y x y Ω=∈.对于A ,{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)}E =,而{(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}F =,显然事件E 与事件F 互斥但不对立,如(1,2)∈Ω,但(1,2),(1,2)E F ∉∉,故A 错误;对于B ,易得F E M =,故181(),362P M ==因N F =,故93()1()1()1364P N P N P F =-=-=-=,而MN E =,则91()()364P MN P E ===,因()()()≠P MN P M P N ,即事件M 与事件N 不独立,故B 错误;对于C ,由上分析,MN E =,故事件E 与事件M N ⋂不可能互斥,即C 错误;对于D ,由上分析,91(),364P F ==而M N =Ω ,则1()()P M N P ⋃=Ω=,因()F F M N ⋂=⋃,则1[()]()4P F P F M N ⋂==⋃,即[()()()]P P M N F P M N F ⋂⋃⋃=,故事件F 与事件M N ⋃相互独立,即D 正确.故选:D .【点睛】方法点睛:本题主要考查随机事件的关系判断,属于较难题.解题方法有:(1)判断事件,A B 对立:必须,A B A B ⋂=∅⋃=Ω同时成立;(2)判断事件,A B 相互独立:必须()()()P A B P A P B ⋂=成立;(3)判断事件,A B 互斥:只需A B ⋂=∅即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据11.3233.84.56.37.88.610,,,,,,,,,的第80百分位数是7.8B.一组样本数据35,911x ,,,的平均数为7,则这组数据的方差是8C.用分层随机抽样时,个体数最多的层里的个体被抽到的概率最大D.若1210,,,x x x ⋅⋅⋅的标准差为2,则121031,31,,31x x x ++⋅⋅⋅+的标准差是6【答案】BD 【解析】【分析】利用各特征数据的计算方法进行计算即可.【详解】对于A ,因为共10个数据11.3233.84.56.37.88.610,,,,,,,,,,所以1080%8⨯=,则8个数据8.6第80百分位数为7.88.68.22+=,故A 错误;对于B ,一组样本数据35,911x ,,,的平均数为7,可知7x =,则这组数据的方差为()()()()()222222113757779711740855s ⎡⎤=-+-+-+-+-=⨯=⎣⎦,故B 正确;对于C ,由于分层抽样,每一层的抽样比是相同的,都等于总的抽样比,故C 错误;对于D ,由于1210,,,x x x ⋅⋅⋅的标准差为2,则它的方差为4,而121031,31,,31x x x ++⋅⋅⋅+的方差为23436⨯=,则它的标准差是6,故D 正确;故选:BD.10.下列结论正确的是()A.y =的值域为11,22⎡⎤-⎢⎥⎣⎦B.2211sin cos y x x=+的最小值为4C.若()lg lg a b a b =≠,则2+a b 的最小值为D.若0a b >>,R c ∈,则a c bc >【答案】ABC 【解析】【分析】对于A ,先求得函数定义域[1,1]-,判断其奇偶性,求函数在[0,1]上的值域,即得在[1,1]-上的值域;对于B ,利用常值代换法运用基本不等式即可求解;对于C ,先由条件推得1ab =,再运用基本不等式即可;对于D ,举反例即可排除.【详解】对于A ,由y =有意义可得,210x -≥,即11x -≤≤,函数定义域关于原点对称.由()()f x f x -=-=-,知函数为奇函数,当01x ≤≤时,y ==设2[0,1]t x =∈,则()g t =因[0,1]t ∈时,21110(244t ≤--+≤,即得10()2g t ≤≤,又函数y =为奇函数,故得其值域为11,22⎡⎤-⎢⎥⎣⎦,即A 正确;对于B ,因22sin cos 1x x +=,故2222221111()(sin cos )sin cos sin cos y x x x x x x=+=++2222sin cos 224cos sin x x x x =++≥+,当且仅当221sin cos 2x x ==时等号成立,即当221sin cos 2x x ==时,2211sin cos y x x=+的最小值为4,故B 正确;对于C ,由lg lg =a b 可得lg lg a b =或lg lg a b =-,即a b =或1a b=,因a b ¹,故1ab =,因0,0a b >>,则2a b +≥=当且仅当2a b ==即2+a b 的最小值为,故C 正确;对于D ,因R c ∈,不妨取0c =,则0a c bc ==,故D 错误.故选:ABC.11.如图,在正方体1111ABCD A B C D -中,AC BD O = ,E F G H ,,,分别为线段OA OB OC OD ,,,的中点,几何体1111A B C D EFGH -的体积为1123,P 为线段1BD 上一点,点P A B C D ,,,,均在球M 的表面上,则()A.1AB PC⊥B.PC PD +的最小值为C.若P 为1BD 的中点,则球M 的表面积为9π2D.二面角1A HE A --的余弦值为17【答案】ABD 【解析】【分析】利用正方体的性质,结合台体体积公式可求得正方体边长,再利用线面垂直证明线线垂直,利用侧面展开图思想求线段和的最小值,利用外接球的截面性质来求其半径,利用二面角的平面角来求解二面角的余弦值.【详解】由正方体性质可得:几何体1111A B C D EFGH -是正四棱台,设正方体的边长为a ,则其体积为:23211711234343a a a a ⎛++=⋅= ⎝,解得4a =,因为在正方体1111ABCD A B C D -中,有11AB A B ⊥,BC ⊥平面11ABB A ,又因为1AB ⊂平面11ABB A ,所以1BC AB ⊥,又因为1BC A B B ⋂=,1BC A B ⊂,平面11BCD A ,所以1AB ⊥平面11BCD A ,而PC ⊂平面11BCD A ,所以1AB PC ⊥,故A 正确;把直角三角形1BDD 与直角三角形1BCD 展开成一个平面图形,则PC PD CD +≥,而114,BC DD BD CD ====,由勾股定理可得:CD ==,故B 正确;当P 为1BD 的中点,此时四棱锥P ABCD -是正四棱锥,其外接球的球心M 一定在OP 上,又由于OA =2OP =,设MP MA R ==,则由勾股定理得:()2282R R =+-,解得:3R =,此时球M 的表面积为:24π336π⋅=,故C 错误;取AD 中点为Q ,取11A D 中点为T ,连结OQ EH G = ,再连接TG ,由,,AD OQ AD QT OQ QT Q ⊥⊥= ,OQ QT ⊂,平面OQT ,所以AD ⊥平面OQT ,又因为//EH AD ,所以EH ⊥平面OQT ,又因,GQ GT ⊂平面OQT ,所以,,EH GQ EH GT ⊥⊥即二面角1A HE A --的平面角就是QGT ∠,由正方体边长为4,可知1,4QG QT ==,所以16117GT =+=即17cos 1717QGT ∠==,故D 正确;故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用二面角的定义找到其平面角,再求出相关线段,利用余弦函数定义即可得到答案.三、填空题:本题共3小题,每小题5分,共15分.12.若函数()212xxk f x k -=+⋅为奇函数,则k =_________【答案】1±##1或1-##1-或1【解析】【分析】利用奇函数()()f x f x =--求解即可.【详解】因为函数()212xxk f x k -=+⋅为奇函数,所以由()()f x f x =--可得221212122x x xx xxk k k k k k-----⋅=-=+⋅+⋅+,即2222212x x k k -=-⋅,整理得()()221120xk -+=,解得1k =±,经检验,当()1212x xf x -=+或()1212xx f x --=-时,满足()()f x f x =--,故答案为:1±13.在四面体ABCD 中,2AD BC ==,AD 与BC 所成的角为60°,若E ,F 分别为棱AC ,BD 的中点,则线段EF 的长等于______.【答案】1【解析】【分析】设G 为CD 中点,分别连接EG ,FG ,构造新的EFG 根据余弦定理可得到EF 的长.【详解】设G 为CD 中点,分别连接EG ,FG ,则EG 是ACD 的中位线,可得11,2EG AD EG AD == ,同理可得11,2FG BC FG BC == ,因为AD 与BC 所成的角为60°所以EGF ∠等于60°或120°,当60EGF ∠=︒在EFG 中根据余弦定理得1EF ===,当120EGF ∠=︒同理可得E F故答案为:114.已知点O 是ABC 的重心,内角A ,B ,C 所对的边长分别为a ,b ,c ,且203aOA bOB cOC ++=,则A =______.【答案】π6【解析】【分析】利用重心的向量性质0OA OB OC ++=,即可得到边的关系,再利用余弦定理即可求角.【详解】由点O 是ABC 的重心,可知:0OA OB OC ++=,又23203aOA bOB cOC ++=,可设2323a b c k ===,则3,,22k a b k c ===,再由余弦定理得:2222223222cos 2232k k b c a A bc ⎛⎫⎛⎫+- ⎪ ⎪+-==,又因为()0,πA ∈,所以π6A =,故答案为:π.6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在复平面内,复数()i ,R z a b a b =+∈对应的点为(),Z a b ,连接OZ (O 为坐标原点)可得向量OZ,则称复数z 为向量OZ 的对应复数,向量OZ为复数z 的对应向量.(1)若复数12i z x =+,()()211i R z x x =+-∈的对应向量共线,求实数x 的值;(2)已知复数11sin z x =⋅,2cos 22i cos z x x =+的对应向量分别为1OZ 和2OZ,若()12f x OZ OZ =⋅,求()f x 的最小正周期和单调递增区间.【答案】(1)2或1-(2)π;ππ[π,π]Z 6,3k k k -++∈【解析】【分析】(1)写出两复数对应的向量12,OZ OZ的坐标,,利用向量共线的坐标表示式计算即得;(2)利用三角恒等变换将函数()f x 化成正弦型函数,求得最小正周期,将π26x +看成整体角,利用正弦函数的递增区间即可求得.【小问1详解】依题意,复数12i z x =+,()()211i R z x x =+-∈的对应向量分别为12(,2),(1,1)OZ x OZ x ==-,由12//OZ OZ可得,(1)2x x -=,解得,2x =或=1x -;【小问2详解】依题意,12),(cos 2,2cos )OZ x OZ x x ==,则()12πcos 2cos cos 222sin(2)6f x OZ OZ x x x x x x =⋅=+==+ ,故()f x 的最小正周期为2ππ2T ==;由Z 262πππ2π22π,k x k k -+≤+≤+∈解得,ππππ,Z 36k x k k -+≤≤+∈,即()f x 的单调递增区间为ππ[π,π]Z 6,3k k k -++∈.16.一中学为了解某次物理考试的成绩,随机抽取了50名学生的成绩,根据这50名学生的成绩(成绩均在[]40,100之间),将样本数据分为6组:[)40,50、[)50,60、…、[)80,90、[]90,100,绘制成频率分布直方图(如图所示).(1)求频率分布直方图中a 的值,并估计这50名学生的物理成绩的平均数(同一组中的数据以该组数据所在区间中点的值作代表);(2)在样本中,从成绩在[)40,60内的学生中,随机抽取2人,求这2人成绩都在[)50,60内的概率.【答案】(1)0.006a =;76.2(2)310【解析】【分析】(1)利用频率分布直方图中各组频率之和等于1求出a 的值,再根据平均数计算公式计算即可;(2)先计算出[)40,60内的人数,分别表示出随机试验和事件所含的样本点,利用古典概型概率公式计算即得.【小问1详解】由频率分布直方图可得,(0.0040.0180.02220.028)101a +++⨯+⨯=,解得,0.006a =;这50名学生的物理成绩的平均数为:0.04450.06550.22650.28750.22850.189576.2⨯+⨯+⨯+⨯+⨯+⨯=;【小问2详解】由频率分布直方图可知,成绩在[)40,60内的学生有50(0.040.06)5⨯+=人,其中[40,50)内有2人,设为,a b ,[50,60)内有3人,设为,,x y z ,“从成绩在[)40,60内的学生中随机抽取2人”对应的样本空间为:{,,,,,,,,,}ab ax ay az bx by bz xy xz yz Ω=,而事件A =“2人成绩都在[)50,60内”={,,}xy xz yz ,由古典概型概率公式可得,3()10P A =.即这2人成绩都在[)50,60内的概率为310.17.如图,已知菱形ABCD 的边长为4,π3ABC ∠=,PA ⊥平面ABCD ,2PA =,E ,F 分别为BC ,CD 的中点,AC 交EF 于点G .(1)求证:平面PEF ⊥平面PAG ;(2)求点B 到平面PEF 的距离.【答案】(1)证明见解析(2)13【解析】【分析】(1)先证明EF ⊥平面PAG ,再根据面面垂直的判定定理即可得证;(2)由体积相等P BEF B PEF V V --=,分别计算BEF S 和PEF S △,代入计算即得.【小问1详解】因E ,F 分别为BC ,CD 的中点,则//EF BD ,又四边形ABCD 是菱形,则BD AC ⊥,故EFAC ⊥,因PA ⊥平面ABCD ,EF ⊂平面ABCD ,故PA EF ⊥,又,,PA AC A PA AC ⋂=⊂平面PAG ,故EF ⊥平面PAG ,因EF ⊂平面PEF ,故平面PEF ⊥平面PAG .【小问2详解】如图,连接,,,PB BF AE AF ,设点B 到平面PEF 的距离为d .在菱形ABCD 中,π3ABC ∠=,则4,43AC BD ==,BEF △的面积为111143232442BEFBFC BCD S S S ===⨯⨯⨯= 因3432AE AF ===,则222(23)4PE PF ==+=,1232EF BD ==故PEF !的面积为221234(3)392PEF S =⨯-= 由P BEF B PEF V V --=可得,11323933d =⨯,解得21313d =,即点B 到平面PEF 的距离为21313.18.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos 3sin a C a C b c +=+.(1)求A ;(2)若ABC 为锐角三角形,且43b c +=,求a 的取值范围.【答案】(1)π3A =(2))23,4⎡⎣.【解析】【分析】(13cos 1A A -=,再利用辅助角公式可得π3A =;(2)利用正弦定理可得23πsin 6a B =⎛⎫+ ⎪⎝⎭,再由ππ62B <<并利用三角函数单调性可求得a 的取值范围.【小问1详解】因为cos 3sin a C a C b c +=+,由正弦定理得()sin cos 3sin sin sin sin sin sin A C A C B C A C C +=+=++,sin cos cos sin sin A C A C C =++,sin cos sin sin A C A C C -=,因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π2sin 16A ⎛⎫-= ⎪⎝⎭,所以π1sin 62A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ5π666A -<-<,即ππ66A -=,可得π3A =.【小问2详解】由正弦定理得sin sin sin a b c A B C==,即sin sin sin a b c A B C+=+,且π,3A b c =+=所以()sin 66232πππsin sin 31sin sin sin 36622b c Aa B CB B B B +====+⎛⎫⎛⎫⎛⎫+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为ABC 为锐角三角形,π2ππ0,0232B C B <<<=-<,所以ππ62B <<,所以ππ2π,633B ⎛⎫+∈ ⎪⎝⎭,即πsin ,162B ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦.可得)a ⎡∈⎣,即a 的取值范围为)4⎡⎣.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒,将ABC 分别以AB ,BC ,AC 所在的直线为旋转轴旋转一周,得到三个旋转体1Ω,2Ω,3Ω,设1Ω,2Ω,3Ω的体积分别为1V ,2V ,3V .(1)若2a =,3b =,求1Ω的表面积S ;(2)若123V y V V =+,求y 的最大值.【答案】(1)1557π19(2)6【解析】【分析】(1)作出旋转体1Ω,其表面积即两个圆锥侧面积的和,利用余弦定理求出AB ,继而求得底面圆半径1r ,代入公式计算即得;(2)由(1)类似过程求得AB 和1r ,计算出其体积1V ,作出旋转体2Ω,是由两个同底面圆的大圆锥去掉小圆锥组成的组合体,求出底面圆半径2r ,间接法求出23,V V ,代入所求式,运用换元法、基本不等式和二次函数的单调性即可求得函数最大值.【小问1详解】如图1,把ABC 以直线AB 为旋转轴旋转一周得到旋转体1Ω,它是由两个同底面圆的圆锥11,AO BO 拼成的组合体,其表面积即两个圆锥的侧面积的和.因2a =,3b =,120C =︒,由余弦定理,22212cos12094232()192AB AC BC AC BC =+-⋅=+-⨯⨯⨯-=,可得,AB =因11AO CO ⊥,设底面圆半径为1r,由11123sin12022ABC S r =⨯⨯⨯=解得,119r =,于是,13571557π()5ππ1919S r b a =⨯+=⨯=;【小问2详解】由(1)可得,222222212cos1202()2AB AC BC AC BC a b ab a b ab =+-⋅=+-⨯⨯-=++,即AB =,底面圆半径为111sin120212ab r O C ===于是,22221111ππ33V r AB=⨯=⨯⨯如图2,把ABC以直线BC为旋转轴旋转一周得到旋转体2Ω,它是由两个同底面圆的大圆锥去掉小圆锥组成的组合体.设底面圆半径为22AO r=,因120ACB∠= ,易得23602120602ACO-⨯∠==,则23sin602r b== ,于是,22222113πππ)3324V r BC a ab=⨯=⨯=,同理可得23π4V a b=,于是,2212223ππ44VyV V ab a b==++=设222a btab+=≥,当且仅当a b=时等号成立,则y==,因2t≥时,函数231()24t+-单调递增,故231(1224t+-≥,则0y<≤即a b=时,max6y=.【点睛】思路点睛:本题主要考查旋转体的表面积求法和与其体积有关的函数的最值求法,属于难题.解题思路是作出旋转体的图形,理解其组成,正确求出底面半径、高,母线长等关键量,代入公式,整理后,运用换元,利用基本不等式和函数的单调性求其最值.。

四川省雅安市2023-2024学年高一下学期期末考试数学试题(含答案)

四川省雅安市2023-2024学年高一下学期期末考试数学试题(含答案)

雅安市2023-2024学年下期期末教学质量检测高中一年级数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、座位号和准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数所表示的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.从小到大排列的数据1,2,3,7,8,9,10,11的第三四分位数为()A .B .9C .D .103.复数满足,则( )A .B .C .D .4.如图,在梯形ABCD 中,,E 在BC 上,且,设,,则( )A .B .C .D .5.已知m ,n 表示两条不同直线,表示平面,则( )A .若,,则B .若,,则C .若,,则D .若,,则()3i 1i -172192z 1i 22i z z +-=+z =31i 515--31i 515-+11i 155-11i 155+2AB DC =12CE EB =AB a = AD b = DE = 1233a b + 1233a b - 2133a b + 2133a b - αm α⊥n α∥m n⊥m α∥n α∥m n ∥m α⊥m n ⊥n α∥m α∥m n ⊥n α⊥6.一艘船向正北航行,在A 处看灯塔S 在船的北偏东方向上,航行后到B 处,看到灯塔S 在船的北偏东的方向上,此时船距灯塔S 的距离(即BS 的长)为( )AB .C .D .7.在复平面内,满足的复数对应的点为Z ,复数对应的点为,则的值不可能为()A .3B .4C .5D .68.已知下面给出的四个图都是正方体,A ,B 为顶点,E ,F 分别是所在棱的中点,① ②③ ④则满足直线的图形的个数为()A .1个B .2个C .3个D .4个二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.为普及居民的消防安全知识,某社区开展了消防安全专题讲座.为了解讲座效果,随机抽取14位社区居民,让他们在讲座前和讲座后各回答一份消防安全知识问卷,这14位社区居民在讲座前和讲座后问卷答题的得分如图所示,下列说法正确的是( )30︒10nmile 75︒5i 11iz --=-z 1i --0Z 0Z Z AB EF ⊥A .讲座前问卷答题得分的中位数小于70B .讲座后问卷答题得分的众数为90C .讲座前问卷答题得分的方差大于讲座后得分的方差D .讲座前问卷答题得分的极差大于讲座后得分的极差10.若平面向量,满足,则( )A .B .向量与的夹角为C .D .在上的投影向量为11.如图,在棱长为1的正方体中,M 是的中点,点P 是侧面上的动点,且平面,则( )A .P 在侧面B .异面直线AB 与MP 所成角的最大值为C .三棱锥的体积为定值D .直线MP 与平面所成角的正切值的取值范围是第II 卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分.a b 2a b a b ==+= 2a b ⋅=- a a b - π3a b -= a b - a 32a 1111ABCD A B C D -11A B 11CDD C MP ∥1AB C 11CDD C π21A PB C -12411ABB A ⎡⎣12.某学校高中二年级有男生600人,女生400人,为了解学生的身高情况,现按性别分层,采用比例分配的分层随机抽样方法抽取一个容量为50的样本,则所抽取的男生人数为________.13.已知的内角A ,B ,C 的对边分别为a ,b ,c ,且,,BC 边上,则________.14.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体.如图是以一个正方体的各条棱的中点为顶点的多面体,这是一个有8个面为正三角形,6个面为正方形的“阿基米德多面体”,包括A ,B ,C 在内的各个顶点都在球O 的球面上.若P 为球O 上的动点,记三棱锥体积的最大值为,球O 的体积为V ,则________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数,(其中).(1)若为实数,求m 的值;(2)当时,复数是方程的一个根,求实数p ,q 的值.16.(15分)已知向量,.(1)若与垂直,求实数k 的值;(2)已知O ,A ,B ,C 为平面内四点,且,,.若A ,B ,C 三点共线,求实数m 的值.17.(15分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间ABC △()πsin π2A A ⎛⎫-=- ⎪⎝⎭6b =c =P ABC -1V 1V V=12i z m =-2i z m =-m ∈R 12z z 1m =12z z ⋅220x px q ++=()1,2a =- ()3,2b =2ka b - 2a b + 2OA a b =+ 3OB a b =+ ()3,2OC m m =-,,…,分成5组,得到下图所示的频率分布直方图.(1)求图中a 的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?18.(17分)从①;②;③.这三个条件中任选一个补充在下面问题中,并解答该题.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知________.(1)求角C 的大小;(2)若点D 在AB 上,CD 平分,,,求CD 的长;(3a 的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.19.(17分)我国古代数学名著《九章算术》在“商功”一章中,将“底面为矩形,一侧棱垂直于底面的四棱锥”称为“阳马”.现有如图所示一个“阳马”形状的几何体,底面ABCD 是正方形,底面ABCD ,,E 为线段PB 的中点,F 为线段BC 上的动点[)50,60[)60,70[]90,10085%()in cos s a C C a B +=+πsin 62a b c B +⎛⎫+= ⎪⎝⎭()s sin s in in C A B A -=-ABC △ACB ∠2a =c =PA ⊥PA AB =(1)平面AEF 与平面PBC 是否垂直?若垂直,请证明,若不垂直,请说明理由;(2)求二面角的大小;(3)若直线平面AEF ,求直线AB 与平面AEF 所成角的正弦值.B PCD --PC ∥数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分.1.C 2.C 3.B 4.D 5.A 6.B 7.A 8.D二、选择题:本题共3小题,每小题6分,共18分.9.11题选对1个得2分,选对2个得4分,全部选对的得6分,有选错的得0分;10题选对1个得3分,全部选对的得6分,有选错的得0分.9.ACD10.AD11.ABD三、填空题:本题共3小题,每小题5分,共15分.12.3013.314四、解答题:本题共5小题,共77分.15.(13分)【解析】(1),因为为实数,所以,解得.故为实数时,m 的值为.(2)当时,,,则复数,因为是方程的一个根,所以,化简得,由解得()()()2122232i 2i i 2i i 11m m m m z m m m m z +--+-===-++12z z 220m -=m =12z z 1m =12i z =-21i z =-()()1221i =1-3i z i z =--⋅13i -220x px q ++=()()2213i 13i 0p q -+-+=()16123i 0p q p +--+=()160,1230,p q p ⎩+-=-+⎧⎨=4,20.p q ⎧⎨⎩=-=16.(15分)【解析】(1),则,因为与垂直,所以,解得.(2),,,,因为A ,B ,C 三点共线,所以.所以,解得.17.(15分)【解析】(1)由直方图可得,样本落在,,…,的频率分别为,,0.2,0.4,0.3,由,解得.则样本落在,,…,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.方法1:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,设为,则,解得.所以,每天应该进苹果.()()()21,223,26,42ka b k k k -=--=--- ()()()221,23,25,2a b +=-+=- 2ka b - 2a b +()()562420k k ----=229k =()()()21,223,27,2OA a b =+=-+= ()()()331,23,26,4OB a b =+=-+=- ()()()6,47,21,6AB OB OA =-=--=-- ()()()3,27,237,22AC OC OA m m m m =-=--=--- AB AC∥()()22637m m ---=-⨯-2m =[)50,60[)60,70[]90,10010a 10a 10100.20.40.31a a ++++=0.005a =[)50,60[)60,70[]90,100()506060707080809090100005005020403835kg 22..222....+++++⨯+⨯+⨯+⨯+⨯=85%85%90kg 10031007..-⨯=85%[]90,100()kg x ()0.031000.15x ⨯-=()95kg x =95kg方法2:依题意,日销售量不超过的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进苹果.18.(17分)【解析】(1)若选条件①,依题意,得,根据正弦定理得,因为,所以,则,,所以.又,则,所以.若选条件②.由正弦定理得,所以,,,即.因为,所以,所以.若选条件③在中,因为,,所以,90kg 10.03100.7-⨯=85%[]90,10085%()g .0.8507901095k 10.7-+⨯=-95kg cos sin a A C a +=sin sin cos si n A A C C A +=π02A <<sin 0A >i 1cos n C C +=1c os C C -=1122cos C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭0πC <<ππ=66C -π3C =2sin sin s n πsin i 6A B C B +⎛⎫+= ⎪⎝⎭()sin sin sin 2s sin 1in c 2os 2B A B C B B B C ⎫++++==⎪⎪⎭sin cos cos 2sin sin B C B C B ++=i sin sin cos s n cos cos sin sin C B C B B C B C B +=++i sin s n cos sin C B B C B =+1c os C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭()0,πC ∈ππ=66C -π3C =ABC △()s sin s in in C A B A -=-πA B C ++=()()n s s s n i i in C A C A A +-=-即,化简得.又,则,故.因为,所以.(2)依题意,,即,则,在中,根据余弦定理,有,即,解得或(舍去),所以.(3)依题意,的面积,所以.又为锐角三角形,且,则,所以.又,则,所以.由正弦定理,得,所以,所以所以a 的取值范围为.19.(17分)【解析】(1)平面平面PBC.理由如下:因为平面ABCD ,平面ABCD ,sin cos cos sin sin sin cos cos sin C A C A A C A C A +-=-sin co 2s sin A C A =()0,πA ∈sin 0A ≠cos 12C =0πC <<π3C =1π1π1πsin sin sin 262623D a b a CD b C ⋅+⋅=⋅⋅⋅()b CD a b ⋅+=CD =ABC △22222π2cos3c a b ab a b ab =+-=+-2742b b =+-3b =1a =-CD ==ABC △sin 1122ABC S C ab ab ===△4ab =ABC △π3C =2ππ0,32A B ⎛⎫=-∈ ⎪⎝⎭π2π63B <<π02B <<ππ62B <<tan B >sin sin B a b A =sin sin A Bb a =221s sin sin s 2in π4sin 223B a B ab B BB ⎫⎛⎫+⎪- ⎪⎝⎭⎝⎭===228a <<a <<AEF ⊥PA ⊥BC ⊂所以,因为,又.所以平面PAB ,故.在中,,E 为PB 的中点,所以.因为平面PBC ,平面PBC ,,所以平面PBC .又平面AEF ,所以平面平面PBC .(2)不妨设,计算可得,,又,,,所以,则,作于G ,连结DG ,又,,可知,所以,所以是二面角的平面角.在中,由,,则,,连结BD ,知中,根据余弦定理,得,所以.(3)因为直线平面AEF ,平面PBC ,平面平面,所以直线直线EF .又E 为线段PB 的中点,所以F 为线段BC 上的中点.由(2)知,所以.设BG 与EF 交点为H ,连结AH ,由(1)知,平面平面PBC ,平面平面,PA BC ⊥BC AB ⊥PA A AB = BC ⊥BC AE ⊥PAB △PA AB =AE PB ⊥PB ⊂BC ⊂PB BC B = AE ⊥AE ⊂AEF ⊥1AB =PB PD ==PC ==PB PD =BC DC =PC PC =PBC PDC △≌△PCB PCD =∠∠BG PC ⊥BC DC =CG CG =GBC GDC △≌△90DGC BGC ∠=∠=︒BGD ∠B PC D --Rt PBC △C P P BG C B B =⋅⋅1=BG =DG =BD =GBD △2221cos 22BG D D BGD DG G B BG +-=∠⋅==-120BGD ∠=︒PC ∥PC ⊂PBC AEF EF =PC ∥BG PC ⊥BG EF ⊥AEF ⊥AEF PBC EF =所以平面AEF .所以直线AB 与平面AEF 所成角为.又由EF ,F 为BC 上的中点,可得H 为BG 的中点,可知,,又,所以.直线AB 与平面AEFBH ⊥BAH ∠PC ∥12BH BG ===1AB =sin A BA BH H B =∠=。

高一期末数学试卷及答案

高一期末数学试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。

2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。

北京市海淀区2023-2024学年高一下学期期末练习(二)数学试题含答案

北京市海淀区2023-2024学年高一下学期期末练习(二)数学试题含答案

2023-2024学年度第二学期高一数学学科期末练习(二)(答案在最后)命题人班级姓名本试卷共三道大题,满分50分,考试时间30分钟一、选择题(共9小题,每小题4分,共36分)1.一个平面图形用斜二测画法画出的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的周长为()A.8B.C.16D.【答案】C【解析】【分析】根据斜二测画法的过程将直观图还原回原图形,找到直观图中正方形的四个顶点在原图形中对应的点,用直线段连结后得到原四边形,再计算平行四边形的周长即可.【详解】还原直观图为原图形如图所示,O A''=,所以O B''=,还原回原图形后,因为2=''=,2OA O A2=''=OB O B,AB==,所以6⨯+=.所以原图形的周长为2(26)16故选:C.2.下列说法不正确的是()A.平行六面体的侧面和底面均为平行四边形B.直棱柱的侧棱长与高相等C.斜棱柱的侧棱长大于斜棱柱的高D.直四棱柱是长方体【分析】根据几何体的定义和性质依次判断每个选项判断得到直四棱柱不一定是长方体得到答案.【详解】根据平行多面体的定义知:平行六面体的侧面和底面均为平行四边形,A 正确;直棱柱的侧棱长与底面垂直,故与高相等,B 正确;斜棱柱的侧棱与高可构成以侧棱为斜边,高为直角边的直角三角形,斜边大于直角边,C 正确;当直四棱柱的底面不是长方形时不是长方体,D 错误.故选:D.3.下列命题正确的是()A.三点确定一个平面B.梯形确定一个平面C.两条直线确定一个平面D.四边形确定一个平面【答案】B【解析】【分析】依次判断每个选项:当三点共线时不能确定一个平面,梯形上底和下底平行,能确定一个平面,两条直线异面时不能确定一个平面,空间四边形不能确定一个平面,得到答案.【详解】当三点共线时不能确定一个平面,A 错误;梯形上底和下底平行,能确定一个平面,B 正确;两条直线异面时不能确定一个平面,C 错误;空间四边形不能确定一个平面,D 错误.故选:B.4.已知点A ∈直线l ,又A ∈平面α,则()A.//l αB.l A α=IC.l ⊂αD. l A α⋂=或 l α⊂【答案】D【解析】【分析】根据直线与平面的位置关系判断.【详解】点A ∈直线l ,又A ∈平面α,则l 与平面α至少有一个公共点,所以l A α=I 或l ⊂α.故选:D .5.若空间三条直线a ,b ,c 满足a ⊥b ,b c ,则直线a 与c ()A.一定平行B.一定垂直C.一定是异面直线D.一定相交【分析】根据空间中直线的位置关系分析判断.【详解】∵a ⊥b ,b c ,∴a ⊥c .故选:B.6.给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于α平面内无数条直线”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】由线面垂直的性质结合两个条件之间的推出关系可得正确的选项.【详解】若直线l 与平面α垂直,由垂直的定义知,直线l 垂直于α平面内无数条直线;但是当直线l 垂直于α平面内无数条直线时,直线l 与平面α不一定垂直.所以“直线l 与平面α垂直”是“直线l 垂直于α平面内无数条直线”的充分不必要条件,故选:A7.已知,αβ是平面,m 、n 是直线,则下列命题正确的是()A .若//,m m n α^,则//n α B.若,m m αβ⊥⊥,则//αβC.若,ααβ⊥⊥m ,则//m βD.若//,//m n αα,则//m n 【答案】B【解析】【分析】根据线面平行、线面垂直的性质依次判断每个选项得到答案.【详解】若//,m m n α^,则//n α或n ⊂α或n 与α相交,A 错误;若,m m αβ⊥⊥,则//αβ,B 正确;若,ααβ⊥⊥m ,则//m β或m β⊂,C 错误;若//,//m n αα,则//m n 或,m n 相交或,m n 异面,D 错误.故选:B.8.如图,三棱台111ABC A B C -中,底面ABC 是边长为6的正三角形,且11113AA A C C C ===,平面11AA C C ⊥平面ABC ,则棱1BB =()A.2B.C.3D.【答案】A【解析】【分析】取11,A C AC 中点分别为,M N ,连接1,,MB MN NB ,过点1B 作BN 的垂线,垂足为P ,从而在直角梯形1MNBB 求解即可.【详解】如图,取11,A C AC 中点分别为,M N ,连接1,,MB MN NB ,过点1B 作BN 的垂线,垂足为P ,因为113AA C C ==,所以MN AC ⊥,且6AC =,所以2MN ==,因为平面11AA C C ⊥平面ABC ,平面11AA C C 平面ABC AC =,,MN AC MN ⊥⊂面11AA C C ,所以MN ⊥平面ABC ,又因为BN ⊂平面ABC ,所以MN BN ⊥,又因为在三棱台111ABC A B C -中,1//MB NB ,所以四边形1MNBB 为直角梯形,因为12NP MB ===,NB ==,所以2PB =,所以在直角三角形1BPB 中,12BB ===,故选:A.9.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11AC 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A.存在点Q ,使得//PQ BDB.存在点Q ,使得PQ ⊥平面11AB C DC.三棱锥Q APD -的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为π6【答案】B【解析】【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =-- ,若它们夹角为θ,则cos ||θ==令1[1,1]t a =-∈-,则cos θ==,当(0,1]t ∈,则[)11,t ∈+∞,cos (0,]6θ∈;当0=t 则cos 0θ=;当[1,0)t ∈-,则(]1,1t ∞∈--,cos (0,2θ∈;所以πcos 62=不在上述范围内,错.故选:B二、填空题(共2小题,每小题4分,共8分)10.如图,在正方体ABCD﹣A 1B 1C 1D 1中,点P 在面对角线AC 上运动,给出下列四个命题:①D 1P∥平面A 1BC 1;②D 1P⊥BD;③平面PDB 1⊥平面A 1BC 1;④三棱锥A 1﹣BPC 1的体积不变.则其中所有正确的命题的序号是_____.【答案】①③④【解析】【分析】利用线面平行的判定定理与性质定理,面面垂直的判定定理与三棱锥的体积公式对四个选项逐一分析判断即可.【详解】①∵在正方体中,D 1A ∥BC 1,D 1C ∥BA 1,且D 1A∩DC 1=D 1,∴平面D 1AC∥平面A 1BC 1;∵P 在面对角线AC 上运动,∴D 1P∥平面A 1BC 1;∴①正确.②当P 位于AC 的中点时,D 1P⊥BD 不成立,∴②错误;③∵A 1C 1⊥平面BDD 1B 1;∴A 1C 1⊥B 1D,同理A 1B ⊥B 1D ,∴B 1D⊥平面A 1BC 1,∴平面BDD 1B⊥面ACD 1,∴平面PDB 1⊥平面A 1BC 1;∴③正确.④三棱锥A 1-BPC 1的体积等于B-A 1PC 1的体积,△A 1PC 1的面积为定值12A 1C 1•AA 1,B 到平面A 1PC 1的高为BP 为定值,∴三棱锥A 1-BPC 1的体积不变,∴④正确.故答案为①③④.【点睛】本题考查空间直线与平面、平面与平面的位置关系及体积,突出考查面面平行的判定定理与性质定理,考查面面垂直的判定定理,考查几何体的体积运算.11.陀螺是中国民间最早的娱乐工具之一,也作陀罗,闽南语称作“干乐”,北方叫作“冰尜(gá)”或“打老牛”.传统古陀螺大致是木制或铁制的倒圆锥形.现有一圆锥形陀螺(如图所示),其底面半径为3,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点S 滚动,当圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周.①圆锥的母线长为9;②圆锥的表面积为36π;③圆锥的侧面展开图(扇形)的圆心角为60︒;④圆锥的体积为,其中所有正确命题的序号为______________.【答案】①②【解析】【分析】利用圆锥在平面内转回原位置求解以S 为圆心,SA 为半径的圆的面积,再求解圆锥的侧面积,根据圆锥本身恰好滚动了3周列出方程求解结果;利用圆锥的表面积公式进行计算;圆锥的底面圆周长即为圆锥侧面展开图(扇形)的弧长,根据弧长公式求解圆心角;求解圆锥的高,利用圆锥体积公式求解.【详解】解:设圆锥的母线长为l ,以S 为圆心,SA 为半径的圆的面积为2πl ,圆锥的侧面积为π3πrl l =,当圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则2π9πl l =,所以圆锥的母线长为9l =,故①正确;圆锥的表面积23π9π336π⨯+⨯=,故②正确;圆锥的底面圆周长为2π36π⨯=,设圆锥侧面展开图(扇形)的圆心角为rad α,则6π9α=,解得2π3α=,即120α=︒,故③错误;圆锥的高h ===,所以圆锥的体积为2211ππ333V r h ==⨯⨯=,故④错误.故答案为:①②.三、解答题12.如图,在正三棱柱111ABC A B C -中,P ,Q 分别为1A B ,1CC 的中点.(1)证明://PQ 平面AB C ;(2)证明:平面1A BQ ⊥平面11AA B B .请在下列证明过程中的横线上填上推理的依据.【解答】(1)证明:取AB 的中点D ,连接PD 、CD ,因为P ,Q 分别为1A B ,1CC 的中点,所以1PD AA ∥且112PD AA =,又三棱柱111ABC A B C -是正三棱柱,所以1CQ AA ∥,112CQ AA =,所以PD CQ ∥且PD CQ =,所以PDCQ 为平行四边形,所以PQ CD ∥,又因为PQ ⊂/平面ABC ,CD ⊂平面ABC ,所以//PQ 平面ABC (①定理).(2)证明:在正三棱柱111ABC A B C -中,D 为AB 的中点,所以CD AB ⊥,又1AA ⊥平面ABC ,CD ⊂平面ABC ,所以1CD AA ⊥,1AA AB A = ,1AA ,AB ⊂平面11ABB A ,所以CD ⊥平面11ABB A (②定理).又CD PQ ∥,所以PQ ⊥平面11ABB A ,又PQ ⊂平面1A BQ ,AA B B(③定理).所以平面1A BQ 平面11【答案】(1)答案见解析(2)答案见解析【解析】【分析】根据题意,由线面平行的判定定理以及线面与面面垂直的判定定理,即可得到结果.【小问1详解】①线面平行的判定定理【小问2详解】②线面垂直的判定定理③面面垂直的判定定理。

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

2022-2023学年河南省平顶山市高一(下)期末数学试卷【答案版】

2022-2023学年河南省平顶山市高一(下)期末数学试卷【答案版】

2022-2023学年河南省平顶山市高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =5i 31−2i 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.数据71,73,79,83,89,90,96,98的25%分位数为( ) A .73B .75C .76D .793.某地气象部门统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:则可以估计该地区今年6月份的某天最高气温小于30°C 的概率为( ) A .0.8B .0.6C .0.4D .0.24.已知向量a →=(−2,4),b →=(−1,1),则a →在b →上的投影向量为( ) A .(35,−65)B .(−35,65)C .(3,﹣3)D .(﹣3,3)5.已知圆锥的底面半径是2,体积为8√33π,则它的侧面展开图的圆心角为( ) A .π2B .πC .4π3D .3π26.在梯形ABCD 中,AB →=2DC →,AM →=2MD →,则CD →=( ) A .12CM →+14BM →B .14CM →+12BM →C .13CM →+13BM →D .13CM →−13BM →7.已知在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点M ,N 分别是BC ,BB 1的中点,则异面直线D 1M ,DN 所成角的余弦值为( ) A .17B .√3514C .914D .678.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A +sin (A +C )=2sin C ,则( ) A .sin C 的最小值为12B .sinC 的最大值为√32 C .cos C 的最小值为0 D .cos C 的最大值为12二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知复数z 的共轭复数为z ,则( ) A .|z|=|z| B .z −z 一定是虚数 C .z +z 一定是实数D .z 2≥010.从1~9这9个整数中随机取1个数,记M ,N 是此试验中的两个事件,且满足P (M )=13,P (N )=23,则下列说法正确的是( ) A .M 与N 是对立事件B .若M ⊆N ,则P (MN )=13C .若P(MN)=19,则M 与N 相互独立D .若P (M ∪N )=1,则M 与N 互斥11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,且b =3,A =2B ,则下列说法正确的是( ) A .若c <b ,则△ABC 是钝角三角形 B .△ABC 可能是顶角为钝角的等腰三角形C .若a =3√3,则C =π2D .若c =1,则a =2√312.如图所示,扇形OAB 的半径OA =4,∠AOB =2π3,C 是弧AB 的中点,点D ,E 是线段OB ,OA 上的动点且满足|OD →|=|AE →|,则CD →⋅CE →的值可以是( )A .6B .8C .2√10D .3√10三、填空题:本题共4小题,每小题5分,共20分.13.已知平面向量a →=(1,2),b →=(−2,1),c →=(2,t),若(a →+2b →)⊥c →,则t = . 14.设一组样本数据1,2,2,a ,b ,5,6,8的方差为5,则数据4,7,7,3a +1,3b +1,16,19,25的方差是 .15.小王逛书店,他买甲书和买乙书相互独立,若小王买甲书不买乙书的概率为16,甲和乙两本书都买的概率为12,则小王买乙书的概率为 .16.在三棱锥P ﹣ABC 中,平面ABC ⊥平面P AB ,AC ⊥BC ,点D 是AB 的中点,PD ⊥PB ,PB =PD =2,则三棱锥P ﹣ABC 的外接球的表面积为 .四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知复数z1=t+(t2﹣1)i,z2=sinθ+(2cosθ+1)i,其中t∈R,θ∈[0,π].(1)若z1,z2∈R且z1>z2,求t的值;(2)若z1=z2,求θ.18.(12分)某型号新能源汽车近期升级一项新技术,现随机抽取了100名该技术的体验用户对该技术进行评分(满分100分),所有评分数据按照[84,88),[88,92),[92,96),[96,100]进行分组得到了如图所示的频率分布直方图.(1)求a的值,并根据频率分布直方图,估计对该技术的评分的中位数;(2)现从评分在[84,88),[96,100]内的体验用户中按人数比例用分层随机抽样的方法抽取6人,再从这6人中随机抽取2人作进一步的问卷调查,求这2人中至少有一人评分在[84,88)内的概率.19.(12分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,M分别是A1B1,AB,AD的中点.(1)求平面AEC截正方体所得截面面积;(2)证明:平面AEC⊥平面MEF.20.(12分)如图所示,四边形ABCD的外接圆为圆O,BC=2,AC=3,tan B=﹣2√2.(1)求sin∠ACB;(2)若∠COD=∠AOD,求AD的长.21.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是矩形,PD=AB=3AD=3.(1)求点A到平面PBC的距离.(2)若E是P A的中点,F是PB上靠近点P的三等分点,棱PB上是否存在一点G使CG∥平面DEF?证明你的结论并求BG的长.22.(12分)某商场为鼓励大家消费,举行摸奖活动,规则如下:凭购物小票一张,每满58元摸奖一次,从装有除颜色外完全相同的1个红球和4个白球的箱子中一次性随机摸出两个小球,若两球中含有红球,则为中奖,否则为不中奖.每次摸奖完毕后,把小球放回箱子中.甲、乙共有购物小票一张,购物金额为m元,两人商量,先由一人摸奖,若中奖,则继续摸奖,若不中奖,就由对方接着摸奖,并通过掷一枚质地均匀的硬币决定第一次由谁摸奖.(1)若m=60,求这两人中奖的概率;(2)若m=240,求第一次由甲摸奖,最后一次也是甲摸奖的概率.2022-2023学年河南省平顶山市高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =5i 31−2i在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解:z =5i 31−2i =−5i(1+2i)(1−2i)(1+2i)=2−i ,则z 在复平面内所对应的点(2,﹣1)位于第四象限. 故选:D .2.数据71,73,79,83,89,90,96,98的25%分位数为( ) A .73B .75C .76D .79解:8×25%=2,该组数据的25%分位数为从小到大第2个数据和第3个数据的平均数 73+792=76.故选:C .3.某地气象部门统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:则可以估计该地区今年6月份的某天最高气温小于30°C 的概率为( ) A .0.8B .0.6C .0.4D .0.2解:前三年6月份最高气温小于30°C 的天数为5+7+24=36,所以概率为3690=0.4,所以可以估计该地区今年6月份的某天最高气温小于30°C 的概率0.4. 故选:C .4.已知向量a →=(−2,4),b →=(−1,1),则a →在b →上的投影向量为( ) A .(35,−65)B .(−35,65)C .(3,﹣3)D .(﹣3,3)解:∵a →⋅b →=2+4=6,b →2=2,∴a →在b →上的投影向量为:a →⋅b →|b →|⋅b→|b →|=62(−1,1)=(−3,3).5.已知圆锥的底面半径是2,体积为8√33π,则它的侧面展开图的圆心角为( ) A .π2B .πC .4π3D .3π2解:根据题意,设圆锥的高为h ,它的侧面展开图的圆心角θ, 圆锥的底面半径是2,体积为8√33π,则V =π×4×ℎ3=8√33π, 则h =2√3,故该圆锥的母线长l =√12+4=4, 则4θ=2π×2,解可得θ=π. 故选:B .6.在梯形ABCD 中,AB →=2DC →,AM →=2MD →,则CD →=( ) A .12CM →+14BM →B .14CM →+12BM →C .13CM →+13BM →D .13CM →−13BM →解:如图,在梯形ABCD 中,AB →=2DC →,AM →=2MD →, 则CD →=CM →+MD →⋯⋯①, BA →=BM →+MA →⋯⋯②,①×2+②可得:4CD →=2CM →+BM →,即CD →=12CM →+14BM →.故选:A .7.已知在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点M ,N 分别是BC ,BB 1的中点,则异面直线D 1M ,DN 所成角的余弦值为( ) A .17B .√3514C .914D .67解:延长BB 1至G ,使得B 1G =1,连接D 1G ,GM , 易知D 1G ∥DN ,则∠MD 1G 为异面直线D 1M ,DN 所成角,因为D 1G =√32+22+12=√14,MG =√12+32=√10,D 1M =√12+32+22=√14,故△MD 1G 中,cos ∠MD 1G =D 1M 2+D 1G 2−MG 22D 1M⋅D 1G =14+14−102×14×14=914.8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin A +sin (A +C )=2sin C ,则( ) A .sin C 的最小值为12B .sinC 的最大值为√32 C .cos C 的最小值为0 D .cos C 的最大值为12解:由已知得sin A +sin B =2sin C ,根据正弦定理可得a +b =2c , 根据余弦定理可得cosC =a 2+b 2−c 22ab =(a+b)2−2ab−c 22ab =3c 22ab −1≥3c 22(a+b 2)2−1=32−1=12,当且仅当a =b 时等号成立, 所以cos C 的最小值为12,sin 2C +cos 2C =1,从而sin C 的最大值为√32. 故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数z 的共轭复数为z ,则( ) A .|z|=|z| B .z −z 一定是虚数 C .z +z 一定是实数D .z 2≥0解:对于ABC ,不妨设z =a +bi (a ,b ∈R ), 则z =a −bi ,对于A ,|z|=|z|=√a 2+b 2,故A 正确; 对于B ,z −z =(a +bi)−(a −bi)=2bi , 当b =0时,z −z =0,故B 错误;对于C ,z +z =a +bi +a −bi =2a ∈R ,故C 正确; 对于D ,设z =i , z 2=﹣1<0,故D 错误. 故选:AC .10.从1~9这9个整数中随机取1个数,记M,N是此试验中的两个事件,且满足P(M)=13,P(N)=23,则下列说法正确的是()A.M与N是对立事件B.若M⊆N,则P(MN)=13C.若P(MN)=19,则M与N相互独立D.若P(M∪N)=1,则M与N互斥解:对于A,M与N不一定为对立事件,也有可能由交集,比如M为“抽出的数大于等于7”,N为“抽出的数大于等于8或小于等于4”,A错误;对于B,当M⊆N,则P(MN)=P(M)=13,B正确;对于C,由P(M)=13,P(N)=23,可得P(N)=1−23=13,则P(M N)=P(M)P(N),可得M,N互相独立,即有M与N相互独立,C正确;对于D,由P(M)=13,P(N)=23,可得P(M)+P(N)=P(M∪N)=1,即有P(MN)=0,M与N也可能由交集,比如M为“抽出的数小于等于3”,N为“抽出的数大于等于3且小于等于8”显然P(M∪N)=49+49+19=1,二者的交集是“抽出的数字为3”,互斥,D正确.故选:BCD.11.在△ABC中,a,b,c分别是角A,B,C所对的边,且b=3,A=2B,则下列说法正确的是()A.若c<b,则△ABC是钝角三角形B.△ABC可能是顶角为钝角的等腰三角形C.若a=3√3,则C=π2D.若c=1,则a=2√3解:对于A,若c<b,则C<B,由π=A+B+C<4B,得B>π4,所以A>π2,故A正确;对于C,由正弦定理得asinA =bsinB,即asin2B=bsinB,所以a2sinBcosB=bsinB,结合b=3得a=6cos B,若a=3√3,则\cos B=√32,所以B=π6,A=π3,则C=π2,故C正确;对于B,若△ABC是等腰三角形,当A=C时,A+B+C=5B,则顶角B=π5为锐角,当B=C时,A+B+C=2A,则顶角A=π2为直角,即顶角不可能为钝角,故B错误;对于D ,由选项C 的分析可知a =6cos B ,再由余弦定理可得cos B =a 2+c 2−b 22ac =a 2+1−92a , 所以a =6×a 2+1−92a,整理得a 2=12,所以a =2√3,故D 正确.故选:ACD .12.如图所示,扇形OAB 的半径OA =4,∠AOB =2π3,C 是弧AB 的中点,点D ,E 是线段OB ,OA 上的动点且满足|OD →|=|AE →|,则CD →⋅CE →的值可以是( )A .6B .8C .2√10D .3√10解:∵∠AOB =2π3,C 是弧AB 的中点, ∴∠BOC =∠AOC =π3,设|AE |=x ,(0≤x ≤4),则|OD |=x ,|OE |=4﹣x , ∴CD →=OD →−OC →,CE →=OE →−OC →, ∴CD →⋅CE →=(OD →−OC →)⋅(OE →−OC →) =OD →⋅OE →−OD →⋅OC →−OC →⋅OE →+OC →2 =x ⋅(4−x)⋅(−12)−4x ⋅12−4(4−x)⋅12+16 =12x 2−2x +8=12(x −2)2+6,0≤x ≤4, ∴6≤CD →⋅CE →≤8,故AB 正确;又6=2√9<2√10<2√16=8,故C 正确; (3√10)2=90>64=82,故D 错误. 故选:ABC .三、填空题:本题共4小题,每小题5分,共20分.13.已知平面向量a →=(1,2),b →=(−2,1),c →=(2,t),若(a →+2b →)⊥c →,则t = 32.解:a →=(1,2),b →=(−2,1),c →=(2,t), 则a →+2b →=(1,2)+(﹣4,2)=(﹣3,4), ∵(a →+2b →)⊥c →,∴2×(﹣3)+4t =0,解得t =32. 故答案为:32.14.设一组样本数据1,2,2,a ,b ,5,6,8的方差为5,则数据4,7,7,3a +1,3b +1,16,19,25的方差是 45 .解:已知4=1×3+1,7=2×3+1,3a +1=3×a +1, 3b +1=3×b +1,16=5×3+1,19=6×3+1,25=8×3+1,所以数据4,7,7,3a +1,3b +1,16,19,25是数据1,2,2,a ,b ,5,6,8的3倍再加1, 则数据4,7,7,3a +1,3b +1,16,19,25的方差为32×5=45. 故答案为:45.15.小王逛书店,他买甲书和买乙书相互独立,若小王买甲书不买乙书的概率为16,甲和乙两本书都买的概率为12,则小王买乙书的概率为34.解:设事件A 表示“小王买甲书”,事件B 表示“小王买乙书”, 由题意可知,事件A 与事件B 相互独立, 所以事件A 与事件B 也相互独立,所以P (A B )=P (A )P (B )=P (A )(1﹣P (B ))=16,即P (A )﹣P (A )P (B )=16, 又因为P (AB )=P (A )P (B )=12,所以P (A )=12+16=23,P (B )=1223=34,即小王买乙书的概率为34.故答案为:34.16.在三棱锥P ﹣ABC 中,平面ABC ⊥平面P AB ,AC ⊥BC ,点D 是AB 的中点,PD ⊥PB ,PB =PD =2,则三棱锥P ﹣ABC 的外接球的表面积为 40π .解:因为AC ⊥BC ,所以△ABC 的外接圆圆心即点D ,三棱锥外接球球心在过点D 与平面ABC 垂直的直线上,即在平面P AB 内,所以球心即为△P AB 的外接圆圆心,球的半径即为△P AB 的外接圆半径R ,因为PD ⊥PB ,PB =PD =2,所以BD =2√2,从而AD =2√2,设P A =x ,在△P AD 中,根据余弦定理有PA 2=22+(2√2)2−2×2×2√2cos3π4=20,所以PA =2√5, 由正弦定理得2R =2√5sin∠PBA =2√10,所以R =√10,所以三棱锥P ﹣ABC 的外接球的表面积为4πR 2=40π.故答案为:40π.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知复数z 1=t +(t 2﹣1)i ,z 2=sin θ+(2cos θ+1)i ,其中t ∈R ,θ∈[0,π].(1)若z 1,z 2∈R 且z 1>z 2,求t 的值;(2)若z 1=z 2,求θ.解:(1)由z 1,z 2∈R 且z 1>z 2,可得{t 2−1=2cosθ+1=0t >sinθ,且θ∈[0,π],解得t =1; (2)因为z 1=z 2,所以{t =sinθt 2−1=2cosθ+1θ∈[0,π],解得cos θ=﹣1,所以θ=π.18.(12分)某型号新能源汽车近期升级一项新技术,现随机抽取了100名该技术的体验用户对该技术进行评分(满分100分),所有评分数据按照[84,88),[88,92),[92,96),[96,100]进行分组得到了如图所示的频率分布直方图.(1)求a 的值,并根据频率分布直方图,估计对该技术的评分的中位数;(2)现从评分在[84,88),[96,100]内的体验用户中按人数比例用分层随机抽样的方法抽取6人,再从这6人中随机抽取2人作进一步的问卷调查,求这2人中至少有一人评分在[84,88)内的概率.解:(1)因为4(0.025+0.075+0.1+a )=1,解得a =0.05,易得评分在[84,92)内的频率为4(0.025+0.075)=0.4<0.5,评分在[84,96)内的频率为4(0.025+0.075+0.1)=0.8>0.5,所以中位数在区间[92,96)内,则中位数为92+0.5−0.40.8−0.4×4=93;(2)易知这6人中评分在[84,88)内的有2人,记为x 、y ,评分在[96,100]内的有4人,记为a ,b ,c ,d ,则从这6人中随机抽取2人有:xy 、xa 、xb 、xc 、xd 、ya 、yb 、yc 、yd 、ab 、ac 、ad 、bc 、bd 、cd 共15种情况,其中至少有一人评分在[84,88)内的有:xy 、xa 、xb 、xc 、xd 、ya 、yb 、yc 、yd 共9种情况,则这2人中至少有一人评分在[84,88)内的概率P =915=35. 19.(12分)如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E ,F ,M 分别是A 1B 1,AB ,AD 的中点.(1)求平面AEC 截正方体所得截面面积;(2)证明:平面AEC ⊥平面MEF .解:(1)平面AEC 截正方体所得截面为梯形ACQE ,其中Q 为B 1C 1的中点,由题易知AC =2√2,EQ =√2,OC =AE =√5,∴梯形的高h =√5−12=√92=3√22,所以截面面积为√2+2√22×3√22=92. 证明:(2)连接BD ,∵M ,F 为AD ,AB 的中点,∴MF ∥BD ,在正方形ABCD 中,AC ⊥BD ,∴AC ⊥MF ,∵E ,F 分别是A 1B 1,AB 的中点,∴EF ∥AA 1,∵AA1⊥平面ABCD,∴EF⊥平面ABCD,∴EF⊥AC,又∵EF∩MF=F,∴AC⊥平面MEF,又∵AC⊂平面AEC,∴平面AEC⊥平面MEF.20.(12分)如图所示,四边形ABCD的外接圆为圆O,BC=2,AC=3,tan B=﹣2√2.(1)求sin∠ACB;(2)若∠COD=∠AOD,求AD的长.解:(1)由tanB=−2√2,可得sinB=2√23,cosB=−13,设AB=c(c>0),在△ABC中,由余弦定理得9=4+c2−4c×(−13),即c2+43c−5=0,解得c=﹣3(舍去)或c=5 3,由正弦定理得sin∠ACB=c⋅sinB3=53×2√233=10√227.(2)∵∠COD=∠AOD,∴AD=CD,由已知得∠B+∠ADC=π,∴cos∠ADC=1 3,设AD=CD=m(m>0),在△ACD中,由余弦定理得9=m2+m2−2m2×13=43m2,所以m2=27 4,所以m=3√32,即AD=3√32.21.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD是矩形,PD=AB=3AD=3.(1)求点A到平面PBC的距离.(2)若E是P A的中点,F是PB上靠近点P的三等分点,棱PB上是否存在一点G使CG∥平面DEF?证明你的结论并求BG的长.解:(1)因为AD∥BC,AD∉平面PBC,所以AD∥平面PBC,所以点A到平面PBC的距离即点D到平面PBC的距离,作DM⊥PC,垂足为M,如下图所示:因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC,又BC⊥CD,CD∩PD=D,CD,PD⊂平面PCD,所以BC⊥平面PCD,所以平面PBC⊥平面PCD,且交线为PC,又DM⊂平面PCD,所以DM⊥平面PBC,点D到平面PBC的距离即DM,在等腰直角△PCD中,PD=CD=3,所以DM=3×332=3√22,即点A到平面PBC的距离为3√2 2.证明:(2)存在满足条件的点G,且点G为线段PB上靠近点B的三等分点,证明如下:连接AC,BD交于点O,连接OG,AG,因为点F,G是PB的三等分点,所以F为PG的中点,G为BF的中点,在矩形ABCD中,O为BD的中点,所以OG∥DF,OG∉平面DEF,所以OG∥平面DEF,因为点E为P A的中点,所以EF∥AG,AG∉平面DEF,所以AG∥平面DEF,又因为OG∩AG=G,OG,AG⊂平面ACG,所以平面ACG∥平面DEF,又因为CG⊂平面ACG,所以CG∥平面DEF,因为PB=√12+32+32=√19,所以BG=√193.22.(12分)某商场为鼓励大家消费,举行摸奖活动,规则如下:凭购物小票一张,每满58元摸奖一次,从装有除颜色外完全相同的1个红球和4个白球的箱子中一次性随机摸出两个小球,若两球中含有红球,则为中奖,否则为不中奖.每次摸奖完毕后,把小球放回箱子中.甲、乙共有购物小票一张,购物金额为m 元,两人商量,先由一人摸奖,若中奖,则继续摸奖,若不中奖,就由对方接着摸奖,并通过掷一枚质地均匀的硬币决定第一次由谁摸奖.(1)若m =60,求这两人中奖的概率;(2)若m =240,求第一次由甲摸奖,最后一次也是甲摸奖的概率.解:(1)记1个红球为a ,4个白球分别为b ,c ,d ,e .则从箱子中随机摸出两球,样本点有:ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10个样本点 其中含有红球的为:ab ,ac ,ad ,ae ,共4个样本点,所以在一次摸奖中,中奖概率为410=25. 当m =60时,甲、乙两人只能摸奖一次,所以他们中奖的概率为25.(2)当m =240时,他们可以摸奖4次.记事件第i 次由甲摸奖为A i (i =1,2,3,4),记第一次由甲摸奖,最后一次也是甲摸奖为事件B , 则B =A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4,所以P(B)=P(A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4+A 1A 2A 3A 4),=P(A 1A 2A 3A 4)+P(A 1A 2A 3A 4)+P(A 1A 2A 3A 4)+P(A 1A 2A 3A 4),=12×(25)3+12×25×35×35+12×35×35×25+12×35×25×35 =31125.。

2022-2023学年福建省龙岩市高一(下)期末数学试卷【答案版】

2022-2023学年福建省龙岩市高一(下)期末数学试卷【答案版】

2022-2023学年福建省龙岩市高一(下)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =a +3i ,z =2+bi(a ,b ∈R),则a +b =( ) A .﹣1B .1C .﹣5D .52.已知向量a →,b →,满足|a →|=3,|b →|=4,a →与b →的夹角的余弦值为34,则向量a →在向量b →上的投影向量为( ) A .a →B .3a →C .94b →D .916b →3.从长度为1,3,7,8,9的5条线段中任取3条,则这3条线段能构成一个三角形的概率为( ) A .15B .25C .35D .454.已知某班40名学生某次考试的数学成绩依次为x 1,x 2,x 3,…,x 40,经计算全班数学平均成绩x =90,且∑ 40i=1x i 2=324400,则该班学生此次数学成绩的标准差为( )A .20B .2√5C .10D .√105.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 为正方体内(含边界)不重合的两个动点,下列结论错误的是( )A .若E ∈BD 1,F ∈BD ,则EF ⊥ACB .若E ∈BD 1,F ∈BD ,则平面BEF ⊥平面A 1BC 1C .若E ∈AC ,F ∈CD 1,则EF ∥AD 1 D .若E ∈AC ,F ∈CD 1,则EF ∥平面A 1BC 16.闽西革命烈士纪念碑,坐落在福建省龙岩市城西虎岭山闽西革命烈士陵园内,1991年被列为第三批省级文物保护单位,其中央主体建筑集棱台,棱柱于一体,极具对称之美.某同学准备在陵园广场上对纪念碑的高度进行测量,并绘制出测量方案示意图(如图),纪念碑的最顶端记为A 点,纪念碑的最底端记为B 点(B 在A 的正下方),在广场内(与B 在同一水平面内)选取C ,D 两点,测得CD 的长为15米,∠ACB =45°,∠CBD =30°,∠ADB =30°,则根据以上测量数据,可以计算出纪念碑高度为( )A .14米B .15米C .16米D .17米7.已知等边三角形ABC 的边长为4,D 为BC 的中点,将△ADB 沿AD 折到△ADB 1,使得△B 1CD 为等边三角形,则直线B 1D 与AC 所成的角的余弦值为( ) A .−√32B .0C .12D .148.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 2B +cos B cos (A ﹣C )=sin A sin C ,a =2√3,则△ABC 周长的取值范围是( ) A .(6√3,6+6√3) B .(3+3√3,6+6√3) C .(3+3√3,9√3)D .(6√3,9√3)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数z 满足z •(1﹣3i )=10,则( ) A .|z|=√10B .z 的虚部为3iC .z −3(cos π4+isin π4)2=1D .复数z 在复平面内对应的点位于第二象限10.新型冠状病毒阳性即新型冠状病毒核酸检测结果为阳性,其中包括无症状感染者和确诊病例.如图是某地某月2日至16日的新冠疫情病例新增人数的折线统计图,则( )A .本地新增阳性人数最多的一天是10日B .本地新增确诊病例的极差为84C .本地新增确诊病例人数的中位数是46D .本地新增无症状感染者的平均数大于本地新增确诊病例的平均数11.已知M 是边长为1的正六边形ABCDEF 所在平面内一点,t =(MA →+MC →)⋅(MB →+MD →),则下列结论正确的是( )A .当M 为正六边形ABCDEF 的中心时,t =12B .t 的最大值为4C .t 的最小值为−14 D .t 可以为012.如图,水平放置的正方形ABCD 边长为1,先将正方形ABCD 绕直线AB 向上旋转45°,得到正方形ABC 1D 1,再将所得的正方形绕直线BC 1向上旋转45°,得到正方形A 2BC 1D 2,则( )A .直线A 2C 1∥平面ABCDB .D 2到平面ABCD 的距离为1+√22C .点A 到点D 2的距离为3−√2D .平面A 2BC 1D 2与平面ABCD 所成的锐二面角为60°三、填空题:本题共4小题,每小题5分,共20分. 13.方程x 2+2x +3=0在复数范围内的根为 .14.数据13,11,12,15,16,18,21,17的第三四分位数为 .15.为深入学习宣传贯彻党的二十大精神,某校团委举办“强国复兴有我”——党的二十大精神知识竞答活动.某场比赛中,甲、乙、丙三位同学同时回答一道有关二十大精神知识的问题.已知甲同学答对的概率是12,甲、丙两位同学都答错的概率是16,乙、丙两位同学都答对的概率是13.若各同学答题正确与否互不影响.则甲、乙、丙三位同学中至少2位同学答对这道题的概率为 .16.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,DB ⊥AB ,AB =DB =BP =PC =2.记四面体P ﹣BCD 的外接球的球心为O ,M 为球O 表面上的一个动点,当∠MAO 取最大值时,四面体M ﹣ABD 体积的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,AC =BC =6,AB =4,AP →=λAB →(0≤λ≤1).(1)当λ=23时,用CA →,CB →表示CP →;(2)求CP →⋅(CA →+CB →)的值.18.(12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ABC =90°,AA 1=AB =4,BC =3. (1)求三棱柱ABC ﹣A 1B 1C 1的侧面积;(2)设D 为AC 的中点,求证:AB 1∥平面BC 1D .19.(12分)已知盒中有大小、质地相同的红球、黄球、蓝球共4个,从中任取一球,得到红球或黄球的概率是34,得到黄球或蓝球的概率是12.(1)求盒中红球、黄球、蓝球的个数;(2)随机试验:从盒中有放回的取球两次,每次任取一球记下颜色. (i )写出该试验的样本空间Ω;(ii )设置游戏规则如下:若取到两个球颜色相同则甲胜,否则乙胜.从概率的角度,判断这个游戏是否公平,请说明理由.20.(12分)某大型企业为员工谋福利,与某手机通讯商合作,为员工办理流量套餐.为了解该企业员工手机流量使用情况,通过抽样,得到100名员工近一周每人手机日平均使用流量L (单位:M )的数据,其频率分布直方图如图:若将每位员工的手机日平均使用流量分别视为其手机日使用流量,回答以下问题. (1)求这100名员工近一周每人手机日使用流量的众数、中位数;(2)在办理流量套餐后,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男员工20名,其手机日使用流量的平均数为800M ,方差为10000;抽取了女员工40名,其手机日使用流量的平均数为1100M ,方差为40000.(ⅰ)已知总体划分为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x ,s 12;n ,y ,s 22,记总的样本平均数为ω,样本方差为s 2.证明:s 2=1m+n{m[s 12+(x −ω)2]+n[s 22+(y −ω)2]}.(ⅱ)用样本估计总体,试估计该大型企业全体员工手机日使用流量的平均数和方差.21.(12分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是边长为3的正方形,侧面PBC ⊥底面ABCD . (1)若∠PBC =90°,求证:AC ⊥PD ;(2)若AC 与平面PCD 所成角为30°,求点A 到直线PC 的距离.22.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,点D 在边AB 上,∠A =π4,BD =CD ,AD =2.(1)若BD =√53b ,求c ;(2)若a =2√2,求△ABC 的面积.2022-2023学年福建省龙岩市高一(下)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z =a +3i ,z =2+bi(a ,b ∈R),则a +b =( ) A .﹣1B .1C .﹣5D .5解:复数z =a +3i ,z =2+bi ,由共轭复数的定义可知,a =2,b =﹣3,则有a +b =2﹣3=﹣1. 故选:A .2.已知向量a →,b →,满足|a →|=3,|b →|=4,a →与b →的夹角的余弦值为34,则向量a →在向量b →上的投影向量为( )A .a →B .3a →C .94b →D .916b →解:因为向量a →,b →,满足|a →|=3,|b →|=4,a →与b →夹角的余弦值为34,所以向量a →在向量b →上的投影向量为a →⋅b →|b →|b→|b →|=3×4×344×b→4=916b →.故选:D .3.从长度为1,3,7,8,9的5条线段中任取3条,则这3条线段能构成一个三角形的概率为( ) A .15B .25C .35D .45解:五条线段中任取3条有C 53种结果,这些结果等可能出现.要使选出的三条线段可构成三角形,则两条较小边的和要大于第三边, 故只有:(3,7,8),(3,7,9),(3,8,9),(7,8,9)这四种可能, 故所求概率为P =4C 53=410=25. 故选:B .4.已知某班40名学生某次考试的数学成绩依次为x 1,x 2,x 3,…,x 40,经计算全班数学平均成绩x =90,且∑ 40i=1x i 2=324400,则该班学生此次数学成绩的标准差为( )A .20B .2√5C .10D .√10解:已知某班40名学生某次考试的数学成绩依次为x 1,x 2,…,x 40,因为全班数学平均成绩x =90,且∑ 40i=1x i 2=324400,所以该班学生此次数学成绩的标准差s=√∑(x i−x)240i=140=√∑x i2−2x∑40i=1x i+40x240i=140=√∑x i2−2x⋅40x+40x240i=140=√∑x i2−40x240i=140=√324400−40×90240=√10.故选:D.5.如图,在正方体ABCD﹣A1B1C1D1中,E,F为正方体内(含边界)不重合的两个动点,下列结论错误的是()A.若E∈BD1,F∈BD,则EF⊥ACB.若E∈BD1,F∈BD,则平面BEF⊥平面A1BC1C.若E∈AC,F∈CD1,则EF∥AD1D.若E∈AC,F∈CD1,则EF∥平面A1BC1解:对于A,如图所示:若E∈BD1,F∈BD,则EF⊂平面B1D1DB,因为DD1⊥平面ABCD,AC⊂平面ABCD,则DD1⊥AC,又AC⊥BD,且DD1∩BD=D,DD1⊂平面B1D1DBBD⊂平面B1D1DB,所以AC⊥平面B1D1DB,又EF⊂平面B1D1DB,所以EF⊥AC,故A正确;对于B,若E∈BD1,F∈BD,则EF⊂平面B1D1DB,由正方体的性质得AC⊥平面B1D1DB,又A1C1∥AC,则A1C1⊥平面B1D1DB,即A1C1⊥平面A1BC1,又A1C1⊂平面BEF,所以平面BEF⊥平面A1BC1,故B正确;对于C,当E∈AC,F∈CD1时,则EF⊂平面AD1C,则EF与AD1共面,不一定平行,故C错误;对于D,如图所示:若E∈AC,F∈CD1,则EF⊂平面AD1C,因为A1B∥D1C,AB⊄平面ACD1,D1C⊂平面ACD1,所以A1B∥平面ACD1,同理BC1∥平面ACD1,又A1B∩BC1=B,所以平面A1BC1∥平面ACD1,又EF⊂平面ACD1,所以EF∥平面A1BC1,故D正确;故选:C.6.闽西革命烈士纪念碑,坐落在福建省龙岩市城西虎岭山闽西革命烈士陵园内,1991年被列为第三批省级文物保护单位,其中央主体建筑集棱台,棱柱于一体,极具对称之美.某同学准备在陵园广场上对纪念碑的高度进行测量,并绘制出测量方案示意图(如图),纪念碑的最顶端记为A点,纪念碑的最底端记为B点(B在A的正下方),在广场内(与B在同一水平面内)选取C,D两点,测得CD的长为15米,∠ACB=45°,∠CBD=30°,∠ADB=30°,则根据以上测量数据,可以计算出纪念碑高度为()A.14米B.15米C.16米D.17米解:设AB=h,在Rt△ABC中,因为∠ACB=45°,所以△ABC为等腰直角三角形,所以BC=AB=h,在Rt△ABD中,因为∠ADB=30°,所以BD=√3AB=√3ℎ,在△BCD中,由余弦定理知,CD2=BD2+BC2﹣2BD•BD cos∠CBD,所以152=(√3ℎ)2+h2﹣2•√3ℎ•h cos30°,解得h=15米.故选:B .7.已知等边三角形ABC 的边长为4,D 为BC 的中点,将△ADB 沿AD 折到△ADB 1,使得△B 1CD 为等边三角形,则直线B 1D 与AC 所成的角的余弦值为( ) A .−√32B .0C .12D .14解:分别取CD ,B 1C ,AD 的中点E ,F ,G ,连接GF ,DF ,EF ,GE , 则GE ∥AC ,EF ∥B 1D 且EF =12B 1D =1,GE =12AC =2,DF =GD =√3, 所以直线AC 与B 1D 所成的角为∠GEF (或其补角),由题意可知:AD ⊥CD ,AD ⊥B 1D ,B 1D ∩CD =D ,B 1D ,CD ⊂平面B 1CD , 所以AD ⊥平面B 1CD ,且DF ⊂平面B 1CD ,可得AD ⊥DF ,则GF =√GD 2+DF 2=√6,在△GEF 中,由余弦定理可得cos ∠GEF =GE 2+EF 2−GF 22GE⋅EF =4+1−62×2×1=−14,所以直线B 1D 与AC 所成的角的余弦值为14.故选:D .8.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 2B +cos B cos (A ﹣C )=sin A sin C ,a =2√3,则△ABC 周长的取值范围是( ) A .(6√3,6+6√3) B .(3+3√3,6+6√3) C .(3+3√3,9√3)D .(6√3,9√3)解:∵cos 2B +cos B cos (A ﹣C )=sin A sin C ∴cos B [cos B +cos (A ﹣C )]=sin A sin C ,∵A +B +C =π,∴cos B [﹣cos (A +C )+cos (A ﹣C )]=sin A sin C , cos B [(sin A sin C ﹣cos A cos C )+(sin A sin C +cos A cos C )]=sin A sin C 2cos B sin A sin C =sin A sin C ,∵0<A ,C <π2,∴sin A >0,sin C >0, ∴cosB =12,∴B =π3, 由正弦定理得a sinA=b sinB=c sinC,∴b =asinB sinA =2√3×√32sinA =3sinA ,c =asinCsinA ,∴△ABC 的周长为a +b +c =3sinA +2√3sinCsinA+2√3=3sinA +2√3sin(2π3−A)sinA +2√3=3+2√3(√32cosA+12sinA)sinA+2√3=3(1+cosA)+√3sinA sinA +2√3=6cos 2A 22sin A 2cos A2+3√3 =3tan A 2+3√3 ∵{0<A <π20<2π3−A <π2⇒π6<A <π2⇒π12<A 2<π4⇒2−√3<tan A 2<1, ∴△ABC 的周长为a +b +c ∈(3+3√3,6+6√3), 故选:B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数z 满足z •(1﹣3i )=10,则( ) A .|z|=√10B .z 的虚部为3iC .z −3(cos π4+isin π4)2=1D .复数z 在复平面内对应的点位于第二象限解:z •(1﹣3i )=10,则z =101−3i =10(1+3i)(1−3i)(1+3i)=1+3i ,|z|=√12+32=√10,故A 正确; z 的虚部为3,故B 错误;(cos π4+isin π4)2=12(1+i)2=i ,故z −3(cos π4+isin π4)2=1+3i −3i =1,故C 正确; 复数z 在复平面内对应的点(1,3)位于第一象限,故D 错误. 故选:AC .10.新型冠状病毒阳性即新型冠状病毒核酸检测结果为阳性,其中包括无症状感染者和确诊病例.如图是某地某月2日至16日的新冠疫情病例新增人数的折线统计图,则( )A .本地新增阳性人数最多的一天是10日B .本地新增确诊病例的极差为84C .本地新增确诊病例人数的中位数是46D .本地新增无症状感染者的平均数大于本地新增确诊病例的平均数解:对于A ,由图可得2日至16日新增阳性人数依次为8,15,44,63,120,72,30,59,131,66,95,85,99,102,92,其中本地新增阳性人数最多的一天是10日,故A 正确.对于B ,由图可知本地新增确诊病例的极差为90﹣6=84,故B 正确.对于C ,由图可知本地新增确诊病例人数从小到大排列依次为6,10,14,14,20,33,40,46,51,72,81,82,90,90,90,则中位数为第8个数46,故C 正确.对于D ,由图可知本地新增无症状感染者的平均数为:0+5+30+43+69+39+16+13+49+26+15+4+9+12+2015≈23,本地新增确诊病例的平均数为6+10+14+20+51+33+14+46+82+40+90+81+90+90+7215≈49,所以本地新增无症状感染者的平均数小于本地新增确诊病例的平均数,故D 错误. 故选:ABC .11.已知M 是边长为1的正六边形ABCDEF 所在平面内一点,t =(MA →+MC →)⋅(MB →+MD →),则下列结论正确的是( )A .当M 为正六边形ABCDEF 的中心时,t =12B .t 的最大值为4C .t 的最小值为−14D .t 可以为0解:以O 为原点,以AD 为x 轴,建立平面直角坐标系,如图, ∵正六边形边长为1, ∴A(−1,0),B(−12,−√32),C(12,−√32),D(1,0),设M (x ,y ),则MA →=(−1−x ,−y),MC →=(12−x ,−√32−y),MB →=(−12−x ,−√32−y),MD →=(1−x ,−y),∴MA →+MC →=(−12−2x ,−√32−2y),MB →+MD →=(12−2x ,−√32−2y),t =(MA →+MC →)⋅(MB →+MD →) =(−12−2x)(12−2x)+(−√32−2y)2, =4x 2−14+4y 2+2√3y +34 =4x 2+4y 2+2√3y +12=4x 2+4(y +√34)2−14≥−14, 当x =0,y =−√34时,t 的最小值为−14,故C 对,当M 为正六边形的中心时,即x =y =0时,t =12,故A 对, ∵t ∈[−14,+∞).∴t 可以为0,t 没有最大值,∴故D 对,B 错, 故选:ACD .12.如图,水平放置的正方形ABCD 边长为1,先将正方形ABCD 绕直线AB 向上旋转45°,得到正方形ABC 1D 1,再将所得的正方形绕直线BC 1向上旋转45°,得到正方形A 2BC 1D 2,则( )A .直线A 2C 1∥平面ABCDB .D 2到平面ABCD 的距离为1+√22C .点A 到点D 2的距离为3−√2D .平面A 2BC 1D 2与平面ABCD 所成的锐二面角为60°解:由已知条件中的旋转,可将正方形ABC 1D 1放于两个全等正方体的公共面上, 正方形ABCD 和正方形A 2BC 1D 2的位置如图所示,连接MD 1,PC 1,P A ,PC 1,A 2C 1,如图所示,因为平面ABCD ∥平面MD 1C 1P ,直线A 2C 1与平面MD 1C 1P 相交, 则直线A 2C 1与平面ABCD 相交,所以A 选项错误;平面A 2BC 1D 2与平面ABCD 所成的锐二面角可转化为平面A 2BC 1D 2与平面MD 1C 1P 所成的锐二面角, MP ⊥平面MAD 1N ,AN ⊂平面MAD 1N ,MP ⊥AN ,正方形MAD 1N 中,MD 1⊥AN , MD 1,MP ⊂平面MD 1C 1P ,MD 1∩MP =M ,AN ⊥平面MD 1C 1P , 同理,AP ⊥平面A 2BC 1D 2,平面A 2BC 1D 2与平面MD 1C 1P 所成的锐二面角,等于直线AP 与AN 所成的角, 由△APN 为等边三角形,可得所求锐二面角的平面角为60°,故选项D 正确.过D 2作D 2H ∥C 1D 1,则有D 2H ∥AB ,D 2H ⊄平面ABCD ,AB ⊂平面ABCD ,D 2H ∥ABCD , D 2到平面ABCD 的距离等价于H 到平面ABCD 的距离,如图所示,CB =C 1D 2=1,∠BFC 1=∠D 2C 1H =45°,则C 1H =√22,CF =√2−1,点C 到HF 的距离为1−√22, S △HBC =S △HBF −S △HCF =12×(1+√22)×1−12×(1+√22)×(1−√22)=1+√24,S △ABC =12×1×1=12设H 到平面ABCD 的距离为h ,根据等体积关系V H ﹣ABC =V A ﹣HBC , 有13ℎS △ABC =13⋅AB ⋅S △HBC ,解得ℎ=1+√22, 由此得D 2到平面ABCD 的距离为1+√22,故B 选项正确;连接D 1D 2、AD 2,如图所示,△D 2D 1C 1中,D 1C 1=1,D 2D 1=1,∠D 2C 1D 1=45°,由余弦定理得D 1D 22=D 2C 12+D 1C 12−2D 2C 1⋅D 1C 1cos∠D 2C 1D 1=2−√2,在Rt △AD 1D 2中,AD 2=√AD 12+D 1D 22=√3−√2,故C 选项错误.故选:BD .三、填空题:本题共4小题,每小题5分,共20分. 13.方程x 2+2x +3=0在复数范围内的根为 −1±√2i .解:方程x 2+2x +3=0在复数范围内的根为x =−2±2√2i2=−1±√2i . 故答案为:−1±√2i .14.数据13,11,12,15,16,18,21,17的第三四分位数为 17.5 . 解:这组数据共8个数,从小到大排列是11,12,13,15,16,17,18,21, 8×34=6,所以第三四分位数是第6个数和第7个数的平均数,即17+182=17.5. 故答案为:17.5.15.为深入学习宣传贯彻党的二十大精神,某校团委举办“强国复兴有我”——党的二十大精神知识竞答活动.某场比赛中,甲、乙、丙三位同学同时回答一道有关二十大精神知识的问题.已知甲同学答对的概率是12,甲、丙两位同学都答错的概率是16,乙、丙两位同学都答对的概率是13.若各同学答题正确与否互不影响.则甲、乙、丙三位同学中至少2位同学答对这道题的概率为712.解:设甲同学答对的事件为A ,答错的事件为A ,设乙同学答对的事件为B ,答错的事件为B ,丙同学答对的事件为C ,答错的事件为C ,因为甲同学答对的概率是12,甲、丙两位同学都答错的概率是16,乙、丙两位同学都答对的概率是13,所以P (A )=12,P (A )P (C )=16,P(BC)=P(B)⋅P(C)=13, 解得P (C )=23,P (B )=12, 至少2位同学答对这道题的概率为: P =P(ABC)+P(ABC)+P(ABC)+P(ABC)=12×23×12+12×13×12+12×23×12+12×23×12=712, 故答案为:712.16.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,DB ⊥AB ,AB =DB =BP =PC =2.记四面体P ﹣BCD 的外接球的球心为O ,M 为球O 表面上的一个动点,当∠MAO 取最大值时,四面体M ﹣ABD 体积的最大值为4√1015.解:依题可得,四面体P ﹣BCD 的外接球的球心O 为BC 中点,外接球半径r =√2,要使∠MAO 取到最大值,则∠AMO =90°,即AM 与球O 相切时, ∴sin ∠MAO =rAO , 在△ABO 中,AO 2=AB 2+BO 2−2AB ⋅BO ⋅cos∠ABO =4+2−2⋅2⋅√2⋅cos135°=10, ∴AO =√10, ∴sin ∠MAO =r AO =√210=√55,∴AM =√AO 2−r 2=√10−2=2√2, 过M 作MH ⊥AO ,垂足为H ,∴点M 在以H 为圆心MH 为半径的圆上, 又MH =AM ⋅sin ∠MAO =2√2×√55=2√105, ∴四面体M ﹣ABD 体积的最大值为13⋅S △ABD ⋅MH =13⋅12⋅2⋅2⋅2√105=4√1015.故答案为:4√105. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,AC =BC =6,AB =4,AP →=λAB →(0≤λ≤1).(1)当λ=23时,用CA →,CB →表示CP →;(2)求CP →⋅(CA →+CB →)的值. 解:(1)当λ=23时,AP →=23AB →,则CP →=CA →+AP →=CA →+23AB →=CA →+23(CB →−CA →) =13CA →+23CB →; (2)法一:∵CP →=CA →+λAB →=CA →+λ(CB →−CA →)=(1﹣λ)CA →+λCB →,cos ∠ACB =62+62−422×6×6=79,∴CA →⋅CB →=6×6×79=28,∴CP →⋅(CA →+CB →)=[(1−λ)CA →+λCB →]⋅(CA →+CB →) =(1−λ)CA →2+(1−λ)CA →⋅CB →+λCA →⋅CB →+λCB →2 =36﹣36λ+28﹣28λ+28λ+36λ =64;法二:取AB 中点D ,则CA →+CB →=2CD →,且CD ⊥AB ,∴CP →⋅(CA →+CB →)=2CP →⋅CD →=2(CD →+DP →)⋅CD →=2CD →2+0=2CD →2, 因为AC =BC =6,AB =4, 所以CD =√36−4=√32, 所以CP →⋅(CA →+CB →)=64.18.(12分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ABC =90°,AA 1=AB =4,BC =3. (1)求三棱柱ABC ﹣A 1B 1C 1的侧面积;(2)设D 为AC 的中点,求证:AB 1∥平面BC 1D .证明:(1)因为三棱柱ABC ﹣A 1B 1C 1为直三棱柱, 所以侧面BCC 1B 1,BAA 1B 1,CAA 1C 1均为矩形,又AB ⊥BC ,所以△ABC ,△A 1B 1C 1均为直角三角形, 又AA 1=AB =4,BC =3,∴AC =√AB 2+BC 2=√42+32=5,所以三棱柱ABC ﹣A 1B 1C 1的侧面积为(AB +BC +AC )•AA 1=(3+4+5)×4=48. 所以三棱柱ABC ﹣A 1B 1C 1的侧面积为48. (2)连接B 1C ,设B 1C ∩BC 1=O ,连接OD , ∵四边形BCC 1B 1为矩形, ∴O 为B 1C 的中点,∵D 为AC 的中点,∴OD ∥AB 1, ∴AB 1⊄平面BC 1D ,OD ⊂平面BC 1D , ∴AB 1∥平面BC 1D .19.(12分)已知盒中有大小、质地相同的红球、黄球、蓝球共4个,从中任取一球,得到红球或黄球的概率是34,得到黄球或蓝球的概率是12.(1)求盒中红球、黄球、蓝球的个数;(2)随机试验:从盒中有放回的取球两次,每次任取一球记下颜色. (i )写出该试验的样本空间Ω;(ii )设置游戏规则如下:若取到两个球颜色相同则甲胜,否则乙胜.从概率的角度,判断这个游戏是否公平,请说明理由.解:(1)从中任取一球,分别记得到红球、黄球、蓝球为事件A ,B ,C , 因为A ,B ,C 为两两互斥事件,由已知得{ P(A)+P(B)+P(C)=1P(A)+P(B)=34P(B)+P(C)=12,解得{ P(A)=12P(B)=14P(C)=14,∴盒中红球、黄球、蓝球的个数分别是2,1,1;(2)(i )由(1)知红球、黄球、蓝球个数分别为2,1,1,用1,2表示红球,用a 表示黄球,用b 表示蓝球,m 表示第一次取出的球,n 表示第二次取出的球,(m ,n )表示试验的样本点,则样本空间Ω={(1,1),(1,2),(1,a ),(1,b ),(2,1),(2,2),(2,a ),(2,b ),(a ,1),(a ,2),(a ,a ),(a ,b ),(b ,1),(b ,2),(b ,a ),(b ,b )};(ii )由(i )得n (Ω)=16,记“取到两个球颜色相同”为事件M ,“取到两个球颜色不相同”为事件N ,则n (M )=6, 所以P(M)=616=38, 所以P(N)=1−P(M)=1−38=58, 因为58>38,所以此游戏不公平.20.(12分)某大型企业为员工谋福利,与某手机通讯商合作,为员工办理流量套餐.为了解该企业员工手机流量使用情况,通过抽样,得到100名员工近一周每人手机日平均使用流量L (单位:M )的数据,其频率分布直方图如图:若将每位员工的手机日平均使用流量分别视为其手机日使用流量,回答以下问题. (1)求这100名员工近一周每人手机日使用流量的众数、中位数;(2)在办理流量套餐后,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男员工20名,其手机日使用流量的平均数为800M ,方差为10000;抽取了女员工40名,其手机日使用流量的平均数为1100M ,方差为40000.(ⅰ)已知总体划分为2层,通过分层随机抽样,各层抽取的样本量、样本平均数和样本方差分别为:m ,x ,s 12;n ,y ,s 22,记总的样本平均数为ω,样本方差为s 2.证明:s 2=1m+n{m[s 12+(x −ω)2]+n[s 22+(y −ω)2]}.(ⅱ)用样本估计总体,试估计该大型企业全体员工手机日使用流量的平均数和方差.解:(1)估计这100名员工近一周每人手机日使用流量的众数450, 由频率分布直方图可知流量少于300M 的所占比例为30%, 流量少于400M 的所占比例为55%,故抽取的100名员工近一周每人手机日使用流量的中位数在[300,400)内, 则中位数为300+(400−300)×0.5−0.30.55−0.3=380.(2)(i )证明:总样本的方差为:s 2=1m+n [∑(x i −ω)2+∑ n j=1(y j −ω)2mi=1] =1m+n [∑(x i −x)2+∑2(x i m i=1−x)(x −ω)+∑(x −ω)2mi=1+∑(y i −y)2+nj=1mi=1∑2(y i −y)(y −ω)+∑(y −ω)2nj=1n j=1]由∑(x i −x)mi=1=∑x i −m m i=1x =0,可得:∑2(x i −x)(x −ω)=2mi=1(x −ω)∑(x i −x)=0mi=1, 同理可得∑2(y j −y)(y −ω)=0n j=1,故s 2=1m+n [∑(x i −x)2+∑(x −ω)2+∑(y j −y)2+nj=1mi=1∑ n j=1(y −ω)2mi=1]=1m+n{m[s 12+(x −ω)2]+n[s 22+(y −ω)2]}; (ii )估计该企业全体员工手机日使用流量的平均数为:ω=20×800+40×110020+40=1000M , 由(i )知,估计该企业全体员工手机日使用流量的方差为: s 2=1m+n {m[s 12+(x −ω)2]+n[s 22+(y −ω)2]}=160{20[10000+(800−1000)2]+40[40000+(1100−1000)2]}=50000.21.(12分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是边长为3的正方形,侧面PBC ⊥底面ABCD . (1)若∠PBC =90°,求证:AC ⊥PD ;(2)若AC 与平面PCD 所成角为30°,求点A 到直线PC 的距离.解:(1)证明:如图,连接BD,因为侧面PBC⊥底面ABCD,侧面PBC∩底面ABCD=BC,PB⊥BC,PB⊂底面PBC,所以PB⊥底面ABCD,且AC⊂平面ABCD,可得AC⊥PB.在正方形ABCD中,AC⊥BD,PB∩BD=B,BD⊂平面PBD,PB⊂平面PBD,所以AC⊥平面PBD,且PD⊂平面PBD,可得AC⊥PD.(2)因为AB∥CD,AB⊄平面PCD,CD⊂平面PCD,所以AB∥平面PCD,过B作BM⊥PC,垂足为M,连接AM,因为侧面PBC⊥底面ABCD,侧面PBC∩底面ABCD=BC,CD⊥BC,CD⊂底面ABCD,所以CD⊥底面PBC,且BM⊂底面PBC,可得BM⊥CD,PC∩CD=C,PC,CD⊂平面PCD,可得BM⊥底面PCD,则A到平面PCD的距离即为B到平面PCD的距离BM,由AC 与平面PCD 所成的角为30°,则BM =ACsin30°=3√22, 又因为AB ∥CD ,则AB ⊥平面PBC ,且PC ,BM ⊂平面PBC ,可得AB ⊥PC ,AB ⊥BM ,BM ⊥PC ,AB ∩BM =B ,AB ,BM ⊂平面ABM ,所以PC ⊥平面ABM ,且AM ⊂平面ABM ,可得PC ⊥AM , 即AM 的长度即为点A 到PC 的距离,可得AM =√AB 2+BM 2=√9+92=3√62 所以点A 到PC 的距离为3√62.22.(12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,点D 在边AB 上,∠A =π4,BD =CD ,AD=2.(1)若BD =√53b ,求c ;(2)若a =2√2,求△ABC 的面积.解:(1)在△ACD 中,∠A =π4,AD =2,CD =BD =√53b ,则由余弦定理得,CD 2=AD 2+AC 2−2AD ⋅ACcosA =22+b 2−4bcos π4=4+b 2−2√2b ,即(√53b)2=4+b 2−2√2b ,化简得2b 2−9√2b +18=0,解得b =3√2,或b =3√22.∴BD =√53b =√53×3√2=√10,或BD =√53b =√53×3√22=√102.∴c =AB =AD +BD =2+√10,或c =AB =AD +BD =2+√102, 综上可得c =2+√10,或c =2+√102.(2)在△BCD 中,BD =CD ,设∠B =∠BCD =θ,则∠BDC =π﹣2θ,∵a =2√2,由正弦定理得:a sin2θ=CD sinθ, ∴CD =asinθsin2θ=2√2sinθ2sinθcosθ=√2cosθ,在△ACD 中,∠ADC =2θ,∠ACD =3π4−2θ,由正弦定理得:AD sin∠ACD =CD sinA ,即2sin(3π4−2θ)=√2cosθsin π4,∴2×√22=√2cosθ×sin(34π−2θ), ∴cosθ=sin(3π4−2θ),即sin(π2−θ)=sin(3π4−2θ),∵0<θ<π2,∴0<π2−θ<π2,−π4<3π4−2θ<3π4, ∴π2−θ=3π4−2θ,或π2−θ+3π4−2θ=π, 解得θ=π4或θ=π12,当θ=π4时,∠ACB =π2,AC =BC =2√2,∴△ABC 为等腰直角三角形,∴△ABC 的面积为S △ABC =12×2√2×2√2=4; 当θ=π12,∠ACB =π−π12−π4=2π3, 在△ABC 中,由正弦定理得a sinA =c sin∠ACB , ∴c =a sinA ⋅sinC =2√2√22√32=2√3,∴△ABC 的面积为S △ABC =12×2√2×2√3×sin π12=2√6×√6−√24=3−√3, 综上可得△ABC 的面积为4或3−√3.。

2023年高一下学期期末数学试卷(附答案)

2023年高一下学期期末数学试卷(附答案)

高一下学期数学期末试卷(试卷总分:100分,考试时间:100分钟)考生注意:请将正确答案填写在答题卷上规定的位置 ,在本试卷上作答一律无效! 一、 选择题(本大题共18小题,每小题3分,共54分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

在答题卷上的相应题目的答题区域内作答。

1.下列命题为真命题的是( ).A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C.垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行 2.已知数列{}n a 的通项公式是n a=1(2)2n n +,则220是这个数列的( ). A .第20项 B .第19项 C .第21项 D .第22项3.右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ). A. 300 B.450 C. 600 D. 9004.右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( ). A. 300 B.450 C. 600 D. 905. 在△ABC 中,若a = 2 ,23b =,030A = , 则B 等于( ).A .60B .60或 120C .30D .30或1506.已知一个算法,其流程图如右图所示,则输出的结果是( ). A. 3 B. 9 C.27 D.81 7.直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=-5C.a=-2,b=5;D.a=-2,b=-58.直线2x-y=7与直线3x+2y-7=0的交点是( ).A (3,-1)B (-1,3)C (-3,-1)D (3,1) 9. 在△ABC 中,已知ab c b a 2222+=+,则C=( ).A .300 B. 1500 C. 450 D. 135A BD A ’ B ’ D ’C ’ C图1乙甲751873624795436853432110.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:16进制10 1 2 3 4 5 6 7 8 9 A B C D E F 10进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 那么十六进制下的 1AF 转化为十进制为 ( ). A. 431 B.321 C.248 D. 250 11. 等差数列{}n a 中,73,10,d a =-=,则1a 等于( ). A .-39 B .28 C .39 D .3212.圆x 2+y 2-4x-2y-5=0的圆心坐标是:( ).A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).13.直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( ). A. 相离; B. 相交; C. 相切; D. 无法判定14.已知等差数列{}n a 中,22a =,46a =,则前4项的和4S 等于( ). A.12 B.10 C.8 D.1415.当输入a 的值为2,b 的值为3-时,右边程序运行的结果是( )..2A - .1B - .1C .2D16.10名工人某天生产同一个零件的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .c b a >>B .a c b >>C .b a c >>D .a b c >>17.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ).A .9991 B .10001C .1000999D .2118.如图是某赛甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是 ( ). A .62 B. 63 C .64 D .65二、填空题:本大题共4小题,每小题4分,共16分。

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。

2022-2023学年山东省济宁市高一(下)期末数学试卷【答案版】

2022-2023学年山东省济宁市高一(下)期末数学试卷【答案版】

2022-2023学年山东省济宁市高一(下)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数z =i2−i在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,若P (﹣1,2)为角α终边上的一点,则cos α=( ) A .−√55B .√55C .−2√55D .2√553.若水平放置的平面四边形AOBC 按斜二测画法得到如图所示的直观图,其中A ′C ′∥O ′B ′,B ′C ′⊥O ′B ′,A ′C ′=1,O ′B ′=2,则原四边形AOBC 的边BC 的长度为( )A .2B .2√2C .3D .44.cos70°cos170°﹣cos20°sin170°=( ) A .−12B .12C .−√32D .√325.已知一个圆锥的表面积为4π,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√2πB .2√2πC .√2π3D .2√2π36.如图所示,要测量电视塔AB 的高度,可以选取与塔底B 在同一水平面内的两个观测基点C 与D ,在点C 测得塔顶A 的仰角为30°,在点D 测得塔顶A 的仰角为45°,且CD =30m ,∠BDC =60°,则电视塔AB 的高度为( )A .25mB .20mC .15mD .10m7.在三棱锥P ﹣ABC 中,AB =AC =√22BC ,△P AC 是边长为6的等边三角形,若平面P AC ⊥平面ABC ,则该三棱锥的外接球的表面积为( ) A .72πB .84πC .108πD .120π8.在△ABC 中,AB =AC ,边BC 上一点P 满足sin ∠P AB =2sin ∠P AC ,若AP →=xAB →+yAC →,则xy=( )A .3B .2C .12D .13二、选择题:本题共4小题,每小题5分,共20分。

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。

2023-2024学年广东省部分学校高一(下)期末数学试卷+答案解析

2023-2024学年广东省部分学校高一(下)期末数学试卷+答案解析

2023-2024学年广东省部分学校高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数,则()A. B. C. D.12.已知圆锥的表面积为,它的侧面展开图是个半圆,则此圆锥的体积为()A.3B.C.9D.3.已知正方体的棱长为2,E,F分别是BC和CD的中点.则两条平行线EF和间的距离为()A. B. C. D.4.端午节吃粽子是我国的一个民俗,记事件“甲端午节吃甜粽子”,记事件“乙端午节吃咸粽子”,且,事件A与事件B相互独立,则()A. B. C. D.5.菏泽市博物馆里,有一条深埋600多年的元代沉船,对于研究元代的发展提供了不可多得的实物资料.沉船出土了丰富的元代瓷器,其中的白地褐彩龙风纹罐如图的高约为36cm,把该瓷器看作两个相同的圆台拼接而成如图,圆台的上底直径约为20cm,下底直径约为40cm,忽略其壁厚,则该瓷器的容积约为()A. B. C. D.6.人脸识别就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点,,O为坐标原点,定义余弦相似度为,余弦距离为已知,,若P,Q的余弦距离为则()A. B. C. D.7.在棱长为1的正方体中,,E是线段含端点上的一动点,则①;②面;③三棱锥的体积为定值;④OE与所成的最大角为上述命题中正确的个数是()A.1B.2C.3D.48.已知正方体的棱长为2,M 是棱的中点,空间中的动点P 满足,且,则动点P 的轨迹长度为()A.B.3C.D.二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.下列有关复数的说法正确的是()A.若,则B.C.D.若,则的取值范围为10.已知点,,则下列结论正确的是()A.与向量垂直的向量坐标可以是B.与向量平行的向量坐标可以是C.向量在方向上的投影向量坐标为D.对,向量与向量所成角均为锐角11.在正方体中,,E 是棱的中点,则下列结论正确的是()A.若F 是线段的中点,则异面直线EF 与AB 所成角的余弦值是B.若F 为线段上的动点,则的最小值为C.若F 为线段上的动点,则平面ABF 与平面CDF 夹角的余弦值的取值范围为D.若F 为线段上的动点,且与平面ABCD 交于点G ,则三棱锥的体积为三、填空题:本题共3小题,每小题5分,共15分。

四川省成都市第七中学2023-2024学年高一下学期高2026届期末考试数学试卷答案

四川省成都市第七中学2023-2024学年高一下学期高2026届期末考试数学试卷答案

成都七中高2026届高一下期数学期末考试参考答案一.单项选择题−14:CBDD −58:BCAB8.解析:设D 为BC 边中点,则23A A A AD O G O ⎛⎫= ⎪⎝⎭21()32A AO AC B =+()AB AO AC =+312211AB AC =+66=+b c 6()122, 在∆ABC 中,==︒a A 1,60,由余弦定理得=+−︒a b c bc 2cos 60222,∴+=+b c bc 122, 由均值不等式,+=+≥bc b c bc 1222,所以≤bc 1(当且仅当==b c 1等号成立), 所以1111()(1)(11)6663A AG O c b bc =+=+≤+=22,故选B. 二.多项选择题9.BC 10.BCD 11.AC11.解析:A :当⊥'AP A B 时,线段DP 长度最小,此时=AP =DP ,A 正确;B :将面''A D CB 旋转至面'A AB 同一平面,连接AC ,此时+=AP PC AC 为最小值,=>=AC 不存在这样的点P ,故B 错误; C :如图,取='B E 1,='B F 21,='A G 23,连接FG 交'A B 于P ,易证此时⊥'A C MN ,⊥'A C EN ,且M N E F G ,,,,五点共面.因为MN EN N =,面⊥'A C MNEFG ,所以存在这样的点P 使面⊥'A C MNP ,故C 正确; D :以点B 为球心,617为半径的球面被面'AB C 所截的截面为圆形,记其半径为r ,则=r d 为点B 到平面'AB C 的距离.由=−−''V V B ABC B AB C 易求得B 到平面'AB C 的距离为34,解得=r 25,所以截面面积==ππS r 4252,D 错误.本题选AC 三.填空题12.1030013.π32814.+3214.解析:取AB 中点D ,则2AQ m AB nAC m AD nAC =+=+ ;连接CD 交AQ 于点E ,则()1AE AD AC λλ=+−,且()()1AQAQAQ AE AD AC λλ=⋅=⋅+−AE AE ,故+=AE m n AQ2.17.解:I ()设事件=A i “第i 回合甲胜”,事件=M “甲至少赢一回合”,故=M “甲每回合都输”.A A i i ,为对立事件,=P A i 32(),故=P A i 31)(. ……2分 =−=−P M P M P A A A ()1()1()123⎝⎭ ⎪=−=⎛⎫P A P A P A 3271=12631()()()-123, 故甲至少赢1个回合的概分为2726. ……5分(II)设事件=N “第二回合有人得分”,由题可知1212N A A A A =,且A A 12和A A 12互斥,则=+=⋅+⋅=P N P A A P A A P A P A P A P A 9()512121212)()()()()()(, 故第二回合有人得分的概分为95. ……10分 (III)设事件=Q “甲乙两人平局”,由题可知,只有1:1与0:0两种情况, 因此13123Q A A A A A A =2, 故=+=P Q P A A A P A A A P A P A P A ()221312313)()()()()(+=P A P A P A 274123)()()(, 故甲乙两人平局的概分为274. ……15分18.解:(I)由正弦定理得,+=a c b 2,222解得=b ….…4分又因为+−=−<b c a 20222,故=<+−bcA b c a 2cos 0222,>πA 2,所以△ABC 是钝角三角形. …………6分 (II)由平面向量基本定理,BA ,BC 可作为一组基底向量,且有2BA =,4BC =,cos ,cos BA BC B <>===+−ac a c b 285222.由于1AD AC =3,所以21BD BA BC =+33. …………8分 2222212152()2cos BD BD BD BA BA BC B BC ⎛⎫=⋅=⋅+⋅⋅⋅⋅+⋅== ⎪33339. …………11分 (III) 由题意可设BM xBA = ,BN yBC = .由于M ,D ,N 三点共线,可设(1)BD t BM t BN =−+,∈t 0,1)(.所以21(1)BD t x BA ty BC BA BC =−⋅+⋅=+33, 由平面向量基本定理,解得()−=t x 312 ,=ty 31 ,所以()2BM BA =−t 31 ,1BN BC =t 3 . …………13分因此()212BM BN BA BC BA BC ⎛⎫⎛⎫⋅=⋅=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭−−⋅t t t t 3139(1), …………15分 而cos 50BA BC BA BC B ⋅=⋅⋅=>,因此当=t 21时,40BM BN ⋅=9为最小值. ……17分19.证明:(I)因为面平⊥A D ABC 1,面平⊂BC ABC ,故⊥A D BC 1. ……2分 又由∠=︒ABC 90,即⊥AB BC ,1AB A D D =,因此面平⊥BC ABB A 11.……5分 (II)由于菱形ABB A 11,且A D 1为AB 的垂直平分线,因此可知△A AB 1和△B A B 11均为等边三角形.由面平⊥BC ABB A 1,⊂BB 1面平ABB A 1,可得⊥BC BB 1, 结合斜三棱柱进一步可得B BCC 11是矩形. …………6分此时作⊥A P BB 11,⊥A Q CC 11,连接PQ ,PC ,A C 1.由题知,=A Q 21,面平⊂A P ABB A 111,可得⊥BC A P 1,1BC BB B =,因此⊥A P 1平面BCC B 11,因此由题知,=A P 1,⊂PQ PC 平面BCC B 11,所以也有⊥A P PQ 1,⊥A P PC 1. 因此,角成所为面平与∠A CP A C BB C C 1111. …………8分进一步,在△R A PQ t 1 中,==Q P 1 ,由矩形可知==BC PQ 1 .一一方面,由于=A P 1△B AB 1中,可以解得=BB 21,P 为BB 1中点,=BP 1.所以,在△R BCP t 中,PC △A CP R t 1中,=A C 1∠===A C A CP A P 5sin 111,值弦正的角成所面平与A C BBC C 111. ……11分 (III)延长EF ,C C1交于点M ,连接MB 1,交BC 于N ,连接FN ,如右图,故四边形B EFN 1即为所得截面. ………12分 由上一问可知,菱形ABB A 11的边长为2,矩形B BCC 11中=BC 1,平行四边形ACC A 11中==AA CC 211,===A C A C AC 111.要计算截面B EFN 1的面积,首先研究△B EM 1.在△A B E 11中,由于∠=︒EA B 12011,由余弦定理可得=B E 1,E F 为中点,因此===EM EF A C 21,此时有==MC AE 1,在直角△MB C 11中=MB 1,N 为BC 的三等分点. …………14分因此△B EM 1中,由余弦定理可得⋅⋅∠==+−EM MB EMB EM MB EB 25cos 1121221,所以可以计算得∠=EMB 5sin 1.设截面面积为S ,由于=MF ME 21,=MN MB 311,有△△△=−=⋅⋅∠−⋅⋅∠=S S S ME MB EMB MF MN EMB S B EM NFM B EM 226sin sin 11511111因此,此斜三棱柱被平面B EF 1 ……………17分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的。

1.如果33log log 4m n +=,那么n m +的最小值是 A .4B .34C .9D .182、数列{}n a 的通项为n a =12-n ,*N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为A .7B .8C .9D .103、若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为A .a =﹣8 b =﹣10B .a =﹣4 b =﹣9C .a =﹣1 b =9D .a =﹣1 b =2 4、△ABC 中,若2cos c a B =,则△ABC 的形状为 A .直角三角形 B .等腰三角形 C .等边三角形 D .锐角三角形 5、在首项为21,公比为12的等比数列中,最接近1的项是 A .第三项 B .第四项 C .第五项 D .第六项 6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a 等于A .32 B .23 C .23或32D .﹣32或﹣23 7、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于A .120B .60C .150D .308、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是A .2221a aB .2322a aC .2423a aD .2524a a9、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为A .41.1 B .51.1 C .610(1.11)⨯- D . 511(1.11)⨯-10、已知钝角△ABC 的最长边为2,其余两边的长为a 、b ,则集合{}b y a x y x P ===,|),(所表示的平面图形面积等于 A .2 B .2-π C .4 D .24-π 二、填空题:本大题共6小题,每小题5分,共30分。

11、在△ABC 中,已知BC=12,A=60°,B=45°,则AC= 12.函数2lg(12)y x x =+-的定义域是 13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15、《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。

书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的13是较小的两份之和,则最小1份的大小是16、已知数列{}n a 、{}n b 都是等差数列,1a =1-,41-=b ,用k S 、'k S 分别表示数列{}n a 、{}n b 的前k 项和(k 是正整数),若k S +'k S =0,则k k b a +的值为三、解答题:本大题共5小题,共70分。

解答时应写出文字说明、证明过程或演算步骤。

17、(本小题满分12分)△ABC 中,c b a ,,是A ,B ,C 所对的边,S 是该三角形的面积,且cos cos 2B bC a c=-+ (1)求∠B 的大小;(2)若a =4,35=S ,求b 的值。

18、(本小题满分为14分)已知等差数列{}n a 的前四项和为10,且237,,a a a 成等比数列 (1)求通项公式n a(2)设2n an b =,求数列n b 的前n 项和n s19、(本小题满分14分)已知:ab a x b ax x f ---+=)8()(2,当)2,3(-∈x 时,0)(>x f ;),2()3,(+∞--∞∈ x 时,0)(<x f(1)求)(x f y =的解析式(2)c 为何值时,02≤++c bx ax 的解集为R.20、(本小题满分14分)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成。

已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米。

(1)若设休闲区的长11A B x =米,求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计? 21、(本小题满分16分)设不等式组⎪⎩⎪⎨⎧+-≤>>n nx y y x 300所表示的平面区域为n D ,记n D 内的格点(格点即横坐标和纵坐标均为整数的点)个数为))((*N n n f ∈(1)求)2(),1(f f 的值及)(n f 的表达式; (2)记()(1)2n nf n f n T ⋅+=,试比较1n n T T +与的大小;若对于一切的正整数n ,总有m T n ≤成立,求实数m 的取值范围;(3)设n S 为数列{}n b 的前n 项的和,其中)(2n f n b =,问是否存在正整数t n ,,使16111<-+++n n n n tb S tb S 成立?若存在,求出正整数t n ,;若不存在,说明理由。

标准答案及评分标准一、选择题:1 D 2 A 3 B 4 B 5 C 6 C 7 A 8 C 9 D 10 B二、填空题:11 12 {}34x x -<< ;13 48 ;14 18 ;15 10;16 5 三、解答题 17、⑴由cos cos sin cos 2cos 2sin sin B b B BC a c C A C=-⇒=-++ 2sin cos cos sin sin cos A B B C B C ⇒+=-2sin cos sin cos cos sin A B B C B C ⇒=--(4分)2sin cos sin()2sin cos sin A B B C A B A ∴=-+⇒=- 12cos ,0,23B B B ππ⇒=-<<∴=又(8分)⑵114,sin 522a S S ac B c c ====⨯⇒=由(10分)22222cos 1625245b a c ac B b b =+-⇒=+-⨯⨯⇒=12分) 18、⑴由题意知121114610(2)()(6)a d a d a d a d +=⎧⎨+=++⎩(3分) 1152230a a d d ⎧=-=⎧⎪⇒⎨⎨=⎩⎪=⎩或(5分) 所以5352n n a n a =-=或(7分) ⑵当35n a n =-时,数列{}n b 是首项为14、公比为8的等比数列 所以1(18)8141828n n n S --==-(12分) 当52n a =时,522n b =所以522n S n =综上,所以8128n n S -=或522n S n =(14分)19、⑴由)2,3(-∈x 时,0)(>x f ;),2()3,(+∞--∞∈ x 时,0)(<x f 知:3,2-是是方程2(8)0ax b x a ab +---=的两根83232b aa aba -⎧-+=-⎪⎪⎨--⎪-⨯=⎪⎩(6分)35a b =-⎧⇒⎨=⎩ 2()3318f x x x ∴=--+(8分)⑵由0a <,知二次函数2y ax bx c =++的图象开口向下要使2350x x c --+≤的解集为R ,只需0∆≤即252512012c c -≤⇒≥ ∴当2512c ≥时02≤++c bx ax 的解集为R.(14分) 20、⑴由11A B x =,知114000B C x=4000(20)(8)S x x =++8000041608(0)x x x=++>(6分)⑵800004160841605760S x x =++≥+=(10分) 当且仅当800008100x x x==即时取等号 ∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米。

(14分) 21、⑴(1)3,(2)6f f ==(2分)当1x =时,y 取值为1,2,3,…,2n 共有2n 个格点 当2x =时,y 取值为1,2,3,…,n 共有n 个格点 ∴()23f n n n n =+=(4分)⑵()(1)9(1)22n n nf n f n n n T ++== 119(1)(2)2222n n n n n n T n T n+++++⇒== 当1,2n =时,1n n T T +≥当3n ≥时,122n n n n T T ++<⇒<(8分) ∴1n =时,19T =2,3n =时,23272T T == 4n ≥时,3n T T <∴{}n T 中的最大值为23272T T ==要使m T n ≤对于一切的正整数n 恒成立,只需272m ≤∴272m ≥(10分) ⑶()38(18)8228(81)187n f n nnnn n b S -===⇒==--将n S 代入16111<-+++n n nn tb S tb S ,化简得,888177812877n n t t ⎛⎫-- ⎪⎝⎭<⎛⎫--⎪⎝⎭(﹡) 若1t =时88181577,8127777n n n -<<-即,显然1n =(13分)若1t >时818077n t ⎛⎫--<⎪⎝⎭(﹡)式化简为815877n t ⎛⎫-> ⎪⎝⎭不可能成立综上,存在正整数1,1n t ==使16111<-+++n n n n tb S tb S 成立(16分)。

相关文档
最新文档