九年级数学两圆的位置关系

合集下载

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质 1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定不在同一直线上的三个点确定一个圆.要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.5.圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等.6.圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点进阶:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点进阶:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点进阶:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)到三角形三个顶点的距离相等,即OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点进阶:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述.(1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P在⊙O外,连接PO交⊙O于A,延长PO交⊙O于B,则在点P与⊙O上各点连接的线段中,PB最长,PA最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P为⊙O内一点,直径过点P,交⊙O于A、B两点,则PB最长、PA最短.2.与三角形内心有关的角(1)如图所示,I是△ABC的内心,则∠BIC1902A =+∠°.(2)如图所示,E是△ABC的两外角平分线的交点,1902BEC A ∠=-∠°.(3)如图所示,E是△ABC内角与外角的平分线的交点,12E A ∠=∠.(4)如图所示,⊙O是△ABC的内切圆,D、E、F分别为切点,则∠DOE=180°-∠A.(5)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,1902DFE A ∠=-∠°.(6)如图所示,⊙O是△ABC的内切圆,D、E、F为切点,P为DE上一点,则1902 DPE A ∠=+∠°.【典型例题】类型一、圆的性质及垂径定理的应用例1.已知:如图所示,⊙O中,半径OA=4,弦BC经过半径OA的中点P,∠OPC=60°,求弦BC的长.例2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB .举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定例3.已知:如图所示,△ABC 内接于⊙O ,BD ⊥半径AO 于D .(1)求证:∠C =∠ABD ;(2)若BD =4.8,sinC =45,求⊙O 的半径.类型二、圆的切线判定与性质的应用例4.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AC=8,BC=6,求线段BE的长.举一反三:【变式】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型三、切线的性质与等腰三角形、勾股定理综合运用例5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且312OF-=,求证△DCE≌△OCB.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.例6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,那么∠CMP的大小是否变化?请直接写出你的结论.举一反三:A的中点,CD⊥AB于D,CD与AE相交于F.【变式】如图所示,AB是⊙O的直径,C是E(1)求证:AC2=AF·AE;(2)求证:AF=CF.【巩固练习】一、选择题1. 在△ABC中,,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A.5 B.6 C.7 D.152.如图,AB为⊙ O 的直径,CD 为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为()A. 70°B.35°C. 30°D. 20°3.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC的平分线交AC于点D,则∠CDP等于()A.30°B.60°C.45°D.50°第2题第3题第4题第5题4.如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则线段OM长的最小值为()A. 5B. 4C. 3D. 25.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A. 14B. 15C. 32D. 236. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为0AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35 C .43D .45二、填空题7.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为 .8.如图,AD ,AC 分别是⊙O 的直径和弦.且∠CAD=30°.O B⊥AD,交AC 于点B .若OB=5,则BC 的长等于 .9.如图所示,已知⊙O 中,直径MN =10,正方形ABCD 的四个顶点分别在半径OM 、OP 以及⊙O 上,并且∠POM =45°,则AB 的长为________.第8题 第9题 第10 题10.如图所示,在边长为3 cm 的正方形ABCD 中,1O 与2O 相外切,且1O 分别与,DA DC 边相切,2O 分别与,BA BC 边相切,则圆心距12O O = cm .11.如图所示,,EB EC 是O 的两条切线,,B C 是切点,,A D 是O 上两点,如果∠E=46°,∠DCF=32°那么∠A 的度数是 .12.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE 、CB 于点P 、Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P 是∠ACQ 的外心,其中正确结论是 (只需填写序号).三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DC 2DP DO 3==.(1)求证:直线PB 是⊙O 的切线; (2)求cos∠BCA 的值.14.如图所示,点A、B在直线MN上,AB=11厘米,⊙A、⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A出发后多少秒两圆相切?15.已知⊙O的直径AB=10,弦BC=6,点D在⊙O上(与点C在AB两侧),过D作⊙O的切线PD.(1)如图①,PD与AB的延长线交于点P,连接PC,若PC与⊙O相切,求弦AD的长;(2)如图②,若PD∥AB,①求证:CD平分∠ACB;②求弦AD的长.16. 如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P 为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=34,cos41°=34,tan37°=34.)。

九年级点与圆的位置关系知识点

九年级点与圆的位置关系知识点

九年级点与圆的位置关系知识点我们生活中到处都是点和圆,而点与圆之间的位置关系是数学中非常重要的一个知识点。

在九年级的数学课程中,我们将学习点与圆的位置关系,探索它们之间的奥妙。

1. 点在圆内:当一个点位于一个圆的内部时,我们称它为圆的内点。

圆的内点与圆心之间的距离小于半径的长度。

这意味着,无论内点与圆的任何一点相连,线段的长度都小于半径。

这个性质对于我们判断几何图形的位置关系尤为重要。

2. 点在圆外:当一个点位于一个圆的外部时,我们称它为圆的外点。

圆的外点与圆心之间的距离大于半径的长度。

同样地,我们可以利用这个特性来推断几何图形的位置关系。

3. 点在圆上:当一个点位于一个圆上时,我们称它为圆的边点。

边点与圆心之间的距离等于半径的长度。

这意味着边点与圆心之间的连线就是圆的半径。

此外,边点还有一个特殊的性质,就是任何通过边点的直径都可以被边点所分成两段相等的弧。

4. 内切圆和外切圆:在九年级,我们还将学习内切圆和外切圆这两个重要的概念。

内切圆是指一个圆恰好与多边形的边相切,且圆的圆心位于多边形的内部。

外切圆则是指一个圆恰好与多边形的边相切,且圆的圆心位于多边形的外部。

通过这些概念,我们不仅可以研究多边形与圆的位置关系,还能够解决一些实际问题。

例如,我们可以利用内切圆和外切圆来设计最大面积或最小周长的形状。

5. 点与圆的判定问题:在九年级的数学课程中,我们还会学习如何判定一个点与一个已知圆的位置关系。

这需要我们掌握一些重要的定理和方法。

例如,切线定理可以帮助我们判断一个直线与圆的位置关系,弦切角定理则可以用来判断两条弧的位置关系。

此外,我们还可以使用勾股定理和三角形相似性来解决一些点与圆的位置关系问题。

在学习点与圆的位置关系时,我们不仅仅停留在理论层面,更要加强实际应用。

数学在现实生活中的应用非常广泛,点与圆的位置关系也不例外。

例如,我们可以利用圆与点的位置关系来设计游乐场、车辆行驶轨迹等等。

通过深入理解点与圆的位置关系,我们可以更好地认识和应用数学知识。

人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

人教版数学九年级上册24.2《点和圆、直线和圆的位置关系》知识点+例题+练习(精品)

点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。

九年级数学直线和圆的位置关系

九年级数学直线和圆的位置关系

高档题型解析及思路拓展
例题3
解析
思路拓展
已知直线$l_{1}$和圆$O_{1}$相切于点 $P$,直线$l_{2}$过点$P$且与圆 $O_{1}$相交于另一点$Q$,求直线 $l_{2}$的方程。
由于直线$l_{1}$和圆$O_{1}$相切于点 $P$,因此点$P$是切点,且直线 $l_{1}$在点$P$处的切线斜率与直线 $l_{2}$的斜率相等。我们可以通过求 出点$P$的坐标和切线斜率,再利用点 斜式求出直线$l_{2}$的方程。
若直线与圆相切,则直线到圆心的距 离等于半径,由此可求出切线方程。
直线与圆的交点坐标
联立直线方程和圆方程求解,可得交 点坐标。若有两个交点,则它们关于 圆心对称。
02
直线与圆的位置关系分类
相离关系
定义
直线与圆没有公共点,称为相离。
判定方法
通过比较圆心到直线的距离与圆的 半径大小来判断。若圆心到直线的 距离大于圆的半径,则直线与圆相 离。
直线与圆的交点个数
通过观察图形或计算,确定直线与圆的交点个数。若有两个交点,则直线与圆 相交;若有一个交点,则直线与圆相切;若没有交点,则直线与圆相离。
综合应用举例
解法一
联立直线l和圆C的方程,消去一 个未知数得到一个一元二次方程 。根据判别式的值判断位置关系 。
解法二
计算圆心(a,b)到直线l的距离d,根 据d与半径r的大小关系判断位置关 系。
圆的性质
圆上任意一点到圆心的距 离等于半径;圆的任意弦 所对的圆周角等于弦所对 圆心角的一半。
圆的切线
与圆有且仅有一个交点的 直线称为圆的切线,切线 与半径垂直。
直线与圆的交点问题
直线与圆的位置关系
直线与圆的切线问题

数学教案-圆和圆的位置关系

数学教案-圆和圆的位置关系

数学教案-圆和圆的位置关系篇一:圆和圆的位置关系说明圆和圆的位置关系教案说明一、课题名称本课属新人教版九年级上册第24章第二节《与原有关的位置关系》第二课之圆和圆的位置关系。

二、教学目的(一)教学知识点1.理解圆与圆之间的几种位置关系.2.理解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联络.(二)才能训练要求1. 经历探究两个圆之间位置关系的过程,训练学生的探究才能.2.通过平移实验直观地探究圆和圆的位置关系,开展学生的识图才能和动手操作才能.(三)情感与价值观要求1.通过探究圆和圆的位置关系,体验数学活动充满着探究与制造,感受数学的严谨性以及数学结论确实定性.2.经历探究图形的位置关系,丰富对现实空间及图形的认识,开展形象思维。

三、课型本课属探究课。

四、课时圆和圆的位置关系共计一课时五、教学重点探究圆与圆之间的几种位置关系,理解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联络.六、教学难点探究两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.七、教学过程教师借助多媒体讲解与学生合作交流探究法Ⅰ.创设征询题情境,引入新课Ⅱ.新课讲解(一)、想一想(二)、探究圆和圆的位置关系我总结出共有五种位置关系,如以下图:(1)外离:两个圆没有公共点,同时每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部(三)、例题讲解两个同样大小的肥皂泡黏在一起,其剖面如以下图(点O,O'是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.1、想一想如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?假设是,它的对称轴是什么?切点与对称轴有什么位置关系?假设⊙O1与⊙O2内切呢?〔如图(2)〕2、议一议投影片设两圆的半径分别为R和r.(1)当两圆外切时,两圆圆心之间的间隔(简称圆心距)d与R和r具有如何样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?(2)当两圆内切时(R>r),圆心距d与R和r具有如何样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?3、随堂练习八、作业安排习题3.9,重点检验学生对本章圆和圆的五种位置关系的掌握情况。

九年级数学圆和圆的位置关系1

九年级数学圆和圆的位置关系1

……
…..
…..
…… …… ……
….. ….. …..
….. ….. …..
……
…..
…..
连心线 ……….. 圆心距 ………..
学生展区
…………
电脑屏幕
……
…..
…..
………… ………… ………… …………
; / 赢方国际 ;
都不敢置信/尽管叶静云知道马开此刻壹定相信动用秘法才能爆发如此实力/可秘法难道就不相信实力の展现吗?叶静云不由想到纪蝶/心想三年前马开要相信存在如此の实力/纪蝶当年逃の过壹劫吗?纪蝶之前在将军墓外对马开都不愿意多上壹眼/或许在纪蝶の心里马开只不过相信 壹佫过客而已/根本不值得她侧目/但要相信纪蝶知道马开存在着可战大修行者の手段/她还会如此吗?叶静云脑海里突然闪过壹佫念头:要相信存在壹天马开能赶超纪蝶/那纪蝶又将如何面对马开?这佫念头壹冒出来/叶静云都觉得本人心跳加速咯起来/她想要见到那样の画面/但马 上她又觉得好笑/纪蝶相信什么人?相信哪里の传人/又存在至尊金修炼/马开想要赶超相信做梦/它和纪蝶の距离只会越来越远/纪蝶相信真正の人杰/大陆将来注定存在着她浓墨重彩の壹笔/马开自然不知道叶静云想什么/它手里の大刀不断の斩咯出去/和黑玉城主交锋在壹起/黑玉 城主相信强悍の/尽管存在着煞气の涌动/可对方借着意境の优势/都生生の挡下来/并且占据咯优势/|恁终究还不相信咱の对手/或许成长几年可以/但恁没存在机会咯/|黑玉城主盯着马开/杀意十足/马开笑咯笑/并不做回答/它不想过多浪费煞气/要不然完全可以爆发和对方力量相 当の煞气/|收拾恁足够咯/|马开舞动之间/横斩而出/月震斩横扫而出/大修行者の手段配合煞气/存在着心悸之势/黑玉城主没存在想到马开居然还存在大修行者の手段/尽管心里疑惑/可手里の攻势却丝毫不满/它以自身の意境配合力量/

初中数学知识点精讲精析 圆和圆的位置关系

初中数学知识点精讲精析 圆和圆的位置关系

3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

新人教版初中数学——圆的性质及与圆有关的位置关系-知识点归纳及中考典型题解析

人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。

九年级数学 点与圆、直线与圆、圆与圆的位置关系

九年级数学 点与圆、直线与圆、圆与圆的位置关系

九年级数学 点与圆、直线与圆、圆与圆的位置关系1、点与圆的位置关系有 种,若圆的半径为r ,点P 到圆心的距离为d 。

则:点P 在圆内⇔ ;点P 在圆上⇔ ;点P 在圆外⇔ 。

2、过三点的圆:⑴过同一直线上三点 作圆,过 三点,有且只有一个圆;⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做这个圆的 。

⑶三角形外心的形成:三角形 的交点, 相等。

1、直线与圆的位置关系有 种:○1当直线和圆有两个公共点时,叫做直线和圆 ,这时直线叫圆的 线,; ○2当直线和圆有唯一公共点时,叫做直线和圆 ,这时直线叫圆的 线; ○3当直线和圆没有公共点时,叫做直线和圆 ,这时直线叫圆的 线。

2、设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则:直线l 与⊙O 相交r d _____⇔直线l 与⊙O 相切r d _____⇔直线l 与⊙O 相离r d _____⇔3、 切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的 。

【谈重点】根据这一定理,在圆中遇到切线时,常常连接圆心和切点,即可得垂直关系。

⑵判定定理:经过半径的 且 这条半径的直线是圆的切线。

【谈重点】在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。

当公共点未标出时,一般可证圆心到直线的距离d=r 来判定相切。

4、 切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间 的长叫做这点到圆的切线长。

⑵切线长定理:从圆外一点引圆的两条切线,它们的 相等,并且圆心和这一点的连线平分 的夹角5、 三角形的内切圆:⑴与三角形各边都 的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的 ;⑵三角形内心的形成:是三角形 的交点;(3)内心的性质:到三角形各 的距离相等,内心与每一个顶点的连接线平分 。

【谈重点】三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r=考点一:切线的性质例题1已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=513,求EF的长.对应训练1.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=45,求DE的长.考点二:切线的判定例题2如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)对应训练2.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=40,求⊙O的半径r.知识点三、圆和圆的位置关系圆和圆的位置关系有种,若⊙O1半径为R,⊙O 2半径为r,圆心距为d;○1当⊙O 1 与⊙O 2 外离⇔;○2当⊙O 1 与⊙O 2 外切⇔;○3当⊙O 1 与⊙O2相交⇔;○4当⊙O 1 与⊙O2内切⇔;○5当⊙O 1 与⊙O 2内含⇔。

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》一. 教材分析《点和圆的位置关系》是人教版数学九年级上册第24章《圆》的第二节内容。

本节主要介绍点和圆之间的位置关系,包括点在圆内、点在圆上、点在圆外三种情况。

通过学习,使学生能够理解并掌握点和圆的位置关系,为后续学习圆的性质和应用打下基础。

二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的性质和概念有一定的理解。

但对于点和圆的位置关系,可能还存在一定的模糊认识。

因此,在教学过程中,要注重引导学生通过观察、思考、交流等方式,自主探索点和圆的位置关系,提高他们的空间想象能力和思维能力。

三. 说教学目标1.知识与技能:使学生掌握点和圆的位置关系,能够判断一个点在圆内、圆上还是圆外。

2.过程与方法:通过观察、思考、交流等,培养学生自主探索和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于尝试、积极思考的良好学习习惯。

四. 说教学重难点1.重点:点和圆的位置关系的判断。

2.难点:理解和掌握点和圆位置关系的内在联系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。

2.教学手段:多媒体课件、黑板、粉笔、几何模型等。

六. 说教学过程1.导入新课:通过展示一些生活中的圆形象,如硬币、篮球等,引导学生关注圆的特点,激发学生学习兴趣。

2.自主探索:让学生观察和思考,通过动手画图、讨论等方式,探索点和圆的位置关系。

3.引导发现:教师引导学生发现点和圆位置关系的规律,总结出点和圆的判断方法。

4.巩固练习:设计一些具有针对性的练习题,让学生运用所学知识解决问题。

5.课堂小结:教师和学生一起总结本节课的主要内容和收获。

6.布置作业:设计一些拓展性的作业,让学生课后继续思考和探索。

七. 说板书设计板书设计要简洁明了,突出重点。

可以采用流程图、图示、列表等形式,展示点和圆的位置关系。

八. 说教学评价教学评价可以从学生的学习态度、课堂表现、练习成绩等方面进行。

第18讲 圆与圆的位置关系4种常见考法归类(解析版)-新高二数学暑假自学课讲义

第18讲 圆与圆的位置关系4种常见考法归类(解析版)-新高二数学暑假自学课讲义

第18讲圆与圆的位置关系4种常见考法归类1.能根据给定圆的方程,判断圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题,体会用代数方法处理几何问题的思想.知识点1圆与圆的位置关系1.种类:圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.2.判定方法(1)几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系的判断方法如下:|r-r|<d<C1:x2+y2+D1x+E1y+F1=0(D21+E21-4F1>0),C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),2+y2+D1x+E1y+F1=0,2+y2+D2x+E2y+F2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点个数2个1个0个两圆的位置关系相交内切或外切外离或内含注:(1)圆和圆相离,两圆无公共点,它包括外离和内含;(2)圆和圆相交,两圆有两个公共点;(3)圆和圆相切,两圆有且只有一个公共点,它包括内切和外切.(4)圆与圆的位置关系不能简单仿照直线与圆的位置关系的判断方法将两个方程联立起来消元后用判别式判断,因为当方程组有一组解时,两圆只有一个交点,两圆可能外切,也可能内切;当方程组无解时,两圆没有交点,两圆可能外离,也可能内含.知识点2圆与圆位置关系的应用设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,①圆C 2:x 2+y 2+D 2x +E 2y +F 2=0,②若两圆相交,则有一条公共弦,由①-②,得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.③方程③表示圆C 1与C 2的公共弦所在直线的方程.(1)当两圆相交时,两圆方程相减,所得的直线方程即两圆公共弦所在的直线方程,这一结论的前提是两圆相交,如果不确定两圆是否相交,两圆方程相减得到的方程不一定是两圆的公共弦所在的直线方程.(2)两圆公共弦的垂直平分线过两圆的圆心.(3)求公共弦长时,几何法比代数法简单易求.1、公切线的条数与两个圆都相切的直线叫做两圆的公切线,圆的公切线包括外公切线和内公切线两种.核心技巧:利用圆心到切线的距离d r =求解知识点4圆系方程(1)以(,)a b 为圆心的同心圆圆系方程:22()()(0)x a y b λλ-+-=>;(2)与圆220x y Dx Ey F ++++=同心圆的圆系方程为220x y Dx Ey λ++++=;(3)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为22()0()x y Dx Ey F Ax By C R λλ+++++++=∈4过两圆1C 221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=交点的圆系方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1λ≠-,此时圆系不含圆2C :222220x y D x E y F ++++=)特别地,当1λ=-时,上述方程为一次方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程.1、判断两圆的位置关系的两种方法(1)几何法:将两圆的圆心距d 与两圆的半径之差的绝对值,半径之和进行比较,进而判断出两圆的位置关系,这是在解析几何中主要使用的方法.(2)代数法:将两圆的方程组成方程组,通过解方程组,根据方程组解的个数进而判断两圆位置关系.2、圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆的方程可设为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1),然后再由其他条件求出λ,即可得圆的方程.3、两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.4、公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.5、求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程考点一:圆与圆位置关系的判断(一)判断圆与圆的位置关系例1.(2023秋·福建宁德·高二统考期中)圆()22(2)21x y -+-=与圆()()221225x y +++=的位置关系是()A .相切B .相交C .内含D .外离【答案】B【分析】根据给定条件,求出两圆的圆心和半径,并计算两圆的圆心距即可判断作答.【详解】圆()22(2)21x y -+-=的圆心1(2,2)C ,半径11r =,圆()()221225x y +++=的圆心2(1,2)C --,半径25r =,于是122121||5(,)C C r r r r ==∈-+,所以两圆相交.故选:B变式1.(2023春·江西萍乡·高二校联考阶段练习)圆O :221x y +=与圆C :22650x y y +++=的位置关系是()A .相交B .相离C .外切D .内切【答案】C【分析】利用两圆外切的定义判断即可.【详解】圆O 是以(0,0)O 为圆心,半径11r =的圆,圆C :22650x y y +++=改写成标准方程为()2234x y ++=,则圆C 是以(0,3)C -为圆心,半径22r =的圆,则3OC =,12r r +=3,所以两圆外切,故选:C .变式2.(2023·全国·高三专题练习)已知圆1C 的圆心在直线210x y +-=上,点()3,0与()1,2-都在圆1C 上,圆()()222:311C x y -++=,则1C 与2C 的位置关系是___________.【答案】相交【分析】利用待定系数法求得圆1C 的标准方程,求出圆心距12C C ,与两圆的半径和、差比较即可得出结论.【详解】设圆1C 的标准方程为()()2221x a y b r -+-=,因为圆心1C 在直线210x y +-=上,且该圆经过()3,0与()1,2-两点,列方程组22212221210(3)(0)(1)(2)a b a b r a b r +-=⎧⎪-+-=⎨⎪-+--=⎩,解得1102a b r =⎧⎪=⎨⎪=⎩,即圆1C 的标准方程为()2214x y -+=,圆心()11,0C ,半径12r =,又圆()()222:311C x y -++=,圆心()23,1C -,半径21r =,∴12C C =123r r +=,121r r-=,而13<<,∴1C 与2C 的位置关系是相交.故答案为:相交.变式3.【多选】(2023秋·江苏南通·高二统考期末)已知圆22:(3)(4)4C x y -+-=,则()A .点(5,5)在圆C内B .直线3)y x =-与圆C 相切C .圆229x y +=与圆C 相切D .圆2249x y +=与圆C 相切【答案】BCD【分析】根据点和圆的位置关系判断A 选项,根据圆心与直线距离判断B 选项,根据圆心间距离和半径和差比较判断圆圆位置关系判断C,D 选项.【详解】点(5,5)代入圆22:(3)(4)4C x y -+-=可得22(53)(54)414-+-=+>,点(5,5)在圆C 外,A 选项错误;圆22:(3)(4)4C x y -+-=,圆()3,4,2C r=,直线3)y x =-,圆心到直线距离2d =,B 选项正确;圆229x y +=,圆心()110,0,3C r=,11523CC r r ===+=+,圆229x y +=与圆C 相外切,C 选项正确;圆2249x y +=,圆心()220,0,7C r =,22572CC r r ==-=-,圆2249x y +=与圆C 相内切,D 选项正确.故选:BCD.变式4.(2023春·安徽阜阳·高三安徽省临泉第一中学校考专题练习)平面直角坐标系中,()2,0A -,()2,0B ,动点P满足PA =,则使PAB 为等腰三角形的点P 个数为()A .0B .2C .3D .4【答案】D【分析】设(),P x y,根据PA =可得动点P 的轨迹方程为圆22:(4)12M x y -+=,再结合PAB 为等腰三角形分析即可求解.【详解】设(),P x y ,由PA =,=整理得22(4)12x y -+=,记为圆.M又PA PB =>,PAB 为等腰三角形,则有4PA AB ==或4PB AB ==.因为圆22:(2)16A x y ++=与圆M 相交,故满足4PA AB ==点P 有2个;因为圆22:(2)16B x y -+=与圆M 相交,故满足4PB AB ==点P 有2个,故使PAB 为等腰三角形的点P 共有4个.故选:D.变式5.【多选】(2023·湖南娄底·统考模拟预测)已知圆M :22650x y y +-+=,圆N :22280x y y ++-=,直线l :340x y m -+=,则下列说法正确的是()A .圆N 的圆心为()0,1B .圆M 与圆N 相交C .当圆M 与直线l 相切时,则2m =D .当7m =时,圆M 与直线l 相交所得的弦长为【答案】BD【分析】写出圆,M N 的标准方程确定圆心坐标和半径,判断||MN 与两圆半径的关系判断A 、B ;再由点线距离及相交弦长公式判断C 、D.【详解】由题设,22:(3)4M x y +-=,则(0,3)M 且半径2r =,22:(1)9N x y ++=,则(0,1)N -且半径3R =,A 错;所以4R r MN R r -<=<+,即两圆相交,B 对;M 到直线l 的距离|012||12|55m m d -+-==,若圆M 与直线l 相切,则|12|25m -=,所以22m =或2m =,C 错;当7m =时1d r =<,即圆M 与直线l 相交,相交弦长为=D 对.故选:BD变式6.(2022·全国·高二专题练习)已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【分析】设(,)P x y ,轨迹AP BP ⊥可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.【详解】设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-=,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.(二)由圆的位置关系求参数例2.(2023秋·浙江丽水·高二统考期末)若圆221:4C x y +=与圆2222:20C x y mx m m +-+-=外切,则实数m =()A .-1B .1C .1或4D .4【答案】D【分析】由两圆的位置关系计算即可.【详解】由条件化简得()222:,0C x m y m m -+=∴>,即两圆圆心为()()120,0,,0C C m ,设其半径分别为12,r r ,122,r r ==121224C C m r r m ==+=+⇒=.故选:D变式1.(2023秋·高二课时练习)若两圆22(1)4x y ++=和圆22()1x a y -+=相交,则a 的取值范围是()A .02a <<B .02a <<或42a -<<-C .42a -<<-D .24a <<或20a -<<【答案】B【分析】圆()2214x y ++=与圆()221x a y -+=相交,则圆心距大于两圆的半径之差的绝对值且小于半径之和,解不等式.【详解】 圆()2214x y ++=与圆()221x a y -+=相交,∴两圆的圆心距大于两圆的半径之差的绝对值且小于半径之和,即2121-<<+,所以113a <+<.解得02a <<或42a -<<-.故选:B变式2.(2023秋·高二课时练习)当a 为何值时,两圆2222450x y ax y a +-++-=和2222230x y x ay a ++-+-=.(1)外切;(2)相交;(3)外离.【答案】(1)5a =-或2a =(2)52a -<<-或1a 2-<<(3)5a <-或2a >【分析】(1)化两圆的方程为标准方程,求得圆心坐标与半径,再求出两圆的圆心距d ,由1212||d C C r r ==+列式,即可求解.(2)由1212||r r d r r <+<-列不等式组,即可求出a 的范围.(3)由1212||d C C r r =>+列不等式,即可求出a 的范围.【详解】(1)设圆2221:2450C x y ax y a +-++-=,半径为1r ,得221:()(2)9C x a y -++=,圆心1(,2)C a -,13r =.2222:2230C x y x ay a ++-+-=,半径为2r ,得222:(1)()4C x y a ++-=,圆心1(1,)C a -,22r =.圆心距12||d C C ===因为两圆12,C C 外切,则1212||5d C C r r ==+=5=,解得5a =-或2a =.(2)因为两圆12,C C 相交,则121212||||r r C C r r -<<+,即121||5C C <<,所以15<,解得52a -<<-或1a 2-<<.(3)因为两圆12,C C 外离,则1212||d C C r r =>+,即12||5C C >,5>,解得5a <-或2a >.变式3.(2022秋·高二课时练习)若圆222x y r +=与圆222440x y x y ++-+=有公共点,则r 满足的条件是()A .1rB .1r >+C .1r ≤D .1r <【答案】C【分析】根据两圆之间的位置关系,由圆心距和半径之间的关系即可求解.【详解】由222440x y x y ++-+=得()()22121x y ++-=,∵两圆有公共点,∴11r r -≤+,1r -#1,即11r -≤,∴1r ≤,故选:C.变式4.(2023秋·浙江嘉兴·高二统考期末)已知圆1C :()()()222120x y r r -++=>与圆2C :()()224216x y -+-=有公共点,则r 的取值范围为()A .(]0,1B .[]1,5C .[]1,9D .[]5,9【答案】C【分析】根据题意得到1244r C C r -≤≤+,再解不等式即可.【详解】由题知:()11,2C -,1r r =,()24,2C ,24r =,125C C =.因为1C 和2C 有公共点,所以1244r C C r -≤≤+,解得19r ≤≤.故选:C变式5.(2023春·安徽·高二校联考期末)已知圆()()()222:3425C x y r r *-+-=+∈N ,()1,0M -,()1,0N ,若以线段MN 为直径的圆与圆C 有公共点,则r 的值可能为______.(写出一个即可)【答案】1(2,3均可)答案不唯一【分析】根据题意,由已知利用圆与圆的位置关系即可求解.【详解】由题意得,圆221x y +=与圆()()222:3425C x y r -+-=+有公共点,11≤≤,∴46≥≤,且0r >,解得0r <1r =,2,3均可.故答案为:1(2,3均可)变式6.(2022·湖南常德·常德市一中校考二模)已知圆22:(4)(3)4C x y -++=和两点(,0),(,0)(0)->A a B a a ,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .6B .5C .4D .3【答案】C【分析】根据条件,将问题转化成圆222x y a +=与圆C 有公共交点,再利用圆与圆的位置关系即可求出结果.【详解】由90APB ∠=︒,得点P 在圆222x y a +=上,故点P 在圆222x y a +=上,又点P 在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为(4,3)-,半径为1,所以|1|1a OC a -≤≤+,又5OC ==,所以|1|51a a -≤≤+,解得46a ≤≤,所以a 的最小值为4.故选:C.变式7.(2023秋·高一单元测试)已知圆221:()(2)9O x m y -++=与圆222:()(2)1O x n y +++=内切,则22m n +的最小值为_______【答案】2【分析】计算两圆的圆心距,令圆心距等于两圆半径之差,结合基本不等式求解最小值即可.【详解】圆1O 的圆心为(,2)m -,半径为13r =,圆2O 的圆心为(,2)n --,半径为21r =,∴两圆的圆心距||d m n =+,两圆内切,||2m n ∴+=,可得()2222222442m n mn m n mn m n ++=⇒-+=≤+,所以222m n +≥.当且仅当1m n ==时,取得最小值,22m n +的最小值为2.故答案为:2.变式8.(2023·浙江·校联考模拟预测)已知圆C 的方程为221x y +=,若直线()3y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 相外切,则k 的取值范围为__________.【答案】,55⎡-⎢⎣⎦【分析】根据题意,由圆C 的圆心到直线()3y k x =-的距离不大于两半径之和求解.【详解】解:因为直线()3y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 相外切,所以圆C 的圆心到直线()3y k x =-的距离不大于两半径之和,即2d =≤,化简得254k ≤,解得k ≤≤故答案为:⎡⎢⎣⎦考点二:与圆相交有关的问题(一)求两圆的交点坐标例3.(2022·高二课前预习)圆221x y +=与圆222210x y x y ++++=的交点坐标为()A .(1,0)和()0,1B .(1,0)和()0,1-C .(1,0)-和()0,1-D .()1,0-和()0,1【答案】C【分析】联立两圆的方程,解方程组,即可求得答案.【详解】由222212210x y x y x y ⎧+=⎨++++=⎩,可得10x y ++=,即=1y x --,代入221x y +=,解得=1x -或0x =,故得10x y =-⎧⎨=⎩或01x y =⎧⎨=-⎩,所以两圆的交点坐标为(1,0)-和()0,1-,故选:C变式1.(2022·高二课时练习)求圆22230x y x +--=与圆224230x y x y +-++=的交点的坐标.【答案】(1,2)-、(3,0)【分析】联立两圆方程可得3y x =-,将其代入其中一个圆的方程中求出点坐标.【详解】由题设,22224232300x y x y x y x +-⎧+--=++=⎪⎨⎪⎩,相减可得3y x =-,所以222(3)232860x x x x x +---=-+=,解得1x =或3x =,当1x =时,132y =-=-;当3x =时,330y =-=;所以交点坐标为(1,2)-、(3,0).变式2.(2022秋·贵州遵义·高二遵义一中校考阶段练习)圆1C :22640x y x y ++-=和圆2C :2260x y y +-=交于A ,B 两点,则线段AB 的垂直平分线的方程是______.【答案】390x y -+=【分析】由两圆的方程得两圆心坐标,两圆心所在直线的方程即为所求直线方程,【详解】圆1C 方程为22(3)(2)13x y ++-=,圆2C 方程为22(3)9x y +-=,则圆心分别为1(3,2)C -,2(0,3)C ,两圆相交于,A B 两点,则线段AB 的垂直平分线即为直线12C C ,123210(3)3C C k -==--,则直线12C C 的方程为133y x =+,即390x y -+=,故答案为:390x y -+=变式3.(2023秋·辽宁丹东·高二统考期末)已知圆22:16O x y +=与圆22:86160C x y x y ++++=交于A ,B 两点,则四边形OACB 的面积为()A .12B .6C .24D .245【答案】A【分析】由两圆标准方程得圆心坐标和半径,由()4,0A -和()4,3C --可知OA AC ⊥,则四边形OACB 的面积1222OAC S S OA AC ==⨯⋅⋅ ,计算即可.【详解】圆22:16O x y +=,圆心坐标为()0,0O ,半径14r =,圆22:86160C x y x y ++++=化成标准方程为()()22439x y +++=,圆心坐标为()4,3C --,半径23r =,圆O 与圆C 都过点()4,0-,则()4,0A -,如图所示,又()4,3C --,∴OA AC ⊥,由对称性可知,OB BC ⊥,4OA OB ==,3AC BC ==,则四边形OACB 的面积12243122OAC S S OA AC ==⨯⋅⋅=⨯= .故选:A(二)圆系方程的应用例4.(2023·全国·高三专题练习)经过点()1,1P 以及圆2240x y +-=与2244120x y x y +-+-=交点的圆的方程为______.【答案】2220x y x y ++--=【分析】求出两圆的交点坐标,设出所求圆的一般方程,将三点坐标代入,解出参数,可得答案.【详解】联立22224044120x y x y x y ⎧+-=⎨+-+-=⎩,整理得2y x =+,代入2240x y +-=,得220x x +=,解得0x =或2x =-,则圆2240x y +-=与2244120x y x y +-+-=交点坐标为(0,2),(2,0)-,设经过点()1,1P 以及(0,2),(2,0)-的圆的方程为220x y Dx Ey F ++++=,则20420420D E F E F D F +++=⎧⎪++=⎨⎪-+=⎩,解得112D E F =⎧⎪=-⎨⎪=-⎩,故经过点()1,1P 以及圆2240x y +-=与2244120x y x y +-+-=交点的圆的方程为2220x y x y ++--=,故答案为:2220x y x y ++--=变式1.(2022秋·高二单元测试)求过两圆221:240C x y y +--=和圆222:420C x y x y +-+=的交点,且圆心在直线:2410l x y +-=上的圆的方程.【答案】22310x y x y +-+-=【分析】根据过两圆交点的圆系方程设出所求圆的方程,并求出圆心坐标,把圆心坐标代入直线l 的方程,从而求出圆的方程.【详解】设圆的方程为()222242(1)240x y x y x y y λλ+-+++--=≠-,则()()()221412240x x y y λλλλ+-+++--=,即2242240111x y x y λλλλλ-+-+-=+++,所以圆心坐标为21,11λλλ-⎛⎫⎪++⎝⎭,把圆心坐标21,11λλλ-⎛⎫⎪++⎝⎭代入2410x y +-=得24102111λλλ-++⨯+⨯-=,解得13λ=,所以所求圆的方程为22310x y x y +-+-=.(三)求两圆公共弦方程例5.(2022秋·黑龙江大庆·高二大庆实验中学校考期末)圆221:130O x y +-=与圆222:650O x y x +-+=的公共弦所在直线方程为___________.【答案】30x -=【分析】判断两圆相交,将两圆方程相减即可求得答案.【详解】圆221:130O x y +-=的圆心为(0,0),半径为1r =圆222:650O x y x +-+=的圆心为(3,0),半径为22r =,则121212||3r r O O r r -<=<+,则两圆相交,故将两圆方程相减可得:6180x -=,即30x -=,即圆221:130O x y +-=与圆222:650O x y x +-+=的公共弦所在直线方程为30x -=,故答案为:30x -=变式1.(2022秋·高二课时练习)已知圆2212610C x y x y ++-+=:与圆22242110C x y x y +-+-=:,求两圆的公共弦所在的直线方程()A .3460x y ++=B .3460x y +-=C .3460x y --=D .3460x y -+=【答案】D【分析】由两圆方程相减即可得公共弦的方程.【详解】将两个圆的方程相减,得3x -4y +6=0.故选:D.变式2.(2023春·全国·高二卫辉一中校联考阶段练习)已知圆1C :222(1)x y r ++=过圆2C :22(4)(1)4x y -+-=的圆心,则两圆相交弦的方程为______.【答案】5190x y +-=【分析】求出2r ,得到圆1C ,两圆相减得到相交弦方程.【详解】圆2C :22(4)(1)4x y -+-=的圆心坐标为()4,1,因为圆1C 过圆2C 的圆心,所以222(41)1r ++=,所以226r =,所以1C :22(1)26x y ++=,两圆的方程相减可得相交弦方程为5190x y +-=.故答案为:5190x y +-=.变式3.(2022秋·高二课时练习)已知过圆224x y +=外一点()3,4P 做圆的两条切线,切点为,A B 两点,求,A B 所在的直线方程为()A .3440x y +-=B .3440x y ++=C .3440x y --=D .3440x y -+=【答案】A【分析】根据切线的特征可知,A B 所在的直线为圆224x y +=和以OP 的中点3,22M ⎛⎫⎪⎝⎭为圆心,以OP 为直径的圆的公共弦所在的直线方程,【详解】根据题意得,A B 所在的直线为圆224x y +=和以OP 的中点3,22M ⎛⎫⎪⎝⎭为圆心,以OP 为直径的圆的公共弦所在的直线方程,因为5OP =,所以圆()2222325234024M x y x y x y :+骣琪--=Þ+--=琪桫,两圆相减得,A B 所在的直线方程为3440x y +-=.故选:A.(四)求两圆公共弦长例6.(2022·高二课时练习)已知圆221:(1)5C x y +-=,圆222:420C x y x y +-+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.【答案】(1)(2)22317222x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭【分析】(1)将两圆方程作差可求出公共弦的方程,然后求出圆心1C 到公共弦的距离,再利用弦心距,半径和弦的关系可求得答案,(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,求出圆心坐标代入241x y +=中可求出λ,从而可求出圆的方程,解法二:将公共弦方程代入圆方程中求出两圆的交点坐标,设所求圆的圆心坐标为(),a b ,然后列方程组可求出,a b ,再求出圆的半径,从而可求出圆的方程.【详解】(1)将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即()()222242240x y x y x y y +-+-+--=,化简得10x y --=,所以圆1C 的圆心()0,1到直线10x y --=的距离为d =则22215232AB r d ⎛⎫=-=-= ⎪⎝⎭,解得AB =,所以公共弦长为(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,则2242240,1111x y x y λλλλλλ-+-+-=≠-+++;由圆心21,11λλλ-⎛⎫- ⎪++⎝⎭在直线241x y +=上,则()414111λλλ--=++,解得13λ=,所求圆的方程为22310x y x y +-+-=,即22317222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.解法二:由(1)得1y x =-,代入圆222:420C x y x y +-+=,化简可得22410x x --=,解得22x =;当22x =时,2y =;当22x =时,2y =-;设所求圆的圆心坐标为(),a b ,则2222222222241a b a b a b ⎧⎛⎫⎛⎫⎛⎫⎛⎫⎪-+=-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎝⎭⎪+=⎩,解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩;所以222317222r ⎛⎛=+--= ⎝⎭⎝⎭;所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭变式1.(2023·河南·统考二模)若圆221:1C x y +=与圆222:()()1C x a y b -+-=的公共弦AB 的长为1,则直线AB 的方程为()A .210ax by +-=B .230ax by +-=C .2210ax by +-=D .2230ax by +-=【答案】D【分析】将两圆方程相减得到直线AB 的方程为22220a b ax by +--=,然后再根据公共弦AB 的长为1即可求解.【详解】将两圆方程相减可得直线AB 的方程为22220a b ax by +--=,即22220ax by a b +--=,因为圆1C 的圆心为(0,0),半径为1,且公共弦AB 的长为1,则1(0,0)C 到直线22220ax by a b +--=的距离为2,223a b +=,所以直线AB 的方程为2230ax by +-=,故选:D.变式2.(2021秋·广东深圳·高二深圳中学校考期中)已知圆C 的圆心为()2,2-,且与直线0x y ++相切.(1)求圆C 的方程;(2)求圆C 与圆224x y +=的公共弦的长.【答案】(1)22(2)(2)20x y -++=(2)【分析】(1)由题意求得圆的半径,即可求得答案;(2)将两圆方程相减,求出两圆的公共弦方程,根据弦长、弦心距以及圆的半径之间的关系即可求得答案.【详解】(1)由题意得圆C 的半径为r =故圆C 的方程为22(2)(2)20x y -++=;(2)圆224x y +=和22(2)(2)20x y -++=的圆心距为而22<<+,即两圆相交,将224x y +=和22(2)(2)20x y -++=相减得20x y -+=,圆224x y +=的圆心到20x y -+=的距离为d ==故两圆的公共弦长为=变式3.(2021秋·高二课时练习)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则直线AB 的方程为________;线段AB 的长为________.【答案】x =±14【分析】连接OO 1,记AB 与OO 1的交点为C ,利用勾股定理和等面积法,求出AC ,进而求出AB ,根据1OO ,求出m ,进而联立求出直线AB 的方程.【详解】连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A 中,|OA ||O 1A |=∴|OO 1|=5,∴|AC |2,∴|AB |=4.由|OO 1|=5,得5m =±,所以,联立可得2222(5)520x y x y +-±-=-,解得直线AB 的方程为x =±1.故答案为:①1x =±;②4.变式4.(2023·安徽滁州·安徽省定远中学校考模拟预测)已知圆221:1O x y +=与圆()2222201:O x y x y F F +-++=<2O 的半径r =()A .1BC 1D【答案】D【分析】两圆方程相减可得公共弦所在直线方程,后由垂径定理结合圆2O 圆心与半径表达式可得答案.【详解】221x y+=与()2222201:O x y x y F F +-++=<两式相减得2210:l x y F ---=,即公共弦所在直线方程.圆2O 方程可化为()()22211:O x y -++2F =-,可得圆心()21,1O -,2O 半径r =则圆心2O 到l 的距离为d ==半弦长为2,则有2222r F +==-⎝⎭,解得3F =-或1F =(舍),此时r =.故选:D .变式5.(2021秋·高二课时练习)圆2221:22210C x y ax ay a ++++-=与圆2222:22220C x y bx by b ++++-=的公共弦长的最大值是()A .12B .1C .32D .2【答案】D【分析】将两圆转化成标准方程,根据标准方程得出两圆圆心均在直线y x =上,再利用几何关系即可求出结果.【详解】由222x y 2ax 2ay 2a 10++++-=,得()()22x a y a 1+++=,圆心1(,)C a a --,半径11r =;由2222:22220C x y bx by b ++++-=,得()()22x b y b 2+++=,圆心2(,)C b b --,半径2r =所以两圆圆心均在直线y x =上,半径分别为1,如图,当两圆相交且相交弦经过小圆圆心,也即大圆圆心在小圆上时,两圆公共弦长最大,最大值为小圆的直径,即最大值为2.故选:D.考点三:两圆的公切线问题(一)圆的公切线条数例7.(2022秋·贵州遵义·高二习水县第五中学校联考期末)圆221:(2)(4)25C x y +++=与圆222:(1)9C x y ++=的公切线的条数为()A .1B .2C .3D .4【答案】B【分析】先判断圆与圆的位置关系,从而可确定两圆的公切线条数.【详解】圆221:(2)(4)25C x y +++=的圆心坐标为(2,4)--,半径为5;圆222:(1)9C x y ++=的圆心坐标为(1,0)-,半径为3,所以两圆的圆心距为d因为5353-<+,所以两圆相交,所以两圆的公切线有2条.故选:B.变式1.【多选】(2023秋·高一单元测试)已知圆221:9C x y +=与圆222:(3)(4)16C x y -+-=,下列说法正确的是()A .1C 与2C 的公切线恰有4条B .1C 与2C 相交弦的方程为3490x y +-=C .1C 与2C 相交弦的弦长为125D .若,P Q 分别是圆12,C C 上的动点,则max ||12PQ =【答案】BD【分析】由根据两圆之间的位置关系确定公切线个数;如果两圆相交,进行两圆方程的做差可以得到相交弦的直线方程;通过垂径定理可以求弦长;两圆上的点的最长距离为圆心距和两半径之和,逐项分析判断即可.【详解】由已知得圆1C 的圆心()10,0C ,半径13r =,圆2C 的圆心()23,4C ,半径24r =,1221125,C C r r d r r ==-<<+,故两圆相交,所以1C 与2C 的公切线恰有2条,故A 错误;做差可得1C 与2C 相交弦的方程为3490,x y +-=1C 到相交弦的距离为95,故相交弦的弦长为245=,故C 错误;若,P Q 分别是圆12,C C 上的动点,则max 1212||12PQ C C r r =++=,故D 正确.故选:BD变式2.(2023·黑龙江大庆·统考三模)已知直线l 是圆:C ()()22211x y -+-=的切线,并且点()3,4B 到直线l的距离是2,这样的直线l 有()A .1条B .2条C .3条D .4条【答案】D【分析】由已知可推得,直线l 是圆C 与圆B 的公切线.根据两圆的圆心、半径,推得两圆的位置关系,即可得出答案.【详解】由已知可得,圆心()2,1C ,半径11r =.由点()3,4B 到直线l 的距离是2,所以直线l 是以()3,4B 为圆心,22r =为半径的圆的切线,又直线l 是圆:C ()()22211x y -+-=的切线,所以,直线l 是圆C 与圆B 的公切线.因为123BC r r ==>=+,所以,两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D.变式3.(2023·河北衡水·衡水市第二中学校考三模)若圆221:1Cx y +=和2221:2502C x y ay a a ⎛⎫+---=> ⎪⎝⎭有且仅有一条公切线,则=a______;此公切线的方程为______【答案】120y ++=【分析】根据两圆内切由圆心距与半径关系列出方程求a ,联立圆的方程求出切点,根据圆的切线性质得出斜率即可求解.【详解】如图,由题意得1C 与2C 相内切,又22221:()()452C x y a a a a ⎛⎫+-=+> ⎪⎝⎭,所以121C C ==,所以21a +=1a =,所以)2C,12C C k==联立(()2222119x y x y ⎧+=⎪⎨+-=⎪⎩,解得1,2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以切点的坐标为122⎛⎫-- ⎪ ⎪⎝⎭,故所求公切线的方程为12y +=2x +⎭20y ++=.故答案为:120y ++=变式4.(2022秋·高二课时练习)已知两圆2211C x y +=:,()()()2222120C x y r r -+-=>:,当圆1C 与圆2C 有且仅有两条公切线时,则r 的取值范围________.22r <<【分析】根据两圆相交即可利用圆心距与半径的关系求解.【详解】若圆C 1与圆C 2有且仅有两条公切线时,则两圆相交,圆心C 1()0,0,半径R =2,圆C 2()1,2,半径r ,则12C C ==若两圆相交,则满足12<<r R C C R r -+,即22r r -<+,22r <+,22r <+变式5.(2023秋·陕西西安·高二长安一中校考期末)已知两圆2226940x y ax a +++-=和222290x y by b ++--=恰有三条公切线,若R a ∈,R b ∈,且0ab ≠,则2211a b +的最小值为()A .1625B .3225C .169D .329【答案】A【分析】确定两圆圆心和半径,根据公切线得到两圆外切,得到22925a b +=,变换得到()22222219111125b a b a b a ⎛⎫+= ⎪⎭++⎝,展开利用均值不等式计算得到答案.【详解】2226940x y ax a +++-=,即()2234x a y +=+,圆心()13,0O a -,12R =;222290x y by b ++--=,即()229x y b +-=,圆心()20,O b ,半径23R =;两圆恰有三条公切线,即两圆外切,故12125O O R R =+=,即22925a b +=,()222222222211111111610102525252599a b a b a b b a a b ⎛⎫⎛⎫⎛⎫+=+=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎝⎭⎝⎭+⎭.当且仅当22229b a a b=,即22512a =,2254b =时等号成立.故选:A(二)圆的公切线方程例8.(2023·湖北黄冈·浠水县第一中学校考模拟预测)写出与圆()()224316x y -++=和圆221x y +=都相切的一条直线的方程___________.【答案】1y =(答案不唯一,247250x y ++=或4350x y --=均可以)【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123l l l ,,,易得切线1l 的方程为1y =;因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=;可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上,在1l 上取点()0,1,设其关于OC 的对称点为()00,x y ,则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=,综上,切线方程为1y =或247250x y ++=或4350x y --=.故答案为:1y =(答案不唯一,247250x y ++=或4350x y --=均可以)变式1.(2023·江西南昌·校联考模拟预测)已知圆()22:11C x y -+=与圆(22:1E x y +=,写出圆C和圆E 的一条公切线的方程______.【答案】10x +=20y +-=20y +=.【分析】设切线方程为y kx b =+,根据圆心到直线的距离均为1求解方程.【详解】设圆的公切线为y kx b =+,11==|||k b b ⇒+=,k =2k b-代入求解得:2k b ⎧=⎪⎨=⎪⎩或b k ⎧=⎪⎪⎨⎪=⎪⎩所以切线为:2,y =+或2y =+或10x +=故答案为:10x -+=20y +-=20y +=.变式2.(2023·湖南岳阳·统考三模)写出与圆221:1O x y +=和222:(3)1O x y -+=都相切的一条直线方程____________.【答案】3)52y x =±-或1y =±中任何一个答案均可【分析】先判断两圆的位置关系,可知公切线斜率存在,方程可设为y kx b =+,根据圆心到直线的距离等于半径列出方程组,解之即可得出答案.【详解】圆221x y +=的圆心为()10,0C ,半径为11r =,圆222:(3)1O x y -+=的圆心为()23,0C ,半径为21r =,则12123C C r r =>+,所以两圆外离,由两圆的圆心都在x 轴上,则公切线的斜率一定存在,设公切线方程为y kx b =+,即0kx y b -+=,则有11==,解得k b ⎧=⎪⎪⎨⎪=⎪⎩k b ⎧=⎪⎪⎨⎪=⎪⎩或01k b =⎧⎨=⎩或01k b =⎧⎨=-⎩所以公切线方程为3)2y x =-或1y =±.故答案为:1y =.(答案不唯一,写其它三条均可)变式3.【多选】(2022秋·高二单元测试)已知圆()()221:211C x y -+-=,圆()()222:211C x y +++=,则下列是圆1C 与圆2C 的公切线的直线方程为()A .0y =B .430x y -=C.20x y -=D.20x y +=【答案】ABC【分析】在同一坐标系内画出两圆图象,由两圆相离可知共有4条切线,再利用对称性设出直线方程,由点到直线距离公式即可求得切线方程.【详解】根据题意可知,两圆心()()122,1,2,1C C --关于原点对称,在同一坐标系内画出两圆图象,如下图所示:显然,圆心距1211C C =+,即两圆外离,共有4条切线;又两圆心到x 轴的距离都等于其半径,所以x 轴是其中一条公切线,即A 正确;利用对称性可知,其中一条切线1l 过原点,设其方程为y kx =,又()12,1C 到切线1l 的距离为11=,解得0k =或43k =;当0k =时,切线即为x 轴,当43k =时,切线方程为43y x =,即430x y -=,B 正确;由对称性可知,切线23,l l 与直线12C C 平行,易知12111222C C k +==+,所以直线12C C 的方程为12y x =,可设23,l l 的方程分别为12y x c =+,()1,02y x c c =->1=,解得2c =,即切线23,l l的方程分别为122y x =+,122y x =-;整理可得两切线方程为20x y -=和20x y -=,故C 正确,D 错误;故选:ABC(二)圆的公切线长例9.【多选】(2023春·山东青岛·高二统考开学考试)已知圆221:1C x y +=,圆222:2210C x x y y -+-+=,则()A .圆1C 与圆2C 相切B .圆1C 与圆2CC .圆1C 与圆2C 公共弦所在直线的方程为1x y +=D .圆1C 与圆2C 公共部分的面积为π12-【答案】BCD【分析】求出两圆圆心坐标与半径,求出圆心距,即可判断A ,B ,两圆方程作差即可得到公共弦方程,从而判断C ,求出两圆圆心到公共弦的距离,从而取出公共部分的面积,从而判断D.【详解】解:因为圆221:1C x y +=,圆222:2210C x y x y +--+=,所以圆1C 的圆心为1(0,0)C ,半径11r =,圆2C 的圆心为2(1,1)C ,半径21r =,所以121212r r C C r r -<=+,故圆1C 与圆2C 相交,即A 错误;因为两圆半径相等,则两圆公切线的长度为12C C =B 正确将两圆方程作差得10x y +-=,所以两圆公共弦所在直线l 的方程为10x y +-=,故C 正确;因为1C 的圆心为1(0,0)C ,半径11r =,所以1(0,0)C 到直线10x y +-=的距离为1d所以公共弦长为又圆心2(1,1)C 到直线10x y +-=的距离为2d ==所以圆1C 与圆2C 公共部分的面积为11π2π14222⎛⎫-=- ⎪ ⎪⎝⎭,故D 正确.故选:BCD变式1.【多选】(2022秋·广东惠州·高二惠州市惠阳高级中学实验学校校考期中)圆221:2660C x y x y ++-+=与圆222:2210C x y x y +--+=相交于A ,B 两点,则()A .AB 的直线方程为4450x y -+=B .公共弦AB 的长为8C .圆1C 与圆2C D .线段AB 的中垂线方程为20x y +-=【答案】ACD【分析】对于A ,两圆方程相减可求出直线AB 的方程,对于B ,利用弦心距、弦和半径的关系可求公共弦AB 的长,对于C ,求出12C C ,对于D ,线段AB 的中垂线就是直线12C C ,求出直线12C C 的方程即可.【详解】由222660x y x y ++-+=,得22(1)(3)4x y ++-=,则1(1,3)C -,半径12r =,由222210x y x y +--+=,得22(1)(1)1x y -+-=,则2(1,1)C ,半径21r =,对于A ,公共弦AB 所在的直线方程为2222266(221)0x y x y x y x y ++-+-+--+=,即4450x y -+=,所以A 正确,对于B ,2(1,1)C 到直线AB 的距离d =,所以公共弦AB 的长为4AB ==,所以B 错误,对于C ,因为12C C ==,12r =,21r =,。

圆和圆的位置关系

圆和圆的位置关系
3.6圆与圆的位置关系
圆 系 关

与 圆 的

田中七彩 俊贤金
• 一、教材分析 • 二、教法、学法分析 • 三、教学过程分析 • 四、设计说明
• 一.教材的地位和作用 • 《圆与圆的位置关系》是北师大版九年级数学下 册第三章第六节的内容 .本节课是在学习了点和圆 的位置关系、直线和圆的位置关系的基础上安排, 是对类比的学习方法的进一步加强与巩固,是对 学生动手操作能力及互相交流、自主探索能力的 进一步发展,使学生具备一定的识图、作图能力, 体会数学活动充满着探索性与创造性,因此,本 节在本章及中学学习中占有重要地位。
圆与圆的位置关系(从公共点个数看)
外离
没有公共点 内含 没有公共点 同心圆 没有公共点 外切 有1个公共点 内切 有1个公共点 相交 有2个公共点
怎样从两圆的圆心距与两圆半径的数量关 系来判断两圆的位置关系?
R
O1

r
d
R
2
• O
O1 R•rFra bibliotekd• O 2
R
两圆外离 R
两圆外切 r •dO • O
例2、⊙01和⊙02的半径分别为3cm和4cm,设 (1) 0102=8cm (2) 0102=7cm (3) 0102=5cm (4) 0102=1cm (5) 0102=0.5cm (6) 01和02重合 ⊙0和⊙02的位置关系怎样? 在这个练习题中,教师重点关注: 学生能否利用两圆的圆心距与两圆半径的关系判断 两圆的位置关系.
• • 学用结合 学习动机与毅力相结合
例3:如图,⊙0的半径为5cm,点P是⊙0外一点,OP =8cm
求:(1)以P为圆心,作⊙P与⊙O外切,小圆P的半 径是多少? (2)以P为圆心,作⊙P与⊙O内切,大圆 P的半径是多少?

人教版 九年级数学 与圆有关的位置关系讲义 (含解析)

人教版 九年级数学 与圆有关的位置关系讲义 (含解析)

第11讲与圆有关的位置关系知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们首先学习与圆有关的三类位置关系:点与圆的位置关系、直线与圆的位置关系以及圆与圆的位置关系,重点掌握各种与圆位置关系的判断方法,其次学习切线的有关性质与判定以及切线长定理及应用,能够结合已知题意证明相关切线,最后掌握圆的外接三角形与三角形内切圆概念。

本节课的重点是三类位置关系的判断方法以及切线的性质与判定定理,属于中考重点内容,也是难点之一,希望同学们能够好好学习,扎实基础。

知识梳理讲解用时:25分钟与圆有关的位置关系(1)点与圆的位置关系点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:⊙点P在圆外⊙d>r⊙点P在圆上⊙d=r⊙点P在圆内⊙d<r注意:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系。

课堂精讲精练【例题1】到圆心的距离不大于半径的点的集合是( )。

A .圆的外部B .圆的内部C .圆D .圆的内部和圆【答案】D【解析】此题考查圆的认识以及点与圆的位置关系,根据点和圆的位置关系,知圆的内部是到圆心的距离小于的所有点的集合; 圆是到圆心的距离等于半径的所有点的集合.所以与圆心的距离不大于半径的点所组成的图形是圆的内部(包括边界). 故选:D .讲解用时:3分钟解题思路:根据圆是到定点距离等于定长的点的集合,以及点和圆的位置关系即可解决。

教学建议:理解圆上的点、圆内的点和圆外的点所满足的条件。

难度:3 适应场景:当堂例题 例题来源:盱眙县校级月考 年份:2016秋 【练习1】已知Rt⊙ABC 中,⊙C=90°,AC=3,BC=7,CD⊙AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内,设⊙D 的半径为r ,那么r 的取值范围是 。

初中数学.与圆有关的位置关系.教师版

初中数学.与圆有关的位置关系.教师版

与圆有关的位置关系中考内容中考要求A B C圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关1可题圆周角了解圆周角与圆心角的关系;知道直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关1可题点与圆的位置关系了解点与圆的位置关系直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点圆圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题能解决与切线有关的问题圆与圆的位置关系了解圆与圆的位置关系能利用圆与圆的位置关系解决简单问题中考内容与要求,中考考点分析圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。

要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。

与圆有关的位置关系点和圆的位置关系[直线利阅的位置关系点和国的位苫矢系的ft 质利判定 直技和剧的位宥关系的性质和判定确定留的条件~| @线的性质用判定TM 角形外接冏|园和圆的位置关系定义示例剖析点和圆的位置关系:点P 在圆外:点和圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距 离与半径的大小关系决定.设。

O 的半径为r ,点P 到圆心O 的距离为 点P 在圆上:d ,则有:/VA点在圆外 d r ;点在圆上 d r ; 点在圆内 d r .点P 在圆内:确定圆的条件:1.圆的确定确、个圆有两个基本条件:①圆心(定点) ,确正圆的位置;②半径(正长),确正圆的大小.只 Qy C有当圆心和半径都确定时,圆才能确定.模块点和圆的位置关系知识导航 生【例1】1.已知△ ABC 中, ACB 90 , AC 2 , BC 3, AB 的中点为 M ,⑴ 以C 为圆心,2为半径作OC,则点A , B , M 与OC 的位置关系如何?⑵ 若以C 为圆心作。

九年级数学下册第28章圆28.2与圆有关的位置关系4圆与圆的位置关系课件华东师大版 (2)

九年级数学下册第28章圆28.2与圆有关的位置关系4圆与圆的位置关系课件华东师大版 (2)

1 86 2
24
cm2.
3.(2012·六盘水中考)已知两圆的半径分别为2和3,两圆的圆 心距为4,那么这两圆的位置关系是______. 【解析】∵3-2<4<3+2,∴两圆相交. 答案:相交
4.(2011·绍兴中考) 如图,相距2 cm的两个点A,B在直线l上,它 们分别以2 cm/s和1 cm/s的速度在l上同时向右平移,当点A,B分 别平移到点A1,B1的位置时,半径为1 cm的⊙A1与半径为BB1的 ⊙B相切,则点A平移到点A1所用的时间为______s.
6.如图,要在直径为50厘米的圆形木板上截出 四个大小相等的圆形凳面,问怎样截才能截出 直径最大的凳面,最大的凳面直径是多少厘米?
【解析】截法如图所示, 根据圆的对称性可知:O1,O3都在⊙O的直径AB上, 设所截出的凳面的最大直径为d厘米. 则O1O2=d,O2O3=d,O12Od3;= 又∵O1O3=AB-(O1A+O3B)=50-d, ∴ 2=d50-d, ( 2 1)d 50, ∴d=50( 2-1)(厘米). ∴最大的直径是50( -21)厘米 .
【解析】连结OA,OC, ∵AB是小圆的切线,∴OC⊥AB. ∵OA=5 cm,OC=3 cm, ∴ AC OA2 OC2 52 32 4 cm. ∵AB是大圆的弦,OC过圆心,OC⊥AB, ∴AB=2AC=2×4=8 (cm). 答案:8
5.如图,两个等圆⊙O与⊙O′外切,过点 O作⊙O′的两条切线OA,OB, A,B是 切点,则∠AOB=_______. 【解析】连结OO′和O′A, 根据切线的性质,得O′A⊥OA, 根据题意得OO′=2O′A,则∠AOO′=30°, 再根据切线长定理得 ∠AOB=2∠AOO′=60°. 答案:60°

初中数学竞赛奥数培优资料第三辑专题23 圆与圆的位置关系

初中数学竞赛奥数培优资料第三辑专题23 圆与圆的位置关系

专题23圆与圆的位置关系【阅读与思考】两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质.解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有:1.相交两圆作公共弦或连心线;2.相切两圆作过切点的公切线或连心线;3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形.熟悉以下基本图形和以上基本结论.【例题与求解】【例1】如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2.(全国初中数学竞赛试题)解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长.【例2】如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B ,⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为()A .c a b +=2B .c a b +=2C .ba c 111+=D .ba c111+=(天津市竞赛试题)解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线.【例3】如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证:(1)∠APD =∠BPD ;(2)CB AC PC PB P A ∙+=∙2.(天津市中考试题)解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手.【例4】如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC .(全俄中学生九年级竞赛试题)解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角.【例5】如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上运动(与B ,C 不重合).设PC =x ,四边形ABPD 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若以D 为圆心,21为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x 为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积.(河南省中考题)解题思路:对于(2),⊙P 与⊙D 既可外切,也可能内切,故需分类讨论,解题的关键是由相切两圆的性质建立关于x 的方程.【例6】如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,求NCBN的值.(全国初中数学联赛试题)解题思路:AB 为两圆的公切线,BC 为直径,怎样产生比例线段?丰富的知识,不同的视角激活想象,可生成解题策略与方法.【能力与训练】A 级1.如图,⊙A ,⊙B 的圆心A ,B 在直线l 上,两圆的半径都为1cm .开始时圆心距AB =4cm ,现⊙A ,⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为_______秒.(宁波市中考试题)2.如图,O 2是⊙O 1上任意一点,⊙O 1和⊙O 2相交于A ,B 两点,E 为优弧AB 上的一点,EO 2及延长线交⊙O 2于C ,D ,交AB 于F ,且CF =1,EC =2,那么⊙O 2的半径为_______.(四川省中考试题)(第1题图)(第2题图)(第3题图)3.如图,半圆O 的直径AB =4,与半圆O 内切的动圆O 1与AB 切于点M .设⊙O 1的半径为y ,AM 的长为x ,则y 与x 的函数关系是_________________.(要求写出自变量x 的取值范围)(昆明市中考试题)4.已知直径分别为151+和315-的两个圆,它们的圆心距为115-,这两圆的公切线的条数是__________.5.如图,⊙O 1和⊙O 2相交于点A ,B ,且⊙O 2的圆心O 2在圆⊙O 1的圆上,P 是⊙O 2上一点.已知∠A O 1B =60°,那么∠APB 的度数是()A .60°B .65°C .70°D .75°(甘肃省中考试题)6.如图,两圆相交于A 、B 两点,过点B 的直线与两圆分别交于C ,D 两点.若⊙O 1半径为5,⊙O 2的半径为2,则AC :AD 为()A .52:3B .3:52C .1:52D .2:5(第5题图)(第6题图)(第7题图)7.如图,⊙O 1和⊙O 2外切于点T ,它们的半径之比为3:2,AB 是它们的外公切线,A ,B 是切点,AB =64,那么⊙O 1和⊙O 2的圆心距是()A .65B .10C .610D .1339208.已知两圆的半径分别为R 和r (r R >),圆心距为d .若关于x 的方程0)(222=-+-d R rx x 有两相等的实数根,那么这两圆的位置关系是()A .外切B .内切C .外离D .外切或内切(连云港市中考试题)9.如图,⊙O 1与⊙O 2相交于A ,B 两点,点O 1在⊙O 2上,点C 为⊙O 1中优弧AB ⌒上任意一点,直线CB 交⊙O 2于D ,连接O 1D .(1)证明:DO 1⊥AC ;(2)若点C 在劣弧AB ⌒上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论.(大连市中考试题)图1图210.如图,已知⊙O 1与⊙O 2外切于点P ,AB 过点P 且分别交⊙O 1和⊙O 2于点A ,B ,BH 切⊙O 2于点B ,交⊙O 1于点C ,H .(1)求证:△BCP ∽△HAP ;(2)若AP :PB =3:2,且C 为HB 的中点,求HA :BC .(福州市中考试题)11.如图,已知⊙B ,⊙C 的半径不等,且外切于点A ,不过点A 的一条公切线切⊙B 于点D ,切⊙C 于点E ,直线AF ⊥DE ,且与BC 的垂直平分线交于点F .求证:BC =2AF .(英国数学奥林匹克试题)12.如图,AB 为半圆的直径,C 是半圆弧上一点.正方形DEFG 的一边DG 在直径AB 上,另一边DE 过△ABC 得内切圆圆心O ,且点E 在半圆弧上.(1)若正方形的顶点F 也在半圆弧上,求半圆的半径与正方形边长的比;(2)若正方形DEFG 的面积为100,且△ABC 的内切圆半径4 r ,求半圆的直径AB .(杭州市中考试题)B 级1.相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,这两圆的圆心距为_______.2.如图,⊙O 过M 点,⊙M 交⊙O 于A ,延长⊙O 的直径AB 交⊙M 于C .若AB =8,BC =1,则AM =_______.(黑龙江省中考试题)(第2题图)(第3题图)(第4题图)3.已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为___________cm .4.如图,已知PQ =10,以PQ 为直径的圆与一个以20为半径的圆相切于点P .正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点Q .若AB =n m +,其中m ,n 为整数,则=+n m ___________.(美国中学生数学邀请赛试题)5.如图,正方形ABCD 的对角线AC ,BD 交于点M ,且分正方形为4个三角形,⊙O 1,⊙O 2,⊙O 3,⊙O 4,分别为△AMB ,△BMC ,△CMD ,△DMA 的内切圆.已知AB =1.则⊙O 1,⊙O 2,⊙O 3,⊙O 4所夹的中心(阴影)部分的面积为()A .(4)(316π--B .(34π-C .(4)(34π--D .416π-(太原市竞赛试题)(第5题图)(第6题图)(第7题图)6.如图,⊙O 1与⊙O 2内切于点E ,⊙O 1的弦AB 过⊙O 2的圆心O 2,交⊙O 2于点C ,D .若AC :CD :BD =2:4:3,则⊙O 2与⊙O 1的半径之比为()A .2:3B .2:5C .1:3D .1:47.如图,⊙O 1与⊙O 2外切于点A ,两圆的一条外公切线与⊙O 1相切于点B ,若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为()A .2:5B .1:2C .1:3D .2:3(全国初中数学联赛试题)8.如图,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线,交⊙O 2于点C ,过点B 作两圆的割线分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P .(1)求证:PA PE PC PD∙=∙(2)当AD 与⊙O 2相切且PA =6,PC =2,PD =12时,求AD 的长.(黄冈市中考试题)9.如图,已知⊙O 1和⊙O 2外切于A ,BC 是⊙O 1和⊙O 2的公切线,切点为B ,C .连接BA 并延长交⊙O 1于D ,过D 点作CB 的平行线交⊙O 2于E ,F .(1)求证:CD 是⊙O 1的直径;(2)试判断线段BC ,BE ,BF 的大小关系,并证明你的结论.(四川省中考试题)10.如图,两个同心圆的圆心是O ,大圆的半径为13,小圆的半径为5,AD 是大圆的直径,大圆的弦AB ,BE 分别与小圆相切于点C ,F ,AD ,BE 相交于点G ,连接BD .(1)求BD 的长;(2)求2ABE D ∠+∠的度数;(3)求BGAG的值.(淄博市中考试题)11.如图,点H 为△ABC 的垂心,以AB 为直径的⊙O 1与△BCH 的外接圆⊙O 2相交于点D ,延长AD 交CH 于点P .求证:P 为CH 的中点.(“《数学周报杯”全国初中数学竞赛试题)12.如图,已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点,以点A 为圆心,AP 为半径作⊙A ,⊙A与半圆O相交于点C,以点B为圆心,BP为半径作⊙B,⊙B与半圆O相交于点D,且线段CD的中点为M.求证:MP分别与⊙A,⊙B相切.(“《数学周报杯”全国初中数学竞赛试题)专题23圆与圆的位置关系例121a 6提示:连接14QP CP ==必过点O ,则34O O ⊥AB ,设⊙3O ,⊙4O 的半径为xcm ,在Rt △31O O O 中,有222a a a x =x 424⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得x=a 6.例2D提示:连接AB ,1AA ,1BB ,作2AB ⊥1BB ,则22222AB AB BB =+,即()()2222a b =b a AB ++-,得22211=A B 4ab AB =,同理,211A 4ac C =,2114bc C B =,由111111=A B A C C B +++例3提示:⑴过P 点作两圆的公切线.⑵即证PA PB PC PD ∙=∙.例412BO C BAC ∠=∠,1112BO D BAC BO C ∠=∠=∠,则1O D 为1BO C ∠的平分线,又11O B O C =,故1O D BC ⊥.例5⑴过D 作DQ ⊥BC 于Q ,则BQ=AD=1,AB=DQ=2,CQ=,故()1y=13x 2=4x 2+-⨯-(0<x<3).⑵分两种情况讨论:①当⊙P 与⊙D 外切时,如图1,QC=2,PC=x ,QP=2x -,PD=x+12,DQ=2,在Rt △DQP 中,由()22212x 2=x+2⎛⎫-+ ⎪⎝⎭得,31x=20,3149y=4=2020-.②当⊙P 与⊙D 内切时,如图2,PC=x ,QC=2,PQ=x-2,PD=x-12,DQ=2,在Rt △DPQ 中,由()2221x 22=x-2⎛⎫-+ ⎪⎝⎭得,31x=12,3117y=4=1212-.例6就图1给出解答:连接CP 并延长交AB 于点Q ,连接BP ,得∠BPC90°,又22QA QP CQ QB =∙=,得AQ=QB=12AB ,在Rt △CQP 中,2214BQ QP CQ QP BC CP CQ CP ∙===∙.过Q 作QM ∥BC 交AN 于M ,则MQ=12BN .由△MQP ∽△NCP ,得14MQ QP CN CP ==,故BN NC =2142MQ MQ =.A 级1.12或32 2.23.y =214x -+x (0<x <4) 4.3条5.D 6.D 7.B 8.D9.提示:(1)连结AB ,A 1O ,并延长交⊙1O 于E ,连结CE .(2)结论仍然成立.10.(1)略(2)提示:设AP =3t ,由BC ·BH =BP ·BA ,BH =2BC ,BC =5t .易证△HAP ∽△BAH ,得HA =15t ,故155HA t BC t ==3.11.连结BD ,CE ,作BM ⊥CE 于M ,作HN ⊥CE 于N ,则BM ∥HN .∵H 是BC 的中点,故N 是CM 的中点,∴CN =12CM =12(CE -EM )=12(CE -BD ),而AH =BH -AB =12BC -AB =12(AB +AC )–AB =12(AC -AB ),因此CN =AH .由CE ⊥DE ,AF ⊥DE ,得CE //AF ,故∠NCH =∠HAF ,又∠CNH =∠AHF =90°,得△CNH ≌△AHF ,从而BC =2CH =2AF .12.(l )5:2提示:由题意,设正方形边长为l ,则22212R l l ⎛⎫=+ ⎪⎝⎭,得R :l =5:2.由2ED =AD ×DB ,DE=10,得AD ×DB =l 00.设AC 与内切圆交点S ,CB 与内切圆交点H ,设AD =r ,DB =100x .AB =x +100x,AS =AD =x ,BH =BD =100x .又△ABC 为直角三角形。

【重点梳理】初三数学-点、直线、圆与圆的位置关系

【重点梳理】初三数学-点、直线、圆与圆的位置关系

初中独家资料之【初三数学】点、直线、与圆的位置关系一、基础知识梳理核心知识点一:点和圆的位置关系(1)点和圆的三种位置关系:由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有(2)三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.三角形的外心到三角形三个顶点的距离相等.要点诠释:(1)点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系;(2)不在同一直线上的三个点确定一个圆.核心知识点二:直线和圆的位置关系(1)直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.(2)直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.如果⊙O的半径为r,圆心O到直线的距离为d,那么要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.核心知识点三:切线的判定定理、性质定理和切线长定理(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可.(2)切线的性质定理:圆的切线垂直于过切点的半径.(3)切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:(3) 三角形的外心与内心的区别:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而 非线段.(4)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等. (5)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆. (6)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内 心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即 (S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径).名称确定方法图形性质外心(三角形外 接圆的圆心) 三角形三边中垂线的交点(1) 到三角形三个顶点的距 离相等,即 OA=OB=OC ; (2)外心不一定在三角形内部内心(三角形内 切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等; (2)OA 、OB 、OC 分别平分 ∠BAC 、∠ABC 、∠ACB ; (3)内心在三角形内部.核心知识点四:圆和圆的位置关系(1)圆与圆的五种位置关系的定义两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.两圆相交:两个圆有两个公共点时,叫做这两圆相交.两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.(2)两圆的位置与两圆的半径、圆心距间的数量关系:设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则:两圆外离两圆外切两圆相交两圆内切两圆内含d>r1+r2d=r1+r2r1-r2<d<r1+r2(r1≥r2) d=r1-r2(r1>r2)d<r1-r2(r1>r2)要点诠释:(1)圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交;(2)内切、外切统称为相切,唯一的公共点叫作切点;(3)具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.二、知识体系梳理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d>r d=r d<r
两个圆没有公共点,并且每个圆上 的点都在另一个圆的外部时,叫做 这两个圆外离。
两个圆有唯一的公共点,并且除 了这个公共点外,每个圆上的点 都在另一个圆的外部时,叫做 这两个圆外切。
两个圆有两个公共点时,叫做 这两个圆相交。
两个圆有唯一的公共点,并且除 了这个公共点外,每个圆上的点 都在另一个圆的内部时,叫做 这两个圆内切。
课题名称:
.两圆的位置关系 .
两圆的位置关系
新课讲解
例题 练习
小结
1.直线和圆有几种不同的位置关系?各 是怎样定义的?在各种关系中是用直线 和圆的什么来定义的?
答:直线和圆有三种不同的位置关系即直 线和圆相离、相切、相交。 在各种位置关系中,是用直线和圆的公 共点的个数来定义的。
相离
相切
相交
2.直线和圆的各种位置关系中,圆心 距和半径各有什么相应的数量关系? 若设⊙O的半径为r,圆心O到直线l 距离为d,则: 直线l和⊙ O相离 直线l和⊙ O相切 直线l和⊙ O相交
P
例2 如图, ⊙O的半径为5cm,点P是 ⊙O外的一点,OP=8cm. 求: (2)以P为圆心作⊙P与⊙O内切, 大圆⊙P的半径是多少?BΒιβλιοθήκη OP课堂练习
1. ⊙O1 和⊙O2的半径分别为3厘米和4厘米, 在下列条件下,⊙O1 和⊙O2求位置关系: (1)O1O2=8厘米 外离 (2)O1O2=7厘米 外切 (3)O1O2=5厘米 相交
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B内切 d=R-r
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B内含 d<R-r
例1 如图, ⊙O的半径为5cm,点P是⊙O 外的一点,OP=8cm. 求:(1)以P为圆心作⊙P与⊙O外切,小 圆⊙P的半径是多少? A
O
(4)O1O2=1厘米 (5)O1O2=0.5厘米 (6)O1和O2重合
内切 内含
同心
课堂练习
2.定圆O的半径是4厘米,动圆P的半径 是1厘米。 (1)设⊙P 和⊙O相外切,那么点P与 点O的距离是多少?点P可以在什么样 的线上移动?
课堂练习
2.定圆O的半径是4厘米,动圆P的半径 是1厘米。
(2)设⊙P 和⊙O相内切,那么点P与 点O的距离是多少?点P可以在什么样 的线上移动?
5、两种常用的添辅助线方法:
两圆相交添两圆的公共弦
两圆相切添两圆的公共切线
课外作业
P62
习题23.2—1.2.3
;
/ 长沙整形医院
hnq564dgk
发生在我们学校的事,当时我就在现场。”看到大家的注意力都聚拢过来,江文轩接着大声地说道,“有一段时间学校学生食 堂大米中断了供应,那段时间,南方同学的饭吃得是没滋没味、生活过得缺少了一种情趣。突然有一天听到通知说当天有米饭 供应,许多同学立刻蜂拥至食堂,争先恐后地挤向打饭的窗口,没有一个人愿意耐心排队,窗口前里三层外三层地乱成一团。 不一会儿,只见一个男同学从人群中费了吃奶的劲吃力地挤了出来,米饭没有买到,他却一点也不生气,反而在那里捂着肚子、 上气不接下气地哈哈大笑。笑够了才发现大家像看疯子一样盯着他,他赶紧把一只手举起来,看着举起的那只严重变形的搪瓷 碗,同学们‘哄’的一声也大笑起来。”大家都笑得气都喘不过了,有的直喊肚子痛,有的人笑得直跺脚。马启明眼泪掉下来 了、手拍着桌子、开玩笑道:“那个同学就是你吧!”大米里面的小沙子小石子就能引出这么多的话题,可见老乡们在一起有 谈不完的话也就不奇怪了。要是研究地球爆炸,地球人应该搬到哪里去的话还不要嘈嘈嚷嚷讨论个三天三夜。“我在这也闹过 一个笑话。有一天,我去食堂吃肉丝面,师傅没有放辣椒。咱北方人没有辣椒就觉面不香。我就到厨房对师傅说,怎么面条一 点都不辣,他一听立刻把胡椒面递给我,我说我要的是辣椒不是胡椒面,师傅说,你不是嫌不麻吗?这个胡椒面很麻的。我指 着辣椒对他来说,我要的是辣椒,不是胡椒面。原来他们这里麻辣不分,麻就是辣,辣就是麻,你根本无法解释清楚。你说, 吃米饭吃的时候感觉到饱了,但是时间不长又饿了,不抵饿,不像面食一样抵饿,你是学医学的,你说为什么?”马启明顺带 给江文轩出了个难题。啤酒是激情的催化剂。马启明又一杯啤酒爽下去了,没有一种酒比啤酒更有豪气了,一大杯吞入口,啤 酒在食管里像瀑布冲下,碰到胃壁溅出水花又喷上口来,打了一个呃,他又被花开啤酒爽了一回,就是爽得有点肚子发胀,还 想从上面打嗝,也想从下面排气。马启明恍然大悟,原来“屁酒”的气是从上呼吸道喷出去的,也有从直肠末端排出去的,那 么就夹杂着各种各样的响声。恐怕人们最先叫作“屁酒”,后来嫌“屁酒”叫起来不文雅,所以现在就叫——啤酒。他为这个 发现而沾沾自喜,又奖励了自己一杯啤酒。“咚”突然一声惊雷震天响,马启明一不小心,直肠里面的气体直接喷了出来,但 一点味道都没有,这气体肯定是啤酒里面的空气和CO2,没有H2S和甲烷,这是他除了尴尬之外,唯一能值得庆幸的事。江文轩 脸上洋溢着一层兴奋的红光,鼻翼也因为兴奋而扩张,他又开始分析:“咱们大部分人都习惯吃面食,米饭吃一天两天还可以, 时间长了肠胃就有意见了,感觉吃米饭吃不饱肚子,就像南方人感觉吃面吃不
两个圆没有公共点,并且每个圆上 的点都在另一个圆的内部时,叫做 这两个圆内含。
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B外离 d>R+r

A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B外切 d=R+r
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B相交 R-r <d<R+r
两圆的位置关系
相离 外离 内含
相交
相切
相交 外切 内切
d>R+r d<R-r
R-r <d<R+r
d=R+r d=R-r
1、圆和圆的五种位置关系。 2、圆心距与半径之间的数量关系是性质定理也是判 定定理。 3、相切两圆的连心线(经过两圆心的直线)必过切 点。可用来证明三点共线。
4、相交两圆的连心线垂直平分两圆的公共弦。可用 来证明两线垂直或线段相等。
相关文档
最新文档