第五章 图形的相似与解直角三角形2
解直角三角形 知识讲解
解直角三角形 知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则有: ①三边之间的关系:a 2+b 2=c 2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系:sin ,cos ,tan ,cot a bab A A A Ac c b a ==== sin ,cos ,tan ,cot b aba B B B B c c a b==== ④,h 为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法由由,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算;2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别地:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图;2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解;3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b = 【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知, 由cos =a B c 知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c =.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【变式】(1)已知Rt △ABC 中,∠C =90°,b=2 ,求∠A 、∠B 和c ;(2)已知Rt △ABC 中,∠C =90°,sinA=23, c=6 ,求a 和b.【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案与解析】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c =°,∴ 1202c=. ∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,a =.【总结升华】解这个直角三角形就是根据已知∠C =90°,∠B =30°,b =20,求∠A 、a 、c 的过程. 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CDsin ∠AEB 的值; (3)在(2)的条件下,求弦AB 的长.【答案与解析】(1)∵,∴ ∠1=∠2,又BC 是⊙O 的直径,∴ ∠BAC =∠BDC =90°. ∴ △ABE ∽△DBC .(2)由△ABE ∽△DBC ,∴ ∠AEB =∠DCB . 在Rt △BDC 中,BC =52,CD= ∴ BD= ∴ sin ∠AEB =sin ∠DCB=552BD BC ==. (3)在Rt △BDC 中,BD1=∠2=∠3,∠ADE =∠BDA ,∴ △AED ∽△BAD . ∴AD DEDB AD=,∴ 2AD DE DB =. 又∵2CD AD ==,∴ CD 2=(BO -BE)·BD ,∴BE =在Rt △ABE 中,AB =BE .sin ∠AEB32=.【总结升华】本题综合了三角函数、相似三角形、勾股定理、圆等方面知识,尤其涉及三角函数问题,都是通过找出或构造盲角三角形来解决问题. (1)根据圆周角定理易证△ABE ∽△DBC .(2)利用(1)的结论,将∠AEB 转化为Rt △BCD 中的DCB ∠.(3)在Rt △ABE 中求AB .举一反三:【变式】如图,在△ABC 中,AC=12cm ,AB=16cm ,sinA=13. (1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tanB .【答案】(1)CD=4cm ;(2)S=32 cm 2;(3)类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AG AFG FG ∠=55FB =+,解得5 3.66(m)FB ==.答:改建后需占路面的宽度FB 的长约为3.66 m . 【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°,∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30 在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。
(完整版)解直角三角形总结
解直角三角形总结解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的基础上,根据已知条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。
1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的.因此,锐角三角函数的定义本质揭示了直角三角形中边角之间的关系,是解直角三角形的基础。
如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c(以下字母同),则解直角三角形的主要依据是(1)边角之间的关系:sinA=cosB=ac, cosA=sinB=bc,tanA=cotB=ab,cotA=tanB=ba。
(2)两锐角之间的关系:A+B=90°。
(3)三条边之间的关系:。
以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。
2、解直角三角形的基本类型和方法我们知道,由直角三角形中已知的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果已知两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为已知两个元素(至少有一个是边)可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。
由于已知两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。
所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。
这样,解直角三角形就分为两大类,即已知一条边及一个锐角或已知两条边解直角三角形。
四种基本类型和解法列表如下:已知条件解法一边及一锐角直角边a及锐角A B=90°-A,b=a·tanA,c=sinaA斜边c及锐角A B=90°—A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°—A,直角边a和斜边c sinA=ac,B=90°-A,例1、如图2,若图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。
《图形的相似》相似PPT优质课件
《图形的相似》相似PPT优质课件
人教版九年级数学下册《图形的相似》相似PPT优质课件,共37页。
学习目标
1.了解相似图形和相似比的概念.
2.理解相似多边形的定义.
3.能根据多边形相似进行相关的计算.
探究新知
相似图形的定义
指能够完全重合的两个图形,即它们的形状和大小完全相同.
相似图形的关系
两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.
相似多边形的定义和相似比的概念
下图是两个等边三角形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个等边三角形相似,它们的对应角相等,对应边成比例.
下图是两个正六边形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个正六边形相似,它们的对应角相等,对应边成比例.
两个边数相等的正多边形相似,且对应角相等、对应边成比例.
归纳:
相似多边形的定义:
各角分别相等、各边成比例的两个多边形叫做相似多边形.
相似多边形的特征:
相似多边形的对应角相等,对应边成比例.
相似比:
相似多边形的对应边的比叫做相似比.
课堂小结
形状相同的图形叫做相似图形
相似图形的大小不一定相同
对应角相等,对应边成比例
相似多边形对应边的比叫做相似比
... ... ...
关键词:图形的相似PPT课件免费下载,相似PPT下载,.PPTX格式;。
(遵义专版)2019年中考数学总复习第1节图形的相似与位似(精练)试题
第五章图形的相似与解直角三角形第一节图形的相似与位似1.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( B )A.12B.2 C.3 D.4(第1题图)(第2题图)2.(2019泰安中考)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为( B )A.18 B.1095C.965D.2533.(2019遵义十九中一模)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( D )A.∠ABP=∠C B.∠APB=∠ABCC.APAB=ABACD.ABBP=ACCB(第3题图)(第4题图)4.(济南中考)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,DB于M,N两点.若AM=2,则线段ON的长为( C )A.22B.32C.1 D.625.(2019滨州中考)在平面直角坐标系中,点C,D的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为__(4,6)或(-4,-6)__.6.(2019随州中考)在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE =__125或53__时,以A ,D ,E 为顶点的三角形与△ABC 相似. 7.(汇川升学一模)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D ,G 分别在边AB ,AC 上.若△ABC 的边BC 长为40 cm ,高AH 为30 cm ,则正方形DEFG 的边长为__1207__cm.(第7题图)(第8题图)8.(2019包头中考)如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =kx 的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C.若S 四边形ABCD =10,则k 的值为__-16__.9.(2019六盘水中考)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F ,若CD =5,BC =8,AE =2,则AF =__169__. 10.(泰安中考)如图,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB =10,BC =12,当PD∥AB 时,求BP 的长. 解:(1)∵AB=AC , ∴∠B =∠C. ∵∠APD =∠B, ∴∠APD =∠B=∠C. ∵∠APC =∠BAP+∠B, ∠APC =∠APD+∠DPC, ∴∠BAP =∠DPC, ∴△ABP ∽△PCD ,∴BP CD =AB CP, ∴AB ·CD =CP·BP. ∵AB =AC ,∴AC ·CD =CP·BP;(2)∵PD∥AB,∴∠APD =∠BAP. ∵∠APD =∠C ,∴∠BAP =∠C. ∵∠B =∠B,∴△BAP ∽△BCA , ∴BA BC =BP BA. ∵AB =10,BC =12, ∴1012=BP 10,∴BP =253.11.(随州中考)如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE∥AC,AE ,CD 相交于点O ,若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( B ) A .1∶3 B .1∶4 C .1∶5 D .1∶2512.(盘锦中考)如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD =3,DC =4,DE =52,∠EDF =90°,则DF 长是( C )A.158 B.113 C.103 D.165(第12题图)(第13题图)13.(2019杭州中考)如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于__78__.14.(2019长春中考)如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G. (1)求证:BD∥EF;(2)若DG GC =23,BE =4,求EC 的长.解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∵DF =BE ,∴四边形BEFD 是平行四边形, ∴BD ∥EF ;(2)∵四边形BEFD 是平行四边形, ∴DF =BE =4. ∵DF ∥EC , ∴△DFG ∽△CEG , ∴DG CG =DF CE, ∴CE=DF·CG DG =4×32=6.15.(2019杭州中考)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE∽△ABC; (2)若AD =3,AB =5,求AFAG的值. 解:(1)∵AG⊥BC,AF ⊥DE , ∴∠AFE =∠AGC=90°.∵∠EAF =∠GAC,∴∠AED =∠ACB, ∵∠EAD =∠BAC,∴△ADE ∽△ABC ; (2)由(1)可知:△ADE∽△ABC, ∴AD AB =AE AC =35. ∵∠AFE =∠AGC=90°,∠EAF =∠GAC, ∴△EAF ∽△CAG , ∴AF AG =AE AC , ∴AF AG =35. 16 .(2019枣庄中考)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求, 由图形可知,∠A 2C 2B 2=∠ACB, 过点A 作AD⊥BC 交BC 的延长线于点D ,由A(2,2),C(4,-4),B(4,0),易得D(4,2), ∴AD =2,CD =6,AC =22+62=210, ∴sin ∠ACB =AD AC =2210=1010,即sin ∠A 2C 2B 2=1010.17.(2019连云港中考)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH∥AB,交BC 的延长线于点H. (1)求BD·cos ∠HBD 的值; (2)若∠CBD=∠A,求AB 的长. 解:(1)∵DH∥AB,∴∠BHD =∠ABC=90°,∠A =∠HDC, ∴△ABC ∽△DHC , ∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4, 在Rt △BHD 中,cos ∠HBD =BH BD, ∴BD ·cos ∠HBD =BH =4;(2)∵∠CBD=∠A,∠ABC =∠BHD, ∴△ABC ∽△BHD , ∴BC HD =AB BH. ∵△ABC ∽△DHC , ∴AB DH =ACCD=3, ∴AB =3DH , ∴3DH =3DH4,解得DH =2, ∴AB =3DH =3×2=6.18.(2019眉山中考)如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,AC =42,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD,线段BE 与CD 相交于点F.(1)求证:PC CD =CECB;(2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由; (3)设PE =x ,△PBD 的面积为S ,求S 与x 之间的函数关系式. 解:(1)∵△BCE 和△CDP 均为等腰直角三角形, ∴∠ECB =∠PCD=45°, ∠CEB =∠CPD=90°, ∴△BCE ∽△DCP , ∴PC DC =EC CB; (2)AC∥BD.理由如下:∵∠PCE +∠ECD=∠BCD+∠ECD=45°, ∴∠PCE =∠BCD. 又∵PC DC =EC CB ,∴△PCE ∽△DCB , ∴∠CBD =∠CEP=90°, ∴∠ACB =∠CBD, ∴AC ∥BD ;(3)作PM ⊥BD ,交BD 的延长线于点M. ∵AC =42,△ABC 和△BEC 均为等腰直角三角形, ∴BE =CE =4. ∵△PCE ∽△DCB ,∴EC CB =PE BD ,即442=x BD, ∴BD =2x.∵∠PBM =∠CBD-∠CBP=45°, BP =BE +PE =4+x , ∴PM =4+x 2,∴S △PBD =12BD ·PM=12×2x×4+x 2, =12x 2+2x.2019-2020学年数学中考模拟试卷一、选择题1.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°2.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是()A.m>9 B.m≥9C.m<﹣9 D.m≤﹣93.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.5.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是( ) A.与2017年相比,2018年年末全国农村贫困人口减少了1386万人 B.2015~2018年年末,与上一年相比,全国农村贫困发生率逐年下降C.2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万D.2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点6.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .47.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .﹣1B .2C .﹣7D .08.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B =135°,则劣弧AC 的长是( )A.4πB.2πC.πD.23π9.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .210.如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD =2∠ACB .若DG =5,EC =1,则DE 的长为( )A .2B .4C .D .11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ).A.15°B.20°C.25°D.30°12.下列运算正确的是( )A.222()x y x y +=+ B.632x x x ÷= 3=D.32361126xy x y ⎛⎫-=- ⎪⎝⎭二、填空题13.分解因式(a -b)(a -9b)+4ab 的结果是____.14.如图,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA .若BD =4,DC =5,则AB 的长为_____.15.方程3x x -=1xx +的解是_____. 16.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.已知a ,b 是一元二次方程x 2+x ﹣4=0的两个不相等的实数根,则a 2﹣b =_____. 18.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是_____. 三、解答题19.一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1,2,3,4.小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球,记两次取得乒乓球上的数字依次为a 、b . (1)求a 、b 之积为偶数的概率;(2)若c =5,求长为a 、b 、c 的三条线段能围成三角形的概率.20.在正方形ABCD 中,点M 是射线BC 上一点,点N 是CD 延长线上一点,且BM =DN ,直线BD 与MN 交于点E .(1)如图1.当点M 在BC 上时,为证明“BD﹣2DE BM”这一结论,小敏添加了辅助线:过点M 作CD 的平行线交BD 于点P .请根据这一思路,帮助小敏完成接下去的证明过程.(2)如图2,当点M 在BC 的延长线上时,则BD ,DE ,BM 之间满足的数量关系是 . (3)在(2)的条件下,连接BN 交AD 于点F ,连接MF 交BD 于点G ,如图3,若1,3AF AD = CM =2,则线段DG = .21.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,tan ∠DBC=43,且BC=6,AD=4.求cosA 的值.22.计算:(π0﹣3|+(12)﹣123.已知二次函数y =﹣x 2+2mx ﹣m 2﹣1(m 为常数).(1)证明:不论m 为何值,该函数的图象与x 轴没有公共点;(2)当自变量x 的值满足﹣3≤x≤﹣1时,与其对应的函数值y 的最大值为﹣5,求m 的值.24.(1)计算:10124303)cos -︒⎛⎫-++-- ⎪⎝⎭(2)先化简,再求值:2222121111a a aa a a a+-+⋅---+,其中a=﹣12.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题13.(a-3b)214.615.x=﹣3 216.5 17.518.3 10三、解答题19.(1)P(数字之积为偶数)=56;(2)P(三线段能围成三角形)=13.【解析】【分析】(1)通过列表法可得a、b所有可能的结果,计算出a、b之积为偶数的次数,然后用a、b之积为偶数的次数除以总次数即可计算a、b之积为偶数的概率;(2)首先列出a、b、c所有可能的结果,根据三角形的性质找到能组成三角形的结果,最后计算能围成三角形的概率.【详解】(1)根据题意列表如下:由以上表格可知:有12种可能结果,分别为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),其积分别为:2,3,4,2,6,8,3,6,12,4,8,12;积为偶数的有2,4,2,6,8,6,12,4,8,12,共10个,则P(数字之积为偶数)=1012=56;(2)所有的可能结果有12种,a,b及c的值分别为(1,2,5),(1,3,5),(1,4,5),(2,1,5),(2,3,5),(2,4,5),(3,1,5),(3,2,5),(3,4,5),(4,1,5),(4,2,5),(4,3,5),能构成三角形的有(2,4,5),(3,4,5),(4,2,5),(4,3,5),共4种,则P(三线段能围成三角形)=412=13.【点睛】本题考查了用列举法计算概率的知识,正确理解题意是解题的关键.20.(1)见解析;(2)BD+2DE BM;(3.【解析】【分析】(1)过点M作MP∥CD,交BD于点P,推出PM=DN,证明△EPM≌△EDN,推出EP=ED,根据正方形的性质和勾股定理求出即可;(2)过点M作MP∥CD交BD的延长线于点P,推出BM=PM=DN,根据AAS证明△EPM≌△EDN,推出EP =ED,根据正方形的性质和勾股定理求出即可;(3)证明△ABF∽△DNF,得出比例式,得到AB:ND=1:2,设AB=x,则DN=2x,根据BM =DN ,列出方程求出AB 的长度,根据DF ∥BM ,得到413,43DF DG BM BG ===即可求解. 【详解】解:(1)如图1,过点M 作MP ∥CD ,交BD 于点P ,∵四边形ABCD 是正方形,∴∠C =90°,∠CBD =∠CDB =45°, ∵PM ∥CD ,∴∠NDE =∠MPE ,∠BPM =∠CDB =45°, ∴△BPM 是等腰直角三角形, ∴PM =BM,PB =,∵BM =DN , ∴PM =DN ,在△EPM 和△EDN 中,,MPE NDE PEM DEN PM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPM ≌△EDN (AAS ), ∴EP =ED ,∴PB =BD ﹣PD =BD ﹣2DE ,根据勾股定理得:BP =,即2BD DE -=;(2)如图2,过点M 作MP ∥CD 交BD 的延长线于点P ,∴∠PMB=∠BCD=90°,∵∠CBD=45°,∴△BMP是等腰直角三角形,∴BM=PM=DN,与(1)证法类似:△EPM≌△EDN(AAS),∴EP=ED,∴PB=BD+PD=BD+2DE,根据勾股定理得:BP BM,即BD+2DE=BP BM,故答案为:BD+2DE BM;(3)如图3,∵AB∥CD,∴AB∥DN,∴△ABF∽△DNF,∴AF:FD=AB:ND,∵AF:FD=1:2,∴AB:ND=1:2,设AB =x ,则DN =2x , ∵BM =DN , ∴x+2=2x ,x =2, ∴AB =AD =2,DF =43,∴BD = ∵DF ∥BM ,∴413,43DF DG BM BG ===∴142DG =⨯=故答案为:2【点睛】本题综合考查了正方形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题的能力.用的数学思想是类比推理的思想.21.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =.【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22【解析】【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】原式=1﹣(3+2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.(1)见解析;(2)m的值为﹣5或1.【解析】【分析】(1)根据判别式的值得到△=﹣4<0,然后根据判别式的意义得到结论;(2)利用配方法得到y=﹣(x﹣m)2﹣1,则抛物线的对称轴为直线x=m,讨论:当m<﹣3时,根据二次函数性质得到x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5;当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,利用二次函数的性质得到x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,然后分别解关于m的方程即可得到满足条件的m的值.【详解】(1)证明:△=4m2﹣4×(﹣1)×(﹣m2﹣1)=﹣4<0,所以﹣x2+2mx﹣m2﹣1=0没有实数解,所以不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=﹣x2+2mx﹣m2﹣1=﹣(x﹣m)2﹣1,抛物线的对称轴为直线x=m,当m<﹣3时,﹣3≤x≤﹣1,y随x的增大而减下,则x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5,解得m1=﹣5,m2=﹣1(舍去);当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,﹣3≤x≤﹣1,y随x的增大而增大,则x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,解得m1=1,m2=﹣3(舍去);综上所述,m的值为﹣5或1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.24.(1)4;(2)1a,-2. 【解析】 【分析】(1)根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算; (2)将原式的分子、分母因式分解,约分后计算减法,再代值计算即可. 【详解】(1) )0+(13)﹣1+4cos30°﹣﹣==4; (2)2222121111a a a a a a a+-+-+-- =22111(1)(1(1)1a a a a a a a +--+--+())=21(1)(1)a aa a a a +-++=1(1)a a a ++=1a, 当a =﹣12 时,原式=11-2=﹣2.【点睛】本题考查了实数的混合运算,分式的化简求值.解答(1)题的关键是根据零指数幂、负整数指数幂的意义,特殊角的三角函数值以及绝对值的意义进行计算;解答(2)题的关键是把分式化到最简,然后代值计算.25.(1)94;(2)94,92,94;八;(3)23【解析】 【分析】(1)根据中位数、众数和平均数的定义求解; (2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.如图,在等腰梯形ABCD 中,AD ∥BC ,AB≠AD,对角线AC 、BD 相交于点O .以下结论不正确的是( )A.梯形ABCD 是轴对称图形B.∠DAC =∠DCAC.△AOB ≌△DOCD.△AOD ∽△COB2.下列说法正确的是( )A.打开电视,它正在播天气预报是不可能事件B.要考察一个班级中学生的视力情况适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为22S =甲,21S =乙,说明甲的射击成绩比乙稳定3.12019的倒数是( ) A.12019 B.﹣12019C.2019D.﹣20194.在四边形ABCD 中,//,AB CD AB AD =,添加下列条件不能推得四边形ABCD 为菱形的是( ) A .AB CD =B .//AD BCC .BC CD =D .AB BC =5.下列各式变形中,正确的是( )A .2=x B .2(1)(1)1x x x ---=-C .x xx y x y=--++D .22131=x+-24x x ⎛⎫++ ⎪⎝⎭6.如图,在数轴上,点A 表示的数是2,△OAB 是Rt △,∠OAB =90°,AB =1,现以点O 为圆心,线段OB 长为半径画弧,交数轴负半轴于点C ,则点C 表示的实数是( )A B C.﹣3 D.﹣7.如图,边长为4个单位长度的正方形ABCD的边AB与等腰直角三角形EFG的斜边FG重合,△EFG以每秒1个单位长度的速度沿BC向右匀速运动(保持FG⊥BC),当点E运动到CD边上时△EFG停止运动,设△EFG的运动时间为t秒,△EFG与正方形ABCD重叠部分的面积为S,则S关于t的函数大致图象为()A.B.C.D.8.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=6,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为()A.1 B.2 C.D.39.在菱形ABCD中,∠ABC=60°,若AB=3,菱形ABCD的面积是()A B.C D10.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x 2+52 =(x+1)2B.x 2+52 =(x ﹣1)2C.x 2+(x+1)2 =102D.x 2+(x ﹣1)2=52 11.下列计算正确的是( )A .3a ﹣a =3B .(a 2)3=a 6C .3a+2a =2a 2D .a 2﹣a 2=a 412.2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为( )A .1.32×109B .1.32×108C .1.32×107D .1.32×106二、填空题13.已知:如图,△ABC 中,过AB 的中点F 作DE ⊥BC ,垂足为E ,交CA 的延长线于点D .若EF =3,BE =4,∠C =45°,则DF :FE 的值为_____.14.如图,OC 是O 的半径,弦AB OC ⊥于点D ,点E 在O 上,EB 恰好经过圆心O ,连接EC .若B E ∠=∠,32OD =,则劣弧AB 的长为__________.15.分解因式:228ax a -=_______.16.对非负实数x“四舍五入”到个位的值记为< x >,即已知n 为正整数,如果n -12≤x<n +12,那么< x >=n .例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…则满足方程< x >=1x 1.62+的非负实数x 的值为____. 17.在不透明的袋子中有2个白球,3个红球,除颜色外完全相同,任意摸出一个球,摸到红球的概率18.截至2019年4月份,全国参加汉语考试的人数约为3500万,将3500万用科学记数法表示为_____.三、解答题19.如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的平分线交⊙O于点D,过点D作ED⊥AE,垂足为E,交AB的延长线于F.(1)求证:ED是⊙O的切线;(2)若AD=,AB=6,求FD的长.20.如图,在数轴上点A、B、C分别表示-1、-2x+3、x+1,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当AB=2BC时,x的值为_____.21.化简分式:2222334424x x xx x x x⎛⎫---÷⎪-+--⎝⎭,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.22.2018年4月,无锡外卖市场竞争激烈,美团、滴滴、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,每月工资:底薪1000元,另加外卖送单补贴(送一次外卖称为一单),具体方案如下:(1)若某“外卖小哥”4月份送餐600单,求他这个月的工资总额;(2)设这个月“外卖小哥”送餐x单,所得工资为y元,求y与x的函数关系式;(3)若“外卖小哥”本月送餐800单,所得工资6400≤y≤6500,求m的取值范围.23.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,∠OAB=90°且OA=AB,OB=8,(1)求点A的坐标;(2)点P是从O点出发,沿X轴正半轴方向以每秒1单位长度的速度运动至点B的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,交四边形ABCD的边AO或AB于点Q,交OC或BC于点R.设运动时间为t(s),已知t=3时,直线l恰好经过点 C.求①点P出发时同时点E也从点B出发,以每秒1个单位的速度向点O运动,点P停止时点E也停止.设△QRE的面积为S,求当0<t<3时S与t的函数关系式;并直接写出S的最大值.②是否存在某一时刻t,使得△ORE为直角三角形?若存在,请求出相应t的值;若不存在,请说明理由.24.在一条笔直的公路上有A、B两地.甲、乙两人同时出发,甲骑电动车从A地到B地,中途出现故障后停车维修,修好车后以原速继续行驶到B地;乙骑摩托车从B地到A地,到达A地后立即按原原速返回,结果两人同时到B地.如图是甲、乙两人与B地的距离y(km)与乙行驶时间x(h)之间的函数图象.(1)A、B两地间的距离为km;(2)求乙与B地的距离y(km)与乙行驶时间x(h)之间的函数关系式;(3)求甲、乙第一次相遇的时间;(4)若两人之间的距离不超过10km时,能够用无线对讲机保持联系,请求出乙在行进中能用无线对讲机与甲保持联系的x取值范围.25.如图,以点B为圆心,适当长为半径画弧,交BA于点D,交BC于点E;分别以点D,E为圆心,大于12DE 的长为半径画弧,两弧在∠ABC 的内部相交于点F ;画射线BF ,过点F 作FG ⊥AB 于点G ,作FH ⊥BC 于点H求证:BG =BH .【参考答案】***一、选择题二、填空题13.7:314.2π15.2(2)(2)a x x +-16.817.3518.5×107三、解答题19.(1)证明见解析;(2)7. 【解析】【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BFDF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图,∵OA =OD ,∴∠2=∠3,∵AD 平分∠EAB ,∴∠1=∠2,∴∠1=∠3,∴AE ∥OD ,∵ED ⊥CA ,∴OD ⊥ED ,∵OD 是⊙O 的半径,∴ED 是⊙O 的切线;(2)连接BD ,如图,∵AB 是直径,∴∠ADB =90°.∴BD =2,∵EF 是⊙O 的切线,∴OD ⊥EF ,∴∠4+∠5=90°,∵∠3+∠5=90°,∴∠4=∠3=∠2,∵∠F =∠F ,∴△FBD ∽△FDA , ∴BF BD DF AD ==∴BF =4DF , 在Rt △ODF 中,∵(3+BF )2=32+DF 2,∴(3+4DF )2=32+DF 2,∴DF =7.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键.20.(1) 223x<<;(2)1【解析】【分析】(1)根据A、B、C三点在数轴上的位置列不等式组即可得出x的取值范围;(2)分别求出AB、BC的距离,根据AB=2BC列方程即可得出x的值.【详解】(1)由题意得:231123xx x-+>-⎧⎨+>-+⎩①②解不等式①得:x<2;解不等式②得:x>23.∴不等式组的解集为:23<x<2.(2)∵AB=2BC,∴-2x+3-(-1)=2[x+1-(-2x+3)]-2x+4=2x+2+4x-68x=8解得x=1.故答案为:1【点睛】本题考查数轴的性质、解一元一次不等式组及解一元一次方程,不等式解集遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.x+2,3.【解析】【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【详解】2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭ =22(2)33(224x x x x x x ⎡⎤---÷⎢⎥---⎣⎦) =233()224x x x x x --÷--- =(-2)(2)323x x x x x -⋅--+ =x+2,∵x 2﹣4≠0,x ﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x =1代入,原式=3.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.22.(1)若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)见解析;(3)750≤m≤900.【解析】【分析】:(1)根据题意,直接按照第一个标准,由底薪每单补贴,求解即可(2)按照x >m,0<x≤500和0<x≤500三种情况,分别求解即可;(3)根据(2)中的关系式,分别代入求解,注意要符合工资要求【详解】(1)由题意可得,1000+500×6+(600﹣500)×8=1000+3000+800=4800(元),答:若某“外卖小哥”4月份送餐600单,他这个月的工资总额是4800元;(2)由题意可得,当0<x≤500时,y =1000+6x ,当500<x≤m 时,y =1000+500×6+(x﹣500)×8=8x ,当x >m 时,y =1000+500×6+(m﹣500)×8+(x﹣m)×10=10x ﹣2m ,由上可得,y =10006(05008(500102(x x x x m x m x m +⎧⎪⎨⎪-⎩<≤)<≤)>) ;(3)若800<m≤900,y =8×800=6400,符合题意,若700≤m≤800,6400≤﹣2m+10×800≤6500,解得,750≤m≤800,综上所述:750≤m≤900.【点睛】此题考查不等式组的应用,解题关键在于列出方程23.(1)A (4,4);(2)①2728.S (t 2)33=-+,S 有最大值为283;②t 的值为4或3614. 【解析】【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)①首先求出直线OA 、OB 、OC 、BC 的解析式.①求出P 、Q 的坐标即可解决问题;即可表示出QR 和PE 的长,即可得到三角形面积解析式利用配方法求出最值即可;②分三种情况讨论,即∠REO =90°或∠ORE =90°或∠ROE =90°分别求解即可.【详解】解:(1)由题意△OAB 是等腰直角三角形,∵OB =8,即B (8,0)∴A (4,4),(2)∵A (4,4),B (8,0),∴直线OA 的解析式为y =x ,直线AB 的解析式y =﹣x+6,∵t =3时,直线l 恰好过点C ,即OP =3,OC =5,∴PR =4,C (3,﹣4),∴直线OC 的解析式为y =-43x ,直线BC 的解析式为y =43255x -, ①当0<t <3时,Q (t ,t ),R (t ,-43t ), ∴QR=t-(-43t)=73t .PE =8﹣2t . ∴S =2117728(82)(2)22333PE QR t t t =-=--+. ∴t =2时,S 有最大值为283. ②要使△ORE 为直角三角形,则有三种情况:Ⅰ.若∠REO=90°,如图1,则点P与E点重合,∴8﹣2t=0,解得t=4,Ⅱ.若∠ORE=90°,如图2.△ORP∽△REP,∴OP RPRP PE=,即RP2=OP•PE,∴24(82) 3tt t⎛⎫=-⎪⎝⎭,解之得:t=36 17,Ⅲ.当t>4时,△ORE不可能为直角三角形.故使得△ORE为直角三角形时,t的值为:4或36 17,【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.24.(1)30;(2)y=﹣30x+60;(3)甲、乙第一次相遇是在出发后0.6小时;(4)25≤x≤56或76≤x≤2.【解析】【分析】(1)观察图形即可求得A 、B 两地间的距离;(2)乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由待定系数法可求乙与B 地的距离y (km )与乙行驶时间x (h )之间的函数关系式;(3)由相遇问题的数量关系直接求出结论;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由待定系数法求出解析式建立不等式组求出其解即可.【详解】解:(1)由题意,得A 、B 两地间的距离为30km .故答案为:30;(2)设乙前往A 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙1=k 1x ,由题意,得 30=k 1,∴y 乙1=30x ;设乙返回B 地距离B 地的距离y (km )与乙行驶时间x (h )之间的关系式为y 乙2=k 2x+b 2,由题意,得 22223002k b k b =+⎧⎨=+⎩, 解得:223060k b =-⎧⎨=⎩, ∴y =-30x+60.(3)由函数图象,得(30+20)x =30,解得x =0.6.故甲、乙第一次相遇是在出发后0.6小时;(4)设甲在修车前y 与x 之间的函数关系式为y 甲1=kx+b ,由题意,得30150.75b k b =⎧⎨=+⎩, 解得:k 20b 30=-⎧⎨=⎩, y 甲1=﹣20x+30,设甲在修车后y 与x 之间的函数关系式为y 甲2=k 3x+b 3,由题意,得333315 1.25k b 02k b =+⎧⎨=+⎩,解得:332040k b =-⎧⎨=⎩, ∴y 甲2=﹣20x+40,当20303010301510x x x -+-≤⎧⎨-⎩…时, ∴25≤x≤56; 306015102x x -+-⎧⎨⎩……, 解得:76≤x≤2. ∴25≤x≤56或76≤x≤2.【点睛】本题考查了行程问题的数量关系路程÷时间=速度的运用,运用待定系数法求一次函数的解析式的运用,不等式组的解法的运用,解答时求出一次函数的解析式是关键.25.详见解析【解析】【分析】由作法可知BF 是∠ABC 的角平分线,再证明△GBF ≌△HBF 即可得到结论.【详解】证明:由作法可知BF 是∠ABC 的角平分线,∴∠ABF =∠CBF ,∵FG ⊥AB ,FH ⊥BC .∴∠FGB =∠FHB ,在△GBF 和△HBF 中,FGB FHB GBF HBF BF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△GBF ≌△HBF (AAS ),∴BG =BH .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.。
2020年中考数学考点梳理:相似三角形和解直角三角形
知识点:一、比例线段1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为abb a =(或a:b=b:c 时,我们把b 叫做a 和d 的比例中项。
8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。
9、比例的基本性质:如果a :b =c :d 那么ad =bc 逆命题也成立,即如果ad =bc ,那么a :b =c :d10、比例的基本性质推论:如果a :b=b :d 那么b 2=ad ,逆定理是如果b 2=ad 那么a :b=b :c 。
说明:两个论是比积相等的式子叫做等积式。
比例的基本性质及推例式与等积式互化的理论依据。
11、合比性质:如果d c b a =,那么d dc b b a +=+ 12.等比性质:如果n m d c b a ===K ,(0≠+++m d b Λ),那么ban d b m c a =++++++ΛΛ说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。
13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。
九年级数学各章节知识梳理
九年级上册数学各章节知识梳理【一】教学目标:在新课方面通过讲授第一章、第四章的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。
进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。
在第五章这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。
在第三章这一章让学生理解频率与概率的关系,进一步体会概率是描述随机现象的数学模型。
在第二章、第六章这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。
同时学会对知识的归纳、整理、和运用。
从而培养学生的思维能力和应变能力。
【二】教材分析:本册教材包括几几何何部分《特殊的平行四边形》,《图形的相似》,《投影与视图》。
代数部分《一元二次方程》,《反比例函数》以及与统计有关的《概率的进一步认识》。
《特殊的平行四边形》,《图形的相似》的重点是:1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。
难点是:1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。
《投影与视图》和重点是:通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。
难点是:理解平行投影与中心投影,明确视点、视线和盲区的内容。
《一元二次方程》,《反比例函数》的重点是:1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。
难点是:会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。
《概率的进一步认识》的重点是:通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
2020-2021初中数学图形的相似图文解析(2)
2020-2021初中数学图形的相似图文解析(2)一、选择题1.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.2.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【答案】B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE :AB=3:4,∴S △DFE :S △BFA =9:16.故选B .3.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D【解析】【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.4.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .5【答案】B【解析】【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD:AF=3:5,∴AD:DF=3:2,∵AB∥CD∥EF,∴AD BCDF CE=,即362CE=,解得,CE=4,故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2 B.3 C.4 D.5【答案】B【解析】【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.6.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD =21:7;④FB2=OF•DF.其中正确的是()A.①②④B.①③④C.②③④D.①③【答案】B【解析】【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.③正确.设BC=BE=EC=a,求出AC,BD即可判断.④正确.求出BF,OF,DF(用a表示),通过计算证明即可.【详解】解:∵四边形ABCD是平行四边形,∴CD∥AB,OD=OB,OA=OC,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC平分∠DCB,∴∠ECB=12∠DCB=60°,∴∠EBC=∠BCE=∠CEB=60°,∴△ECB是等边三角形,∴EB=BC,∵AB=2BC,∴EA=EB=EC,∴∠ACB=90°,∵OA=OC ,EA=EB ,∴OE ∥BC ,∴∠AOE=∠ACB=90°,∴EO ⊥AC ,故①正确,∵OE ∥BC ,∴△OEF ∽△BCF , ∴12OE OF BC FB == , ∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误,设BC=BE=EC=a ,则AB=2a ,AC=3a ,OD=OB=223(72)a a +=a , ∴BD=7a ,∴AC :BD=3a :7a=21:7,故③正确,∵OF=13OB=76a , ∴BF=7a , ∴BF 2=79a 2,OF•DF=7a•7779a a ⎛⎫+= ⎪ ⎪⎝⎭ a 2, ∴BF 2=OF•DF ,故④正确,故选:B .【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.7.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,2CD =,1BD =,则AD 的长是( )A .1.B .2C .2D .4【答案】D【解析】【分析】 由在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,根据同角的余角相等,可得∠ACD=∠B ,又由∠CDB=∠ACB=90°,可证得△ACD ∽△CBD ,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B ,∴△ACD ∽△CBD ,∴=AD CD CD BD, ∵CD=2,BD=1, ∴2=21AD , ∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD ∽△CBD.8.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD∽▱OECF,且AO=OC=12 AC故四边形OECF的面积是▱ABCD面积1 4即图中阴影部分的面积为4cm2.故选:C【点睛】此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.9.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则DF的长为()A.235B.233C.334D.435【答案】D【解析】【分析】先利用含30度角的直角三角形的性质求出BD,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD,进而判断出DE∥AB,再求出AB=3,即可得出结论.【详解】如图,在Rt△BDC中,BC=4,∠DBC=30°,∴3连接DE,∵∠BDC=90°,点D是BC中点,∴DE=BE=CE=12BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴DF DE BF AB=,在Rt△ABD中,∠ABD=30°,,∴AB=3,∴23 DFBF=,∴25 DFBD=,∴DF=2255BD=⨯=故选D.【点睛】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.10.在相同时刻,物高与影长成正比,如果高为1米的标杆影长为2米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米【答案】D【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似,利用标杆的高:标杆影长=旗杆的高:旗杆的影长,列出方程,求解即可得出旗杆的高度.【详解】解:根据题意解:标杆的高:标杆影长=旗杆的高:旗杆的影长,即1:2=旗杆高:30,∴旗杆的高=130=152⨯米.故选:D.本题主要考察的是相似三角形的应用,正确列出方程是解决本题的关键.11.如图,在ABC ∆中,,D E 分别是边,AB AC 的中点,ADE ∆和四边形BCED 的面积分别记为12,S S,那么12S S 的值为( )A .12B .14C .13D .23【答案】C【解析】【分析】根据已知可得到△ADE ∽△ABC ,从而可求得其面积比,则不难求得12S S 的值. 【详解】∵,D E 分别是边,AB AC 的中点,∴DE ∥BC ,∴△ADE ∽△ABC ,∴DE :BC=1:2, 所以它们的面积比是1:4,所以1211=413S S =-, 故选C .【点睛】本题考查了三角形的中位线定理和相似三角形的性质:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.12.26,2,A B C '''∆的两边长分别是13,如果ABC ∆与A B C '''∆相似,那么A B C '''∆的第三边长应该是( )A 2B .22C 6D 3【答案】A【解析】根据题中数据先计算出两相似三角形的相似比,则第三边长可求.【详解】解:根据题意,易证ABC ∆∽△A B C ''',且相似比为:2:1, ∴△A B C '''的第三边长应该是22=. 故选:A .【点睛】 本题考查了相似三角形的性质:相似三角形的对应边成比例,关键就是要清楚对应边是谁.13.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm 、60 cm 、80 cm ,乙三角形框架的一边长为20 cm ,则符合条件的乙三角形框架共有( ).A .1种B .2种C .3种D .4种 【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm 的边可以当最短边,最长边和中间大小的边.故选:C .点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.14.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8- 【答案】D【解析】【分析】过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V ∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.15.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A .2018kB .2019kC .20182k k + D .2019(2)k k +【答案】D【解析】【分析】根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n 个黄金三角形的周长为k n-1(2+k ),从而得出答案.【详解】解:∵AB=AC=1,∴△ABC 的周长为2+k ;△BCD 的周长为k+k+k 2=k (2+k );△CDE 的周长为k 2+k 2+k 3=k 2(2+k );依此类推,第2020个黄金三角形的周长为k 2019(2+k ).故选:D .【点睛】此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.16.下列图形中,一定相似的是( )A .两个正方形B .两个菱形C .两个直角三角形D .两个等腰三角形【答案】A【解析】【分析】根据相似形的对应边成比例,对应角相等,结合正方形,菱形,直角三角形,等腰三角形的性质与特点对各选项分析判断后利用排除法.【详解】A 、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故本选项正确;B 、两个菱形的对应边成比例,角不一定相等,所以不一定相似,故本选项错误;C 、两个直角三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;D 、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选A .【点睛】本题主要考查了相似图形的定义,比较简单,要从边与角两方面考虑.17.若△ABC 的每条边长增加各自的50%得△A 'B 'C ',若△ABC 的面积为4,则△A 'B 'C '的面积是( )A .9B .6C .5D .2【答案】A【解析】【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,根据相似三角形的性质即可得到结论.【详解】解:∵△ABC 的每条边长增加各自的50%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′, ∴214()150%9ABC A B C S S '''==+V V , ∵△ABC 的面积为4,则△A'B'C'的面积是9.故选:A .【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定是解题的关键.18.如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【答案】C【解析】【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.19.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm【答案】C【解析】【分析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,由题意得,15 4023 xx=+,解得,x=75,则x+40=115,故选C.20.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换。
解直角三角形ppt课件
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
《解直角三角形》教学PPT课件【青岛版九年级数学上册】 (2)
1.锐角三角函数的意义,Rt△ABC 中,设∠C=90°,∠α 为 Rt△ABC 的一个锐角,则:
∠α的对边 ∠α的正弦 sinα=____斜__边______;
∠α的邻边 ∠α 的余弦 cosα=_____斜__边_____;
∠α的对边 ∠α的正切 tanα=__∠__α_的__邻__边___.
锐角三角函数和解直角三角形
1.利用相似的直角三角形,探索并认识锐角三角函数(sinA, cosA,tanA),知道30°,45°,60°角的三角函数值.
2.
3.能用锐角三角函数解直角三角形,能用相关知识解决一些 简单的实际问题.
(_3_)_边s_in_与A__=角__的c_o_s关_B_系=__:ac_,__c_o_s_A_=__s_i_n_B_=__bc_,__t_a_n_A_=__ab_,___ta_n_B_= ___ba____.
5.直角三角形的边角关系在现实生活中有着广泛的应用,它经 常涉及测量、工程、航海、航空等,其中包括了一些概念,一定 要根据题意明白其中的含义才能正确解题.
2.解直角三角形的类型和解法
命题点1:求锐角三角函数值 (2015·山西)如图,在网格中,小正方形的边长均为1,点A,B, C都在格点上,则∠ABC的正切值是( )D
A.2
25 B. 5
5 C. 5
1 D.2
命题点2:解直角三角形的实际应用 1.如图,某地建高速公路,要从B地向C地修一座隧道(B,C在 同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热 气球从C地出发,垂直上升100 m到A处,在A处观察B地的俯角为 30°,则B,C两地之间的距离为( A )
3.同角三角函数之间的关系:
sin2α+cos2α=____1;
初中数学教材目录(苏教版)
七年级上第一章我们与数学同行1.1生活数学1.2活动思考第二章有理数2.1 比0小的数2.2 数轴2.3 绝对值与相反数2。
4 有理数的加法与减法2.5 有理数的乘法与除法2.6 有理数的乘方2.7 有理数的混合运算第三章第三章用字母表示数3.1 字母表示数3。
2 代数式3。
3 代数式的值3.4 合并同类项3。
5 去括号第四章一元一次方程4。
1 从问题到方程4。
2 解一元一次方程4.3 用方程解决问题第五章走进图形世界5。
1 丰富的图形世界5.2 图形的变化5。
3 展开与折叠5。
4 从三个方向看第六章平面图形的认识(一)6。
1 线段射线直线6.2 角6.3 余角补角对顶角6。
4 平行6。
5 垂直七年级下第七章平面图形的认识(二)7。
1 探索直线平行的条件7.2 探索平行线的性质7。
3 图形的平移7。
4 认识三角形7。
5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8。
3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9。
2 单项式乘多项式9。
3 多项式乘多项式9。
4 乘法公式9。
5 单项式乘多项式法则的再认识-----—因式分解(一)9。
6 乘法公式的再认识——--—-因式分解(二)第十章二元一次方程10。
1 二元一次方程10。
2 二元一次方程组10.3 解二元一次方程组10。
4 用方程组解决问题第十一章图形的全等11.1 全等图形11。
2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们身边12。
1 普查与抽样调查12.2 统计图的选用12。
3 频数分布表和频数分布图第十三章感受概率13。
1 确定与不确定13。
2 可能性八年级上第一章轴对称图形1。
1 轴对称与轴对称图形1.2 轴对称的性质1.3 设计轴对称图案1。
4 线段、角的轴对称性1。
5 等腰三角形的轴对称性1.6 等腰梯形的轴对称性第二章勾股定理与平方根2。
1 勾股定理2。
2 神秘的数组2.3 平方根2。
初三数学相似三角形知识点归纳
初三数学相似三角形知识点归纳Prepared on 24 November 2020初三数学《相似三角形》知识提纲(何老师归纳)一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。
③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质1.比例的基本性质:bc ad dcb a =⇔= 2. 合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠04、黄金分割:把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-≈, (三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,= ,nm b a =语言描述如下:=,= ,=.(4)上述结论也适合下列情况的图形:图(2) 图(3) 图(4) 图(5) 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.A 型 X 型由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 如上图:若=.=,=,则AD ∥BE ∥CF此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例. 二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。
青岛版九年级数学上册全套精美课件
2.5 解直角三角形的应用
青岛版九年级数学上册全套精美课 件
第3章 对圆的进一步认识
青岛版九年级数学上册全套精美课 件
3.1 圆的对称性
青岛版九年级数学上册全套精美课 件
3.2 确定圆的条件
青岛版九年级数学上册全套精美课 件
3.3 圆周角
青岛版九年级数学上册全套精美课 件
青岛版九年级数学上册全套精美课 件
2.2 30°,45°,60°角的三角比
青岛版九年级数学上册全套精美课 件
2.3 用计算器求锐角三角比
青岛版九年级数学上册全套精美课 件
2.4 解直角三角形
第1章 图形的相似
青岛版九年级数学上册全套精美课 件
1.1 相似多边形
青岛版九年级数学上册全套精美课 件
1.2 怎样判定三角形相似
青岛版九年级数学上册全套精美课 件
1.3 相似三角形的性质
青岛版九年级数学上册全套精美 课件目录
0002页 0037页 0097页 0158页 0207页 0231页 0268页 0298页 0300页 0329页 0356页 0401页 0415页 0451页
第1章 图形的相似 1.2 怎样判定三角形相似 1.4 图形的位似 2.1 锐角三角比 2.3 用计算器求锐角三角比 2.5 解直角三角形的应用 3.1 圆的对称性 3.3 圆周角 3.5 三角形的内切圆 3.7 正多边形与圆 4.1 一元二次方程 4.3 用公式法解一元二次方程 4.5 一元二次方程的应用 4.7 一二次方程的应用
青岛版九年级数学上册全套精美课 件
1.4 图形的位似
青岛版九年级数学上册全套精美课 件
第2章 解直角三角形
解直角三角形的基本类型及解法
解直角三角形的基本类型及解法解直角三角形的基本类型及解法解直角三角形方法很多,灵活多样.解直角三角形是探究直角三角形中边角关系的问题,是现实世界中应用广泛的关系之一,本文是店铺整理解直角三角形的基本类型及解法的资料,仅供参考。
解直角三角形注意事项1.尽量使用原始数据,使计算更加准确.2.有的问题不能直接利用直角三角形内部关系解题,•但可以添加合适的辅助线转化为解直角三角形的问题.3.一些较复杂的解直角三角形的问题可以通过列方程或方程组的方法解题.4.解直角三角形的方法可概括为“有弦(斜边)用弦(正弦、余弦),无弦有切(正切、余切),宁乘毋除,取原避中”其意指:当已知或求解中有斜边时,可用正弦或余弦;无斜边时,就用正切或余切;当所求元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求解时,则取原始数据,忌用中间数据.5.必要时按照要求画出图形,注明已知和所求,•然后研究它们置于哪个直角三角形中,应当选用什么关系式来进行计算.6.要把添加辅助线的过程准确地写在解题过程之中.7.解含有非基本元素的直角三角形(即直角三角形中中线、高、角平分线、•周长、面积等),一般将非基本元素转化为基本元素,或转化为元素间的关系式,再通过解方程组来解.直角三角形面积公式因为直角三角形的两条直角边分别相当于三角形的底和高,所以直角三角形的面积,可以用两条直角边的长度相乘再除以2。
s=(1/2)x底x高s=(1/2)xaxbxsinC (C为a,b的夹角)s=1/2acsinBs=1/2bcsinA直角三角形性质1、直角三角形两直角边的平方和等于斜边的平方。
若∠BAC=90°,则AB2+AC2=BC2(勾股定理)2、在直角三角形中,两个锐角互余。
如图,若∠BAC=90°,则∠B+∠C=90°3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
2019年中考数学复习第5章图形的相似与解直角三角形第20课时锐角三角函数与解直角三角形精讲试题word版本
第20课时锐角三角函数与解直角三角形题号,30三角形一般与圆综合考查毕节中考真题试做30°,45°,60°角的三角函数值1.(2018·毕节中考)计算:⎝⎛⎭⎪⎫-13-1-12+3 tan 30°-(π-3)0+||1-3.解:原式=(-3)-23+3×33-1+(3-1)=-3-23+3-1+3-1=-5.解直角三角形2.(2017·毕节中考)如图,在▱ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sin D=45,求AF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB ∥CD,AD ∥BC,AD =BC. ∴∠D +∠C =180°,∠ABF =∠BEC. ∵∠AFB +∠AFE =180°,∠AFE =∠D, ∴∠C =∠AFB. ∴△ABF ∽△BEC ; (2)解:∵AE ⊥DC,AB ∥DC, ∴∠AED =∠BAE =90°.在Rt △ADE 中,AE =AD·sin D =5×45=4.在Rt △ABE 中,根据勾股定理,得 BE =AE2+AB2=42+82=4 5. ∵△ABF ∽△BEC, ∴AF BC =AB BE , 即AF 5=845,∴AF =2 5.毕节中考考点梳理锐角三角函数的概念特殊角的三角函数值\ 锐角α α解直角三角形1.(2018·柳州中考)如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,则sin B =ACAB =( A )A .35B .45C .37D .34(第1题图)(第3题图)2.若∠A+∠B =90°,则下列各式成立的是( D )A .sin A =cos AB .tan A +tan B =1C .sin A =sin BD .sin A =cos B3.(2018·广州中考)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C =__12__.4.(2018·滨州中考)在△ABC 中,∠C =90°,若tan A =12,则sin B =55.(2018·贵阳中考)如图①,在Rt △ABC 中,以下是小亮探究a sin A 与bsin B之间关系的方法:∵sin A =a c ,sin B =bc,∴c =a sin A ,c =bsin B ,∴a sin A =b sin B. 根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究a sin A ,b sin B ,c sin C之间的关系,并写出探究过程.解:a sin A =b sin B =c sin C .证明如下:过A 作AD ⊥BC 于点D,过B 作BE ⊥AC 于点E.在Rt △ABD 中,sin B =ADc ,即AD =c si n B.在Rt △ADC 中,sin C =ADb ,即AD =b sin C.∴c sin B =b sin C,即b sin B =csin C .同理可得a sin A =csin C ,则a sin A =b sin B =csin C.6.(2018·遵义中考)如图,吊车在水平地面上吊起货物时,吊绳BC 与地面保持垂直,吊臂AB 与水平线的夹角为64°,吊臂底部A 距地面1.5 m .(计算结果精确到0.1 m ,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A 与货物的水平距离AC 为5 m 时,吊臂AB 的长为______m ; (2)如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)解:(1)在Rt △ABC 中,∠BAC =64°,AC =5, ∴AB =ACcos 64°≈5÷0.44≈11.4.∴吊臂AB 的长为11.4 m .故应填:11.4; (2)过点D 作DH ⊥地面于点H,交水平线于点E.在Rt △ADE 中,AD =20,∠DAE =64°,EH =1.5,∴DE =sin 64°×AD ≈20×0.90=18.0,即DH =DE +EH ≈18.0+1.5=19.5.答:从地面上吊起货物的最大高度是19.5 m .中考典题精讲精练30°,45°,60°角的三角函数值例1 (2018·广安中考)计算:⎝ ⎛⎭⎪⎫13-2+|3-2|-12+6 cos 30°+(π-3.14)0.【解析】对照30°,45°,60°角的三角函数值表,然后按照实数的运算方法计算出结果.【答案】解:原式=9+2-3-23+6×32+1=12.解直角三角形例2 (2018·潍坊中考)如图,点M 是正方形ABCD 边CD 上一点,连接AM,作DE ⊥AM 于点E,BF ⊥AM 于点F,连接BE.(1)求证:AE =BF ;(2)已知AF =2,四边形ABED 的面积为24,求∠EBF 的正弦值.【解析】(1)由正方形的性质,可得BA =AD,∠BAD =90°.由DE ⊥AM,BF ⊥AM,可得∠ABF =∠DAE.对于△ABF 和△DAE,可由AAS 得到△ABF ≌△DAE,结论可证;(2)设AE =x,由(1)中结论可得BF =x,DE =AF =2.利用S 四边形ABED=S △ABE +S △ADE 可列方程求出x 得到EF 的长.在Rt △BFE 中利用勾股定理可求出BE 的长.最后利用正弦的定义可求结果.【答案】(1)证明:∵四边形ABCD 为正方形, ∴BA =AD,∠BAD =90°. ∵DE ⊥AM 于点E,BF ⊥AM 于点F, ∴∠AFB =∠DEA =90°,∴∠ABF +∠BAF =90°,∠DAE +∠BAF =90°, ∴∠ABF =∠DAE. 在△ABF 和△DAE 中, ⎩⎪⎨⎪⎧∠AFB=∠DEA,∠ABF=∠DAE,AB =DA ,∴△ABF ≌△DAE(AAS ),∴BF =AE ; (2)解:设AE =x,则BF =x,DE =AF =2. ∵四边形ABED 的面积为24, ∴12·x·x +12·x·2=24, 解得x 1=6,x 2=-8(舍去),∴EF =x -2=4. 在Rt △BEF 中,BE =42+62=213, ∴sin ∠EBF =EF BE =4213=21313.解直角三角形的应用例3 (2018·烟台中考)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40 km /h .数学实践活动小组设计了如下活动:在l 上确定A,B 两点,并在AB 路段进行区间测速.在l 外取一点P,作PC ⊥l,垂足为点C.测得PC =30 m ,∠APC =71°,∠BPC =35°.上午9时测得一汽车从点A 到点B 用时6 s ,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)【解析】先根据角的正切分别得出AC =PC tan ∠APC,BC =PC tan ∠BPC,再根据线段的和与差得出AB 的长,继而根据速度=路程时间,求得该车通过AB 路段的车速.若该车通过AB 路段的车速超过40 km /h ,则该车超速;否则,该车没有超速.【答案】解:在Rt △APC 中,AC =PC tan ∠APC =30 tan 71°≈30×2.90=87. 在Rt △BPC 中,BC =PC tan ∠BPC =30 tan 35°≈30×0.70=21, 则AB =AC -BC =87-21=66, ∴该汽车的实际速度为666=11(m /s ).又∵40 km /h ≈11.1 m /s ,11<11.1, ∴该车没有超速.1.计算:|-2|-(2 019+2)0+⎝ ⎛⎭⎪⎫12-1+2 cos 30°-27.解:原式=2-1+2+2×32-33=3+3-3 3 =3-2 3.2.如图,在△ABC 中,∠BAC =90°,AB =AC,点D 为边AC 的中点,DE ⊥BC 于点E,连接BD,则tan ∠DBC 的值为( A )A .13B .2-1C .2- 3D .143.(2018·扬州中考)如图,在平行四边形ABCD 中,DB =DA,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E,连接AE.(1)求证:四边形AEBD 是菱形;(2)若DC =10,tan ∠DCB =3,求菱形AEBD 的面积. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥CE,∴∠DAF =∠EBF. ∵∠AFD =∠BFE,AF =FB, ∴△AFD ≌△BFE,∴AD =BE.∵AD ∥EB,∴四边形AEBD 是平行四边形. 又∵DB =DA,∴四边形AEBD 是菱形; (2)解:∵四边形ABCD 是平行四边形, ∴CD =AB =10,AB ∥CD, ∴∠ABE =∠DCB,∴tan ∠ABE =tan ∠DCB =3. ∵四边形AEBD 是菱形, ∴AB ⊥DE,AF =FB,EF =DF, ∴tan ∠ABE =EFBF =3.∵BF =102,∴EF =3102,∴DE =310. ∴S 菱形AEBD =12AB·D E =1210×310=15.4.如图,一块三角形空地上种植草皮绿化,已知AB =20 m ,AC =30 m ,∠A =150°,草皮的售价为a 元/m 2,则购买草皮至少需要( C )A .450a 元B .225a 元C .150a 元D .300a 元(第4题图)(第5题图)5.一个公共房门前的台阶高出地面 1.2 m ,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( B )A .斜坡AB 的坡度是10° B .斜坡AB 的坡度是tan 10°C .AC =1.2 tan 10° mD.AB=1.2cos 10°m6.(2018·重庆中考A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7 m,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2 m,若旗杆底部到坡面CD的水平距离BC=1 m,则旗杆AB的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)( B )A.12.6 mB.13.1 mC.14.7 mD.16.3 m。
专题复习-相似图形与三角函数
专题复习:图形的相似与锐角三角函数教学目标:教学重点、难点:1. 比例;线段的比;成比例线段;黄金分割;2. 图形的相似;相似三角形;相似三角形的性质;两三角形相似的条件;3. 画相似图形;利用位似将一个图形放大或缩小;4. 锐角三角函数;运用相似和锐角三角函数解决与直角三角形有关的实际问题。
教学过程:知识梳理㈠图形的相似1. 比例线段:由于比例线段的实质就是四个正数组成的比例式,所以要学好本部分内容,首先要熟悉有关比例的相关知识。
2. 相似多边形的特征:“对应边成比例,对应角相等”既是相似多边形的识别方法又是性质。
3. 相似比:相似比是把一个图形放大或缩小的倍数,其具有顺序性,全等是相似比为1 时的特殊情况。
4. 相似三角形的性质(1)对应边成比例,对应角相等;(2)对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)周长的比等于相似比,面积的比等于相似比的平方。
5. 相似图形的画法是新课标中新增添的内容,要求掌握用多种方法将一个图形放大或缩小。
6. 图形与坐标是新课程中新增添的内容,应注意把“形”与“数”紧密地联系在一起。
㈡锐角三角函数与解直角三角形1. 锐角三角函数的概念锐角三角函数的概念应通过画图帮助分析,通过画图找出直角三角形中边、角的关系,加深对概念的理解。
锐角三角函数常和三角形、四边形、相似形、圆、坐标系、一元二次方程结合命题。
2. 特殊角的三角函数值对于特殊角的三角函数值,必须熟练准确地记住,记忆时可借助三角板上的直角三角形。
3. 解直角三角形的应用题对于解直角三角形的应用题,首先要认真反复读题,弄清题意,特别是关键的字、词,其次要准确地画出图形。
从图中确定要解的直角三角形,解直角三角形时,充分使用原始数据,正确选择关系式,使运算尽可能简便、准确。
4. 解斜三角形解斜三角形的问题通常已知一边长及一锐角三角函数值,往往需要添加适当的辅助线,通过解方程(组)转化为解直角三角形的四种基本类型求解。
图形的变换、相似及解直角三角形
(0 0 6 0 一 ) ≥
x 6 0 , 解 得 x ̄ 2 0 ・ 0 0 可 4 0 在
中 、 档题 攀 升 到 分 值 较 高 的 解 答 题 和 综 合 应 用 低 题 , 至 设 计 了开 放 、 作 、 索 等 多 种 新 题 型 , 甚 操 探 既 考查基 础 知识 , 又注 重 能力 和数 学 思想 方 法 的综 合
9 ( Y 一 4 7 . 一 5 0× 34 5 0( . 1) 7 x,y 3 - 3 z~ 3)
・
8 一 42 x4 3 8 O 4 - 1.
( ) y = 得 4 7  ̄ 4 4 + 3 8 贝 一 6 2 由 = y = 7 x -2 z 1 ,0 . 由Y > . 得 4 7  ̄ 4 4 4 3 8 则 > 6 y 7x 2x - 1, . 由Y < 得 4 7 < 4 4 4 3 8 则 x 6 7x 2x - 1, < .
葛余 常 ( 苏省 兴化 市楚 水 实验学 校 ) 江
( ) 购 买 鱼 苗 的 总 费 用 为 , 3设 则 一 0 5 .x
- . (00 408 6O
・
一
03 . x+ 4 0 . 由 80 又
z+
概述 尊
图形 的 变换 、 似及 解 直角 三 角形 是初 中数 学 相 重要 内容 之一 , 多省 市 已将 此部 分 内容 由以往 的 很
中 , AC 一 9 。 AC — B 一 1 , △ DC 中 , B 0, C 0 在 E
1 . 1设单 独租用 3 1 () 5座客车需 辆 , 由题意得
3 x 5 ( 1 一 4 , 得 一5 5 一 5 一 ) 5 解 .
。
.
.
3 x一 3 × 5 1 5 人 ) 5 5 — 7( .
初中数学_相似三角形中的基本图形教学设计学情分析教材分析课后反思
专题6:相似三角形中的基本图形教学目标:1.通过梳理使学生掌握相似三角形中的基本图形,熟悉这些基本图形的特征,能在复杂图形中加以识别。
2.在综合题目中较快识别出相似的基本图形,能根据条件找出隐藏的基本图形,或者通过添加辅助线构造出完整的基本图形来建立数学模型,从而解决相关问题。
3、通过问题的解决,体验探究问题成功的乐趣,提高学习几何的兴趣。
重点和难点重点:在综合题中识别出相似的基本图形,,灵活运用相似知识解决相关问题。
深化学生对基本图形模型的理解。
难点:从复杂图形中识别相似的基本图形,并利用相似知识解决问题。
相似有关的综合性问题的解决技巧和方法的渗透。
教学过程:一、教师赠言:每个人心中都有一座山世上最难攀登的山其实是自己往上走哪怕只有一小步也有新高度做最好的自己我能(设计意图:让学生斗志昂扬的宣读赠言,教师鼓励同学们每天都能更进一步,奋力拼搏,做最棒的自己。
)二、温故知新:1.判定三角形相似的方法:2.相似三角形的性质:(设计意图:新旧知识之间有相互一致的特征,学生通过复习旧知识,激活认知结构中的原有知识,为促其顺利迁移,获得本节知识奠定基础。
)三、相似三角形基本图形梳理:(8种类型)A BCD E D E A BC (D)E ABC ABCD EA BCD E AEBC(D)1221ABCD E(学生课前积累平时学习中的各类基本图形,体会这些基本图形之间的联系) 四、构建模型、探求方法:(设计意图:通过题组的形式帮助学生梳理各类型的基本图形。
掌握这些基本图形的性质与特点,熟悉的模型在已有知识经验的基础上抽象出数学概念是帮助学生理解数学知识的有效学习方法。
)(一)基本图形一:平行型相似三角形 如图①~③所示,在△ABC 中,点D,E 分别是AB ,AC 上(或延长线上或反向延长线上)的点,且DE ∥BC,则△ADE ∽ △ABC 。
(引导学生给每一个基本图形命名,“A ”型和“X ”型。
) 【培优训练】:1.(2014.随州)如图,在△ABC 中,两条中线BE,CD 相交于点O,则S △DOE ∶S △COB=( )A.1∶4B.2∶3C.1∶3D.1∶2 2.(2013•乌鲁木齐)如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB=2,CD=3,则GH的长为 .【方法归纳】:______________________________________________(学生抢答并总结方法) (二)基本图形二:相交型相似三角形 【知识点睛】如图①,∠AED=∠B,则△AED ∽△ABC; 如图②,∠ACD=∠B,则△ACD ∽△ABC; 如图③,∠A=∠D,则△AOB ∽△DOC.(引导学生给每一个基本图形命名,反“A ”型和反“X ”型。
解直角三角形(复习课)课件
结合勾股定理和三角函数计算直角三 角形中的未知量。
利用给定的条件,设计合理的方案解 决实际问题,如设计桥梁、建筑等结 构的支撑体系。
06
复习与总结
重点回顾
直角三角形的定义与性质
回顾直角三角形的定义、性质和判定条件,理解其在几何图形中 的重要地位。
求解角度。
常见错误分析
混淆边和角
在解题过程中,有时会混淆边和角,导致计算错误。
忽视勾股定理的条件
在使用勾股定理时,需要确保三角形是直角三角形,否则会导致错 误。
角度范围错误
在计算角度时,需要注意角度的范围,避免出现负角度或超过180 度的角度。
解题方法总结
勾股定理法
适用于已知两边长度, 求第三边长度的情况。
船只安全航行。
物理实验
测量角度
在物理实验中,经常需要测量各 种角度。解直角三角形的方法可 以用来计算这些角度,确保实验
结果的准确性。
计算力的大小
在物理实验中,经常需要计算力的 大小。通过解直角三角形,可以精 确地计算出力的大小,确保实验结 果的可靠性。
确定物体的位置
在物理实验中,物体的位置是非常 重要的。通过解直角三角形,可以 计算出物体的位置,确保实验的准 确性和可靠性。
04
解题技巧与策略
解题思路
01
02
03
04
明确问题要求
首先需要理解题目的要求,确 定需要求解的是什么。
选择合适的三角形
根据问题描述,选择一个合适 的直角三角形来解决问题。
利用勾股定理
在直角三角形中,勾股定理是 一个重要的工具,可以帮助我
们求解边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 图形的变化
一、选择题
1.(2016湖州中考)由六个相同的立方体搭成的几何体如图所示,则它的主视图是( )
A B C D
2.(2015牡丹江中考)如图,把△ABC 经过一定的变换得到△A ′B ′C ′,如果△ABC 上点P
的坐标为(x ,y ),那么这个点在△A ′B ′C ′中的对应点P ′的坐标为 ( )
A .(-x ,y -2)
B .(-x ,y +2)
C .(-x +2,-y )
D .(-x +2,y +2)
3.(2016资阳中考)如图是一个正方体纸盒的外表面展开图,则这个正方体是( )
A B C D
4.(2016大庆中考)由若干边长相等的小正方体构成的几何体的主视图、
左视图、俯视图如图所示,则构成这个几何体的小正方体有( )
A .5个
B .6个
C .7个
D .8个
5.(2016海南中考)如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿着直线AD 对折,点
C 落在点E 的位置.如果BC =6,那么线段BE 的长度为( )
A .6
B .6 2
C .2 3
D .3 2
9.(2016黄石中考)如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A =50°,则∠BDC
=( ) A .50° B .100° C .120° D .130°
6.(2016湖州中考)如图(1),在等腰三角形ABC 中,AB =AC =4,BC =
7.如图(2),在底边BC 上取一点D ,连接AD ,使得∠DAC =∠ACD .
如图(3),将△ACD 沿着AD 所在直线折叠,使得点C 落在点E 处,
连接BE ,得到四边形ABED .则BE 的长是( )
A .4
B .174
C .3 2
D .2 5
7.(2015六盘水中考)将一张正方形纸片按如图①、图②所示的方式对
折,然后沿图③中虚线裁剪得到图④,将图④的纸片展开铺平,得到的图
案是( )
A B C D
8.(2016汇川五模),将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐
标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是
( ) A .(3,1) B .(1,-3) C .(23,-2) D .(2,-23)
9.(2016潍坊中考)如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是( )
A B C D
10.(2015杭州中考)已知某几何体的三视图(单位:cm ),则该几何体的侧面积等于( )
A .12π cm 2
B .15π cm 2
C .24π cm 2
D .30πcm 2
11.(2016临沂中考)如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD .则下列结论:
①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( )
A .0
B .1
C .2
D .3
12.(2016河南中考)如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针
旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )
A .(1,-1)
B .(-1,-1)
C .(2,0)
D .(0,-2)
13.(2016遵义航中一模)将两个长方体如图放置,则所构成的几何体的左视图可能是( )
A B C D
二、填空题
14.(2016遵义航中二模)如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D ′,点C 落在C ′处.若AB =6,AD ′=2,则折痕MN 的长为___.
15.(2016遵义航中三模)如图是一个长方体的三视图(单位:cm ),根据图中数据计算这个长方体的体积是____cm 3.
16.(2016遵义红花岗一模)如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1),若以点A ,B ,C ,D 为顶
点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为____.
17.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1),B (1,3),将线段AB 经过平移后得到线
段A ′B ′.若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是____.
18.如图,将周长为8的△ABC 沿BC 方向平移1个单位得△DEF ,则四边形ABFD 的周长为____.
三、解答题
19.如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1;
(2)把△A 1B 1C 1绕点A 1按逆时针方向旋转90°,在网格中画出旋转后的△A 1B 2C 2;
(3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.
20.(2016绍兴中考)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点A 的斜平移,如点P (2,3)经1次斜平移后的点的坐标为(3,5).已知点A 的坐标为(1,0).
(1)分别写出点A 经1次、2次斜平移后得到的点的坐标.
(2)如图,点M 是直线l 上的一点,点A 关于点M 的对称点为点B ,点B 关于直线l 的对称
点为点C .
①若A ,B ,C 三点不在同一条直线上,判断△ABC 是否是直角三角形?请说明理由.
②若点B 由点A 经n 次斜平移后得到,且点C 的坐标为(7,6),求出点B 的坐标及n 的值.
21.(2016十堰中考)如图,将矩形纸片ABCD (AD >AB )折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,
AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE的取值范围.
22.(2016遵义六中三模)如图,△ACB是等腰直角三角形,∠ACB=90°,△EFG是以A点为中心的等边三角形,P为△EFG边上的任意一点,连接CP,把CP绕点C顺时针旋转90°到CQ的位置,连接BQ.
(1)求证:AP=BQ;
(2)随着P点运动,其对应点Q也随着运动,请说出Q点运动所形成图形的具体形状、位
置;
23.(2016昆明中考)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使P A+PB的值最小,请直接写出点P的坐标.。