2019春九年级数学下册28锐角三角函数28.1锐角三角函数第2课时学案人教版
【人教版】九年级数学下册优秀教案:28.1 第2课时 余弦函数和正切函数
28.1锐角三角函数第2课时 余弦函数和正切函数1.理解余弦、正切的概念;(重点)2.熟练运用锐角三角函数的概念进行有关计算.(重点)一、情境导入教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义?学生回答后教师提出新问题:在上一节课中我们知道,如图所示,在Rt △ABC 中,∠C =90°,当锐角∠A 确定时,∠A 的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么?二、合作探究探究点一:余弦函数和正切函数的定义 【类型一】 利用余弦的定义求三角函数值在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( )A.513B.512C.1213D.125解析:∵Rt △ABC 中,∠C =90°,AB =13,AC =12,∴cos A =AC AB =1213.故选C.方法总结:在直角三角形中,锐角的余弦等于这个角的邻边与斜边的比值.变式训练:见《学练优》本课时练习“课堂达标训练” 第2题 【类型二】 利用正切的定义求三角函数值如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A =( )A.35B.45C.34D.43解析:在直角△ABC 中,∵∠ABC =90°,∴tan A =BC AB =43.故选D.方法总结:在直角三角形中,锐角的正切等于它的对边与邻边的比值. 变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 探究点二:三角函数的增减性【类型一】 判断三角形函数的增减性随着锐角α的增大,cos α的值( )A .增大B .减小C .不变D .不确定解析:当角度在0°~90°之间变化时,余弦值随着角度的增大而减小,故选B. 方法总结:当0°<α<90°时,cos α的值随着角度的增大(或减小)而减小(或增大). 【类型二】 比较三角函数的大小sin70°,cos70°,tan70°的大小关系是( )A .tan70°<cos70°<sin70°B .cos70°<tan70°<sin70°C .sin70°<cos70°<tan70°D .cos70°<sin70°<tan70°解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又∵cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°.故选D.方法总结:当角度在0°≤∠A ≤90°之间变化时,0≤sin A ≤1,0≤cos A ≤1,tan A ≥0. 探究点三:求三角函数值【类型一】 三角函数与圆的综合如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD .(1)求证:DC =BC ;(2)若AB =5,AC =4,求tan ∠DCE 的值.解析:(1)连接OC ,求证DC =BC 可以先证明∠CAD =∠BAC ,进而证明DC ︵=BC ︵;(2)由AB =5,AC =4,可根据勾股定理得到BC =3,易证△ACE ∽△ABC ,可以求出CE 、DE 的长,在Rt △CDE 中根据三角函数的定义就可以求出tan ∠DCE 的值.(1)证明:连接OC .∵OA =OC ,∴∠OAC =∠OCA .∵CE 是⊙O 的切线,∴∠OCE =90°.∵AE ⊥CE ,∴∠AEC =∠OCE =90°,∴OC ∥AE ,∴∠OCA =∠CAD ,∴∠CAD =∠BAC ,∴DC ︵=BC ︵.∴DC =BC ;(2)解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC =AB 2-AC 2=52-42=3.∵∠CAE=∠BAC ,∠AEC =∠ACB =90°,∴△ACE ∽△ABC ,∴EC BC =AC AB ,即EC 3=45,EC =125.∵DC =BC =3,∴ED =DC 2-CE 2=32-(125)2=95,∴tan ∠DCE =ED EC =95125=34.方法总结:证明圆的弦相等可以转化为证明弦所对的弧相等.利用圆的有关性质,寻找或构造直角三角形来求三角函数值,遇到比较复杂的问题时,可通过全等或相似将线段进行转化.变式训练:见《学练优》本课时练习“课后巩固提升” 第5题【类型二】 利用三角形的边角关系求三角函数值如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解析:根据tan ∠BAD =34,求得BD 的长.在直角△ACD 中由勾股定理可求AC 的长,然后利用正弦的定义求解.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD=BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计1.余弦函数的定义;2.正切函数的定义;3.锐角三角函数的增减性.在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会做题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目.通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念和基础知识.。
人教新课标版初中九下28.1锐角三角函数(2)教案
28.1锐角三角函数(2)教学内容本节课主要学习28.1余弦、正切函数教学目标知识技能了解余弦、正切函数的概念,能够正确应用cosA 、tanA 表示直角三角形中两边的比;记忆30°、45°、60°的余弦、正切函数值,并会由一个特殊角的余弦、正切函数值说出这个角。
数学思考通过余弦、正切函数的学习,进一步认识函数,体会函数的变化与对应的思想,进一步培养学生会观察、比较、分析、概括等逻辑思维能力。
解决问题引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
情感态度在探索过程中,培养学生与他人交流、合作的意识和品质,提高学生对几何图形美的认识。
重难点、关键重点:余弦、正切函数概念及其应用.难点:类比研究正弦函数的方法和思路,完成对余弦函数和正切函数的探索。
关键:引导学生比较、分析在直角三角形中,当锐角固定时,它的对边与斜边的比值也是固定的这一事实。
教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、 复习引入我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义它.提出新问题:在上一节课中我们知道,如图所示,•在Rt △ABC 中,∠C=90°,当锐角A 确定时,∠A 的对边与斜边的比就随之确定了.•现在我们要问:其他边之间的比是否也确定了呢?为什么?∠A的邻边b ∠A的对边a 斜边cCBA【活动方略】教师出示图片,学生观察,教师讲解.【设计意图】通过问题情境,激发学生学习兴趣,引出锐角三角函数的学习.二、 探索新知(一)余弦、正切概念的引入教师引导学生自己作出结论,•其证明方法与上一节课证明对边比斜边为定值的方法相同,都是通过两个三角形相似来证明.学生证明过后教师进行总结:类似于正弦的情况,在课本图28.1-6中,当锐角A 的大小确定时,∠A 的斜边与邻边的比、∠A 的对边与邻边的比也分别是确定的.我们把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=A ∠的邻边斜边=a c; 把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=A A ∠∠的对边的邻边=a b . 教师讲解并板书:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数.对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是A 的函数.同样地,cosA ,tanA 也是A 的函数.【活动方略】引导学生比较、分析在直角三角形中,当锐角固定时,它的邻边与斜边的比值、对边与邻边的比值也是固定的这一事实,归纳出余弦正切函数的概念。
28,1 锐角三角函数 第二课时-九年级数学下册课件(人教版)
A. 3
12
B. 3
6
C. 3
3
D.
3 2
4 如图,在▱ABCD 中,对角线AC 与BD 相交于点O,∠CAB=∠ACB, 过点B 作BE⊥AB 交AC 于点E. (1)求证:AC⊥BD; (2)若AB=14,cos∠CAB= 7 ,
8
求线段OE 的长.
(1)证明:∵∠CAB=∠ACB,∴), ∴cos α= 1 .
2
常见错解:∵方程2x
2-5x+2=0的解是x1=2,x2=
1 2
,
∴cos α=2或cos α= 1 .忽略了cos α (α 为锐角)
2
的取值范围是0<cos α<1.
易错点:忽视锐角三角函数值的范围而致错.
1 如图,已知AB 是半圆O 的直径,弦AD,BC 相交于点P, 如果∠DPB=α,那么 CD 等于( B )
∴ ▱ABCD是菱形.∴AC⊥BD.
(2)解:在Rt△AOB 中,cos ∠OAB= AO 7 ,AB=14,
AB 8
∴AO=
7 8
AB=
49 4
.
在Rt△ABE 中,cos ∠EAB= AB 7 ,
AE 8
AB=14,∴AE=
8 7
AB=16,
∴OE=AE-AO=16-
BC 5
C
(1)
解: AB AC2 BC2 22 32 13,
┌
所以
sin A BC
3
3
13 ,
sin B AC
2
2 13 ,
AB 13 13
AB 13 13
cos A AC 2 2 13 , AB 13 13
tan A BC 3 .
28.1锐角三角函数(2) 余弦、正切学案
斜边c对边abC B A28.1锐角三角函数(2) 余弦、正切学案一.知识巩固。
(每个题目5分,合计20分)1、在Rt △ABC 中,∠C=90°,当锐角A 确定时, ∠A 的对边与斜边的比是 ,2、 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )A .53B .23C .255D .523、 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.4、在 90,=∠∆C ABC Rt 中,若将各边长度都扩大为原来的2倍,则 ∠A 的正弦值 ( ) A .扩大2倍 B .缩小2倍 C .扩大4倍 D .不变二.新知探究。
(每个题目10分,合计100分)1、类似于正弦的情况, 如图在Rt △BC 中,∠C=90°,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是 .我们 把∠A 的邻边与斜边的比叫做∠A 的 ,记作 ;把∠A 的对边与邻边的比叫做∠A 的 ,记作 。
2、当∠A=30°时,我们有cosA=cos30°=; 当∠A=45°时,我们有tanA=tan45°= .(1)CB A436CB A判断题 4、cos x =21=60°. ( )5、α是锐角,且sin α=23,则α=30°. ( )6、cos45°-cos15°=cos30°=23. ( )7、若α为锐角,则2)1(cos -α=cos α-1.( ) 8、若A 为锐角则0<sin A <1,0<cos A <1. ( ) 9、 若a 为锐角,则sin a +cos a >1. ( ) 10、已知:Rt △ABC 中,∠C=90°,cosA=35,AB=15,则AC 的长是( ).A.3B.6C.9D.12三.运用提高。
九年级数学下册第28章《锐角三角函数》教案:28.1用计算器求锐角三角函数值和根据三角函数值求锐角
第二学期九年级数学教案课题用计算器求锐角三角函数值和根据三角函数值求锐角课型新课课时序数备课人审核人授课人授课日期课标解读与教材分析课标要求:1、让学生熟识计算器一些功能键的使用。
2、会熟练运用计算器求锐角的三角函数值和由三角函数值来求角。
教学内容分析:通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值。
教学目标知识与技能让学生熟识计算器一些功能键的使用过程与方法会熟练运用计算器求锐角的三角函数值和由三角函数值来求角。
情感态度价值观培养学生分析问题、解决问题的能力。
重点与难点重点运用计算器处理三角函数中的值或角的问题。
难点1、会熟练运用计算器求锐角的三角函数值2、知道值求角的处理。
媒体教具计算器三角板课时一课时教学过程修改栏教学内容师生互动(一)复习引入通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值。
(二)实践探索1、用计算器求锐角的正弦、余弦、正切值利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)sin37°24′sin37°23′cos21°28′cos38°12′tan52°;tan36°20′;tan75°17′;2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.例如:sinA=0.9816.∠A=.cosA=0.8607,∠A=;tanA=0.1890,∠A=;tanA=56.78,∠A= .教师组织学生,巡回辅导,点拨方法,总结规律,对于共性问题,做好补教。
学生先独立完成后,集体交流、评价。
说出解答过程,体会方法,形成规律,获得成功体验。
3、强化完成P84页的练习板书设计1、概念2、典例作业布置教材P64 5、6教学反思。
人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例
四、教学评价
1.评价学生的知识掌握程度:通过课堂提问、作业批改等方式,了解学生对锐角三角函数知识的掌握情况;
2.评价学生的实践操作能力:通过实际问题解决,评价学生运用锐角三角函数解决实际问题的能力;
3.评价学生的合作交流能力:通过小组讨论、互动交流等方式,评价学生在团队合作中的表现;
3.讲练结合:在课堂中及时进行练习,巩固所学知识,提高学生的实际操作能力;
4.反馈调整:根据学生的学习情况,及时调整教学方法,以提高教学效果。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生思考并引入锐角三角函数的概念;
2.自主探究,小组合作:让学生在小组内讨论交流,共同探究锐角三角函数的定义及应用;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生学习数学的内在动力;
2.培养学生合作交流的意识,提高学生团队协作的能力;
3.让学生感受数学与生活的紧密联系,培养学生的应用意识;
4.通过对本节课的学习,使学生树立正确的数学学习观念,相信自己通过努力可以掌握并运用好数学知识。
三、教学重难点
4.评价学生的情感态度与价值观:通过观察学生的学习态度、课堂表现等,评价学生对数学学科的兴趣和热爱。
五、教学拓展
1.利用多媒体技术,展示锐角三角函数在实际生活中的应用,激发学生的学习兴趣;
2.推荐相关的数学读物和网站,让学生课后进行拓展学习,提高学生的数学素养;
3.结合学校或社区的活动,让学生运用所学知识解决实际问题,提高学生的实践能力。
六、教学反思
在教学过程中,教师应不断反思自己的教学方法、教学内容等方面,以确保教学的质量和效果。同时,关注学生的学习反馈,根据学生的需求调整教学策略,以提高教学效果。通过不断的反思和调整,使教学更加符合学生的实际情况,提高学生的数学素养。
第28章 锐角三角函数 复习学案
第28章锐角三角函数复习学案一、课程学习目标1、了解锐角三角函数的概念,能够正确应用sinA 、cos A、tanA表示直角三角形中两边的比;记忆0°、30°、45°、60°、90°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;2、能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3、理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;4、通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受。
二、本章知识结构框图三、知识点与方法(一)正弦、余弦、正切的意义【第1课时】(1)在Rt△ABC中,∠C=90度,则锐角A的与的比叫做∠A的正弦,记作;则锐角A的与的比叫做∠A的余弦,记作;则锐角A的与的比叫做∠A的正切,记作。
(2)锐角A的正弦、余弦、正切都叫做∠A的。
【练习】1、把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2、如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cos α的值等于( )A .34B .43C .45D .35图1 图2 图3 3、在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( )A .a=c ·sinB B .a=c ·cosBC .a=c ·tanBD .以上均不正确 4、在Rt △ABC 中,∠C=90°,32cos =A ,则tanB 等于( )A .35B .C .25.5、、如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______.6、如图3,在Rt △ABC 中,∠C=90°,b=20,c=220,则∠B 的度数为_______.7、已知:α是锐角,247tan =α,则sin α=_____,cos=_______. 8、如图,角α的顶点在直角坐标系的原点,一边在x 轴上,•另一边经过点P ()32,2,求角α的三个三角函数值.9、(2013•自贡)如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是 。
人教版九年级下册数学教案:28.1锐角三角函数
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“锐角三角函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解锐角三角函数的基本概念。锐角三角函数是指在直角三角形中,锐角与三条边的关系所定义的函数,包括正弦(sin)、余弦(cos)和正切(tan)。它们在解决实际问题中起着关键作用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量一个物体的高度,展示如何运用正切函数来计算角度,并进而解决问题。
-锐角三角函数的应用:学会运用锐角三角函数解决实际问题的方法,如测量物体高度、计算角度等。
举例解释:
-通过具体直角三角形的例子,让学生理解正弦、余弦、正切函数的定义,如正弦函数是对边与斜边的比值,余弦函数是邻边与斜边的比值,正切函数是对边与邻边的比值。
-通过绘制正弦、余弦、正切函数的图像,让学生观察并掌握它们的性质,例如正弦函数在0°到90°之间是单调递增的,余弦函数在0°到90°之间是单调递减的。
(完整版)人教版九年级锐角三角函数全章教案
第二十八章锐角三角函数28.1 锐角三角函数(1)教学目标:1、知识与技能:通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
能根据正弦概念正确进行计算。
2、过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.3、情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦341米10米二、探索新知 【活动一】问题的引入【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o ,BC=35m,求AB 根据“在直角三角形中,30o 角所对的边等于斜边的一半”,即可得AB=2BC=70m.即需要准备70m 长的水管结论:在一个直角三角形中,如果一个锐角等于30o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比ABBC,能得到什么结论?(学生思考) 结论:在一个直角三角形中,如果一个锐角等于45o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22。
福建省2024九年级数学下册第28章锐角三角函数28.1锐角三角函数2余弦正切课件新版新人教版
∴cos α=AABC,∴AC=coxs α米.故选 B.
返回 目录
4.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,
MN⊥AB于点N,AN=3,AM=4,求cos B的值.
解:∵MN⊥AB,∴∠ANM=90°=∠C.
又∵∠A=∠A,∴∠B=∠AMN.
在Rt△AMN中,AN=3,MN=4,
3
4
3
4
A.5 B.5 C.4 D.3
返回 目录
7.如图,点A(t,3)在第一象限,OA与x轴正半轴所夹的角 为α,tan α= 3 ,则t的值是( C ) 2 A.1 B.1.5 C.2 D.3
返回 目录
8.【2023·深圳福田区期末】如图,某地修建高速公路,要
从A地向B地修一条隧道(点A,B在同一水平面上).为了
解:如图,过点 P 作 PF⊥x 轴于点 F.∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC.∴tan∠PBF=tan ∠DBC=35.在 Rt△PBF 中,
tan ∠PBF=BPFF.设点 P(x,-x2+3x+4),则-x24+-3xx+4=35,
解得 x1=-25,x2=4(舍去).当 x=-25时,y=--252+3×-25+4=6265,
由勾股定理得AM=5, ∴cos B=cos ∠AMN= MAMN=45 .
返回 目录
5.如图,在Rt△ABC中,∠C=90°,我们把锐角A的对 边与_邻__边_____的比叫做∠A的正切,记作tan A,即tan A=___ab_____.
返回 目录
6.【2023·佛山】在Rt△ABC中,∠C=90°,AB=5, BC=4,则tan A的值为( D )
返回 目录
(2)若BE=6,试求cos∠CDA的值. 解:设⊙O的半径为r.∵OC=3,
人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .
人教版九年级下册数学同步备课教案-第28章 锐角三角函数-28.1 锐角三角函数
28.1 锐角三角函数 第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 的值为22.4.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵,∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时 锐角三角函数教学目标一、基本目标 【知识与技能】1.掌握余弦、正切的定义. 2.了解锐角∠A 的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值. 【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值. 【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P64~P65的内容,完成下面练习. 【3 min 反馈】1.如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =b c ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt△ABC中,∵tan B=AC BC,而∠B=∠CAD,∴tan α=2BC=12,∴BC=4,∴BD=BC-CD=4-1=3.活动3拓展延伸(学生对学)【例3】如图,在Rt△ABC中,∠C=90°,根据三角函数定义尝试说明:(1)sin2A+cos2A=1;(2)sin A=cos B;(3)tan A=sin Acos A.【互动探索】用定义表示出sin A、cos A、cos B、tan A→计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a2+b2=c2,而sin A=ac,cos A=bc,∴sin2A+cos2A=a2c2+b2c2=c2c2=1.(2)∵sin A=ac,cos B=ac,∴sin A=cos B.(3)∵tan A=ab,sin Acos A=acbc=ab,∴tan A=sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3课堂小结,当堂达标(学生总结,老师点评)锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°=32,tan 30°=33.2.sin 60°=32,cos 60°=12,tan 60°= 3. 3.sin 45°=22,cos 45°=22,tan 45°=1. 环节2 合作探究,解决问题活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值. 【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A )A .20°B .30°C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3课堂小结,当堂达标(学生总结,老师点评)特殊角的三角函数值:30°45°60°sin α122232cos α322212tan α331 3练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x ≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC 中,AB =8,AC =9,∠A =48°.求: (1)AB 边上的高(精确到0.01); (2)∠B 的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CH AC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!。
新人教版九年级数学下册《28章锐角三角函数28.1特殊角的三角函数值及用计算器求角的三角函数值》教案_9
,求 ∠A=_____________ ,
【更上一层楼】 计算:
(1)( 2018安顺中考 ) -12018
3-2
(2)( 2017安顺中考 )3 tan 30o 2 (3)( 2016 安顺中考 ) cos 60 o 2 1
tan60o (
3.14) o
1 ()
2
2
3
1 ()
1
(3
3) o ( 1)2017《特殊角的三角函数值》教学设计
教学目标
1.能推到并熟记 30o,45o,60o 角的三角函数值,并能根据这些值说出对应锐角的度数
.
2.能熟练计算含 30o,45o,60o 角的三角函数的运算式 .
教学重难点
重点: 熟记 30o,45o,60o 角的三角函数值,计算含 30o,45o,60o 角的三角函数的运算式 . 难点: 30o,45o,60o 角的三角函数值的推到过程 . 教学设计
【温故知新】 问题:什么叫做正弦、余弦以及正切?
对边 a sin A
斜边 c 邻边 b cos A 斜边 c tan A 对边 a 邻边 b
【探究新知】 观察下图,回答问题:
A c
C
b b
a
图中有几个不同的锐角?你知道它们的正弦、余弦及正切的值吗?
A B
师:其实,在前面我们已经求过了,现在让我们我们一起来简单地回忆一下! 推到过程:
1.设 AC=1,则:
AB=2, 3
01 sin 30
2
cos30o 3 2
tan 30o
3
3
o
3
sin 60
2
cos60o 1 2
tan 60o 3
2. 设 AC=1,则
新人教版九年级数学下册《28章锐角三角函数28.1特殊角的三角函数值及用计算器求角的三角函数值》教案_5
特殊角的锐角三角函数值及用计算器求角的三角函数值一、学生知识状况分析学生的知识技能基础:本节课前学生已经学习了正切、正弦、余弦的定义学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标本节课教学目标如下:知识与技能:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义。
2.能够进行30°、45°、60°角的三角函数值的计算3.会用计算器求一个角的锐角函数值。
过程与方法:1.经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力。
2. 经历计算器求三角函数值的过程培养学生的动手能力。
情感态度与价值观:培养学生把实际问题转化为数学问题的能力。
三、教学重难点教学重点:能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。
教学难点:三角函数值的应用四、教具学具三角尺,直尺,多媒体课件,科学计算器五、教学流程(一)出示学习目标1.自主探索,推导出30°、45°、60°角的三角函数值。
2.熟记三个特殊锐角的三角函数值,并能准确地加以运用。
3.会使用科学计算器求锐角的三角函数值。
4.会根据锐角的三角函数值,借助科学计算器求锐角的大小。
(二)复习巩固1.如图所示在 Rt △ABC 中,∠C=90°。
(1)a 、b 、c 三者之间的关系是,∠A+∠B= 。
九年级人教版数学第二学期第28章锐角三角函数整章知识详解
九年级数学第28章锐角三角函数
【例】求下列各式的值.
(1) cos260°+sin260°
(2) csoins4455
-tan45
【解析】(1)cos²60°+sin²60°
cos²60°表示 (cos60°)², 即cos60°的平方.
=( 12)²+(
3 2
)²
=1;
(2)cos 45 tan 45
九年级数学第28章锐角三角函数
2.(黄冈中考)在△ABC中,∠C=90°,sinA=
则tanB=( B )
A. 4
B. 3
C. 3
D. 4
3
4
5
5
3.(丹东中考)如图,小颖利用有一
个锐角是30°的三角板测量一棵树的高度, 30 已知她与树之间的水平距离BE为5m,AB为 °A
B 1.5m(即小颖的眼睛距地面的距离),那
九年级数学第28章锐角三角函数
【例】如图,在Rt△ABC中,∠C=90°,BC=6,sinA= 3 ,
求cosA,tanB的值.
5
B
【解析】 sinA BC ,
AB
6
AB BC 6 5 10,
sinA 3
又 AC AB2 BC2 102 62 8,
A
C
cosA AC 4 , tanB AC 4 .
100
D.不能确定
3.如图 A
B
1
3
,则 sinA=___2___ .
30°
C
7
九年级数学第28章锐角三角函数
1.(温州中考)如图,在△ABC中,∠C=90°, AB=13,
【人教版】2019年春九年级数学下册教案:28.1 第2课时 余弦函数和正切函数
28.1锐角三角函数第2课时 余弦函数和正切函数1.理解余弦、正切的概念;(重点)2.熟练运用锐角三角函数的概念进行有关计算.(重点)一、情境导入教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义?学生回答后教师提出新问题:在上一节课中我们知道,如图所示,在Rt △ABC 中,∠C =90°,当锐角∠A 确定时,∠A 的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么?二、合作探究探究点一:余弦函数和正切函数的定义 【类型一】 利用余弦的定义求三角函数值在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( )A.513B.512C.1213D.125解析:∵Rt △ABC 中,∠C =90°,AB =13,AC =12,∴cos A =AC AB =1213.故选C. 方法总结:在直角三角形中,锐角的余弦等于这个角的邻边与斜边的比值. 变式训练:见《学练优》本课时练习“课堂达标训练” 第2题 【类型二】 利用正切的定义求三角函数值ABC 的三个顶点均在格点上,则tan A =( )A.35B.45C.34D.43解析:在直角△ABC 中,∵∠ABC =90°,∴tan A =BC AB =43.故选D.方法总结:在直角三角形中,锐角的正切等于它的对边与邻边的比值. 变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 探究点二:三角函数的增减性【类型一】 判断三角形函数的增减性)A .增大B .减小C .不变D .不确定解析:当角度在0°~90°之间变化时,余弦值随着角度的增大而减小,故选B. 方法总结:当0°<α<90°时,cos α的值随着角度的增大(或减小)而减小(或增大). 【类型二】 比较三角函数的大小sin70( )A .tan70°<cos70°<sin70°B .cos70°<tan70°<sin70°C .sin70°<cos70°<tan70°D .cos70°<sin70°<tan70°解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又∵cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°.故选D.方法总结:当角度在0°≤∠A ≤90°之间变化时,0≤sin A ≤1,0≤cos A ≤1,tan A ≥0. 探究点三:求三角函数值【类型一】 三角函数与圆的综合如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD .(1)求证:DC =BC ;(2)若AB =5,AC =4,求tan ∠DCE 的值.解析:(1)连接OC ,求证DC =BC 可以先证明∠CAD =∠BAC ,进而证明DC ︵=BC ︵;(2)由AB =5,AC =4,可根据勾股定理得到BC =3,易证△ACE ∽△ABC ,可以求出CE 、DE 的长,在Rt △CDE 中根据三角函数的定义就可以求出tan ∠DCE 的值.(1)证明:连接OC .∵OA =OC ,∴∠OAC =∠OCA .∵CE 是⊙O 的切线,∴∠OCE =90°.∵AE ⊥CE ,∴∠AEC =∠OCE =90°,∴OC ∥AE ,∴∠OCA =∠CAD ,∴∠CAD =∠BAC ,∴DC ︵=BC ︵.∴DC =BC ;(2)解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC =AB 2-AC 2=52-42=3.∵∠CAE=∠BAC ,∠AEC =∠ACB =90°,∴△ACE ∽△ABC ,∴EC BC =AC AB ,即EC 3=45,EC =125.∵DC =BC =3,∴ED =DC 2-CE 2=32-(125)2=95,∴tan ∠DCE =ED EC =95125=34.方法总结:证明圆的弦相等可以转化为证明弦所对的弧相等.利用圆的有关性质,寻找或构造直角三角形来求三角函数值,遇到比较复杂的问题时,可通过全等或相似将线段进行转化.变式训练:见《学练优》本课时练习“课后巩固提升” 第5题【类型二】 利用三角形的边角关系求三角函数值如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解析:根据tan ∠BAD =34,求得BD 的长.在直角△ACD 中由勾股定理可求AC 的长,然后利用正弦的定义求解.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213. 方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计1.余弦函数的定义;2.正切函数的定义;3.锐角三角函数的增减性.在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会做题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目.通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念和基础知识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.1 锐角三角函数
锐角三角函数(第2课时)
学习目标
1.探究体验,当直角三角形的锐角固定时,它是邻边与斜边、对边与邻边都固定这一事实.
2.理解余弦、正切的概念,能根据余弦、正切的概念进行相关计算.
学习过程
一、自主复习
1.在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都是.
2.在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的,记作.
二、新知探究
1.问题如图,在Rt△ABC和Rt△A'B'C',中,∠C=∠C'=90°,∠A=∠A'.
那么(1)AA
AA 与A'A'
A'A'
有什么关系?(2)AA
AA
与A'A'
A'A'
呢?
解析:(1)∵∠C=∠C'=90°,, ∴△ABC∽△A'B'C',
∴,
即AA
AA =A'A'
A'A'
.
(3)∵△ABC∽△A'B'C', ∴,
即AA
AA =A'A'
A'A'
.
2.结论:
(1)在Rt△ABC中,∠C=90°,∠A的邻边
斜边
叫做∠A的,记作,即cos
A=.
(2)在Rt△ABC中,∠C=90°,∠A的对边
∠A的邻边
叫做∠A的,记作,即tan
A=.
(3)锐角A的正弦、余弦、正切都叫做∠A的.
三、例题探析
1.例题:(教材例2)如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,求sin A、 cos A、tan A 的值.
解:由勾股定理,得
AC===,
故sin A=∠A的对边
斜边
==,
cos A=∠A的邻边
斜边
==,
tan A=∠A的对边
∠A的邻边
==.
2.拓展:在例题的条件下,求sin B,cos B,tan B的值.
解:
四、知识梳理
本节课你所学习的三个定义分别是什么?
答:
评价作业(满分100分)
1.(8分)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则下列等式中不正确的是()
A.a=c×sin A
B.b=a×tan B
C.b=c×sin B
D.c=A
cos A
2.(8分)已知Rt△ABC中,∠C=90°,AB=5,BC=3,则tan B的值是()
A.3
5B.3
4
C.4
5D.4
3
3.(8分)已知Rt△ABC中,∠C=90°,tan A=4
3
,BC=8,则AC等于()
A.6
B.32
3
C.10
D.12
4.(8分)如图所示,若cos α=√10
10
,则sin α的值为()
A.√10
10
B.2
3
C.3
4
D.3√10
10
5.(8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则cos∠ABC的值是.
6.(8分)如图所示,AB是☉O的直径,AB=15,AC=9,连接BC,则tan∠ADC=.
7.(8分)如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=3
,则tan B
5
的值是.
,AB=26.求cos B及AC的长.
8.(10分)在Rt△ABC中,∠C=90°,tan A=2
3
9.(10分)如图所示,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.
(1)求证AC=BD;
,BC=12,求AD的长.
(2)若sin C=12
13
10.(12分)如图所示,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=α.
(1)求sin α,cos α,tan α的值;
(2)若∠B=∠CAD,求BD的长.
11.(12分)在Rt△ABC中,∠C=90°,请利用锐角三角函数的定义及勾股定理探索∠A的正弦、余弦之间的关系.
参考答案
学习过程
一、自主复习
1.固定的
2.正弦 sin A 二、新知探究 1.解析:(1)∠A=∠A' AA A 'A '
=AA
A 'A '
(2)AA A 'A '=AA
A 'A ' 2.结论: (1)余弦 cos A A A (2)正切 tan A A A
(3)锐角三角函数 三、例题探析
1.解:√AA 2-AA 2 √102-62 8
AA AA 35 AA AA 45 AA AA 3
4
2.解:sin B=AA
AA =4
5,cos B=AA AA =3
5,tan B=AA
AA =4
3. 四、知识梳理
答:略
评价作业
1.D
2.D
3.A
4.D
5.√5
5 6.3
4 7.2
3
8.解:在Rt △ABC 中,∠C=90°,∴tan A=AA
AA =2
3,∴设BC=2k ,AC=3k ,由勾股定理可得
AB=√13k ,∴√13k=26,∴k=2√13,∴BC=2k=4√13,AC=3k=6√13,∴cos B=AA AA =4√1326
=
2√1313
.∴
AC 的长为6√13,cos B=
2√1313
.
9.(1)证明:∵AD 是BC 边上的高,∴AD ⊥BC ,∴∠ADB=90°,∠ADC=90°.在Rt △ABD 和Rt △ADC 中,tan B=AA
AA ,cos ∠DAC=AA
AA ,又∵tan B=cos ∠DAC ,∴AA
AA =AA
AA ,∴AC=BD.
(2)解:在Rt △ADC
中,sin C=AA
AA =12
13
,故可设AD=12k ,AC=13k ,∴CD=√AC 2-AD 2
=5k ,∵
BC=BD+CD ,又AC=BD ,∴BC=13k+5k=18k ,∵BC=12,∴18k=12,∴k=2
3,∴AD=12k=12×2
3=8.
10.解:在Rt △ACD 中,∵AC=2,DC=1,∴AD=√AC 2+CD 2=√5.(1)sin α=CD
AD =
√
5
=√5
5
,cos α=AC AD =√5=
2√55
,tan α=CD AC
=1
2.
(2)在Rt △ABC 中,tan B=AC
BC ,即tan α=2
BC =1
2,∴BC=4,∴BD=BC-CD=4-1=3. 11.解:∠A 的正弦、余弦值的平方和等于1,理由如下:
∵sin A=A
A ,cos A=A
A ,a 2+b 2=c 2,
∴sin2A+cos2A=(A
A )2+(A
A
)2=A2+A2
A2
=1.。