高中数学解题思路
高中数学19种答题方法+6种解题思想
高中数学19种答题方法 6种解题思想1.函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用三合一定理。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接心心距创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学解题思路方法与技巧分析
高中数学解题思路方法与技巧分析高中数学是学生们学习过程中的一门重要学科,数学不仅是一门学科,更是一种思维方式和解决问题的方法。
掌握高中数学解题的思路、方法和技巧对学生们来说至关重要。
本文将从解题的一般思路入手,分析高中数学解题的方法与技巧,希望能为学生们提供一些解题的帮助。
一、数学解题的一般思路1. 理清题意。
在解题之前,首先要仔细阅读题目,理解题目所描述的情境或问题,找出题目中涉及的数学概念和知识点。
只有理清题意,才能正确地解答问题。
2. 探索问题,分析问题。
在理清题意的基础上,要对问题进行分析,弄清问题所涉及的数学原理和解决方法。
这个阶段通常需要考虑问题的各种可能性,进一步理解问题。
要灵活地运用各种数学思维方法,进行深入探讨,挖掘问题的本质。
3. 创立解决问题的数学模型。
在理解和分析问题后,要根据题目中的信息,建立问题的数学模型,将问题转化为数学形式,从而更好地解决问题。
4. 运用数学工具解决问题。
在建立了数学模型之后,就可以运用相应的数学原理、定理和方法,来解决问题。
这一步可能涉及到代数运算、几何推理、函数分析等等,需要根据具体情况进行灵活运用。
5. 检验与分析解答结果。
在解答问题之后,要对解答结果进行检验和分析,确认解答是否符合题目的要求,是否存在逻辑和数学上的错误,并且可以从解答结果中得出一些结论或启示。
二、高中数学解题的方法与技巧1. 掌握基本概念和定理。
在解题过程中,必须熟练掌握基本的数学概念和定理,比如三角函数、数列、导数积分等等,只有掌握了这些基本知识,才能更好地解决问题。
2. 善于画图。
在解决几何题目时,可以通过画图的方式,更好地理解题目并得出解答,画图是解决几何问题的有效方法,可以帮助我们看清问题的本质。
3. 灵活运用公式和定理。
在解题过程中,灵活运用各种数学公式和定理,可以帮助我们更快地解决问题,但也要注意不要机械应用,要结合具体情况适当变形或组合使用。
4. 善于进行逻辑推理。
高中数学解题方法及步骤_答题技巧
高中数学解题方法及步骤_答题技巧高中数学解题方法及步骤一、配方法配方法是对数学式子进行一种定向变形(配成完全平方)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用裂项与添项、配与凑的技巧,从而完成配方。
有时也将其称为凑配法。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。
待定系数法解题的关键是依据已知,正确列出等式或方程。
使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。
例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。
高中数学解题技巧方法有哪些
高中数学解题技巧方法有哪些(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!高中数学解题技巧方法有哪些关于高中数学解题技巧方法有哪些关于高中数学解题技巧方法有哪些?小伙伴们可有了解过?不妨一起来关注下吧!那么,以下是本店铺为大家带来的关于高中数学解题技巧方法有哪些,希望您能喜欢!关于高中数学解题技巧方法有哪些1高中数学解题技巧归纳与总结①背例题:首先背例题的主要原因就是能够在考场上遗忘了一些重要公式的时候,可以用题来套公式,这样可以更好的帮助你理解试题,更好的解决试题中遇到的问题。
高中数学解题步骤指导
高中数学解题步骤指导数学是一门需要严谨思维和一定方法的学科,解题过程是其中的关键。
下面将给大家介绍几个高中数学解题的步骤指导,希望对大家的学习有所帮助。
一、理清题意和要求解题的第一步是仔细阅读题目,理解题目所给的条件和要求。
在阅读和理解的过程中,可以将问题中关键的信息进行标注或画图辅助理解。
确保自己对问题的描述和要求完全掌握。
二、分析解题思路在理解题目和要求后,需要根据具体的情况选择适当的解题方法。
这一步要求对相关的数学知识进行分析和运用。
可以根据题目给出的条件,运用代数、几何、概率等数学方法进行推理和计算。
三、制定解题计划在确定解题思路后,制定详细的解题计划非常重要。
解题计划可以包括列方程、绘制图形、设立变量、应用定理等具体步骤。
制定解题计划可以帮助我们更加有条理地解决问题,减少解题过程中的错误。
四、执行解题计划执行解题计划意味着按照之前制定的计划进行具体的步骤操作。
在此过程中,需要注意运算的准确性和步骤的清晰性。
可以采用逐步分析、逐步推理的方法,确保每个步骤都是正确的。
五、回顾和检验解答解题完成后,需要进行回顾和检验解答的过程。
回顾是为了确保解题过程中没有遗漏关键信息或计算错误,检验是为了核实解答是否符合题目的要求。
回顾和检验的过程可以帮助我们发现问题并及时进行修正。
六、总结解题经验解题的最后一步是总结解题经验,将解题过程中的方法和思路进行归纳和总结。
这样可以帮助我们在以后遇到类似问题时更加快速和准确地解决。
同时,也可以帮助我们深化对数学知识的理解和应用。
通过以上的步骤指导,我们可以更加有序地解答高中数学题目。
当然,解题过程中的关键还是要多加练习和思考,加深对数学知识的理解和应用能力。
相信只要大家坚持不懈地学习和探索,数学成绩一定会有所提高!。
高中中的解题思路与答题技巧
高中中的解题思路与答题技巧高中数学解题思路与答题技巧高中数学作为一门重要的学科,对学生的综合能力有着重要的培养作用。
在学习高中数学的过程中,解题思路和答题技巧是至关重要的。
本文将介绍高中数学解题思路与答题技巧,帮助学生更好地应对数学考试。
一、解题思路1. 审题仔细、理解题意:在解决任何问题之前,首先要仔细审题,理解题目的要求。
要确保对题目的意思没有理解上的偏差,避免走入误区。
2. 确定解题方法:针对不同类型的题目,要选择相应的解题方法。
比如,在解决代数方程题时,可以运用因式分解、配方法等;在几何题中,则要熟悉几何定理和定律,灵活应用。
3. 分析问题、拆解难题:将复杂的问题拆解为若干较为简单的小问题进行分析,有助于更好地理解问题与解决问题。
这样做能够提高解题的效率和准确性。
4. 快速推理、形成思路:在解题过程中,要利用已知条件和解题技巧,进行快速推理。
形成解题的思路,避免走弯路。
通过构建合理且可行的思路,有助于解题的顺利进行。
5. 反复检查、确保准确:对于解答题来说,不仅要按照思路解决问题,还要进行反复检查,确保得出的结论准确无误。
对于选择题来说,也要仔细核对选项,确认最终答案。
二、答题技巧1. 掌握基本概念和公式:高中数学中有很多重要的基本概念和公式,这些都是解题不可或缺的基础。
要熟练掌握这些概念和公式,并能够熟练灵活地运用到解题中。
2. 积累解题经验:通过大量的练习和实践,积累解题经验是非常重要的。
做题时要注意总结方法和技巧,遇到新题目时能够迅速找到解题的思路。
3. 注意留白和标记重点:在解答题目时,要注意合理利用卷面空白处,留下足够的计算空间。
同时,对于关键步骤和重要中间结果,要做好标记,便于审阅和检查。
4. 注重解题过程的演算:在解答过程中,不仅要写出最终答案,还要详细展示解题过程,注重中间步骤的演算。
这样不仅方便检查,也有助于得分。
5. 注意单位和精度:在解决实际问题时,要注意单位的转换和保持精度。
高中数学万能解题模板
高中数学万能解题模板高中数学万能解题模板 1①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
⑩⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高中数学万能解题模板 2模板1 三角函数计算问题第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板2 对称轴、距离第一步找到周期和对称轴第二步确定对称轴距离第三步写出关系式模板3 拼凑计算问题第一步化简第二步通过拼凑,写出我们想要的诱导公式第三步求出结果模板4 三角等式的证明第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板5 求三角函数的定义域第三步结合定义域求出最值模板7 二次函数求最值第一步化简成二次函数的形式第二步配方第三步考虑定义域求出最值模板8 均值求最值第一步化简第二步转化为均值不等式的形式第三步当且仅当求出最值模板9 构造函数求最值第一步化简第二步构造函数第三步转化成见过的形式模板10 放缩求最值第一步找到或者创造放缩点第二步转化为我们见过的形式第三步搞定模板11 解三角形求最值第一步利用解三角形,一般是余弦定理第二步均值不等式第三步搞定模板12 向量问题第一步把向量问题转化为三角函数问题第二步利用三角函数解决模板13 判断形状第一步正弦或余弦定理第二步角化边或边化角第三步判断形状模板14 求面积第一步化简第二步求出夹角和临边第三步利用公式计算面积模板15 找规律第一步观察,找到见过的或会做的形式第二步利用见过的东西写出规律第三步生疏不可怕,只要计算对,肯定没问题模板16 实际问题第一步将实际问题转化为数学问题第二步利用三角函数,求出结果第三步将数学问题转化为实际问题。
高中数学解题方法
高中数学解题方法
1. 利用平行四边形的性质解题
对于已知的平行四边形,我们可以利用其特点来解决相关问题。
例如,已知平行四边形的两条边相等,我们可以利用这一性质来求解未知边长。
2. 利用相似三角形的性质解题
在一些几何题中,我们可以利用相似三角形的性质来求解未知变量。
根据相似三角形的特点,可以建立等式,从而解出未知量。
3. 利用勾股定理解题
勾股定理是解决直角三角形问题的基本定理。
通过应用勾股定理,我们可以求解三角形的边长、角度等问题。
4. 利用二次方程解题
在代数问题中,一些问题可以通过建立二次方程来求解。
根据二次方程的求解方法,我们可以得到问题的答案。
5. 利用排列组合解题
排列组合是数学中用于解决计数问题的方法。
通过应用排列组合的原理,我们可以求解一些排列、组合的问题。
6. 利用函数的图像解题
在函数问题中,我们可以通过求解函数的零点、极值点等来解题。
利用函数的图像,我们可以获取一些与函数相关的信息。
7. 利用数列的性质解题
对于数列相关的问题,我们可以利用数列的递推关系、通项公式等性质来求解。
通过找到数列的规律,我们可以得到问题的答案。
8. 利用平面向量解题
平面向量是几何中常用的工具之一。
通过运用平面向量的性质,我们可以解决一些与向量相关的问题。
高中数学解题大招,解题模型,提分秘籍,高中家长都在看
高中数学解题大招,解题模型,提分秘籍,高中家长都在看高中数学是一个相对较难的学科,不少学生在学习时遇到了许多困难。
针对这个问题,以下是一些解题大招、解题模型和提分秘籍。
一、解题大招。
1.理清思路:在做数学题时,必须先理清思路,理清每一道题目的解题步骤,避免盲目求解。
2.画图分析:很多数学题都需要画图来解决问题。
画图有助于更好地理解问题、准确表达思维和从容解题。
3.建立数学模型:数学建模是一种数学智慧的应用,必须对不同题型建立相应的数学模型,可以把复杂的问题简单化,最终解决问题。
4.积极研究:积极研究教师发布的每道题目,分析题干和答案,多按照一定套路思考解题思路,提高解题技巧。
将解题困难部分列于数学笔记本上,应该随时找老师、同学讨论。
5.自己解题:在课后自主解题,通过不断练习、反复推敲巩固知识点和掌握解题思路。
二、解题模型。
1.构建二元一次方程组、求方程组解。
2.利用函数与导数的关系求最值。
3.数学归纳法证明等。
三、提分秘籍。
1.攻克数学基础知识,巩固基础。
初中时期数学基础的掌握对高中数学的学习至关重要。
2.模拟考情较真实,切莫错过学习机会。
不轻视同学的考试成绩,多看一些模拟题,研究常考题型。
3.课上积极思考,用课下时间练习巩固。
每节课的时间都应该充分利用,积极思考问题,利用下课时间教师留下的作业练习巩固。
4.勤加思考,多思多练可提高升学率。
应该不断思考问题,拓宽思维,多练习提高对数学的认识和掌握程度。
总之,高中数学的学习离不开大量的实践和练习,并且需要建立自己的解题模型,理清思路,注重基础知识的掌握和复习。
只要坚持不懈,就可以取得良好的成绩。
高中数学这52种快速解题方法
高中数学这52种快速解题方法高中数学是学生学习中的一门重要课程,在高中数学学习过程中,有许多方法可以帮助我们快速解题。
本文将介绍52种高中数学的快速解题方法,希望对学生们在数学学习时有所帮助。
一、方程的快速解题方法:1.牛顿-莱布尼茨公式:对于高次方程,可以使用牛顿-莱布尼茨公式快速求导以及求解,以便解决方程。
2.易得关系:在解二元一次方程时,可以通过观察系数之间的关系,直接得到方程的解。
3.倍数法:有时,我们可以通过将方程两边同乘一个常数,以便简化方程求解的过程。
4.等比数列求和公式:在解等差数列求和问题时,我们可以使用等比数列求和公式,快速求解。
5.同底数幂等于同指数的求解法:当两个数的底数相等,指数相等时,我们可以将两个底数合并在一起,然后得到一个新的指数,进行计算。
二、几何图形的快速解题方法:1.同余三角形的性质:在几何图形中,应用同余三角形的性质,可以简化计算过程,快速解题。
2.双曲线的对称性:对于双曲线,我们可以利用其对称性质,快速求解问题。
3.相似三角形的定理:应用相似三角形的定理,可以快速解决三角形相似问题。
4.平行四边形的性质:利用平行四边形的性质,可以快速求解平行四边形的各种问题。
5.三角恒等式:在解三角形相关问题时,利用三角恒等式可以快速求解。
三、概率问题的快速解题方法:1.排列组合公式:在解决排列组合问题时,可以利用排列组合公式,快速计算结果。
2.互斥事件的概率:如果两个事件是互斥的,即它们不可能同时发生,我们可以直接将它们的概率相加来计算合并事件的概率。
3.独立事件的概率:对于独立事件,即它们的发生不受其他事件的影响,我们可以将它们的概率相乘来计算复合事件的概率。
4.条件概率:在解条件概率问题时,可以根据已知条件,利用条件概率公式,快速计算结果。
5.事件的补集:对于事件的补集,我们可以通过计算事件的补集的概率,再用1减去它的概率,来计算事件的概率。
四、数列的快速解题方法:1.利用等差数列的前n项和公式:在解等差数列问题时,我们可以利用等差数列的前n项和公式,快速求解。
常用的高中数学解题方法
常用的高中数学解题方法高中数学是一门比较重要的学科,涉及到很多基础知识和解题方法,也成为了许多学生的难点和瓶颈。
不同的数学问题需要不同的解题方法,下面将会介绍几种常用的高中数学解题方法。
一、代数法代数法是高中数学解题中常见的一种方法,主要是通过代数式运算推导出问题的答案。
在使用代数法解题时,需要将问题描述为代数式,再通过方程的求解或方程组的解法等进行求解。
比如一道经典的解方程题目是:已知$x + y = 3$,$x^2+y^2=5$,求$x$、$y$。
我们可以将该问题表示为两个方程式:$$\begin{cases}x + y = 3\\x^2+y^2=5\end{cases}$$然后通过变形、相减、代入等方法运算,最终得到$x=1$,$y=2$。
二、几何法几何法是通过几何图形对数学问题进行分析和计算的一种方法。
在使用几何法解题时,首先需要画出与问题相关的几何图形,并根据数学定理进行推导和计算。
比如一道经典的解几何题目是:求下列图形的面积和周长。
解题时,我们需要根据图形定性分析,确定所需的计算方法。
对于第一个正六边形,我们可以使用正六边形面积公式:$A=6×\frac{a^2\sqrt{3}}{4}$($a$ 为正六边形边长),计算出其面积。
对于第二个内接圆,我们可以使用圆的面积公式:$S=πr^2$($r$ 为圆半径),计算出其面积和周长。
三、函数法函数法是高中数学解题中非常常见的一种方法,主要是通过函数的性质和计算来解决问题。
在使用函数法解题时,需要根据函数的性质和定义,进行推导和计算。
比如一道经典的解函数题目是:已知函数$f(x)=\sqrt{x+2}$,求函数的定义域。
我们可以通过函数定义推导,得到$\sqrt{x+2}\ge0$,即$x+2\ge0$,于是得到函数的定义域为$[-2,+\infty)$。
四、概率法概率法是通过概率的计算来解决数学问题的一种方法。
在使用概率法解题时,需要根据问题的不同,确定所需的概率计算方法,并进行计算。
高中数学答题技巧有哪些_解题方法
高中数学答题技巧有哪些_解题方法高中数学答题技巧有哪些1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系。
高中数学答题方法填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些。
选择题解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。
尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解答题解答题与填空题比较,同属提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。
填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。
其次,试题内涵,解答题比起填空题要丰富得多。
学好高中数学的32个技巧
学好高中数学的32个技巧1.注重基础知识:高中数学是建立在初中数学的基础上的,要牢固掌握初中数学的基本概念和原理。
2.形象思维:将抽象的数学问题转化为具体的图形,帮助理解和解决问题。
3.做好笔记:注意记下重要的理论定理和解题方法,方便复习和温故知新。
4.动手实践:实际操作是学好数学的关键,多进行计算和练习,提高运算和推导能力。
5.独立思考:养成独立思考的习惯,不轻易依赖别人。
6.竞赛训练:参加数学竞赛可以锻炼思维和解决问题的能力。
7.留白技巧:遇到复杂问题时,可以通过留白法将问题简化,更易于解决。
8.反证法:通过假设与事实相反的情况推导出矛盾,证明原命题成立。
9.数学语言:熟悉并合理运用数学概念和语言,理解问题的本质。
10.等价转化:将复杂问题转化成简单易解的等价问题。
12.概念梳理:掌握数学中的重要概念和定义,注意其中的逻辑和内涵。
13.典型例题:多做一些典型的例题,掌握解题的思路和方法。
14.学会总结:把掌握的数学知识和解题方法进行总结和整理,形成自己的方法和思考方式。
16.创新思维:尝试用不同的方法解决问题,发散思维,培养创新精神。
17.注意细节:数学问题中的细节往往决定了解答的正确性,要注重细节,尤其是运算和符号的使用。
18.积极思考:坚持主动思考,遇到难题时不轻易放弃,多进行思维激发。
19.实践运用:将数学运用到实际问题中,提高数学的实用性和感知度。
20.结合实验:在学习几何和概率等知识时,可以结合实践和实验,增加对知识的理解和记忆。
21.刻意训练:有目的地选择一些难度适中的习题进行训练,不仅巩固知识,还提高应对困难的能力。
23.定期复习:数学知识是渐进式的,定期复习可以防止遗忘并加深记忆。
24.善用工具:利用计算器、几何工具等辅助工具,提高效率和准确性。
25.制定计划:合理制定学习计划,分解学习目标和步骤,有条不紊地进行学习。
26.解数学语言:理解数学问题的表达和描述,弄清楚问题所要求的是什么。
高中数学快速解题大招
高中数学快速解题大招
以下是一些高中数学快速解题的大招:
1. 熟悉基本运算法则:加减乘除、有余数、不足数、括号等。
熟练掌握基本运算法则可以大大简化数学计算过程。
2. 利用数学公式:数学公式是解题的基础。
通过熟记各种公式,可以迅速找到问题的解法。
3. 学会画图:画图是数学解题的有效方法。
通过画图可以更加直观地表达问题,帮助自己找到解题思路。
4. 利用逻辑推理:对于一些复杂的数学问题,可以通过逻辑推理来找到解题思路。
这需要对问题有深入的理解,并具备较强的逻辑思维能力。
5. 利用图形:图形是数学中的重要工具,通过图形可以更加直观地表达问题。
对于一些复杂的图形问题,可以通过绘制图形或使用图形计算器来解决。
6. 利用特殊化:通过特殊化的方式,可以将一个复杂的问题转化为简单的形式,从而更容易找到解题思路。
7. 利用问老师、问同学:在解决数学问题时,可以向老师或同学寻求帮助。
他们可以提供解题思路、技巧和错误反馈,帮助自己更好地解决问题。
8. 学会归纳、演绎和类比:归纳是从一般情况推导出特殊情况的方法;演绎是从特殊情况推导出一般情况的方法;类比是将一种情况与另一种情况进行比较,从而得到新的结论。
这些方法可以帮助自己
快速找到解题思路。
高中数学解题方法技巧
高中数学解题方法技巧在高中阶段,数学是一个非常重要的学科,有些同学可能会觉得数学比较难学,但只要掌握了解题的方法和技巧,就能轻松应对各种数学题目。
下面将分享一些高中数学解题的方法和技巧。
一、审题小技巧在解数学题时,首先要仔细审题,弄清题目要求,了解题目的背景和条件。
可以通过画图、列式、设未知数等方法来帮助理解题意。
在审题的过程中,还要留意题目中可能存在的陷阱,避免盲目下结论,导致答案错误。
二、掌握基本公式在解各类数学题目时,必须牢记数学公式和定理,特别是几何相关的公式。
比如勾股定理、正弦定理、余弦定理等,熟练掌握这些公式可以帮助快速解题。
此外,也要了解各种基本函数的性质和相关公式,比如指数函数、对数函数等。
三、灵活应用解题方法不同的数学题目有不同的解题方法,要根据题目的特点灵活选择解题方法。
常见的解题方法包括代数法、几何法、逆向思维法等。
在解题时,可以通过分析题目的结构和特点,找到合适的解题思路,避免强行使用错误的方法。
四、建立数学思维数学是一门逻辑性很强的学科,要培养自己的数学思维,善于归纳总结问题的解题方法。
通过做大量的练习题,建立起对数学问题的敏感度和思维习惯,能够更好地理解问题并迅速解决。
五、合理规划解题步骤在解数学题时,要合理规划解题步骤,按部就班地进行,不要操之过急。
可以先从简单的问题入手,逐步提高难度,慢慢适应和掌握各类题型。
在解题过程中,注意化繁为简,将复杂的问题拆分为易解的小问题。
六、多角度思考问题解数学题时,可以从多个角度分析问题,思考不同的解题思路。
有时候换一种思维方式可能会得到不同的答案,所以要保持思维的开放性和灵活性,善于尝试不同的解题方法。
七、勤于总结经验在解题过程中,要勤于总结解题的经验和方法,将解题技巧归纳为思维模式,形成自己的解题体系。
通过总结提炼,逐步提高解题的效率和准确性,为将来更复杂的数学问题做好准备。
总之,高中数学解题并不难,只要掌握了正确的方法和技巧,积极学习并不断练习,相信每位同学都能够在数学领域取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、配方法二、换元法三、待定系数法四、定义法五、数学归纳法六、参数法七、反证法八、消去法九、分析与综合法十、特殊与一般法十一、类比与归纳法十二、观察与实验法第一章高中数学常用的数学思想一、数形结合思想二、分类讨论思想三、函数与方程思想四、转化(化归)思想第二章高考热点问题和解题策略一、应用问题二、探索性问题三、选择题解答策略四、填空题解答策略附录………………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………参考答案…………………………前言第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a 2+b2=(a+b)2-2ab=(a-b)2+2ab;a 2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a 2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a 2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x2+12x =(x +1x )2-2=(x -1x)2+2 ;…… 等等。
Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1♦a5+2a3♦a5+a3∙a7=25,则 a3+a5=_______。
2. 方程x 2+y2-4kx -2y +5k =0表示圆的充要条件是_____。
A.14<k<1 B. k<14或k>1 C. k ∈R D. k =14或k =13. 已知sin4α+cos4α=1,则sin α+cos α的值为______。
A. 1B. -1C. 1或-1D. 0 4. 函数y =log 12(-2x2+5x +3)的单调递增区间是_____。
A. (-∞, 54] B. [54,+∞) C. (-12,54] D. [54,3)5. 已知方程x2+(a-2)x+a-1=0的两根x1、x2,则点P(x 1,x 2)在圆x 2+y 2=4上,则实数a =_____。
【简解】 1小题:利用等比数列性质am p -a m p +=a m 2,将已知等式左边后配方(a 3+a 5)2易求。
答案是:5。
2小题:配方成圆的标准方程形式(x -a)2+(y -b)2=r2,解r 2>0即可,选B 。
3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出sin αcos α,然后求出所求式的平方值,再开方求解。
选C 。
4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。
选D 。
5小题:答案3-11。
Ⅱ、示范性题组:例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。
A. 23 B. 14 C.5 D. 6【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z ,则211424()()xy yz xz x y z ++=++=⎧⎨⎩,而欲求对角线长x y z 222++,将其配凑成两已知式的组合形式可得。
【解】设长方体长宽高分别为x,y,z ,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:211424()()xy yz xz x y z ++=++=⎧⎨⎩。
长方体所求对角线长为:x y z 222++=()()x y z xy yz xz ++-++22=6112-=5所以选B 。
【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。
这也是我们使用配方法的一种解题模式。
例2. 设方程x2+kx +2=0的两实根为p 、q ,若(p q )2+(q p)2≤7成立,求实数k 的取值范围。
【解】方程x2+kx +2=0的两实根为p 、q ,由韦达定理得:p +q =-k ,pq =2 ,(pq)2+(q p)2=p q pq 442+()=()()p q p q pq 2222222+-=[()]()p q pq p q pq +--2222222=()k 22484--≤7, 解得k ≤-10或k ≥10 。
又 ∵p 、q 为方程x2+kx +2=0的两实根, ∴ △=k2-8≥0即k ≥22或k ≤-22综合起来,k 的取值范围是:-10≤k ≤-22 或者 22≤k ≤10。
【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。
本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式。
假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。
例3. 设非零复数a 、b 满足a2+ab +b2=0,求(a ab +)1998+(b a b +)1998 。
【分析】 对已知式可以联想:变形为(a b )2+(a b )+1=0,则a b =ω (ω为1的立方虚根);或配方为(a +b)2=ab 。
则代入所求式即得。
【解】由a 2+ab +b 2=0变形得:(a b )2+(a b)+1=0 ,设ω=a b ,则ω2+ω+1=0,可知ω为1的立方虚根,所以:1ω=b a,ω3=ω3=1。
又由a2+ab +b2=0变形得:(a +b)2=ab ,所以 (a a b +)1998+(b a b+)1998=(a ab 2)999+(b ab 2)999=(a b )999+(b a )999=ω999+ω999=2 。
【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂。
一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。
【另解】由a2+ab +b2=0变形得:(a b )2+(a b )+1=0 ,解出b a =-±132i 后,化成三角形式,代入所求表达式的变形式(a b)999+(b a)999后,完成后面的运算。
此方法用于只是未-±132i 联想到ω时进行解题。
假如本题没有想到以上一系列变换过程时,还可由a 2+ab +b 2=0解出:a =-±132i b ,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。
Ⅲ、巩固性题组: 1.函数y =(x -a)2+(x -b)2(a 、b 为常数)的最小值为_____。
A. 8B.()a b -22C.a b 222+ D.最小值不存在2.α、β是方程x 2-2ax +a +6=0的两实根,则(α-1)2+(β-1)2的最小值是_____。
A. -494B. 8C. 18D.不存在3.已知x 、y ∈R +,且满足x +3y -1=0,则函数t =2x+8y有_____。
A.最大值22 B.最大值22C.最小值22 B.最小值224. 椭圆x2-2ax +3y2+a2-6=0的一个焦点在直线x +y +4=0上,则a =_____。
A. 2B. -6C. -2或-6D. 2或65.化简:218-sin +228+cos 的结果是_____。
A. 2sin4B. 2sin4-4cos4C. -2sin4D. 4cos4-2sin46. 设F1和F2为双曲线x 24-y2=1的两个焦点,点P 在双曲线上且满足∠F1PF 2=90°,则△F 1PF 2的面积是_________。
7. 若x>-1,则f(x)=x2+2x +11x +的最小值为___________。
8. 已知π2〈β<α〈34π,cos(α-β)=1213,sin(α+β)=-35,求sin2α的值。
(92年高考题)9. 设二次函数f(x)=Ax 2+Bx+C,给定m、n(m<n),且满足A2[(m+n)2+ m2n2]+2A[B(m+n)-Cmn]+B2+C2=0 。
①解不等式f(x)>0;②是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t的取值范围。
10. 设s>1,t>1,m∈R,x=log s t+log t s,y=log s 4t+log t4s+m(log s2t+log t2s),①将y表示为x的函数y=f(x),并求出f(x)的定义域;②若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围。
二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。
局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。
例如解不等式:4x+2x-2≥0,先变形为设2x=t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。
如求函数y =x+1-x 的值域时,易发现x ∈[0,1],设x =sin2α ,α∈[0,π2],问题变成了熟悉的求三角函数值域。