加减法运算电路设计

合集下载

加减法运算电路算

加减法运算电路算

辽宁工业大学数字系统综合实验课程设计(论文)题目:加/减法运算电路计算院(系):电子与信息工程学院专业班级:*学号:*3学生姓名:*指导教师:*教师职称:*起止时间:2011.12.12—2011.12.26课程设计(论文)任务及评语目录1.结构设计与方案选择 (1)1.1实验原理 (1)1.2电路方案原理方框图 (1)1.3电路原理图 (2)1.4电路设计 (4)2.MAX+PLUSⅡ对原理图仿真 (4)3.管脚的重新分配与编程下载 (5)4.实验箱的验证 (6)5.实验结论 (8)参考文献 (9)设计目的与任务1.熟练掌握组合逻辑电路的设计思路和方法; 2.熟练掌握MAX+PLUS Ⅱ原理图输入方法;3.熟练掌握MAX+PLUS Ⅱ仿真方法并对设计进行仿真验证,直至得出正确的设计方案; 4.熟练掌握MAX+PLUS Ⅱ编程下载方法并利用EDA 实验箱验证设计的正确性; 5.熟练掌握加法器及减法器的设计方法。

设计一个加/减法运算电路,当控制信号M=0时将两个无符号的16位二进制数相加,而M=1时将两个无符号的8位二进制数相减,并用MAX+PLUS Ⅱ验证设计的正确性。

1.结构设计与方案选择1.1实验原理一、加法运算基本原理加法运算可以根据超前进位加法器74LS283直接相加。

二、减法运算基本原理在计算机中,为了减少硬件复杂性,减法基本是通过加法运算来实现的。

这首先要求求出减少的反码(即把该数各位上的0变成1,1变成0)。

再在结果上加1得到补码,然后加到被减数上即可。

例如两个四位二进制数相减1100-0101 被减数 1100 减数的补码 + 1011 _____________________________10111略去进位结果是0111三、求二进制反码电路二进制反码可以通过异或来实现,A ○+0=-A ,A ○+1=A ,为了满足俩个输入是16位二进制相加减,我们这里选用4个74LS283昨为加法器以及16个异或。

减法运算电路图

减法运算电路图

)U (U R R U i1i21FO -=图3-4 减法运算电路图 3-5 积分运算电路5) 积分运算电路反相积分电路如图3-5所示。

在理想化条件下,输出电压u O 等于式中 u C (o)是t =0时刻电容C 两端的电压值,即初始值。

如果u i (t)是幅值为E 的阶跃电压,并设u c (o)=0,则即输出电压 u O (t)随时间增长而线性下降。

显然RC 的数值越大,达到给定的U O 值所需的时间就越长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限值。

在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K 1闭合,即通过电阻R 2的负反馈作用帮助实现调零。

但在完成调零后,应将K 1打开,以免因R 2的接入造成积分误差。

K 2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压u C (o)=0,另一方面,可控制积分起始点,即在加入信号u i 后, 只要K 2一打开, 电容就将被恒流充电,电路也就开始进行积分运算。

三、实验设备与器件⎰+-=(o )u dt u CR 1(t)u C i to 1O ⎰=-=t C R E -Edt CR 1(t)u 1t o 1O1、±12V直流电源2、函数信号发生器3、交流毫伏表4、直流电压表5、集成运算放大器μA741×1电阻器、电容器若干。

四、实验内容实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

1、反相比例运算电路1) 按图3-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。

2) 输入f=100Hz,Ui =0.5V的正弦交流信号,测量相应的UO,并用示波器观察uO和ui的相位关系,记入表3-1。

表3-1 Ui=0.5V,f=100Hz2、同相比例运算电路1) 按图3-3(a)连接实验电路。

实验步骤同内容1,将结果记入表3-2。

2) 将图3-3(a)中的R1断开,得图3-3(b)电路重复内容1)。

加法运算和减法运算电路

加法运算和减法运算电路

=8V
12
例:由三运放放大器组成的温度测量电路。
E=+5V
R
R
R
Rt
+ A1 +
ui
_
+ A2 +
R R1 RW R R1
R2
+ A3 +
uo
R2
Rt :热敏电阻
集成化:仪表放大器
13
E=+5V
R
R
R
Rt
+ A1 +
ui _
+ A2 +
R R1 RW R R1
R2
+ A3 +
uo
R2
Rt f (TC)
( RP2 // R RP1 RP 2 //
R ui1
RP
RP1 // R 2 RP1 //
R
ui
2
)
(R1 Rf )Rf R1 R f
( RP1
//
RP 2
//
R)(
ui1 RP1
ui 2 ) RP 2
将RP= RN的条件代入可得:
uo
Rf
( ui1 RP1
ui 2 RP 2
)
在RP1=
RP2
ui1
可以变为:
uo ui2 ui1
反相输入结构的减法电路,由于出现虚地,放大电路没
有共模信号,故允许 ui1 、ui2 的共模电压范围较大,且输
入阻抗较低。在电路中,为减小温漂提高运算精度,同相端
须加接平衡电阻。
4
6.2.2 减法运算电路
1、差动减法器
由Ui1产生的输出电压为:
uo
Rf R1

加减法运算器电路

加减法运算器电路

加法器半加法器•输入:2 个 1 位二进制数字 A 和 B•输出:和 S 和进位 C全加法器•输入:2 个 1 位二进制数字 A 和 B,以及一个进位 C•输出:和 S 和进位 C加法器电路一个 n 位加法器可以由多个半加法器或全加法器级联而成。

例如,一个 4 位加法器可以由 4 个全加法器组成。

减法器半减法器•输入:2 个 1 位二进制数字 A 和 B•输出:差 D 和借位 B全减法器•输入:2 个 1 位二进制数字 A 和 B,以及一个借位 B•输出:差 D 和借位 B减法器电路一个 n 位减法器可以由多个半减法器或全减法器级联而成。

减法器通常使用补码来实现。

补码•正数的补码与本身相同。

•负数的补码是其绝对值的 1 的补码,即按位取反并加 1。

减法使用补码•将要减去的数求补码。

•将减数和补码相加。

•如果最高位为 0,则结果为正数。

•如果最高位为 1,则结果为负数,并舍弃最高位。

加减法运算器电路一个加减法运算器电路可以将两个 n 位二进制数字相加或相减。

它通常由以下组成:•一个 n 位加法器•一个 n 位减法器•一个选择器,用于根据控制信号选择加法或减法操作设计步骤1.确定位数:确定输入和输出的位数。

2.选择加法器和减法器:选择合适的加法器和减法器电路。

3.设计选择器:设计一个选择器,用于根据控制信号选择加法或减法操作。

4.连接电路:将加法器、减法器和选择器连接起来。

5.测试电路:使用各种输入对测试电路的正确性。

简单加减计算电路

简单加减计算电路

简单加减计算电路简单加/减运算电路1 设计主要内容及要求1.1 设计⽬的:(1)掌握1位⼗进制数加法运算电路的构成、原理与设计⽅法;(2)熟悉QuartusII的仿真⽅法。

1.2 基本要求:(1)实现⼆进制数的加/减法;(2)设计加数寄存器A和被加数寄存器B单元;(3)实现4bit⼆进制码加法的BCD调整;(4)根据输⼊的4bitBCD编码⾃动判断是加数还是被加数。

1.3 发挥部分:(1)拓展2位⼗进制数(2)MC存储运算中间值;(3)结果存储队列;(4)其他。

2 设计过程及论⽂的基本要求2.1 设计过程的基本要求(1)基本部分必须完成,发挥部分可任选2个⽅向:(2)符合设计要求的报告⼀份,其中包括逻辑电路图、实际接线图各⼀份;(3)设计过程的资料、草稿要求保留并随设计报告⼀起上交;报告的电⼦档需全班统⼀存盘上交。

2.2 课程设计论⽂的基本要求(1)参照毕业设计论⽂规范打印,⽂字中的⼩图需打印。

项⽬齐全、不许涂改,不少于3000字。

图纸为A3,附录中的⼤图可以⼿绘,所有插图不允许复印。

(2)装订顺序:封⾯、任务书、成绩评审意见表、中⽂摘要、关键词、⽬录、正⽂(设计题⽬、设计任务、设计思路、设计框图、各部分电路及参数计算(重要)、⼯作过程分析、元器件清单、主要器件介绍)、⼩结、参考⽂献、附录(逻辑电路图与实际接线图)。

摘要当今的社会是信息化的社会,也是数字化的社会,各种数字化的电器与设备越来越普及,⼈们的⼤部分⽣活都依赖于这些数字化的设备。

⽽随着科技的发达,这些数字设备的功能越来越强⼤,程序越来越复杂。

但是我们都知道各种复杂的运算都是从简单的加减运算衍⽣出来的。

经过半学期的数字电⼦技术基础的学习,我们对数字电⼦技术的理论知识有了⼀定的了解。

在这个时刻,将理论结合实际的欲望,便显得更加迫切,⽽此时的课设安排正好可以帮助我们将理论结合实际,将梦想变成现实。

本次的简单运算电路是基于QuartusⅡ仿真软件⽽设计的,⽽每⼀个仿真软件都有它⾃⼰的特⾊与优缺点。

加减法运算电路设计

加减法运算电路设计

加减法运算电路设计1.设计内容及要求1.设计一个4位并行加减法运算电路,输入数为一位十进制数,且作减法运算时被减数要大于或等于减数。

2.led灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。

3.提出至少两种设计实现方案,并优选方案进行设计2.结构设计与方案选择2.1电路原理方框图电路原理方框图如下→→图1-1二进制加减运算原理框图如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010),如(1001)2和(0111)2,同时在两个七段译码显示器上显示出对应的十进制数9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

即:若选择加法运算方式,则(1001)2+(0111)2=(10000)2十进制9+7=16 并在七段译码显示器上显示16.若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2并在七段译码显示器上显示02.2.2加减运算电路方案设计2.2.1加减运算方案一如图2-2-1所示:通过开关S2——S9接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U13和U15分别显示所置入的两个数。

数A 直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。

四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S6——S9,通过开关S6——S9控制数B的输入。

当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。

当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B的反码,且74LS283的进位信号C0为1,其完成S=A+B (反码)+1,实际上其计算的结果为S=A-B完成减法运算。

加法和减法运算电路---知识点

加法和减法运算电路---知识点

加法和减法运算电路
1、加法运算电路
加法运算电路能实现多个模拟量的求和运算。

分为反相加法运算电路和同相加法运算电路两种。

可以利用“虚短”、“虚短”的概念或者叠加原理进行分析。

1)反相加法运算电路的常见电路如图1所示。

电路为并联电压负反馈。

平衡电阻R 2=R i1//R i2//R F。

图1
F F o i1i 2i1i 2
()R R u u u R R =-+2)同相加法运算电路的常见电路如图2所示。

电路为串联电压负反馈。

平衡电阻满足关系R 1//R F =R i1//R i2。

图2
F i 2i1o i1i 21i1i 2i1i 2
(1)()R R R u u u R R R R R =++++2、减法运算电路
减法运算电路的常见电路如图3所示。

可以将电路看做反相比例
运算电路和同相比例运算电路的叠加进行分析。

R F 相对于u i1是并联电压负反馈,对于u i2
是串联电压负反馈。

图3
3F F
o i 2i1
1231(1)R
R R u u u
R R R R =+-+。

运放加减法电路

运放加减法电路

运放加减法电路1. 引言•对运放加减法电路进行介绍和定义2. 运放的基本原理2.1 运放的定义和结构•详细解释运放的定义和结构 ### 2.2 运放的输入和输出特性•对运放的输入输出特性进行介绍和分析 ### 2.3 运放的运算功能•运放可以实现哪些基本运算功能? ### 2.4 运放的反馈方式•探讨运放的反馈方式对电路性能的影响3. 运放加法电路设计3.1 加法器的概念和原理•对加法器的概念和原理进行详细解释 ### 3.2 使用运放实现加法器•介绍如何使用运放构建加法器电路 ### 3.3 加法器电路的设计步骤•分步骤讲解加法器电路的设计过程4. 运放减法电路设计4.1 减法器的概念和原理•对减法器的概念和原理进行详细解释 ### 4.2 使用运放实现减法器•介绍如何使用运放构建减法器电路 ### 4.3 减法器电路的设计步骤•分步骤讲解减法器电路的设计过程5. 运放加减法电路的应用5.1 加法器的应用•分析加法器在实际电路中的应用场景 ### 5.2 减法器的应用•分析减法器在实际电路中的应用场景 ### 5.3 加减法器的应用•探讨加减法器在实际电路中的应用,如数字电路中的运算器6. 运放加减法电路的性能分析6.1 噪声分析•分析运放加减法电路中的噪声问题及其解决方法 ### 6.2 偏置电流和偏置电压分析•分析运放加减法电路中的偏置电流和偏置电压对电路性能的影响,并提出应对措施 ### 6.3 带宽分析•分析运放加减法电路的带宽限制和其对电路性能的影响7. 结论•对运放加减法电路的设计与应用进行总结和归纳参考文献•[1] 张三, 王五. 运放电路设计与应用. 电子出版社, 2020.•[2] 李四, 赵六. 运放电路的基本原理. 电子技术杂志, 2018.。

4.加减法运算电路

4.加减法运算电路

1.反向加法电路:仿真电路图:仿真结果:(输入信号):(输出结果)注释:从输入和输出的波形可以知道,OUT=--(IN1+IN2); 其实电路的表达式为:RfR In R In out *)]22()11[(+-=因为电路中的Rf=R1=R2;所以电路的输入、输出仅仅表现出简单的反向加法的关系;调节Rf 和R1,R2的比例关系,便可以得到具有放大作用的反向减法电路;2.同向加法电路:仿真电路:输入、输出关系:(输入):(输出波形):注释:从输入和输出的波形可以看出,输出(out=In1+In2); 其实电路的输出、输入之前的数学表达式为:3*)2*421*41(R RfIn R R In R R Out +=由于上面的仿真电路中取,13*41=R RfR R 和13*42=R Rf R R ,所以电路的输入输出特性仅仅表现为简单的同向加法电路,调节Rf 和R3以及R4的阻值大小可以得到放大倍数不同的同向加法放大电路。

由于此电路数学表达式比较复杂,且输入电阻不大,一般不直接采用。

3.减法电路: 简单减法电路: 仿真电路:注释:从仿真电路的输入输出关系可以知道,out=Vi-V2; 其实,电路的输入输出关系为:13*2)131(*424*1R R In R R R R R In Out -++=由于上面电路中的R2=R4,R3=2R2;所以out=Vi-V2;使用两个运放的减法电路:注释说明:电路的输入输出关系式为:)]2211(2[21R In R In Rf R Rf Uo -=上面的仿真电路中Rf1=R2,Rf2=R1=R2,所以输入输出关系仅仅表现出简单的减法关系 这一点路的特点是两个运放的反相输入端都是虚地,共模输入电压Uc=U-=U+约等于0;因此对运放电路的共模抑制比要求较低。

4.高输入阻抗减法电路: 仿真电路:输入波形:输出波形:注释:电路的输入输出关系是为:2)341(1)34)(121(Ui R R Ui R R R R Uo ++-+=但是为了抑制共模,必须选择合适的电阻阻值; 为了抑制共模,必须使)341()34)(121(=++-+R R R R R R取R2=R3,R1=R4,满足上面的式子,所以最终得到输入输出关系为:)12)(341(Ui Ui R R Uo -+=该电路具有很高的输入阻抗,所以适合用于小信号的处理。

加减法运算器电路

加减法运算器电路

加减法运算器电路加减法运算器电路是一种用于进行数字加减运算的电路,通常用于数字逻辑电路或计算机系统中。

它可以接受两个输入数字,并输出它们的和或差,具有广泛的应用领域。

加减法运算器电路的设计通常包括以下几个关键部分:输入端、加法器、减法器、选择器、输出端等。

首先,输入端用于接收两个数字的输入。

这些输入数字可以是二进制数字,也可以是十进制数字经过编码转换为二进制表示。

输入端需要将输入的数字传递给加法器或减法器进行运算。

加法器是加减法运算器电路的核心部分之一。

它能够接受两个数字的输入,并将它们相加得到一个和。

加法器通常采用全加器电路进行设计,全加器能够实现三个数字的加法运算,其中两个数字是输入数字,另一个数字是进位数字。

通过级联多个全加器电路,可以实现多位数字的加法运算。

减法器是加减法运算器电路的另一个核心部分。

它能够接受两个数字的输入,并将它们相减得到一个差。

减法器通常采用全减器电路进行设计,全减器能够实现两个数字的减法运算,其中一个数字是被减数,另一个数字是减数。

通过级联多个全减器电路,可以实现多位数字的减法运算。

选择器用于选择加法器或减法器的输出结果作为最终的输出。

根据需要进行加法或减法运算,选择器可以将加法器或减法器的输出传递给输出端。

最后,输出端用于输出加法或减法运算的结果。

输出端可以是数字显示器、LED指示灯或数字信号输出接口,将计算结果显示给用户或传递给其他电路进行进一步处理。

总的来说,加减法运算器电路的设计需要充分考虑数字逻辑电路的设计原理,合理选择加法器、减法器和选择器的设计方案,确保电路能够准确、稳定地进行加减法运算。

加减法运算器电路在数字电子技术和计算机领域有着重要的应用,是数字系统中不可或缺的一部分。

加减运算电路

加减运算电路

根据理想运放的虚断路性质,流入两个运放输入端的电流
为零,因此流经R1的电流和流经RF1的电流相等
u1 u1 u1 u10
R1
RF1
(1)
流经R2的电流加上流经R21的电流和
流经RF2的电流相等,可得:
u10 u2 u2 u2 u2 u0 (2)
R21
R2
RF 2
流入两个运放同相端的电流都等于
消去u10,求得:
u0
RF 2 R21
(
RF1 R1
u1
R21 R2
u2
)
R22 R2 // R21 // RF 2
加减运算电路-1.2 减法运算电路
[例12-2] 由运放组成的运算电路如图所示,已知输入电压为 u1和u2 ,电阻R1=2kΩ,R2= 2kΩ,RF= 10kΩ试求输出电压 uo,并确定电阻R3的取值。 解:由式(12-38)求得:
此流经R3的电流等于流经RF的电流
0 u u u0
R3
RF
(1)
流入同相端的电流为零,因此流经
R1、R2的电流之和等于流经R4的电

u1 u u2 u u 0 (2)
R1
R2
R4
根据虚短路性质,同相端和反相端电压相等:
u u (3)
求解联立方程(1)-(3)即可得出输出电压与输入电压 的关系
两个输入端对地电阻满足 对称要求的情况下,输入、 输出电压满足关系:
u0
(
u2 R2
u1 R1
)RF
加减运算电路- 1.2 减法运算电路
1、差动输入减法电路-公式推导
根据理想运放的虚断路性质,流入反相输入端电流等于零,
因此流经电阻R1的电流i1等于流过RF的电流iF

加减法运算电路

加减法运算电路

加减法运算电路
分析了比例系数与平衡电阻、反馈电阻的关系。

目的是探索比例系数任意取值时加减法运算电路构成形式的变化。

1.反相求和电路
按照输入方式的不同,加法运算电路可以分为反相加法器和同相加法器。

(1)反相加法运算电路。

反相加法运算电路如图1所示,利用这个电路可以实现3个输入信号之间的求和运算。

图9-5反相求和电路
(2)同相加法运算电路。

图2为同相加法运算电路。

顾名思义,将求和输入信号接在同相输入端,反馈电阻Rf仍然接在反相输入端,构成深度负反馈。

图2同相求和电路
2.减法运算电路
差动比例运算电路即由单级运放构成的减法器。

但由于信号有反相输入端和同相输入端,所以也存在调整不便和共模输入电压较大的问题。

如图3所示!
图3减法运算电路图
图4为两级运放构成的反相输入减法电路。

电路由第一级的反相器和第二级的加法运算电路级联而成。

图4反相输入减法电路
加法运算电路图原理
编辑
加减运算电路
特点
调节某一路信号的输入电阻不影响其他路输入与输出的比例关系
2.同相求和电路
虚短、虚断
单运放和差电路
双运放和差电路。

模电课程设计加减法电路

模电课程设计加减法电路

1 设计任务描述1.1 设计题目:加法运算电路1.2 设计要求1.2.1 设计目的(1)学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步聚,培养综合设计与调试能力; (2)学会利用运算放大器实现加减法电路;(3)学会直流稳压电源的设计方法和性能指标测试方法; (4)培养实践技能,提高分析和解决实际问题的能力。

1.2.2 基本要求(1)利用两级运算放大器实现321o 42i i i u u u u ++=(2)设计电路所需的直流稳压电源,要求包括整流、滤波、稳压。

1.2.3 发挥部分(1)由于同相加法电路存在共模电压,将造成几个输入信号之间的互相影响,所以本次设计我选用两级运放反相输入,在第一级运用反相输入的求和电路,在第二级采用双端输入式,从而实现课设要求的输出与输入的线性关系。

(2)在线性直流电源中,将普通的电容滤波更改为两个电容与一个电阻的π型滤波电路,增加对交流分量的滤除。

(3)在线性直流电源中,将一般的稳压电路改为固定式三端集成稳压器工作。

2 设计思路本次设计的课题是加法运算电路,其“加法”的含义是实现输出与输入的线性关系。

本次设计还要求设计为运算电路提供电源的线性直流稳压电源。

首先这次设计的重点是加法运算电路,我需要设计一个电路使得其输出电压与输入电压满足表达式。

为满足这一线性关系,我选用两级放大来实现。

经过一个学期的学习,我大致了解关于集成运算放大器的工作原理,而这次设计主要是关于运放的线性应用。

首先第一级放大电路中,由于同相输入存在共模电压,会造成几个输入信号之间的互相影响。

而反相输入式放大电路中,根据虚断的概念,同相位输入端的电位为零,相当于与地等电位,即“虚地”。

这样可保证运放输入端无共模信号。

在第一级运算放大器的反相端输入施加两个电压信号,从而达到两个输入电压与第一级运放的输出电压之间的线性关系。

然后将这一输出加到第二级运放的反相端,同时在第二级运放的同相端加入第三个信号源,实现双端输入式放大电路,这种电路的的特点是输入电阻大、输出电阻小。

加减法运算电路的设计和调试方法

加减法运算电路的设计和调试方法

二○一二~二○一三学年第一学期电子信息工程系脉冲数字电路课程设计报告书班级:电子信息工程(DB)1003班课程名称:脉冲数字电路课程设计学时: 1 周学生姓名:林云霞学号:201012135085指导教师:廖宇峰二○一二年九月一、设计任务及主要技术指标和要求1)设计目的1.掌握加/减法运算电路的设计和调试方法。

2.学习数据存储单元的设计方法。

3.熟悉集成电路的使用方法。

2)设计内容1.设计4位并行加/减法运算电路。

2.设计寄存器单元。

3.设计全加器工作单元。

4.设计互补器工作单元。

5.扩展为8位并行加/减法运算电路(选作)。

3)设计要求1.根据任务,设计整机的逻辑电路,画出详细框图和总原理图。

2.选用中小规模集成器件(如74LS系列),实现所选定的电路。

提出器材清单。

3.检查设计结果,进行必要的仿真模拟。

二、方案论证及整体电路逻辑框图1)设计电路原理图①加减法电路逻辑框图如图所示:第一步置入两个四位二进制数。

例如(1010)2,(0101)2和(0101)2、(1000)2,同时在两个DCD_HEX_BLUE数码管上显示出对应的十六进制数A,5和5,8。

第二步通过开关选择加(减)运算方式;第三步若选择加运算方式所置数送入加法运算电路进行运算;同理若选择减运算方式,则所置数送入减法运算电路运算;第四步DCD_HEX_BLUE数码管和二极管显示运算结果。

若是加法运算二极管显示进位,若是减法运算二极管显示正负号。

即:若选择加法运算方式,则(1010)2+(0101)2=(1111)2 十六进制5+A=F并在数码管上显示器上显示F,二极管不发光。

若选择减法运算方式,则(0101)2-(1000)2=(10011)2十进制5-8= -3并在七段译码显示器上显示3,而激光发光。

2)方案论证通过开关J1——J8接不同的高低电平来控制输入端所置的两个一位十六进制数,分别用两个DCD_HEX_BLUE数码管显示所置入的两个数。

加法运算和减法运算电路

加法运算和减法运算电路
*
2、同向求和电路
2
1
同向求和电路 :同向比例运算放大器增加输入端
在RP1= RP2 =R的情况下可得:
由叠加定理和分压公式可得 :
将RP= RN的条件代入可得:
*
3、利用加法器和反相比例器实现减法器
( =- )
若 = = ,
反相输入结构的减法电路,由于出现虚地,放大电路没有共模信号,故允许 、 的共模电压范围较大,且输入阻抗较低。在电路中,为减小温漂提高运算精度,同相端须加接平衡电阻。
ui
*
*
=0.5 (ui +5) V
_
+
+
10k
20k
+5V
5k
ui
20k
uo1
uo
_
+
+
20k
20k
10k
*
例题. R1=10k , R2=20k , ui 1=-1V, ui 2=1V 。求:uo
uo
_
+
+
R2
R1
R1
R2
ui1
_
+
+
ui2
_
+
+
R2
R1
RP
uo= (uo2- uo1) =(20/10)[3-(-1) ] =8V
*
6.2.1 加法运算电路 6.2.2 减法运算电路
单击添加副标题
本节内容
1、反向求和电路
加法运算电路
01
02
03
04
05
反向求和电路:反向比例运算放大器增加输入端
由KCL和“虚地” :

模电课程设计加减法电路

模电课程设计加减法电路

1 设计任务描述1.1 设计题目:加法运算电路1.2 设计要求1.2.1 设计目的(1)学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步聚,培养综合设计与调试能力; (2)学会利用运算放大器实现加减法电路;(3)学会直流稳压电源的设计方法和性能指标测试方法; (4)培养实践技能,提高分析和解决实际问题的能力。

1.2.2 基本要求(1)利用两级运算放大器实现321o 42i i i u u u u ++=(2)设计电路所需的直流稳压电源,要求包括整流、滤波、稳压。

1.2.3 发挥部分(1)由于同相加法电路存在共模电压,将造成几个输入信号之间的互相影响,所以本次设计我选用两级运放反相输入,在第一级运用反相输入的求和电路,在第二级采用双端输入式,从而实现课设要求的输出与输入的线性关系。

(2)在线性直流电源中,将普通的电容滤波更改为两个电容与一个电阻的π型滤波电路,增加对交流分量的滤除。

(3)在线性直流电源中,将一般的稳压电路改为固定式三端集成稳压器工作。

2 设计思路本次设计的课题是加法运算电路,其“加法”的含义是实现输出与输入的线性关系。

本次设计还要求设计为运算电路提供电源的线性直流稳压电源。

首先这次设计的重点是加法运算电路,我需要设计一个电路使得其输出电压与输入电压满足表达式。

为满足这一线性关系,我选用两级放大来实现。

经过一个学期的学习,我大致了解关于集成运算放大器的工作原理,而这次设计主要是关于运放的线性应用。

首先第一级放大电路中,由于同相输入存在共模电压,会造成几个输入信号之间的互相影响。

而反相输入式放大电路中,根据虚断的概念,同相位输入端的电位为零,相当于与地等电位,即“虚地”。

这样可保证运放输入端无共模信号。

在第一级运算放大器的反相端输入施加两个电压信号,从而达到两个输入电压与第一级运放的输出电压之间的线性关系。

然后将这一输出加到第二级运放的反相端,同时在第二级运放的同相端加入第三个信号源,实现双端输入式放大电路,这种电路的的特点是输入电阻大、输出电阻小。

实验一四位加法器和减法器设计

实验一四位加法器和减法器设计

实验一四位加法器和减法器设计一、实验背景在数字电路设计中,常常需要使用加法器和减法器来实现数字的加法和减法运算。

本实验的目的是设计一个四位加法器和一个四位减法器,将数字电路理论知识应用到实际电路设计中。

二、实验目的1.理解加法器和减法器的基本原理;2.掌握数字电路的设计方法;3.通过实验验证设计的正确性和可行性。

三、实验原理1.加法器原理加法器是一种能对两个二进制数进行相加运算的数字电路。

常用的加法器有半加法器、全加法器等。

其中,半加法器能够对两个1位二进制数进行相加运算,全加法器能对两个1位二进制数及一个进位进行相加运算。

2.减法器原理减法器是一种能对两个二进制数进行相减运算的数字电路。

减法器可以通过使用补码的方式进行实现。

四、实验设备和材料1.实验平台:数字电路实验箱;2.实验元件:逻辑门IC芯片、电路连接线等。

1.设计四位加法器电路:a.首先,设计并连接四个1位全加法器。

将输入端A、B和上一个全加法器的进位连线,将输出端S和进位连线,其中S为本全加法器的输出,进位作为下一个全加法器的输入。

b.最后一个全加法器的输出即为四位加法器的输出结果。

2.设计四位减法器电路:a.首先,将被减数输入端A和减数输入端B分别与减法器的输入端连接。

b.接下来,使用非门将减数B的每一位取反。

c.然后,将取反后的减数与被减数相加,得到相加结果。

d.最后,将相加结果输入到四位加法器电路中,即可得到减法结果。

六、实验验证2.搭建四位减法器电路,并输入A=1100、B=1010进行验证。

验证结果应为A-B=010。

七、误差分析及改进方法1.设计电路时要注意连接线的长度和接触的质量,以保证电路的正常运行。

2.如果电路不能正常工作,可以仔细检查电路连接是否正确,逐个排查错误并改正。

通过设计、搭建和验证的四位加法器和减法器电路,可以实现对二进制数的加法和减法运算。

九、实验心得通过本次实验,我深入了解了加法器和减法器的原理和实现方法。

简单加减计算电路

简单加减计算电路

简单加/减运算电路1 设计主要内容及要求1.1 设计目的:(1)掌握1位十进制数加法运算电路的构成、原理与设计方法;(2)熟悉QuartusII的仿真方法。

1.2 基本要求:(1)实现二进制数的加/减法;(2)设计加数寄存器A和被加数寄存器B单元;(3)实现4bit二进制码加法的BCD调整;(4)根据输入的4bitBCD编码自动判断是加数还是被加数。

1.3 发挥部分:(1)拓展2位十进制数(2)MC存储运算中间值;(3)结果存储队列;(4)其他。

2 设计过程及论文的基本要求2.1 设计过程的基本要求(1)基本部分必须完成,发挥部分可任选2个方向:(2)符合设计要求的报告一份,其中包括逻辑电路图、实际接线图各一份;(3)设计过程的资料、草稿要求保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。

2.2 课程设计论文的基本要求(1)参照毕业设计论文规范打印,文字中的小图需打印。

项目齐全、不许涂改,不少于3000字。

图纸为A3,附录中的大图可以手绘,所有插图不允许复印。

(2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、正文(设计题目、设计任务、设计思路、设计框图、各部分电路及参数计算(重要)、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(逻辑电路图与实际接线图)。

摘要当今的社会是信息化的社会,也是数字化的社会,各种数字化的电器与设备越来越普及,人们的大部分生活都依赖于这些数字化的设备。

而随着科技的发达,这些数字设备的功能越来越强大,程序越来越复杂。

但是我们都知道各种复杂的运算都是从简单的加减运算衍生出来的。

经过半学期的数字电子技术基础的学习,我们对数字电子技术的理论知识有了一定的了解。

在这个时刻,将理论结合实际的欲望,便显得更加迫切,而此时的课设安排正好可以帮助我们将理论结合实际,将梦想变成现实。

本次的简单运算电路是基于QuartusⅡ仿真软件而设计的,而每一个仿真软件都有它自己的特色与优缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子课程设——加减法运算电路设计学院:电信息工程学院专业:电气工程及其自动化班级:姓名:学号:指导老师:闫晓梅2014年12月19日加减法运算电路设计一、设计任务与要求1.设计一个4位并行加减法运算电路,输入数为一位十进制数,2.作减法运算时被减数要大于或等于减数。

3.led 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算 模式,运算完毕,所得结果亦用数码管显示。

4.系统所用5V 电源自行设计。

二、总体框图1.电路原理方框图:置数电路开关选择运算方式 加法运算电路减法运算电路译码显示计算结果显示所置入的两个一位十进制数 电源部分图2-1二进制加减运算原理框图2.分析:如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010),如(1001)2和(0111)2,同时在两个七段译码显示器上显示出对应的十进制数9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

例如:若选择加法运算方式,则(1001)2+(0111)2=(10000)2十进制9+7=16,并在七段译码显示器上显示16;若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2,并在七段译码显示器上显示02。

三、选择器件1.器件种类:序号元器件个数1 74LS283D 2个2 74LS86N 5个3 74LS27D 1个4 74LS04N 9个5 74LS08D 2个6 七段数码显示器4个7 74LS147D 2个8 开关19个9 LM7812 1个10 电压源220V 1个11 电容2个12 直流电压表1个表3-12.重要器件简介:(1). 4位二进制超前进位加法器74LS283:完成加法运算使用该器件。

1).74LS283 基本特性:供电电压:4.75V--5.25V 输出高电平电流:-0.4mA 输出低电平电流:8mA。

2).引脚图:图3-1 引出端符号:A1–A4 运算输入端B1–B4 运算输入端C0 进位输入端∑1–∑4 和输出端C4 进位输出端3).逻辑符号:图3-2 4).内部原理图:图3-3 5).功能表:表3-2(2)异或门:74LS861).引脚图:2).逻辑符号:3). 逻辑图:图3-64).真值表:表3-3分析:异或:当AB不相同时, 结果才会发生。

函数式:(3).三输入或非门:74LS271).引脚图:图3-7BABABAY⋅+⋅=⊕=2).逻辑符号:图3-83). 逻辑图:图3-94).真值表:表3-4函数式:分析逻辑功能:A、B、C中只要出现“1”,则输出为“1”;只有A、B、C都为“0”时,输出才为“0”。

(4).非门:74LS04C++=BAY当输入为高电平时输出等于低电平,而输入为低电平时输出等于高电平。

因此输出与输入的电平之间是反向关系,也叫非门或反向器。

图3-101)结构TTL反相器由三部分构成:输入级、中间级和输出级。

2)原理A为低电平时,T1饱和,V B1≈0.9V,V B2≈0.2V,T2和T5截止,T4和D2导通,Y为高电平;A为高电平时,V B1≈2.1V,T1倒置,V B2≈1.4V,T2和T5饱和,T4和D2截止,Y为低电平。

74LS04为六反相器,输入是A,输出是Y,6个相互独立倒相。

供电电压5V,电压范围在4.75~5.25V内可以正常工作。

门数6,每门输入输出均为TTL 电平(<0.8V低电平 >2v高电平),低电平输出电流-0.4mA,高电平输出电流8mA。

其逻辑符号、逻辑功能表、内部结构、管脚图分别如下:图3-11 74LS04的逻辑图表3-5 74LS04功能表图3-12 74LS04的逻辑符号图3-13 74LS04的管脚图函数式:(5).与门74LS081).引脚图:2).逻辑符号:AY图3-14 74LS08管脚图图3-153).逻辑图:图3-164).真值表:表3-6函数式:(6).七段数码管:图3-17是七段数码管的符号,数码管用七个发光二极管做成a、b、c、…、g 七段,通过七段亮灭的不同组合,来显示信息。

并分为共阴极与共阳极两种。

共阴极是将七个发光二极管的阴极接在一起并接在地上,阳极接到译码器的各输出端,当发光二极管对应的阳极为高电平时,发光二极管就亮,共阳极则与之相反。

只要按规律控制各发光段的亮、灭,就可以显示各种字形或符号,共阴极七段数码管原理图如图3-18所示。

BAY⋅=图3-17 图3-18七段显示译码器是驱动七段显示器件的专用译码器,它可以把输入的二―十进制代码换成七段显示管所需要的输入信息,以使七段显示管显示正确的数码,应用原理如图3.3.11所示。

BCD七段译码器的输入是一位BCD码(以D、C、B、A表示),输出是数码管各段的驱动信号(以F~F g表示)。

若用它驱动共阴LED数a码管,则输出应为高有效,即输出为高(1)时,相应显示段发光。

例如,当输入8421码DCBA=0100时,应显示4,即要求同时点亮b、c、f、g段,熄灭a、d、e段,故译码器的输出应为F~F g=0110011,这也是一组代码,常称为a段码。

图3-19 共阳极数码管应用原理图图3-20 七段数码显示其真值表如下表所示:表3-7(7)74LS147:10线-4线8421 BCD码优先编码器74LS147的真值表见表3.5。

74LS147的引脚图如图3.5所示,其中第9脚NC为空。

74LS147优先编码器有9个输入端和4个输出端。

某个输入端为0,代表输入某一个十进制数。

当9个输入端全为1时,代表输入的是十进制数0。

4个输出端反映输入十进制数的BCD码编码输出。

74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。

当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输1).管脚图如下:图3-21功能表如下:表3-8内部原理图如下:图3-22(7)LM7812LM7812是指三段稳压集成电路IC芯片元器件,适用于各种电源稳压电路,输出稳定性好、使用方便、输出过流、过热自动保护。

本设计使用的电路为:图3-23内部原理图如下:图3-24(注:在此设计中,如电阻,电容二极管等器件均无特别要求,按电路中所标参数选取即可。

)四.功能模块1:减法电路的实现:(1):原理:如图1所示(如下),该电路功能为计算A-B。

若n位二进制原码为N原,则与它相对应的补码为N补=2n-N原,补码与反码的关系式为N补=N+1,A-B=A+B补-2n=A+B反+1-2n反(2):因为B○+1= B非,B○+0=B,所以通过异或门74LS86对输入的数B求其反码,并将进位输入端接逻辑1以实现加1,由此求得B的补码。

加法器相加的结果为:A+B反+1,(3):由于2n=24=(10000)2,要求相加结果与相2n减只能由加法器进位输出信号完成。

当进位输出信号为1时,即相当于2n,可实现减2n,因为设计要求被减数大于或等于减数,所以所得的差值就是A-B差的原码。

减法仿真图:下页图为4-1分析结果:数A为9,数B为7,(1001)2-(0111)2=(00010)2十进制9-7=2 并在七段译码显示器上显示02。

2:加法电路的实现如下:(1)加法原理:A.通过开关S1——S9接编码器74LS147U12输入端,通过开关节高低电平使译码显示器U5显示所置入的数A,同理,通过开关S10——S18接编码器74LS147U23输入端,通过开关节高低电平使译码显示器U22显示可置入数B。

数A直接置入四位超前进位加法器74LS283的A1——A4端,74LS283的B1——B4端接四个2输入异或门。

四个2输入异或门的一输入端同时接到开关S19上。

B.当开关S19接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。

C.由于译码显示器只能显示0——9,所以当A+B>9时不能显示,我们在此用另一片芯片74LS283完成二进制码与8421BCD码的转换,即S>9(1001)时加上6(0110),产生的进位信号送入译码器U10来显示结果的十位,U11显示结果的个位(2)加法电路的实现:用两片4位全加器74LS83和门电路设计一位8421BCD码加法器A.由于一位8421BCD数A加一位数B有0到18这十九种结果。

a)两个8421 码相加,其和仍应为8421 码,如不是8421 码则结果错误。

如:b)产生错误的原因是8421BCD码为十进制,逢十进一,而四位二进制是逢十六进一,二者进位关系不同,当和数大于9 时,8421BCD应产生进位,而十六进制还不可能产生进位。

为此,应对结果进行修正。

当运算结果小于等于9 时,不需修正或加“0”,但当结果大于9 时,应修正让其产生一个进位,加0110即可。

如上述后两种情况:故修正电路应含一个判9 电路,当和数大于9 时对结果加0110,小于等于9 时加0000。

除了上述大于9 时的情况外,如相加结果产生了进位位,其结果必定大于9,所以大于9 的条件为图4-2图4-3B. 另一种设计:当大于9的时候要加六转换才能正常显示,所以设计的时候有如下的真值表:C 4 S 4 S 3 S 2 S 1 Y 数的大小8 4 2 1 0 0 0 0 0 0 0 没有超过90 0 0 0 1 0 1 0 0 0 1 0 0 2 0 0 0 1 1 0 3表4-1由表4-1我们可以算出Y 的表达式: (1)由前16项有: Y= S 4S 3+ S 4S 20 0 1 1 1 0 7 0 1 0 0 0 0 8 0 1 0 0 1 0 9 0 1 0 1 0 1 10 需要转换0 1 0 1 1 1 11 0 1 1 0 0 1 12 0 1 1 0 1 1 13 0 1 1 1 0 1 14 0 1 1 1 1 1 15 1 0 0 0 0 0 16 1 0 0 0 1 0 17 1 0 0 1 0 0 18 1 0 0 1 1 0 19 无关项 1 0 1 0 0 0 20 1 0 1 0 1 0 21 1 0 1 1 0 0 22 1 0 1 1 1 0 23 1 1 0 0 0 0 24 1 1 0 0 1 0 25 1 1 0 1 0 1 26 1 1 0 1 1 1 27 1 1 1 0 0 1 28 1 1 1 0 1 1 29 1 1 1 1 0 1 30 11111131(2)由后10项有: Y= C 4=1由(1)(2)有:得到了如下的加法仿真图(下页图为4-4):分析结果:数A 为9,数B 为7,(1001)2+(0111)2=(10000)2 十进制9+7=16 并在七段译码显示器上显示16。

相关文档
最新文档