河南省安阳市内黄县2016_2017学年高二数学下学期期末考试试题文

合集下载

河南省安阳二中2016-2017学年高二下学期期末考试数学(理)试卷 PDF版无答案

河南省安阳二中2016-2017学年高二下学期期末考试数学(理)试卷 PDF版无答案

x 的不等式 ax c bx c 0 的解集是
A. x x 6 , 或 x 3 C. x x 3 , 或 x 6
第 1 页 共 6 页
D. x 3 x 6
B. x 6 x 3
(7)已知 f x 是定义在 R 上的偶函数. 将“若 x1 x2 0 ,则 f x1 f x2 ”看 做原命题,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是 A. 真、真、假 B. 真、真、真 C. 假、假、真 D. 假、假、假 (8)函数 F x 2 2


1
lg x 1
2
的定义域是
A. (0,
1 ) 10
B. 10,
C. (0,
1 ) 10, 10
D. (
1 ,10) 10
(3)在极坐标系中,圆 sin 的圆心的极坐标是 A. (2, 0) B. (2, )
2
C. (1, 0)
D. (1, )
x 3 x
( x 0, 2 )的值域是 C. [6, 4 2] D. [4 2 , 9]
A. [6,9]
B. [4 2 , 6]
(9)某民间研究机构在一个设置着分道护栏、并且又修建了过街天桥的路段随机调查 了 110 名横过马路的行人,得到了如下的列联表: 本科以上学历 (含本科) 走过街天桥 跨越护栏 合计 附: K
则可以得到的正确结论是 A. 有 99%以上的把握认为“选择过马路的方式与学历高低有关” B. 有 99%以上的把握认为“选择过马路的方式与学历高低无关” C. 在犯错误概率不超过 0.1%的前提下,认为“选择过马路的方式与学历高低有关” D. 在犯错误概率不超过 0.1%的前提下,认为“选择过马路的方式与学历高低无关” (10)在某种新型材料的研制过程中,研发人员获得了如下表所示的一组试验数据 x y 1.99 1.5 3 4.04 4 7.5 5.1 12 6.12 18.01

中学2016-2017学年高二下期末考试数学试卷含解析

中学2016-2017学年高二下期末考试数学试卷含解析

2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。

2016-2017学年度高二第二学期期末考模拟卷(理数)内附详细解答过程

2016-2017学年度高二第二学期期末考模拟卷(理数)内附详细解答过程

2016-2017学年度第二学期期末考模拟卷高二数学(理数)说明:1.全卷共6页,满分为150分。

考试用时为120分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在相应位置上填写自己的姓名、座位号。

3.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生务必保持卷面的整洁。

姓名:____________ 得分:________________一.选择题(每题5分,12小题,共60分)1.复数2−mi1+2i=A+Bi,(m,A,B∈R),且A+B=0,则m的值是()A.√2B.23C.﹣23D.22.下列说法错误的是()A.回归直线过样本点的中心(x,y)B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C.对分类变量X与Y,随机变量K2的观测值越大,则判断“X与Y有关系”的把握程度越小D.在回归直线方程y∧=0.2x+0.8中,当解释变量x每增加1个单位时预报变量y∧平均增加0.2个单位3.直线y=3x与曲线y=x2围成图形的面积为()A.272B.9 C.92D.2744.若P=√a+√a+7,Q=√a+3+√a+4(a≥0),则P,Q的大小关系是()A.P>Q B.P=Q C.P<Q D.由a的取值确定5.5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是()A.40 B.36 C.32 D.246.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.167.若质点P的运动方程为S(t)=2t2+t(S的单位为米,t的单位为秒),则当t=1时的瞬时速度为()A.2米/秒B.3米/秒C.4米/秒D.5米/秒8.已知p>0,q>0,随机变量ξ的分布列如下:ξ p q Pqp若E (ξ)=49.则p 2+q 2=( )A .49B .12C .59D .19.曲线y=sinx+e x (其中e=2.71828…是自然对数的底数)在点(0,1)处的切线的斜率为( ) A .2 B .3C .13D .1210.函数f (x )=ax 3﹣3x+1 对于x ∈[﹣1,1]总有f (x )≥0成立,则a 的取值范围为( ) A .[2,+∞) B .[4,+∞) C .{4} D .[2,4]11.P 为椭圆x 22b2+y 2b 2=1(b >0)上异于左右顶点A 1、A 2的任意一点,则直线PA 1与PA 2的斜率之积为定值−12.将这个结论类比到双曲线,得出的结论为:P 为双曲线x 22b 2−y 2b 2=1(b >0)上异于左右顶点A 1、A 2的任意一点,则( )A .直线PA 1与PA 2的斜率之和为定值12 B .直线PA 1与PA 2的斜率之和为定值2 C .直线PA 1与PA 2的斜率之积为定值12 D .直线PA 1与PA 2的斜率之积为定值212.若函数f (x )在区间A 上,对∀a ,b ,c ∈A ,f (a ),f (b ),f (c )为一个三角形的三边长,则称函数f (x )为“三角形函数”.已知函数f (x )=xlnx+m 在区间[1e 2,e]上是“三角形函数”,则实数m 的取值范围为( ) A .(1e ,e 2+2e) B .(2e ,+∞)C .(1e ,+∞)D .(e 2+2e,+∞)二.填空题(每题5分,4小题,共20分)13.有下列各式:1+12+13>1,1+12+⋯+17>32,1+12+13+⋯+115>2,…则按此规律可猜想此类不等式的一般形式为: .14.已知(2x ﹣1√x )n 展开式的二项式系数之和为64,则其展开式中常数项是 .15.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为 .16.已知函数g (x )=a ﹣x 2(1e ≤x ≤e ,e 为自然对数的底数)与h (x )=2lnx 的图象上存在关于x 轴对称的点,则实数a 的取值范围是 .三.解答题17.(本小题12分)实数m 分别取什么数值时,复数z=(m+2)+(3﹣2m )i(1)与复数12+17i 互为共轭;(2)复数的模取得最小值,求出此时的最小值.18.(本小题12分)某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x (百元)与日销售量y (件)之间有如下关系: x (百元) 5 6 7 8 9 y (件)108961(1)求y 关于x 的回归直线方程;(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大? 相关公式:b ^=∑n i=1(x i −x)(y i −y)∑n i=1(x i −x)2=∑n i=1x i y i −nx⋅y∑n i=1x i2−nx 2,a ^=y −bx .19.(本小题12分)集成电路E 由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为12,12,23,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E 能正常工作,否则就需要维修,且维修集成电路E 所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.20.(本小题12分)已知函数f(x)=e x﹣1,g(x)=√x+x,其中e是自然对数的底,e=2.71828….(1)证明:函数h(x)=f(x)﹣g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)根的个数,并说明理由;(3)若数列{a n}(n∈N*)满足a1=a(a>0)(a为常数),a n+13=g(a n),证明:存在常数M,使得对于任意n ∈N*,都有a n≤M.21.(本小题12分)已知函数f(x)=lnx﹣a(x﹣1),a∈R(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当x≥1时,f(x)≤lnx恒成立,求a的取值范围.x+1在第22,23题中选做一题,分值为10分。

高二数学下学期期末考试试题理(1)word版本

高二数学下学期期末考试试题理(1)word版本

2016~2017 学年度第二学期高二理科数学期末联考测试卷本试卷分第Ⅰ卷( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分,共22 小题,共考试时间120 分钟,考生作答时将答案答在答题卡上,在本试卷上答题无效150 分. 共.4 开,第Ⅰ卷( 选择题,共60 分)一、选择题(本大题共12 小题,每题 5 分,共 60 分)1.我们把各位数字之和等于 6 的三位数称为“祥瑞数”,比如123 就是一个“祥瑞数”,则这样的“祥瑞数”一共有()A.28 个B.21个C.35个 D .56个2.将4 个颜色互不同样的球所有放入编号为 1 和2 的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不一样的放球方法有()A.10 B .20 种 C .36种 D.52 种3.某人参加一次考试, 4 道题中解对 3道即为及格,已知他的解题正确率为0.4 ,则他能及格的概率是()A. 0.18B. 0.28C. 0.37D. 0.484. 已知随机变量ξ听从正态散布 N(2 ,σ2) ,且 P(ξ <4) = 0.8 ,则 P(0<ξ <2) =()A. 0.6B. 0.4C. 0.3D. 0.25.从一个棱长为 1 的正方体中切去一部分,获取一个几何体,其三视图如右图,则该几何体的体积为()A. 7B.5C.5D.3 88646. 六个人站成一排照相,则甲乙两人之间恰巧站两人的概率为()11C.1D.1A. B.32657.在一次对人体脂肪含量和年纪关系的研究中,研究人员获取了一组样本数据,并制作成以下图的人体脂肪含量与年纪关系的散点图.依据该图,以下结论中正确的选项是()(A)人体脂肪含量与年纪正有关,且脂肪含量的中位数等于20%(B)人体脂肪含量与年纪正有关,且脂肪含量的中位数小于20%(C)人体脂肪含量与年纪负有关,且脂肪含量的中位数等于20%(D )人体脂肪含量与年纪负有关,且脂肪含量的中位数小于20%8.高三毕业时,甲、乙、丙、丁四位同学站成一排合影纪念,已知甲、乙相邻,则甲、丙相邻的概率为 ( )A .1B .2C .1D .133 2 69.广告投入对商品的销售额有较大影响.某电商对连续5 个年度的广告费和销售额进行统计,获取统计数据以下表(单位:万元):广告费23456销售额2941505971由上表可得回归方程为??,据此模型,展望广告费为万元时的销售额约( )y 10.2xaA . 101.2B. 108.8C . 111.2D. 118.210.将三颗骰子各掷一次,记事件 A =“三个点数都不一样”, B =“起码出现一个6点”,则条件概率PAB ,P BA 分别是()A.60, 1 B. 1,60 C.5 ,60 D. 91 , 19122 9118 91216 211.一个篮球运动员投篮一次得 3 分的概率为 a ,得 2 分的概率为b ,不得分的概率为c ,a, b, c (0,1) ,且无其余得分状况,已知他投篮一次得分的数学希望为1,则 ab 的最大值为()A .1B .1C .1D .1482412612.位于数轴原点的一只电子兔沿着数轴按以下规则挪动:电子兔每次挪动一个单位,挪动的方向向左或向右,而且向左挪动的概率为2,向右挪动的概率为1,则电子兔挪动五次后位于点33( 1,0) 的概率是()A .4B .8C. 40D .80243243243243二、填空题: ( 本大题共 4 小题,每题 5 分,共 20 分)。

高二数学下学期期末考试试题理(6)word版本

高二数学下学期期末考试试题理(6)word版本

2016—2017学年度下学期期末质量检测高 二 数 学 试 卷 (理科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.注意事项:1.第Ⅰ卷的答案填在答题卷方框里,第Ⅱ卷的答案或解答过程写在答题卷指定处,写在试题卷上的无效.2.答题前,考生务必将自己的“姓名”、“班级’’和“考号”写在答题卷上.3.考试结束,只交答题卷.第Ⅰ卷 (选择题共60分)一、选择题(每小题5分,共20个小题,本题满分60分) 1.已知复数11Z i=- ,则Z =( )A .1i -+ B. 1i -- C. 1i + D. 1i - 2. 若随机变量X 的概率分布列为( )且p 1=p 2,则p 1等于( ) A.B.C.D.3. 小明去和济小区送快递,该小区共有三个出入口,每个出入口均可进出,则小明进出该小区的方案最多有A. 6种B. 8种C. 9种D.12种4.已知随机变量X 服从正态分布N (2,σ2),且P (X <4)=0.6,则P (0<X <2)=( )A.0.1B.0.2C.0.3D.0.45.设函数f(x)=2x+ln x ,则f(x)的极小值为( )A .1B .2C .1+ln2 D.2+ln26.设(1-2x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则a 0+a 2+a 4+a 6=A.1B.-1C.365D.-3657.dx x ⎰-21等于( )A .-1B .1 C.D.8.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=16的不同整数解(x ,y )的个数为( )A .56B .60C .64D .689.设a ,b ,c 是互不相等的正数,则下列不等式中不恒成立的是( )A .ab ba ≥+2B .a 2+≥a +C .a -b +≥2D .|a -b |≤|a -c |+|b -c |10.集合{}062≤--∈=x x Z x A ,从A 中随机取出一个元素,设ξ=m 2,则E ξ=A.23B.37C. 38D.61911.如图放置的边长为1的正方形PABC 沿轴滚动,点B 恰好经过原点.设顶点(),P x y 的轨迹方程是()y f x =,则11()f x dx -=⎰A.12π+ B. 22π+ C.1π+ D. 2π+ 12.集合(){}a ax x e R x M x-≤-∈=12,其中0>a ,若集合中有且只有一个整数,则实数的取值范围为A .⎪⎭⎫⎝⎛1,43e B .⎪⎭⎫ ⎝⎛1,23e C .⎥⎦⎤⎢⎣⎡1,23e D .⎥⎦⎤⎝⎛1,23e第Ⅱ卷 (非选择题共90分)二、填空题(每小题5分,共4小题,满分20分)13. 已知复数 满足()1i Z i +=,则Z =.14.已知2nx⎛⎝展开式的二项式系数之和为64,则其展开式中含 项的系数为.15.将序号分别为1,2,3,4,5的5张参观券全部分给3人,每人至少1张至多2张,如果分给同一人的2张参观券连号,那么不同的分法种数是____________.16.若关于的不等式215x a x x -+-≥-在R 上恒成立,则实数的取值范围为.三、解答题(本大题共6小题,17题10分,18—22题均为12分,共计70分,解答时应写出解答过程或证明步骤)17.甲、乙是一对乒乓球双打运动员,在5次训练中,对他们的表现进行评价,得分如图所示:(1)求乙分数的标准差 ;(2)根据表中数据,求乙分数对甲分数的回归方程;( 附:回归方程y bx a =+ 中,a y bx =- ,()()()121niini x x y y b x x --=-∑∑ )18.在平面直角坐标系中,直线L 的参数方程为33cos 43sin4x t y t ππ⎧=-⎪⎪⎨⎪=⎪⎩ ( 为参数).在以原点 为极点,轴正半轴为极轴的极坐标中,圆C 的方程为ρθ=. (Ⅰ)写出直线L 的倾斜角和圆C 的直角坐标方程;(Ⅱ)若点 P 坐标为(,圆C 与直线L 交于 A ,B 两点,求|PA||PB|的值. 的值.19.设函数()()1xf x aex =+(其中为自然对数的底数),()24g x x x b =++,已知它们在x=0处有相同的切线.(1)求函数()y f x =的增区间;(2)求曲线()y g x =和直线2y x =+ 所围成的图形的面积.20.随着移动互联网时代的到来,手机的使用非常普遍,“低头族”随处可见。

高二数学下学期期末考试试题文(6)word版本

高二数学下学期期末考试试题文(6)word版本

2016—2017 学年度第二学期期末考试高二数学试题(文科)说明:本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第 3页,共 20 题,第Ⅱ卷为第 3 页至第4 页,全卷共 24 个题。

请将第Ⅱ卷答案答在答题纸相应地点,考试结束后将答题纸上交。

满分150 分,考试时间120 分钟。

第Ⅰ卷(选择题,每题 5 分,共75 分)一、选择题(本大题包含15 小题,每题 5 分,共 75 分,每题给出的四个选项中,只有一项....是切合题目要求的,请将正确选项填涂在答题卡上).1.已知会合 A={0,1,2,3,4,5}, B={1,3,6,9}, C={3,7,8},则 ( A∩B) ∪C等于 ()A . {0,1,2,6,8}B. {3,7,8}C. {1,3,7,8}D. {1,3,6,7,8}2.2x- 1,则 f (-1)+f (4)的值为 ()已知 f ( x)=<,- x2+3xA .-7B.3C.- 8D. 43.已知 a 2i b i a,b R,此中为虚数单位,则 a b()iC.2D.34.幂函数f (x)(m24m4) x m26m8在 (0,) 为减函数,则的值为A 、1或3B、 1C、 3D、2已知 a (1) 3 , b15. 3 2 , c log 1 3 ,则a, b, c之间的大小关系为22A.a b c B .b a c C.b c a D.a c b126.函数 y=2x-ln x 的单一递减区间为()A. (0,1)B.(0 ,+∞ )C.(1 ,+∞ )D. ( ﹣∞ ,-1)和 (0,1)7.设曲线 y=1+ cos xπ, 1x- ay+1=0平行,则实数 a 等于() sin x在点2处的切线与直线A.- 1 B.1C .-2D. 2 28. 若函数f (x)k a x a x(0且a1)在,上既是奇函数又是增函数,则g( x) log a ( x k ) 图像是()yyyyxxxOxO 1 2O 121 O212AB C D9. 以下说法中,正确的选项是()A .命题“若 am 2 bm 2 ,则 a b ”的抗命题是真命题B .已知 xR ,则“ x 1 ”是“ x 2 ”的充足不用要条件C .命题“或”为真命题,则命题“”和命题“”均为真命题D .命题“xR , x 2 x 0 ”的否认是“x R , x 2x0 ”10. 已知函数 f ( x ) = (2 x - x 2)e x ,则 ()A . f ( 2) 是 f ( x ) 的极大值也是最大值B . f ( 2) 是 f ( x ) 的极大值但不是最大值C . f ( - 2) 是 f ( x ) 的极小值也是最小值D .f ( x ) 没有最大值也没有最小值11. 设函数 f (x)在上可导,其导函数f ( x) ,且函数 f ( x) 在 x2 处获得极小值,则函数y xf ( x) 的图象可能是()yyyy2Ox2Ox2 Ox2OxA.B.C.D.12. 函数 f ( x) 2x2(a 1) x1 2a 在 (, 1] 上为减函数,则f (1) 的取值范围是()2A 、 (,3]B、 ( , 1]C 、 [1,)D 、 [3, )13. 若定义在 R 上的偶函数 f ( x ) 知足 f ( x +2) = f ( x ) ,且当 x ∈ [0,1] 时,f ( x ) = x ,则函数 y = f ( x )- log 3|x | 的零点个数是()A .6 个B.4 个C.2个 D .0个14. 已知二次函数f ( x ) 知足f (2 +x ) = f (2 - x ) ,且 f ( x ) 在 [0,2]上是增函数,若f ( a ) ≥ f (0),则实数a 的取值范围是()A .[0 ,+∞ )B .( -∞, 0]C .( -∞, 0] ∪ [4 ,+∞ ) D. [0,4]15. 若f ( x ) 和g ( x ) 都是定义在上的奇函数,且F ( x ) = f ( g ( x ))+ 2 在(0 ,+∞ ) 上有最大值8,则在( -∞,0) 上, F ( x ) 有 ()A .最小值- 8B .最大值- 8C .最小值- 6D .最小值— 4第Ⅱ卷(非选择题,共75 分)二、填空题: (本大题共5 小题,每题5 分,共25 分。

河南省高二数学下学期期末检测试题 文(扫描版)(1)

河南省高二数学下学期期末检测试题 文(扫描版)(1)

河南省2016-2017学年高二数学下期期末检测试题文(扫描版)中原名校2016—2017学年下期期末检测高二数学(文)答案一、选择题1.C2.A3.A4.D5.B6.B7.B8.C9.A 10.D 11.D 12.A1.C 【解析】因为{}240M x x =-≤{}22x x =-≤≤,全集U R =,所以U C M ={}22x x x <->或,故选C.2.A 【解析】利用方程思想求解复数并化简.由(z -2i)(2-i)=5,得z =2i +52-i =2i +5(2+i)(2-i)(2+i)=2i +2+i =2+3i.3.A 【解析】依题意,K 2=6,且P (K 2≥3.841)=0.05,因此有95%的把握认为“X 和Y 有关系”,选A .4.D 【解析】∵a =(1,x ),b =(2,-6)且a ∥b ,∴-6-2x =0,x =-3,∴a =(1,-3),a ·b =20,故选D . 5.B 【解析】①若p q ∧是真命题,则p 和q 同时为真命题,p ⌝必定是假命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”;③“5a >且5b >-”是“0a b +>”的充分不必要条件; ④a y x =1'a y a x -⇒=⋅,当0a <时,'0y <,所以在区间()0+∞,上单调递减. 选B .6.B 【解析】()()113333xxx xf x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭ 是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.7.B 【解析】由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递减,∴a 4=12,a 2=32.∴公差d =a 4-a 22=-12.∴a 1=a 2-d =2.8.C 【解析】作出函数y =2 018x和y =-log 2 018x 的图象如图所示,可知函数f (x )=2 018x+log 2 018x 在x ∈(0,+∞)上存在一个零点,又f (x )是定义在R 上的奇函数,所以f (x )在x ∈(-∞,0)上只有一个零点,又f (0)=0,所以函数f (x )的零点个数是3,故选C.9.A 【解析】因为函数22sin ()11xy f x x==+可化简为222sin ()1x x f x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+3222(2sin cos cos )(1)x x x x x x x ++=+,则当(0,)2x π∈ '()0f x >,可知函数在2x π=处附近单调递增,排除答案B 和D ,故答案选A .10.D 【解析】因为y =sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,所以把y =2sin ⎝⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝ ⎛⎭⎪⎫x -π3的图象.所 以选D 。

高二数学下学期期末考试试题理(10)word版本

高二数学下学期期末考试试题理(10)word版本

2016—2017 学年度第二学期期末试题高二数学(理科)本试题分第I 卷(选择题)和第II卷(非选择题)两部分,满分150 分,考试时间120 分钟第 I 卷(选择题)一、选择题(此题共12 道小题,每题 5 分,共 60 分)1. 已知会合P x R |1 x 3 , Q x R | x 2 4 ,则 P C R Q()A[2,3]B.1,2 C.2,3 D., 21,2.已知复数 z知足 (z i )i 23i , 则 z( )A. 10B. 18C.10D. 3 2将函数y sin(2x的图象向左平移个单位长度,所得函数图象对应的分析式为36()A y sin(2x5)B. y cos2x6.y cos2x D .y sin( 2x)C64.命题“x R,n N , 使得 n x 2”的否认形式是()A.x R, n N ,使得n x2 B.x R, n N ,使得 n x 2C.x R, n N ,使得n x2 D.x R, n N , 使得 n x 25.已知定义在R上的奇函数 f(x),知足发 f ( x+4) = -f(x)且在区间 [0,2]上是增函数,则()A.f(-25)<f(11)<f(80) B.f(-25)<f(80)<f(11)C. f(80)<f(11)<f(-25)D. f(11)<f(80)<f(-25)6.(2x 1) 6的睁开式中含项的系数是()xA .240B . 240C .192D . 192x 2y 2()7." k 9" 是方程1表示双曲线的25 k k9A .充足不用要条件B .必需不充足条件C .充要条件D .既不充足也不用要条件8. 已知某几何体的三视图以下图, 则该几何体的体积是( )(正视图与侧视图的形状同样,都是边长为2 的正方形,竖线为中线)1 1A. 4B.2 4C. 2D.2 29.已知 S n 为数列 a n 的前 n 项和,且 S n2a n2,则 S 5S 4的值为( )A .8B. 10C. 16D.32x 1若实数知足拘束条件y 2 则 z x 2y 2的最小值是10.x, y2x y2( )A.25 B.4C.4D.155已知双曲线 x 2y 2 的左右焦点分别为 F 1, F 2 ,过 的直线 交双曲线的右支于11.961 F 2lA 、B 两点,则 | AF 1 | | BF 1 |的最小值为A. 14B. 16C. 18D. 2012.已知函数 f ( x)m 9x3x,若存在非零实数 x0,使 f ( x0 ) f ( x0 )成立,则实数的取值范围是( )m A.m 1C .0 m1B.m 2 D .0 m 2 22第 II卷(非选择题)二、填空题(此题共 4 道小题,每题 5 分,共 20 分)13. 设函数 f (x) =,若f(a)=﹣1,则a=离心率1的椭圆,它的焦点与双曲线 x221的焦点重合,则此椭圆的方程是14.e3y2.已知向量p 在基底a,b, c下的坐标为(,,),此中a i j,b j k,15.43 -2c k i ,则向量 p在基底 i , j , k 下的坐标为 ___________16.某厂在生产甲产品的过程中,产量(吨)与生产耗费(吨)的对应数据以下表:x30405060y25354045依据最小二乘法求得回归直线方程为y?0.65x a?当产量为 80 吨时,估计需要生产耗费为吨。

高二数学下学期期末考试试题理(7)word版本

高二数学下学期期末考试试题理(7)word版本

2016—2017 学年度第二学期期末考试高二数学试题(理科)明:本 卷分 第Ⅰ卷( )和第Ⅱ卷(非 )两部分,第Ⅰ卷 第1 至第 2,共 20 ,第Ⅱ卷 第 3 至第 4 ,全卷共 24 个 。

将第Ⅱ卷答案答在答 相 地点,考 束后将答 上交。

分150 分,考120 分 。

第Ⅰ卷( ,每 5 分,共 75 分)一、(本大 包含15 小 ,每小5 分,共 75 分,每小 出的四个 中,只有一...是切合 目要求的, 将正确 填涂在答 卡上) ..1.已知 i 是虚数 位,复数 z2i , =()2 iA.24i B.2 4 i C.2 4 i D.5 55 55 52 4 i5 52.10× 9× 8×⋯× 4 可表示 ( )A .B .C .D .3.由直 x, x, y0与直 y cosx 所 成的封 形的面 ()6 6A .1B .C .3 D .224.已知随机 量 ξ 听从正 散布N ( 2, σ2),且 P ( ξ< 4)=0.8 , P ( 0< ξ < 2)=()A .0.6B . 0.4C . 0.3D . 0.25. 于函数e x 2k )f (x)2 ln x,若 f ′( 1) =1, k=(xxA .B .C .D .1 56. x221 的睁开式的常数 是()x 2A . 3B . 2C .2D .37.从 1~ 99 个正整数中任取 2 个不一样的数,事件 A “取到的 2 个数之和 偶数”,事件 B“取到的2 个数均 偶数”,P ( B|A ) =()A .B .C .D .8.某学校 5 个年 的学生出门参 包含甲科技 在内的5 个科技 ,每个年 任 一个科 技 参 , 有且只有两个年 甲科技 的方案有( )A .2 32 3232 3 A5 A 4种. A5 4 种.A 4种. C5 4 种BC C 5D9.用数学 法 明 + ++⋯+ ≥ ( n ∈ N * ),从“ n=k ( k ∈N * )”到“ n=k+1” ,左需增添的代数式 ( )A .B .C . + +⋯ +D .+ +⋯ +10.已知函数 f (x)x ln x ax 2 有两个极 点, 数a 的取 范 ()A .,0B . 0,C . 0,1D . 0,12x b)11. 已知函数 f xe x 在区 ( ∞, 2)上 增函数, 数 b 的取 范 是 (A .( 1, 1)B . [0 , 1)C .( 1, +∞)D .( ∞, 1]12.六个人从左到右排成一行,最右端只好排甲或乙,最左端不可以排乙, 不一样的排法种数共有( )A .192B . 216C . 240D . 28813. 二 式3 3x1xn 睁开式的各 系数的和 P ,所有二 式系数的和 S ,若 P+S=272,n=( )A .4B .5C .6D . 814. 用反 法 明命 : “已知 a ,b ∈ N ,若 ab 可被 5 整除, a ,b 中起码有一个能被 5 整除”,反 正确的选项是()A .a , b 都不可以被 5 整除B. a , b 都能被 5 整除C .a , b 中有一个不可以被 5 整除D. a , b 中有一个能被5 整除15. f (x)是定在上的奇函数,且f (2) 0,当x 0,有xf/( x) f (x) 0恒建立,不等式f (x)0的解集xA. ( 2,0)(2,)B.( 2,0) (0,2)C.( , 2) (0,2)D. ( , 2) (2,)第Ⅱ卷(非,共75 分)二、填空 ( 本大包含 5 小,每小 4 分,共 20 分,把正确答案填在答卡中的横上). 16.若(1 2x)9a9 x9a8x 8...... a1 x1a0, a1 a2 ......a9_______17.用 0 到 9 10 个数字,能够成没有重复数字的三位偶数的个数_______18. 拥有性有关关系的量,足一数据以下表所示:012318若与的回直方程,的是.19.已知 X~B( n, 0.5 ),且 E(X) =16, D( X)=.20.( 1+x)n=1+C x+C x2+C x3+⋯ +C x n两求,可得n( 1+x)n﹣1=C +2C x+3C x2+⋯ +nC x n﹣1.通比推理,有( 3x 2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,可得 a1+2a2+3a3+4a4 +5a5+6a6=.三、解答(本大包含 5 小,共55 分,解答写出文字明,明程或演算步).21.(本小分 10 分)已知函数 f x x3ax2bx c ,曲 y f x 在点 x 0 的切l : 4x y 5 0 ,若x 2 , y f x 有极。

高二数学下学期期末考试试卷 文-人教版高二全册数学试题

高二数学下学期期末考试试卷 文-人教版高二全册数学试题

2016年某某一中高2017级高二下期期末考试数 学 试 题 卷(文科)2016.7数学试题共4页. 满分150分. 考试时间120分钟.一. 选择题 (每小题5分, 共60分)1. 已知集合{|31}A x x =-<<, 2{|20}B x x x =-≤, 则A B =( )A .{|01}x x <<B .{|01}x x ≤<C .{|11}x x -<≤D .{|21}x x -<≤2. 已知向量(3,1)a =, (sin ,cos )b αα=, 且a ∥b , 则tan α=( ) A. 3 B. 3- C.13 D. 13-3.等差数列{}n a 的前n 项和为n S ,若532S =,则3a =( ) A .325 B .2C .645D .5324. 已知 1.120.5log 3,log ,0.9x y z π-===, 则 ( )A .z y x <<B .x y z <<C .x z y <<D .z x y <<5. 已知:11p x , 2:230q x x , 则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.将函数()2sin 2f x x =的图像向右移动ϕ(02πϕ<<)个单位长度, 所得的部分图像如右图所示, 则ϕ的值为( ) A.6πB. 3πC. 12πD. 23π7. 直线:8630l x y --=被圆22:20O x y x a +-+=所截得的弦的长度为3, 则实数a 的值是( )A .1-B .0C .1D .2-8. 右图的程序框图所描述的算法称为欧几里得辗转相除法.若输入209m =, 121n =, 则输出的m 的值为( ) A. 0 B. 11 C. 22 D. 889. 设抛物线28y x =的焦点为F , 准线为l , P 为抛物线上一点, 且PA l ⊥,A 为垂足, 如果直线AF 的斜率为1, 则PF 等于( )A .2B .4C .8D .1210.若变量,x y满足1ln0xy-=, 则y关于x的函数图象大致是( )A. B. C. D.11. 已知ABC∆的内角,,A B C对的边分别为a,b,c, 且sin22sinA B C=,则cos C的最小值等于( )62-662+2412. (原创) 已知定义在R上的偶函数()g x满足()(2)0g x g x+-=, 函数2()1f x x=-的图像是()g x的图像的一部分. 若关于x的方程22()(1)g x a x=+有3个不同的实数根, 则实数a的取值X围为( )A.1(,)8+∞ B.122(,33C.2,)4+∞ D. (22,3)二. 填空题 (每小题5分, 共20分)13. 复数z满足(12)43z i i+=+, 则z=_______.14. 若曲线2lny ax x=-在点(1,)a处的切线平行于x轴, 则a=________.15. 若,x y满足不等式⎪⎩⎪⎨⎧-≥≥+-≤-+133yyxyx, 则3z x y=+的最大值为________.16. (原创) 已知函数3()1817sinf x x x x=++, 若对任意的Rθ∈, 不等式(sin2)(12cos2)0f a fθθ+++≥恒成立, 则a的取值X围是____________.三. 解答题:解答应写出文字说明,证明过程或演算步骤.17. (原创) (本小题满分12分) 已知二次函数),()(2Rcbcbxxxf∈++=, 若(1)(2)f f-=,且函数xxfy-=)(的值域为[0,)+∞.(1) 求函数)(xf的解析式;(2) 若函数()2xg x k=-, 当[1,2]x∈时, 记)(),(xgxf的值域分别为BA,, 若A B A=, 某某数k的值.18. (本小题满分12分) 随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价.(1) 是否有的把握认为商品好评与服务好评有关? 请说明理由;(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.2()0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828P K k k≥(22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)19. (本小题满分12分) 已知等差数列{}n a 满足153,15a a ==, 数列{}n b 满足154,31b b ==, 设正项等比数列{}n c 满足n n n c b a =-.(1) 求数列{}n a 和{}n c 的通项公式; (2) 求数列}{n b 的前n 项和.20. (原创) (本小题满分12分) 已知函数()()ln xxf x e ax b e x =+-. (1) 若函数()f x 在1x =处取得极值, 且1b =,求a ;(2) 若b a =-, 且函数()f x 在[1,)+∞上单调递增, 求a 的取值X 围.21. (原创) (本小题满分12分)已知椭圆方程22221x y a b+=(0a b >>)短轴长为2.(1) 求椭圆的标准方程;(2) 直线:l y kx m =+(0k ≠)与y 轴的交点为A (点A 不在椭圆外), 且与椭圆交于两个不同的点,P Q . 若线段PQ 的中垂线恰好经过椭圆的下端点B , 且与线段PQ 交于点C , 求ABC ∆面积的最大值.请在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.22. (本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆中90A ∠=︒,D ,E 分别为边AB , AC 上的点, 且不与ABC ∆的顶点重合. 已知AE 的长为m , AC 的长为n , AD , AB 的长是关于x 的方程2140x x mn -+=的两个根.(1) 证明: C B D E 、、、四点共圆;(2) 若46m n ==,, 求C B D E 、、、所在圆的半径.23. (原创) (本小题满分10分)选修4—4:坐标系与参数方程已知在直角坐标系xOy 中, 直线l 的参数方程为是222()212x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数, 以坐标原点O 为极点, x 轴正半轴为极轴建立极坐标系, 曲线C 的极坐标方程为4sin ρθ=. (1) 判断直线l 与曲线C 的位置关系;(2) 在曲线C 上求一点P ,使得它到直线l 的距离最大,并求出最大距离.24. (本小题满分10分)选修4—5:不等式选讲 设不等式2120x x -<--+<的解集为M , ,a b M ∈. (1)求集合M ;(2) 比较14ab -与2a b -的大小, 并说明理由.2016年某某一中高2017级高二下期期末考试数 学 答 案(文科)2016.7一. 选择题1-5: B A A D A 6-10: A B B B B 11-12: A A二. 填空题13. 2i + 14.1215. 11 16. [1,1]-三. 解答题17. 解: (1) 因为,)2()1(f f =-所以1-=b因为函数22()2(1)1y f x x x x c x c =-=-+=-+-的值域为,),0[+∞ 所以故101c c -=⇒=.所以1)(2+-=x x x f ;(2) 易得[1,3]A =,[2,4]B k k =--,由A B A ⋃=,有B A ⊆,所以21143k k k -≥⎧⇒=⎨-≤⎩18. 解: (1)由上表可得22200(80104070)11.11110.8281505012080K ⨯⨯-⨯=≈>⨯⨯⨯, 所以有99.9%的把握认为商品好评与服务好评有关(2) 由表格可知对商品的好评率为35,若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 则好评的交易次数为3次, 不满意的次数为2次, 令好评的交易为,,A B C , 不满意的交易,a b , 从5次交易中, 取出2次的所有取法为(,),(,),(,),(,)A B A C A a A b ,(,),(,),(,),B C B a B b (,)C a , (,)C b , (,)a b , 共计10种情况, 其中只有一次好评的情况是(,)A a ,(,)A b ,(,)B a ,(,)B b ,(,)C a ,(,)C b , 共计6种情况. 因此, 只有一次好评的概率为63105=.19. 解: (1) 设等差数列{}n a 的公差为d , 依题意得51434153a a d d d =+⇒+=⇒=, 所以33(1)3n a n n =+-=.设等比数列{}n c 的公比为q , 依题意得111431c b a =-=-=, 555311516c b a =-=-=,从而44511612c c q q q =⇒=⨯⇒=, 所以11122n n n c --=⨯=.(2) 因为132n n n n n n n n c b a b a c b n -=-⇒=+⇒=+, 所以数列{}n b 的前n 项和为121212(31)(62)(92)(32)(3693)(1222)(33)1221233212n n n n n S n n n n n n --=++++++++=++++++++++-=+-+=+-20.解: (1) 1'()(ln )x f x e ax b x a x=+-+-, 因为()f x 在1x =处取得极值, 所以'(1)0f =, 即21a b +=,又1b =,所以0a =.(2) ()(ln )xf x e ax a x =--,11'()(ln )(ln )x x f x e ax a x a e ax x x x=--+-=--()f x 在[1,)+∞上单调递增⇔'()0f x ≥在[1,)+∞上恒成立⇒1ln 0ax x x--≥在[1,)+∞上恒成立法一:(分离参数法)则2ln 1x a x x≥+在[1,)+∞上恒成立 令2ln 1()x g x x x =+, 下面求()g x 在[1,)+∞上的最大值.242331ln 111ln 2ln 2'()2x x x x x x x g x x x x x x x⋅-⋅---=-⋅=-=, 令()ln 2h x x x x =--, 则1'()1(1ln )ln h x x x x x=-⋅+⋅=-.显然, 当1x ≥时, '()0h x ≤, 即()h x 单调递减, 从而()(1)1h x h ≤=-. 所以, 当1x ≥时, 0'()g x ≤, 即()g x 单调递减, 从而max ()(1)1g x g ==. 因此, 1a ≥.法二: ()f x 在[1,)+∞上单调递增 ⇔'()0f x ≥在[1,)+∞上恒成立即1ln 0ax x x --≥在[1,)x ∈+∞上恒成立. 令1()ln g x ax x x=--, 222111'()ax x g x a x x x -+=-+=.令2()1h x ax x =-+ (1x ≥),① 当0a =时, ()10h x x =-+≤, 所以'()0g x ≤, 即()g x 在[1,)+∞上单调递减. 而(1)110g a =-=-<, 与()0g x ≥在[1,)x ∈+∞上恒成立相矛盾. ②当0a >时,ⅰ.140a ∆=-≤, 即14a ≥时, ()0h x >,即[)()0,1,g x x '>∈+∞,所以()g x 在[1,)+∞上递增,所以min ()(1)10g x g a ==-≥, 即1a ≥.ⅱ.0∆>, 即104a <<时, 此时(1)10g a =-<, 不合题意.③ 当0a <时, [1,)x ∈+∞时, ()0h x <,即'()0g x <, [1,)x ∈+∞, 从而()g x 在[1,)+∞上单调递减, 且(1)10g a =-<, 矛盾. 综上可知:1a ≥.21.解: (1) 223122c a a b b ⎧⎧==⎪⎪⇒⎨⎨=⎪⎩⎪=⎩, 因此椭圆的标准方程为2213x y +=. (2) 易得点A 的坐标为(0,)m , 点B的坐标为(0,1)-. 设P ,Q的坐标分别为11(,)x kx m +, 22(,)x kx m +.联立2213y kx m x y =+⎧⎪⎨+=⎪⎩, 得222(13)63(1)0k x kmx m +++-=, 从而12221226133(1)13km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩. 易知线段PQ 的中点C 的横坐标为1223213x x kmk +=-+, 纵坐标为21222321313x x k m mk m m k k++=-+=++. 因此, 点C 的坐标为223(,)1313km mk k -++.由题意知: BC PQ ⊥, 即22(1)1133013mk km k k --+=---+, 从而2132k m +=.因为直线与椭圆有两个不同的交点, 所以2212(13)0m k ∆=-+>, 即2213m k <+. 从而有22m m <, 即02m <<. 又知213122k m +=>, 因此122m <<. 由点A 不在椭圆之外知, 11m -≤≤. 综上知, 112m <≤.故线段AB 的长度可表示为11AB m m =+=+, 点C 到线段AB 的距离可表示为2313km d k ===+. 进而ABC ∆的面积可表示为11(1)22ABC S AB d m ∆=⨯⨯=⨯+=令32()231f m m m =+-, 则2'()660f m m m =+>, 即()f m 在1(,1]2上单调递增.从而2ABC S ∆≤==,所以ABC面积的最大值为2.注: ABC ∆的面积也可用k 表示为2399(1)88ABC S k k k k ∆=+=+(03k <≤),ABC S ∆关于k 单调递增,从而291]8332ABC S ∆≤⨯+=,所以0,2ABC S ∆⎛∈ ⎝⎦, 所以ABC四. 选考题22. (1)证明: 连结DE , 根据题意在ADE 和ACB 中, AD AB mn AE AC ⨯==⨯,即AD AC =AEAB, 又DAE CAB ∠=∠, 从而ADE ACB ∽. 因此ADE ACB ∠∠=, 所以,,,C B D E 四点共圆.(2)46m n =,=时, 方程2140x x mn -+=的两根为12212x x ==,,故212AD AB =,=. 取CE 的中点G DB ,的中点F , 分别过G F ,作AC AB ,的垂线, 两垂线相交于H 点, 连结DH. 因为C B D E ,,,四点共圆, 所以C B D E ,,,四点所在圆的圆心为H , 半径为DH .由于90A∠︒=, 故////GH AB HF AC , , 从而512251()2HF AG DF ====,-.故C B D E ,,,四点所在圆的半径为23.解: (1)易得直线l 的方程为10x y --=,曲线C 的方程为22(2)4x y +-=,圆心(0,2)C ,半径2r =,圆心C 到直线l的距离2d ==>,所以直线l 与曲线C 相离. (2)易得点P 到直线l的最大距离为2d r +=+, 过圆心且垂直于直线l 的直线方程为2y x =-+, 联立22(2)42x y y x ⎧+-=⎨=-+⎩,所以224x x =⇒=易得点(2P +24.解: (1)证明: 记()3,21221,213,1x f x x x x x x ≤-⎧⎪=--+=---<<⎨⎪-≥⎩,由2210x -<--<, 解得1122x -<<, 则11,22M ⎛⎫=- ⎪⎝⎭.(2)由(1)得2211,44a b <<.因()()()()2222222214418164241410ab a b ab a b a ab b a b ---=-+--+=-->,所以22144ab a b ->-, 故144ab a b ->-。

高二数学下学期期末考试试题理(9)word版本

高二数学下学期期末考试试题理(9)word版本

2016~2017学年度第二学期期末考试试卷高二数学(理科)第I 卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知是虚数单位,则复数() A.B.C.D.2.“任何实数的平方大于0,因为是实数,所以>0”,这个三段论推理( ) A .大前题错误 B .小前题错误 C .推理形式错误 D .是正确的 3.某校食堂的原料费支出与销售额(单位:万元)之间有如下数据,根据表1中提供的数据,用最小二乘法得出对的回归直线方程为,则表中的值为( )A. 60B. 50C. 55D. 65 4.用反证法证明命题“三角形的内角中至少有一个不大于”时,假设正确的是 ( )A.假设三个内角都不大于B.假设三个内角都大于C.假设三个内角至多有一个大于D.假设三个内角至多有两个大于5.下面几种推理中是演绎推理的为 ( )A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列的通项公式为;C .由半径为的圆的面积,得单位圆的面积;表1D.由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为6.用数学归纳法证明(),在验证时,等式的左边等于()A.1B.C.D.7.在的二项展开式中,的系数为()A.10B.C.40D.8.5张卡片上分别标有号码1,2,3,4,5,现从中任取3张,则3张卡片中最大号码为4的概率是()A. B. C. D.9.若且则的值为()A. B. C. D.10.将5封不同的信全部投入4个邮筒,每个邮筒至少投一封,不同的投法共有()A.120种B. 356种C.264种D. 240种11.袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次.若每次抽到各球的机会均等,事件表示“三次抽到的号码之和为6”,事件表示“三次抽到的号码都是2”,则()A. B. C. D.12.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.352第II卷二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.已知随机变量服从正态分布,如图1所示.若在内取值的概率为0.4,则在内取值的概率为.14.掷两颗骰子,掷得的点数和大于9的概率为.15.若,则.16.若是离散型随机变量,,,且.又已知,,则的值为 .三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知复数在复平面内对应的点分别为,,().(Ⅰ)若,求的值;(Ⅱ)若复数对应的点在二、四象限的角平分线上,求的值.18.(本小题满分12分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(Ⅰ)设为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自不同协会”,求事件发生的概率;(Ⅱ)设为选出的4人中种子选手的人数,求随机变量的分布列和数学期望.19.(本小题满分12分)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(Ⅰ)设为事件“选出的2人参加义工活动次数之和为4”,求事件发生的概率;(Ⅱ)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.(图1)20.(本小题满分12分)某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的列联表(表2):(Ⅰ)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为,求的分布列和数学期望;(Ⅱ)根据表3中数据,能否认为爱好羽毛球运动与性别有关?附:21.(本小题满分12分)请考生在(21)(1),(21)(2)二题中任选一题作答,如果多做,则按所做的第一题记分.做答时,把所选题目的序号填在相应位置. (21)(1)选修4-4:坐标系与参数方程 在极坐标系中,点,曲线的方程为.以极点为原点,以极轴为轴正半轴建立直角坐标系.(Ⅰ)求点的直角坐标及曲线的直角坐标方程;表2表3(Ⅱ)斜率为的直线过点,且与曲线交于两点,求点到两点的距离之积.(21)(2)选修4-5:不等式选讲已知函数,.(Ⅰ)写出函数的分段解析表达式,并作出的图象;(Ⅱ)求不等式的解集.22.(本小题满分12分)请考生在(22)(1),(22)(2)二题中任选一题作答,如果多做,则按所做的第一题记分.做答时,把所选题目的序号填在相应位置.(22)(1)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线,曲线:(为参数).(Ⅰ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线,的极坐标方程;(Ⅱ)在(Ⅰ)的极坐标系中,射线与曲线,分别交于,两点,定点,求的面积.(22)(2)选修4-5:不等式选讲设对于任意实数,不等式恒成立,且的最大值为.(Ⅰ)求的值;(Ⅱ)若,且,求证:.2016~2017学年第二学期期末考试试卷数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分.一.选择题1.B2.A3.A4.B5.C6.C7.D8.B9.C10.D 11.A 12.B二.填空题13.0.8 14. 15.3316.317.解:(I)由复数的几何意义可知:.因为,所以.解得或.....................................5分(II)复数由题意可知点在直线上所以,解得........................10分18.解:(I)由已知,有,所以事件发生的概率为...............................4分(II)随机变量的所有可能取值为.所以,随机变量的分布列为........................................................10分随机变量的数学期望...................12分19.解:(I)由已知,有所以事件发生的概率为.................................4分(II)随机变量的所有可能取值为,,,.所以,随机变量的分布列为........................................................10分随机变量的数学期望.........................12分20.解:(I)任一学生爱好羽毛球的概率为,故.,所以,随机变量的分布列为随机变量的数学期望 ...............8分(II)因为所以没有理由认为爱好羽毛球运动与性别有关................12分21.(1)解:(I)点M的直角坐标为,曲线C的直角坐标方程为................................4分(II)直线的参数方程为.把直线的参数方程代入曲线C的方程得,,设A、B对应的参数分别为,则,由t的几何意义得..........................12分(2)解:(I)的图象如图所示............................4分(II)方法一:由的表达式及图象,当时,可得;当时,可得;故的解集为;的解集为;所以不等式的解集为.............12分方法二:由(I)可知所以当时,,解得当时,,解得当时,,解得当时,,解得综上,的解集为.....................12分22.(1)(Ⅰ)解:,.............4分(Ⅱ)到射线的距离为则...............................12分(2)解:(I)因为不等式恒成立,所以,即,所以............................4分(II)因为,所以即,故,于是,因为,于是得.当时取等号........12分。

河南省安阳市高二数学下学期期末试题 文(含解析)

河南省安阳市高二数学下学期期末试题 文(含解析)

2016-2017学年河南省安阳市高二(下)期末数学试卷(文科)一、选择题(每小题5分,共60分)1.集合A={﹣1,0,1},B={y|y=cosx,x∈A},则A∩B=()A.{0} B.{1} C.{0,1} D.{﹣1,0,1}2.下列有关选项正确的是()A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2﹣4x﹣5=0”的充分不必要条件C.命题“若x<﹣1,则x2﹣2x﹣3>0”的否定为:“若x≥﹣1,则x2﹣3x+2≤0”D.已知命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∃x∈R,使得x2+x﹣1≥03.已知a=log32,那么log38﹣2log36用a表示是()A.5a﹣2 B.a﹣2 C.3a﹣(1+a)2D.3a﹣a2﹣14.设F(x)=f(x)+f(﹣x),x∈R,若[﹣π,﹣]是函数F(x)的单调递增区间,则一定是F(x)单调递减区间的是()A.[﹣,0] B.[,0] C.[π,π] D.[,2π]5.设y1=40.9,y2=80.48,y3=,则()A.y3>y1>y2B.y2>y1>y3C.y1>y3>y2D.y1>y2>y36.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是()A.B.C.D.7.已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称8.设函数 f(x)在 R上可导,其导函数为f′(x),且函数 y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数 f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值 f(2)和极小值 f(﹣2)C.函数 f(x)有极大值f(﹣2)和极小值 f(1)D.函数f(x)有极大值f(﹣2)和极小值 f(2)9.函数y=2x3﹣3x2﹣12x+5在[0,3]上的最大值、最小值分别是()A.5,﹣4 B.5,﹣15 C.﹣4,﹣15 D.5,﹣1610.函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1] B.(0,1] C.[1,+∞)D.(0,+∞)11.已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b12.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个二、填空题(每小题5分,共20分)13.曲线y=x2+在点(1,2)处的切线方程为.14.要使函数f(x)=x2+3(a+1)x﹣2在区间(﹣∞,3]上是减函数,则实数a的取值范围.15.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为.16.y=的定义域是.三、解答题(请写出必要的文字说明和推演步骤,第17题10分,其他每题12分,共70分)17.已知A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},B⊆A,求m的取值范围.18.求值:lg500+lg﹣lg64+50(lg2+lg5)2.19.设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x﹣4y﹣12=0.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.20.求f(x)=x3﹣12x在[﹣3,5]上的最值.21.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,求证:f(x)在x=x0处的导数等于0.22.设函数f(x)=lnx+x2+ax(1)若x=时,f(x)取得极值,求a的值;(2)若f(x)在其定义域内为增函数,求a的取值范围.2016-2017学年河南省安阳市洹北中学高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.集合A={﹣1,0,1},B={y|y=cosx,x∈A},则A∩B=()A.{0} B.{1} C.{0,1} D.{﹣1,0,1}【考点】1E:交集及其运算.【分析】求出B={cos1,1},利用两个集合的交集的定义求得A∩B.【解答】解:∵A={﹣1,0,1},∴B={y|y=cosx,x∈A}={cos1,1},则A∩B={1 },故选 B.2.下列有关选项正确的是()A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2﹣4x﹣5=0”的充分不必要条件C.命题“若x<﹣1,则x2﹣2x﹣3>0”的否定为:“若x≥﹣1,则x2﹣3x+2≤0”D.已知命题p:∃x∈R,使得x2+x﹣1<0,则¬p:∃x∈R,使得x2+x﹣1≥0【考点】2L:必要条件、充分条件与充要条件的判断;2J:命题的否定.【分析】本题需要逐一判断,到满足题意的选项为止,(选择题四选一);可以采用先熟悉后生疏的策略判定解答.【解答】解:由复合命题真值表知:若p∨q为真命题,则p、q至少有一个为真命题,有可能一真一假,也可能两个都真,推不出p∧q为真命题∴选项A错误;由x=5可以得到x2﹣4x﹣5=0,但由x2﹣4x﹣5=0不一定能得到x=5,∴选项B成立;选项C错在把命题的否定写成了否命题;选项D错在没有搞清楚特称命题的否定是全称命题.故选B.3.已知a=log32,那么log38﹣2log36用a表示是()A.5a﹣2 B.a﹣2 C.3a﹣(1+a)2D.3a﹣a2﹣1【考点】4H:对数的运算性质.【分析】利用对数的幂的运算法则及积的运算法则将log38﹣2log36用log32,从而用a表示.【解答】解:∵log38﹣2log36=3log32﹣2(1+log32)=log32﹣2=a﹣2故选B.4.设F(x)=f(x)+f(﹣x),x∈R,若[﹣π,﹣]是函数F(x)的单调递增区间,则一定是F(x)单调递减区间的是()A.[﹣,0] B.[,0] C.[π,π] D.[,2π]【考点】3D:函数的单调性及单调区间.【分析】根据条件先判断函数F(x)的奇偶性,结合函数奇偶性和单调性之间的关系进行求解即可.【解答】解:∵F(x)=f(x)+f(﹣x),∴F(﹣x)=f(﹣x)+f(x)=F(x),则函数F(x)是偶函数,若[﹣π,﹣]是函数F(x)的单调递增区间,则[,π]是函数F(x)的单调递递减区间,∵[,0]⊊[,π],∴[,0]是函数F(x)的单调递递减区间,故选:B.5.设y1=40.9,y2=80.48,y3=,则()A.y3>y1>y2B.y2>y1>y3C.y1>y3>y2D.y1>y2>y3【考点】4B:指数函数的单调性与特殊点.【分析】化简这三个数为2x的形式,再利用函数y=2x在R上是增函数,从而判断这三个数的大小关系.【解答】解:∵ =21.8, =(23)0.48=21.44, =21.5,函数y=2x在R上是增函数,1.8>1.5>1.44,∴21.8>21.5>21.44,故y1>y3>y2,故选C.6.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是()A.B.C.D.【考点】6A:函数的单调性与导数的关系.【分析】先根据导函数的图象确定导函数大于0 的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.【解答】解:由y=f'(x)的图象易得当x<0或x>2时,f'(x)>0,故函数y=f(x)在区间(﹣∞,0)和(2,+∞)上单调递增;当0<x<2时,f'(x)<0,故函数y=f(x)在区间(0,2)上单调递减;故选C.7.已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【考点】35:函数的图象与图象变化.【分析】由已知中函数f(x)=lnx+ln(2﹣x),可得f(x)=f(2﹣x),进而可得函数图象的对称性.【解答】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.8.设函数 f(x)在 R上可导,其导函数为f′(x),且函数 y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数 f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值 f(2)和极小值 f(﹣2)C.函数 f(x)有极大值f(﹣2)和极小值 f(1)D.函数f(x)有极大值f(﹣2)和极小值 f(2)【考点】6A:函数的单调性与导数的关系.【分析】利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.【解答】解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).故选:D.9.函数y=2x3﹣3x2﹣12x+5在[0,3]上的最大值、最小值分别是()A.5,﹣4 B.5,﹣15 C.﹣4,﹣15 D.5,﹣16【考点】6E:利用导数求闭区间上函数的最值.【分析】对函数求导,利用导数研究函数y=2x3﹣3x2﹣12x+5在[0,3]上的单调性,判断出最大值与最小值位置,代入算出结果.【解答】解:由题设知y'=6x2﹣6x﹣12,令y'>0,解得x>2,或x<﹣1,故函数y=2x3﹣3x2﹣12x+5在[0,2]上减,在[2,3]上增,当x=0,y=5;当x=3,y=﹣4;当x=2,y=﹣15.由此得函数y=2x3﹣3x2﹣12x+5在[0,3]上的最大值和最小值分别是5,﹣15;故选B.10.函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1] B.(0,1] C.[1,+∞)D.(0,+∞)【考点】6B:利用导数研究函数的单调性.【分析】由y=x2﹣lnx得y′=,由y′<0即可求得函数y=x2﹣lnx的单调递减区间.【解答】解:∵y=x2﹣lnx的定义域为(0,+∞),y′=,∴由y′≤0得:0<x≤1,∴函数y=x2﹣lnx的单调递减区间为(0,1].故选:B.11.已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【考点】3N:奇偶性与单调性的综合.【分析】根据奇函数f(x)在R上是增函数,化简a、b、c,即可得出a,b,c的大小.【解答】解:奇函数f(x)在R上是增函数,∴a=﹣f()=f(log25),b=f(log24.1),c=f(20.8),又1<20.8<2<log24.1<log25,∴f(20.8)<f(log24.1)<f(log25),即c<b<a.故选:C.12.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个【考点】6D:利用导数研究函数的极值.【分析】由图象得:导函数f′(x)=0有3个根,只有在b附近的根满足根的左边为负值,根的右边为正值,故函数只有1个极小值点.从而问题得解.【解答】解:由图象得:导函数f′(x)=0有3个根,只有在b附近的根满足根的左边为负值,根的右边为正值,故函数只有1个极小值点,故选:A.二、填空题(每小题5分,共20分)13.曲线y=x2+在点(1,2)处的切线方程为x﹣y+1=0 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求出切线的斜率,利用点斜式求解切线方程即可.【解答】解:曲线y=x2+,可得y′=2x﹣,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.14.要使函数f(x)=x2+3(a+1)x﹣2在区间(﹣∞,3]上是减函数,则实数a的取值范围(﹣∞,1] .【考点】3W:二次函数的性质.【分析】函数f(x)=x2+3(a+1)x﹣2在区间(﹣∞,3]上是减函数,即说明(﹣∞,3]是函数f(x)的减区间的子集.【解答】解:函数f(x)=x2+3(a+1)x﹣2的单调减区间为(﹣∞,﹣],又f(x)在区间(﹣∞,3]上是减函数,所以有(﹣∞,3]⊆(﹣∞,﹣],所以3≤﹣,解得a≤1,即实数a的取值范围为(﹣∞,1].故答案为:(﹣∞,1].15.若曲线y=x2+ax+b在点(0,b)处的切线方程是x﹣y+1=0,则a,b的值分别为1,1 .【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率,由已知切线方程,可得切线的斜率和切点,进而得到a,b的值.【解答】解:y=x2+ax+b的导数为y′=2x+a,即曲线y=x2+ax+b在点(0,b)处的切线斜率为a,由于在点(0,b)处的切线方程是x﹣y+1=0,则a=1,b=1,故答案为:1,1.16.y=的定义域是(] .【考点】33:函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,然后求解对数不等式得答案.【解答】解:由,得0<3x﹣2≤1,∴,∴y=的定义域是(].故答案为:(].三、解答题(请写出必要的文字说明和推演步骤,第17题10分,其他每题12分,共70分)17.已知A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},B⊆A,求m的取值范围.【考点】18:集合的包含关系判断及应用.【分析】解决本题的关键是要考虑集合B能否为空集,先分析满足空集的情况,再通过分类讨论的思想来解决问题.同时还要注意分类讨论结束后的总结.【解答】解:当m+1>2m﹣1,即m<2时,B=∅,满足B⊆A,即m<2;当m+1=2m﹣1,即m=2时,B=3,满足B⊆A,即m=2;当m+1<2m﹣1,即m>2时,由B⊆A,得即2<m≤3;综上所述:m的取值范围为m≤3.18.求值:lg500+lg﹣lg64+50(lg2+lg5)2.【考点】4H:对数的运算性质.【分析】利用对数的性质和运算法则求解.【解答】解:lg500+lg﹣lg64+50(lg2+lg5)2=lg+50=2+50=52.19.设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x﹣4y﹣12=0.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.【考点】6H:利用导数研究曲线上某点切线方程;62:导数的几何意义;IG:直线的一般式方程.【分析】(1)已知曲线上的点,并且知道过此点的切线方程,容易求出斜率,又知点(2,f (2))在曲线上,利用方程联立解出a,b(2)可以设P(x0,y0)为曲线上任一点,得到切线方程,再利用切线方程分别与直线x=0和直线y=x联立,得到交点坐标,接着利用三角形面积公式即可.【解答】解析:(1)方程7x﹣4y﹣12=0可化为,当x=2时,,又,于是,解得,故.(2)设P(x0,y0)为曲线上任一点,由知曲线在点P(x0,y0)处的切线方程为,即令x=0,得,从而得切线与直线x=0的交点坐标为;令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0);所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形面积为定值,此定值为6.20.求f(x)=x3﹣12x在[﹣3,5]上的最值.【考点】6E:利用导数求闭区间上函数的最值.【分析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可.【解答】解:函数f(x)定义域为R,f′(x)=3(x+2)(x﹣2),令f′(x)=0,得x=±2,当x>2或x<﹣2时,f′(x)>0,∴函数在(﹣∞,﹣2)和(2,+∞)上是增函数;当﹣2<x<2时,f′(x)<0,∴函数在(﹣2,2)上是减函数.∴当x=﹣2时,函数有极大值f(﹣2)=16,当x=2时,函数有极小值f(2)=﹣16,f(﹣3)=9 f(5)=65,因此函数的最大值是 f(5)=65,最小值是f(2)=﹣16.21.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,求证:f(x)在x=x0处的导数等于0.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数f(x)的导函数,得到导函数的零点,由导函数的零点对定义域分段,列表后可得f(x)的单调区间;(Ⅱ)求出g(x)的导函数,由题意知,求解可得,得到f(x)在x=x0处的导数等于0.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)证明:∵g'(x)=e x(f(x)+f'(x)),由题意意知,即求解可得,∴f(x)在x=x0处的导数等于0.22.设函数f(x)=lnx+x2+ax(1)若x=时,f(x)取得极值,求a的值;(2)若f(x)在其定义域内为增函数,求a的取值范围.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)先求函数的导函数,根据若时,f(x)取得极值得f′()=0,解之即可;(2)f(x)在其定义域内为增函数可转化成只需在(0,+∞)内有2x2+ax+1≥0恒成立,建立不等关系,解之即可;【解答】解:,(1)因为时,f(x)取得极值,所以,即2+1+a=0,故a=﹣3.(2)f(x)的定义域为(0,+∞).方程2x2+ax+1=0的判别式△=a2﹣8,①当△≤0,即时,2x2+ax+1≥0,f'(x)≥0在(0,+∞)内恒成立,此时f(x)为增函数.②当△>0,即或时,要使f(x)在定义域(0,+∞)内为增函数,只需在(0,+∞)内有2x2+ax+1≥0即可,设h(x)=2x2+ax+1,由得a>0,所以.由①②可知,若f(x)在其定义域内为增函数,a的取值范围是.。

河南2016-2017学年高二数学下学期期末检测试题 理(扫描版)

河南2016-2017学年高二数学下学期期末检测试题 理(扫描版)

河南省2016-2017学年高二数学下期期末检测试题理(扫描版)中原名校2016—2017学年期末检测高二数学(理)答案一、选择题1.C 2.A 3.D 4.D 5.B 6.B 7.A 8.B 9.A 10.D 11.D12.A1.C 【解析】因为{}240M x x =-≤{}22x x =-≤≤,全集U R =,所以U C M ={}22x x x <->或,故选C.2.A 【解析】利用方程思想求解复数并化简.由(z -2i)(2-i)=5,得z =2i +52-i=2i +5(2+i)(2-i)(2+i)=2i +2+i =2+3i.3.D 【解析】由条件e =3,即c a =3,得c 2a 2=a 2+b 2a 2=1+b 2a 2=3,所以ba=2,所以双曲线的渐近线方程为y =±22x .故选D 4.D 【解析】∵a =(1,x ),b =(2,-6)且a ∥b ,∴-6-2x =0,x =-3,∴a =(1,-3),a ·b =20,故选D .5.B 【解析】①若p q ∧是真命题,则p 和q 同时为真命题,p ⌝必定是假命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”;③“5a >且5b >-”是“0a b +>”的充分不必要条件; ④ay x =1'a y a x -⇒=⋅,当0a <时,'0y <,所以在区间()0+∞,上单调递减. 选B .6.B 【解析】由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递减,∴a 4=12,a 2=32.∴公差d =a 4-a 22=-12.∴a 1=a 2-d =2.7.A 【解析】设所选女生人数为X ,则X 服从超几何分布,其中N =6,M =2,n =3,则P (X 1)=P (X =1)+P (X =2)=212436C C C +C 12C 24C 36=45.所以选A 。

河南省安阳市内黄县高二数学下学期期末考试试题 文

河南省安阳市内黄县高二数学下学期期末考试试题 文

2016〜2017学年下学期期末统考高二数学试卷(理科)2017.6考生注意:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

第Ⅰ卷每小题选出答案后,用2B 始策把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答。

超出答题区域书写的答案无效,在试题卷、草稿.....................纸上作答无效。

.......3.本卷命题范围:高考范围。

第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3A =,{}240B x x =-<,则AB =A. {}1B. {}1,2C. {}2D. {}2,3 2.复数z 满足21z ii i+=+-,则复数z = A. 32i + B. 23i - C. 32i - D. 23i +3. 已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,右顶点为A ,一条渐近线方程为y =,且2AF =,则该双曲线C 的实轴长为A. 4B. 2 4. 1sin cos cos sin 2αβαβ+=是2,6k k z παβπ+=+∈的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.已知函数sin()(0)3y x πωω=+>的最小正周期为23π,则该函数的单调增区间为A. 272[,]()31836k k k z ππππ-+∈B. 252[,]()318318k k k z ππππ-+∈C. 5[,]()1212k k k z ππππ-+∈ D. [,]()36k k k z ππππ-+∈ 6.函数(1)(3)22()log log x x f x --=+ A.在(1,3)上增函数 B.在(1,3)上减函数 C. 最小值为1 D. 最大值为17.执行如图所示的程序框图,若输出的47s =,则判断框内可填入的条件是 A. 3n > B. 4n > C. 5n > D. 6n >8.一个几何体的三视图如图所示,则该几何体的体积为A. 23πB. 243π+C. 3πD. 43π+ 9.已知实数x 、y 满足24481x y x y x y +≥⎧⎪-≤⎨⎪-≥-⎩,则222z x y x =+-的取值范围是A. [0,19]B. 1[,3]5-C. 1[,0]5-D. 1[,19]5-10.已知三棱锥A BCD -中,AD ⊥平面BCD ,1AD BD CD ===,E 是BC 中点,则直线AE 与CD 所成的角的余弦值是A.2B. 46D. 811.已知数列{}n a 的前和为n S ,且12123,2n nn n a a --==,则满足500n S <的最大的n 值为A.10B. 11C. 12D. 13 12.若0[1,]x e ∈,使得0001ln ax a x x ++≤成立,则正数a 的最小值为A. 211e e -+B. 211e e +-C. 11e e +-D. 11e e -+第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)-(21 )题为必考题,每个题目考生都必须作答.第(22)题-第(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分。

安阳市内黄县第一中学2016-2017学年高二下学期期末考试语文试题 含答案byfen

安阳市内黄县第一中学2016-2017学年高二下学期期末考试语文试题 含答案byfen

2016〜2017学年下学期期末统考高二语文试卷2017. 6考生注意:1.本试卷满分150分,考试时间150分钟。

2.回答选择题时,选每小题答案后,賤笔把答針上对题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

考试结束后,将本试卷和答题卡一并交回.3.本卷命题范围:一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1〜3题。

古陶瓷鉴定是一门综合性学科,涉及考古、历史、文学、艺术、社会、民族以及自然科学中物理、化学等诸多领域的知识。

只有具备主动拓展多方面知识的心胸和意识,才能提高古陶是鉴定的准确度,不至得出“盲人摸象”式的结论.掌握陶瓷史的发展脉络、熟悉古陶瓷文献是从事鉴定工作的前提.与此同时,还要弄清古陶瓷所处时代的社会现状、文化背景、民风民俗等背景资料,这样才能把某时代、某地容口烧制的瓷器特特征汇整个时发展史的长河中,把握其发展脉络。

如唐代陶瓷的造型丰腴,无论南北各地,或陶或瓷,乃至金银器等,造型都呈现出丰满壮美的艺术风格。

1974年,扬州市唐城遗址出土一件青釉褐绿点彩云纹双耳罐,其造型丰腴健硕,肩部捏塑小双系,通体青黄色釉,器身布满褐绿彩点绘的联珠纹卷云及莲花、荷叶纹饰.这是廣代长沙窑创烧的新品种,它打破了从前以青、黑、白单色釉为饰的生产格局,在彩瓷发展的道路上迈出了重要一步.在社会环境与人们审美取向的影响下,同时代各类器物的艺术风格均有共性。

某时期流行的纹饰,必然会出现在这一时期的各类器物上,如盛行于唐代的宝相花纹饰,在当时生产的金银器、铜键、三彩器织锦等各类产品中均有表现。

比较研究是古陶瓷鉴定中最重要的内容,它需广泛搜集各方面资讯,进行大量实践,将待鉴品与标准器进行对比,从而分析古陶瓷的时代特征及变化规律。

标准器是古陶瓷鉴定的参照物,包括考古材料中纪年墓出土的陶瓷器,文化层中的陶瓷器,古代沉船、窑藏、古窑址中出土的陶瓷器以及带年号舦的珣瓷器等,它们是鉴定古陶光的标尺和依据,将这些标准器与待签品的造型、胎釉、纹饰及工艺技法等特征相比较,就可判断出待鉴品的年代、真伪、窑口等.标准器是学习古陶瓷鉴定的基础教材,只有牢记它们的特征,才能练就过硬的鉴定本领.传统“目鉴"需进行多方面、多角度的现察,应多找问题,不能轻易下结论。

河南省安阳市内黄县2016_2017学年高二化学下学期期末考试试题201708210236

河南省安阳市内黄县2016_2017学年高二化学下学期期末考试试题201708210236

2016〜2017学年下学期期末统考高二化学试卷2017.6考生注意:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间90分钟。

2.考生作答时,请将答案答在答题卡上。

第Ⅰ卷每小题选出答案后,用2B 始策把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答。

超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

............................3.本卷命题范围:高考范围。

可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Si 28 S 32 Cl 35.5第I 卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分.共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的}1.化学与生产、生活和环境密切相关。

下列有关做法错误的是A.加大清沽能源的开发利用,提高资源的利用率B 推广碳捕集和储存技术,逐步实现二氧化碳零排放C.加大铅酸蓄电池、含汞锌锰干电池的生产,满足消费需求D.对工业废水、生活污水进行净化处理后再排放2.下列关千有机物的结论正确的是3.设A N 为阿伏加德罗常数值。

下列有关叙述正确的是A. 28 g 乙烯中含有的电数数为12A NB. 110.1L mol L -⋅的3a N HSO 溶液3HSO -和24SO -离子数之和为0.1A NC.氢气与氯气反应生成36. 5 g 氯化氢气体,断裂共价键总数为2A ND.由22H O 制得2.24L 2O (标准状况).转移电子数为0.2A N4.能正确表示下列反应的离子方程式是A. 43NH HCO 溶液与过量KOH 溶液反应:432NH OH NH H O +-+==B.磁性氧化铁溶于稀硝酸:23323432Fe H NO Fe NO H O ++-+++==↑+C. 2FeBr 溶液与少量2Cl 反应:223222Fe Cl Fe Cl ++-+==+D. 24H SO 与2()Ba OH 溶液反应:22442Ba OH H SO BaSO H O +-+-+++==↓+5.已知反应:①2323244242SeO KI HNO Se I KNO H O ++=+++;②242Se H SO + (浓)22222SO SeO H O =↑++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016〜2017学年下学期期末统考
高二数学试卷(理科)
2017.6
考生注意:
1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

第Ⅰ卷每小题选出答案后,用2B 始策把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答。

超出答题区域书写的答案无效,在试题卷、草稿.....................纸上作答无效。

.......
3.本卷命题范围:高考范围。

第I 卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}1,2,3A =,{
}240B x x =-<,则A
B =
A. {}1
B. {}1,2
C. {}2
D. {}2,3 2.复数z 满足
21z i
i i
+=+-,则复数z = A. 32i + B. 23i - C. 32i - D. 23i +
3. 已知双曲线22
22:1(0,0)x y C a b a b
-=>>的右焦点为F ,右顶点为A ,一条渐近线方程
为22y x =,且2AF =,则该双曲线C 的实轴长为 A. 4 B. 23 C. 22 D. 2 4. 1sin cos cos sin 2αβαβ+=
是2,6
k k z π
αβπ+=+∈的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
5.已知函数sin()(0)3y x π
ωω=+
>的最小正周期为
23
π
,则该函数的单调增区间为
A. 272[,]()31836k k k z ππππ-+∈
B. 252[,]()318318
k k k z ππππ-+∈
C. 5[,]()1212k k k z ππππ-
+∈ D. [,]()36
k k k z ππ
ππ-+∈ 6.函数(1)
(3)2
2()log log x x f x --=+ A.在(1,3)上增函数 B.在(1,3)上减函数 C. 最小值为1 D. 最大值为1
7.执行如图所示的程序框图,若输出的47s =,则判断框内可填入的条件是 A. 3n > B. 4n > C. 5n > D. 6n >
8.一个几何体的三视图如图所示,则该几何体的体积为 A. 2223π+
B. 243π+
C. 223π+
D. 43
π
+ 9.已知实数x 、y 满足24
481x y x y x y +≥⎧⎪-≤⎨⎪-≥-⎩
,则22
2z x y x =+-的取值范围是
A. [0,19]
B. 1[,3]5-
C. 1[,0]5-
D. 1[,19]5
-
10.已知三棱锥A BCD -中,AD ⊥平面BCD ,1AD BD CD ===,E 是BC 中点,则直线AE 与CD 所成的角的余弦值是 A.
32 B. 64 C. 6
6
D. 328
11.已知数列{}n a 的前和为n S ,且12123,2n n
n n a a --==,则满足500n S <的最大的n 值为
A.10
B. 11
C. 12
D. 13 12.若0[1,]x e ∈,使得000
1ln a
x a x x ++
≤成立,则正数a 的最小值为
A. 211e e -+
B. 211e e +-
C. 11e e +-
D. 11
e e -+
第II 卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第(13)-(21 )题为必考题,每个题目考生都必须作答.第(22)题-第(23)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分。

13.某高校为调查1000名学生每周的自习时间(单位:小 时),从中随机抽查了100名学生每周的自习时间,制 成了如图所示的频率分布直方图,其中自习时间的范 围是[17.5,30],样本数据分组为[17.5,20),[20,22. 5),[22.5,25) , [25,27.5) , [27.5, 30].根据直方图, 估计这1000名学生中每周的自习时间不少于22.5 小时的人数是___________。

14. 已知等差数列{}n a 的前n 项和为n S ,3412,40S S ==,则
123
1111
______n
S S S S ++++
= 15. 已知平行四边形ABCD 中,2,60,2,1AD BAD AC AD AE AE BD ︒
=∠=+=⋅=,则
_____BE BD ⋅=
16. 已知直线:210l kx y k -+-=与圆2
2
6x y +=交于A 、B 两点,过A 、B 分别作直线l 的垂线与y 轴交于C 、D 两点,若22AB =_________CD =。

三、解答题:本大题共6小题,共70分. 解答应写出必要的文字说明,证明过程或演算步骤.
17.(本小题满分12分)
在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,已知2222
,33
A a c b π
=-=, (I)求tan C 的值; (II )若ABC ∆33
,求a 的值
如图,所有棱长都相等的直四棱柱'''
'
ABCD A B C D -中,
''B D 中点为'E
(I)证明:'
AE
平面'
BC D ;
( II)求证:'BD AE ⊥
19. 19.(本小题满分12分)
某校从高一年级随机抽取了20名学生第一学期的数学学期综合成绩和物理学期综合成绩,列表如下:
规定:综合成绩不低于90分者为优秀,低于90分为不优秀。

(I) (I )在序一号为1.2.3.4,5.6这6名学生中随机选两名,求这两名学生数学和物理都优秀的概率;
(ll)根据这次抽查数据,列出22⨯列联表,能否在犯错误的概率不超过0.025的前提下认
为物理成绩与数学成绩有关?
已知椭圆2222:1(0,0)x y C a b a b
+=>>的离心率为2,且过点1(,24-,点00(,)A x y
为椭圆C 上的点,且以A 为圆心的圆过椭圆C 的右焦点F (I)求椭圆C 的方程;
(II)记12(0,),(0,)M y N y 是圆A 上的两点,若FM FN p ⋅>恒成立,求实数p 的最大值.
21.(本小题满分12分)
已知函数2
()1ln f x ax x =--,其中a R ∈ (I)讨论()f x 的单调性
(II)若()f x x ≥对(1,)x ∈+∞成立,求实数a 的取值范围·
请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分.作答时标出所选题目的题号。

22.(本小题满分10分)选修4一4:坐标系与参数方程
已知曲线C 的参数方程为310cos (110sin α
αα
⎧+⎪⎨
+⎪⎩为参数)以原点为极点,x 轴正半轴为极轴 建立极坐标系.
(I)求曲线C 的极坐标方程; (Il)若直线1
:sin cos l θθρ
-=交曲线C 于M 、N 两点,求MN 。

23.(本小题满分10分)选修4-5:不等式选讲 已知函数()2f x x =-
(I)解不等式()(21)6f x f x ++≥;
(II)对1(,0)a b a b +=>及x R ∀∈,不等式41
()()f x m x a b
---≤
+恒成立,求实数m 的取值范围.。

相关文档
最新文档