2015年广东省高考最后一卷文科数学试卷及答案

合集下载

【推荐】2015年广东省高考数学试卷(文科)

【推荐】2015年广东省高考数学试卷(文科)

2015年广东省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M ∩N=( ) A .{0.﹣1} B .{0} C .{1} D .{﹣1,1}2.(5分)已知i 是虚数单位,则复数(1+i )2=( ) A .2i B .﹣2i C .2D .﹣23.(5分)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y=+sin2B .y=2﹣cosC .y=2+D .y=2+sin4.(5分)若变量,y 满足约束条件,则=2+3y 的最大值为( )A .2B .5C .8D .105.(5分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a=2,c=2,cosA=.且b <c ,则b=( ) A .B .2C .2D .36.(5分)若直线 l 1和l 2 是异面直线,l 1在平面 α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l 1,l 2都不相交 B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4 B .0.6 C .0.8 D .1 8.(5分)已知椭圆+=1(m >0 )的左焦点为F 1(﹣4,0),则m=( )A .2B .3C .4D .99.(5分)在平面直角坐标系Oy 中,已知四边形 ABCD 是平行四边形,=(1,﹣2),=(2,1)则•=( )A .5B .4C .3D .210.(5分)若集合E={(p ,q ,r ,s )|0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p ,q ,r ,s ∈N},F={(t ,u ,v ,w )|0≤t <u ≤4,0≤v <w ≤4且t ,u ,v ,w ∈N},用card ()表示集合中的元素个数,则 card (E )+card (F )=( ) A .200 B .150 C .100 D .50二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣2﹣3+4>0的解集为 .(用区间表示)12.(5分)已知样本数据 1,2,…,n 的均值=5,则样本数据 21+1,22+1,…,2n +1 的均值为 .13.(5分)若三个正数 a ,b ,c 成等比数列,其中a=5+2,c=5﹣2,则b= .坐标系与参数方程选做题14.(5分)在平面直角坐标系Oy 中,以原点O 为极点,轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=﹣2,曲线C 2的参数方程为 (t 为参数),则C 1与C 2交点的直角坐标为 .几何证明选讲选做题15.如图,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线EC 的垂线,垂足为D .若AB=4.CE=2,则AD= .三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA 的距离.19.(14分)设数列 {a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=,a 3=,且当n ≥2时,4S n+2+5S n =8S n+1+S n ﹣1. (1)求a 4的值;(2)证明:{a n+1﹣a n }为等比数列; (3)求数列{a n }的通项公式.20.(14分)已知过原点的动直线l 与圆C 1:2+y 2﹣6+5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数 ,使得直线L :y=(﹣4)与曲线 C 只有一个交点?若存在,求出的取值范围;若不存在,说明理由.21.(14分)设 a 为实数,函数 f ()=(﹣a )2+|﹣a|﹣a (a ﹣1). (1)若f (0)≤1,求a 的取值范围; (2)讨论 f ()的单调性;(3)当a ≥2 时,讨论f ()+ 在区间 (0,+∞)内的零点个数.2015年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)2015年普通高等学校招生全国统一考试(广东卷)数学(文科)1.(5分)若集合M={﹣1,1},N={﹣2,1,0}则M∩N=()A.{0.﹣1} B.{0} C.{1} D.{﹣1,1}【分析】进行交集的运算即可.【解答】解:M∩N={﹣1,1}∩{﹣2,1,0}={1}.故选:C.【点评】考查列举法表示集合,交集的概念及运算.2.(5分)已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【分析】利用完全平方式展开化简即可.【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.【点评】本题考查了复数的运算;注意i2=﹣1.3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()A.y=+sin2 B.y=2﹣cos C.y=2+D.y=2+sin【分析】利用函数奇偶性的判断方法对选项分别分析选择.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣+sin(﹣2)=﹣(+sin2);是奇函数;对于B,(﹣)2﹣cos(﹣)=2﹣cos;是偶函数;对于C,,是偶函数;对于D,(﹣)2+sin(﹣)=2﹣sin≠2+sin,2﹣sin≠﹣(2+sin);所以是非奇非偶的函数;故选:D.【点评】本题考查了函数奇偶性的判断,在定义域关于原点对称的前提下,判断f(﹣)与f()的关系,相等就是偶函数,相反就是奇函数.4.(5分)若变量,y满足约束条件,则=2+3y的最大值为()A.2 B.5 C.8 D.10【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由=2+3y,得y=,平移直线y=,由图象可知当直线y=经过点B时,直线y=的截距最大,此时最大.由,解得,即B(4,﹣1).此时的最大值为=2×4+3×(﹣1)=8﹣3=5,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.5.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A. B.2 C.2 D.3【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.6.(5分)若直线 l 1和l 2 是异面直线,l 1在平面 α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A .l 与l 1,l 2都不相交 B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交【分析】可以画出图形说明l 与l 1,l 2的位置关系,从而可判断出A ,B ,C 是错误的,而对于D ,可假设不正确,这样l 便和l 1,l 2都不相交,这样可推出和l 1,l 2异面矛盾,这样便说明D 正确. 【解答】解:A .l 与l 1,l 2可以相交,如图:∴该选项错误;B .l 可以和l 1,l 2中的一个平行,如上图,∴该选项错误;C .l 可以和l 1,l 2都相交,如下图:,∴该选项错误;D .“l 至少与l 1,l 2中的一条相交”正确,假如l 和l 1,l 2都不相交; ∵l 和l 1,l 2都共面; ∴l 和l 1,l 2都平行;∴l 1∥l 2,l 1和l 2共面,这样便不符合已知的l 1和l 2异面; ∴该选项正确. 故选:D .【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.7.(5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4 B.0.6 C.0.8 D.1【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==0.6.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.(﹣4,0),则m=()8.(5分)已知椭圆+=1(m>0 )的左焦点为F1A.2 B.3 C.4 D.9(﹣4,0),可得25﹣m2=16,【分析】利用椭圆+=1(m>0 )的左焦点为F1即可求出m.(﹣4,0),【解答】解:∵椭圆+=1(m>0 )的左焦点为F1∴25﹣m2=16,∵m>0,∴m=3,故选:B.【点评】本题考查椭圆的性质,考查学生的计算能力,比较基础.9.(5分)在平面直角坐标系Oy中,已知四边形ABCD是平行四边形,=(1,﹣2),=(2,1)则•=()A.5 B.4 C.3 D.2【分析】由向量加法的平行四边形法则可求=的坐标,然后代入向量数量积的坐标表示可求【解答】解:由向量加法的平行四边形法则可得,==(3,﹣1).∴=3×2+(﹣1)×1=5.故选:A.【点评】本题主要考查了向量加法的平行四边形法则及向量数量积的坐标表示,属于基础试题.10.(5分)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card()表示集合中的元素个数,则card(E)+card(F)=()A.200 B.150 C.100 D.50【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11~13题)11.(5分)不等式﹣2﹣3+4>0的解集为 (﹣4,1) .(用区间表示) 【分析】首先将二次项系数化为正数,然后利用因式分解法解之.【解答】解:原不等式等价于2+3﹣4<0,所以(+4)(﹣1)<0,所以﹣4<<1;所以不等式的解集为(﹣4,1); 故答案为:(﹣4,1).【点评】本题考查了一元二次不等式的解法;一般的首先将二次项系数化为正数,然后选择适当的方法解之;属于基础题.12.(5分)已知样本数据 1,2,…,n 的均值=5,则样本数据 21+1,22+1,…,2n +1 的均值为 11 .【分析】利用平均数计算公式求解【解答】解:∵数据1,2,…,n 的平均数为均值=5, 则样本数据 21+1,22+1,…,2n +1 的均值为:=5×2+1=11;故答案为:11.【点评】本题考查数据的平均数的求法,是基础题.13.(5分)若三个正数 a ,b ,c 成等比数列,其中a=5+2,c=5﹣2,则b= 1 .【分析】由已知可得,b 2=ac ,代入已知条件即可求解b 【解答】解:∵三个正数 a ,b ,c 成等比数列, ∴b 2=ac , ∵a=5+2,c=5﹣2, ∴=1,故答案为:1.【点评】本题主要考查了等比数列的性质,属于基础试题坐标系与参数方程选做题14.(5分)在平面直角坐标系Oy中,以原点O为极点,轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为(2,﹣4).【分析】曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,把代入可得直角坐标方程.曲线C2的参数方程为(t为参数),化为普通方程:y2=8.联立解出即可.【解答】解:曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,化为直角坐标方程:+y+2=0.曲线C2的参数方程为(t为参数),化为普通方程:y2=8.联立,解得,则C1与C2交点的直角坐标为(2,﹣4).故答案为:(2,﹣4).【点评】本题考查了极坐标化为直角坐标方程、参数方程化为普通方程、曲线的交点,考查了推理能力与计算能力,属于中档题.几何证明选讲选做题15.如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2,则AD= 3 .【分析】连接OC,则OC⊥DE,可得,由切割线定理可得CE2=BE•AE,求出BE,即可得出结论.【解答】解:连接OC,则OC⊥DE,∵AD⊥DE,∴AD∥OC,∴由切割线定理可得CE2=BE•AE,∴12=BE•(BE+4),∴BE=2,∴OE=4,∴,∴AD=3故答案为:3.【点评】本题考查切割线定理,考查学生分析解决问题的能力,比较基础.三、解答题(共6小题,满分80分)16.(12分)已知tanα=2.(1)求tan(α+)的值;(2)求的值.【分析】(1)直接利用两角和的正切函数求值即可.(2)利用二倍角公式化简求解即可.【解答】解:tanα=2.(1)tan (α+)===﹣3;(2)====1.【点评】本题考查两角和的正切函数的应用,三角函数的化简求值,二倍角公式的应用,考查计算能力.17.(12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125++0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125++0.005+0.0025)×20=1,解方程可得=0.0075,∴直方图中的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.18.(14分)如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.【分析】(1)利用四边形ABCD 是长方形,可得BC ∥AD ,根据线面平行的判定定理,即可得出结论;(2)利用平面与平面垂直的性质定理得出BC ⊥平面PDC ,即可证明BC ⊥PD ; (3)利用等体积法,求点C 到平面PDA 的距离.【解答】(1)证明:因为四边形ABCD 是长方形,所以BC ∥AD , 因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA ; (2)证明:因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,BC ⊂面ABCD , 所以BC ⊥平面PDC , 因为PD ⊂平面PDC , 所以BC ⊥PD ;(3)解:取CD 的中点E ,连接AE 和PE , 因为PD=PC ,所以PE ⊥CD , 在Rt △PED 中,PE===.因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD=CD ,PE ⊂平面PDC , 所以PE ⊥平面ABCD . 由(2)知:BC ⊥平面PDC , 由(1)知:BC ∥AD , 所以AD ⊥平面PDC ,因为PD ⊂平面PDC ,所以AD ⊥PD . 设点C 到平面PDA 的距离为h . 因为V C ﹣PDA =V P ﹣ACD , 所以,所以h==,所以点C 到平面PDA 的距离是.【点评】本题考查平面与平面垂直的性质,线面垂直与线线垂直的判定,考查三棱锥体积等知识,注意解题方法的积累,属于中档题.19.(14分)设数列 {a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=,a 3=,且当n ≥2时,4S n+2+5S n =8S n+1+S n ﹣1. (1)求a 4的值;(2)证明:{a n+1﹣a n }为等比数列; (3)求数列{a n }的通项公式.【分析】(1)直接在数列递推式中取n=2,求得;(2)由4S n+2+5S n =8S n+1+S n ﹣1(n ≥2),变形得到4a n+2+a n =4a n+1(n ≥2),进一步得到,由此可得数列{}是以为首项,公比为的等比数列;(3)由{}是以为首项,公比为的等比数列,可得.进一步得到,说明{}是以为首项,4为公差的等差数列,由此可得数列{a n }的通项公式.【解答】(1)解:当n=2时,4S 4+5S 2=8S 3+S 1,即,解得:;(2)证明:∵4S n+2+5S n =8S n+1+S n ﹣1(n ≥2),∴4S n+2﹣4S n+1+S n ﹣S n ﹣1=4S n+1﹣4S n (n ≥2),即4a n+2+a n =4a n+1(n ≥2), ∵,∴4a n+2+a n =4a n+1.∵=.∴数列{}是以=1为首项,公比为的等比数列; (3)解:由(2)知,{}是以为首项,公比为的等比数列,∴. 即,∴{}是以为首项,4为公差的等差数列,∴,即,∴数列{a n }的通项公式是.【点评】本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.20.(14分)已知过原点的动直线l 与圆C 1:2+y 2﹣6+5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数 ,使得直线L :y=(﹣4)与曲线 C 只有一个交点?若存在,求出的取值范围;若不存在,说明理由.【分析】(1)通过将圆C 1的一般式方程化为标准方程即得结论;(2)设当直线l 的方程为y=,通过联立直线l 与圆C 1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L 与圆C 1的方程,利用根的判别式△=0及轨迹C 的端点与点(4,0)决定的直线斜率,即得结论. 【解答】解:(1)∵圆C 1:2+y 2﹣6+5=0, 整理,得其标准方程为:(﹣3)2+y 2=4, ∴圆C 1的圆心坐标为(3,0);(2)设当直线l 的方程为y=、A (1,y 1)、B (2,y 2), 联立方程组,消去y 可得:(1+2)2﹣6+5=0, 由△=36﹣4(1+2)×5>0,可得2< 由韦达定理,可得1+2=,∴线段AB 的中点M 的轨迹C 的参数方程为,其中﹣<<,∴线段AB 的中点M 的轨迹C 的方程为:(﹣)2+y 2=,其中<≤3;(3)结论:当∈(﹣,)∪{﹣,}时,直线L :y=(﹣4)与曲线C 只有一个交点.理由如下:联立方程组,消去y,可得:(1+2)2﹣(3+82)+162=0,令△=(3+82)2﹣4(1+2)•162=0,解得=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=(﹣4)与曲线C只有一个交点时,的取值范围为[﹣,]∪{﹣,}.【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.21.(14分)设a为实数,函数f()=(﹣a)2+|﹣a|﹣a(a﹣1).(1)若f(0)≤1,求a的取值范围;(2)讨论f()的单调性;(3)当a≥2 时,讨论f()+在区间(0,+∞)内的零点个数.【分析】(1)利用f(0)≤1,得到|a|+a﹣1≤0,对a分类讨论求解不等式的解集即可.(2)化简函数f()的解析式,通过当<a时,当≥a时,利用二次函数f()的对称轴求解函数的单调区间即可.(3)化简F()=f()+,求出函数的导数,利用导函数的符号,通过a的讨论判断函数的单调性,然后讨论函数的零点的个数.【解答】解:(1)若f(0)≤1,即:a2+|a|﹣a(a﹣1)≤1.可得|a|+a﹣1≤0,当a≥0时,a,可得a∈[0,].当a<0时,|a|+a﹣1≤0,恒成立.综上a.∴a的取值范围:;(2)函数f()==,当<a时,函数f()的对称轴为:==a+>a,y=f()在(﹣∞,a)时是减函数,当≥a时,函数f()的对称轴为:==a﹣<a,y=f()在(a,+∞)时是增函数,(3)F()=f()+=,,当<a时,=,所以,函数F()在(0,a)上是减函数.当≥a时,因为a≥2,所以,F′()=═,所以,函数F()在(a,+∞)上是增函数.F(a)=a﹣a2+.当a=2时,F(2)=0,此时F()有一个零点,当a>2时,F(a)=a﹣a2+,F′(a)=1﹣2a==.所以F(ah)在(2,+∞)上是减函数,所以F(a)<,即F(a)<0,当>0且→0时,F()→+∞;当→+∞时,F()→+∞,所以函数F()有两个零点.综上所述,当a=2时,F()有一个零点,a>2时F()有两个零点.【点评】本题考查的知识点比较多,包括绝对值不等式的解法,函数的零点,函数的导数以及导数与函数的单调性的关系,考查分类讨论思想的应用,函数与方程的思想,转化思想的应用,也考查化归思想的应用.。

2015广东高考文科数学试题及答案

2015广东高考文科数学试题及答案

绝密★启用前 试卷类型:B2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3、下列函数中,既不是奇函数,也不是偶函数的是( ) A .2sin y x x =+ B .2cos y x x =- C .122x x y =+D .sin 2y x x =+ 4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 5、设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos 2A =且b c <,则b =( )AB .2 C. D .36、若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7、已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .18、已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9、在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .5 10、若集合(){},,,04,04,04,,,p q r s p s q s r s p q r sE =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11、不等式2340x x --+>的解集为 .(用区间表示)12、已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13、若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . (二)选做题(14、15题,考生只能从中选作一题)14、(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15、(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值. 17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =. ()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.。

广东省2015年高考最后一卷数学文试题含答案

广东省2015年高考最后一卷数学文试题含答案

2015广东省高考最后一卷文科数学本试卷共4页,21小题,满分150分。

考试用时120分钟。

参考公式:球的表面积公式24S r π=,其中r 是球的半径. 锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高.线性回归方程ˆˆy bx a =+中系数计算公式为()()()121niii nii x x yyb x x ==--=-∑∑,ˆa y bx=-.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2,0M =,{}1,5B =,则A B =A .∅B .{}0C .{}0,1D .{}2,0,1,52.函数()lg 1()2x f x x -=-的定义域是A .()1,+∞B .()()1,22,+∞()(),22,-∞+∞ D .[)()1,22,+∞3.若复数11i z =+,21i z =-,则复数21z z 的模是 A .1BC .2D .44.下列函数中,在其定义域内既是奇函数又是增函数的是 A .tan y x =B .2x y =C .y x =D .()lg y x 2=1+5.已知平面向量(1,2)=a ,(2,)y =b ,且//a b ,则y = A .1-B .1C .4-D .46.椭圆22194x y +=的实轴长是A .2B .3C .4D .67.经过坐标原点,且与圆()()22312x y -++=相切于第四象限的直线方程是 A .0x y -=B .0x y +=C .70x y -=D .70x y +=8.阅读如图所示的程序框图,若输入6m =,则输出S 等于 A .4 B .9 C .16D .25第7题图第8题图9.某几何体的三视图如图所示,它的表面积为 A .4πB .54π C .78πD .π10.设函数()2xf x e x =-,则 A .2x e=为()f x 的极小值点 B .2x e=为()f x 的极大值点 C .ln 2x =为()f x 的极小值点D . ln 2x =为()f x 的极大值点二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知{}n a 是递增等差数列,21=a ,且1a ,2a ,5a 成等比数列,则此数列的公差d =_________.12.已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪≤⎨⎪-≤⎩则2z x y =+的最小值为_________.13.已知a b c ,,分别是ABC ∆的三个内角A B C ,,所对的边,若a =,1b =,cos C =,则sin B =_________. (二)选做题(14-15小题,考生只能从中选做一题)正视图侧视图俯视图14.(坐标系与参数方程选做题)在极坐标系中,直线l 经过圆4cos ρθ=的圆心且与直线cos 4ρθ=平行,则直线l 与极轴的交点的极坐标为_________.15.(几何证明选讲选做题)如图,过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,3PB =,4AB =,则AC =________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()()sin 0,0f x A x A ωω=>>的最大值为13,且最小正周期为2π. (1)求()f x 的解析式;(2)若145f θ⎛⎫=-⎪⎝⎭,3,2πθπ⎛⎫∈ ⎪⎝⎭,求cos 4πθ⎛⎫+ ⎪⎝⎭的值.17.(本小题满分13分)201515()由表中数据直观分析,甲、乙两人中谁的纯收入较稳定(2)求y 关于x 的线性回归方程,并预测甲在6月份的纯收入;(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间()3 3.5, 中的概率. 18.(本小题满分14分)B PA C如图,直三棱柱111ABC A B C -中,2BAC π∠=,D 为AC 中点,E 为BC 上一点,且CDE ABC ∠=∠.(1)求证:11DE BCC B ⊥平面;(2)若122AA AC AB ===,求三棱锥1D BCB-的体积.19.(本小题满分13分)设数列{}n a 的前n 项和为n S ,且n S 满足232n n n S -=,n N *∈.(1)求数列{}n a 的通项公式; (2)设123n n n a b ++=,求数列{}n b 的前n 项和n T . 20.(本小题满分14分)ECAC 1A 1B 1BD设0p >,抛物线方程为2:2C x py =.如图所示,过焦点F 作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过点()0,1-. (1)求满足条件的抛物线方程;(2)过点()0,2-作抛物线C 的切线,若切点在第二象限,求切线m 的方程;21.(本小题满分14分) 已知函数()3143f x x ax =++. (1)讨论函数()f x 的单调区间;(2)当4a =-时,若函数()f x 在区间[,3]m 上的最大值为283,求m 的取值范围.2015广东省高考最后一卷数学(文科)试题参考答案及评分标准一、选择题 1.【答案】A【解析】A B =∅. 2.【答案】B【解析】∵1020x x ->⎧⎨-≠⎩,∴12x x ≥⎧⎨≠⎩,∴函数()f x 的定义域是()()1,22,+∞.3.【答案】A【解析】∵()()()()211i 1i 1i i 1i 1i 1i z z ---===-++-,∴复数21z z 的模是i 1-==.4.【答案】C【解析】A 是奇函数但不是增函数;B 既不是奇函数也不是偶函数;C 既是奇函数又是增函数;D 是偶函数. 5.【答案】D 【解析】 ∵//a b ,∴220y -⨯=,∴4y =. 6.【答案】D【解析】实轴长26a =. 7.【答案】B【解析】依题意,设所求直线方程为y kx =,即0kx y -=,∵圆心到直线的距离为d ==,解得1k =-或17k =(舍去),∴所求直线方程是是0x y +=.8.【答案】C【解析】根据程序框图,135716S =+++=. 9.【答案】B 【解析】根据三视图,该几何体为14个球,半径为1.∴它的表面积为22145311484πππ⨯⨯⨯+⨯⨯=. 10.【答案】C【解析】 由()20xf x e '=-=,得ln 2x =,又ln 2x <时,()0f x '<,ln 2x >时,()0f x '>,∴()f x 在ln 2x =时取得极小值.二、填空题 11.【答案】4【解析】依题意,d d 42,2,2++成等比数列,∴2(2)2(24)d d +=+,解得0d =(舍去)或4=d . 12.【答案】2【解析】如图,作出可行域,当目标函数直线经过点A 时取得最大值.由2,20,y x y =⎧⎨+-=⎩解得()0,2A ,∴max 2022z =⨯+=.13. 【解析】由余弦定理得c ==,∵0c π<<,cos 3C =,∴sin 3C =,∴由正弦定理得sin sin 33b C B c ===. 14.【答案】()2,0【解析】4cos ρθ=化为直角坐标方程()2224x y -+=,圆心为()2,0,cos 4ρθ=化为直角坐标方程4x =,∴直线l 方称为2x =,直线l 与极轴的交点的极坐标为()2,0. 15.【答案】8【解析】由切割线定理可得2PA PB PC =⋅,∴12PC =.∵PAB ∆∽PCA ∆,∴P A A BP C C A=,∴12486PC AB CA PA ⋅⨯===. 三、解答题16.解:(1)∵()f x 的最大值为13,0A > ∴13A =………………………………………………………………………………………………2分∵()f x 的最小正周期为2π∴22 Tππω==又0ω>∴4ω=………………………………………………………………………………………………4分∴1()sin43f x x=……………………………………………………………………………………5分(2)∵11sin435 fθθ⎛⎫==- ⎪⎝⎭∴3sin5θ=-………………………………………………………………………………………………7分又3,2πθπ⎛⎫∈ ⎪⎝⎭∴4cos5θ===-…………………………………………………………9分∴cos cos cos sin sin444πππθθθ⎛⎫+=-⎪⎝⎭4355⎛⎫=---⨯=⎪⎝⎭………………………………………………………………………12分17.解:(1)由表中数据可知,甲的纯收入比乙的纯收入集中,故甲的纯收入较稳定.……………2分(2)∵1(12345)35x=++++=,1(2.9 3.3 3.6 4.4 4.8) 3.85y=++++=,()()()()()()25222221132333435310ix x=-=-+-+-+-+-=∑,()()51i iix x y y=--∑()()()()()()()()()()13 2.9 3.823 3.3 3.833 3.6 3.843 4.4 3.853 4.8 3.8=--+--+--+--+--4.9=∴()()()51521iii ii x x yyb x x ==--=-∑∑ 4.90.4910==,…………………………………………………………5分ˆˆ 3.80.493 2.33ay bx =-=-⨯=.……………………………………………………………6分∴所求回归方程为0.49 2.33y x ∧=+.……………………………………………………………7分令6x =,得0.496 2.33 5.27y ∧=⨯+=,∴预测甲在6月份的纯收入为5.27千元.……………………………………………………………8分(3)现从乙这5个月的纯收入中,随机抽取两个月的基本事件有: ()1,2,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5,共10种…………………………………………………10分记“恰有1个月的纯收入在区间()3 3.5, 中”为事件A ,其中有:()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,共6种………………………………………………………………………………………12分∴恰有1个月的纯收入在区间()3 3.5, 中的概率为()63105P A ==………………………………13分 18.(1)证明:∵111ABC A B C -是直三棱柱 ∴1B B ABC ⊥平面 又DE ABC ⊂平面 ∴1B B DE⊥………………………………………………………………………………………………2分 ∵CDE ABC ∠=∠,DCE BCA ∠=∠ ∴EDC ∆∽ABC ∆∴2DEC BAC π∠=∠=即DE BC ⊥………………………………………………………………………………………………4分又1B B BC B =I ∴11DE BCC B ⊥平面……………………………………………………………………………………6分(2)BCD ABC ABD S S S ∆∆∆=-1122AB AC AB AE =⋅-⋅ 1111211222=⨯⨯-⨯⨯=…………………………………………………………………………………9分∵1B B ABC ⊥平面 ∴1B B为三棱锥1B BCD-的高…………………………………………………………………………10分 ∴11D BCB B BCD V V --=113BCD S B B ∆=⋅ 1112323=⨯⨯=……………………………………………………………………………………………13分19.解:(1)∵232n n n S -=①∴当2n ≥时,()()213112n n nS ----=②…………………………………………………………2分①-②得642n n a -=∴32n a n =- …………………………………………………………………………………………4分∵1n =时,得213112a ⨯-=,∴11a =,符合上式………………………………………………5分∴数列{}n a 的通项公式为32n a n =- ………………………………………………………………6分(2)∵1123333n n n n na n nb +++=== ……………………………………………………………………7分∴231233333n nn T =++++③…………………………………………………………………………8分∴212331333n n n T -=++++④……………………………………………………………………9分④-③得21111213333n n nn T -=++++- 11131313n n n ⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦=--121333n nn ⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦=- …………………………………………………………12分∴1113323n n nn T +=--⋅………………………………………………………………………………13分20.解:(1)由22x py =得212y x p=, 当2p y =得x p =±,∴G 点的坐标为,2p p ⎛⎫⎪⎝⎭,……………………………………………………2分1'y x p=,'|1x p y ==, 过点G的切线方程为2py x p -=-即2py x =-,…………………………………………………5分 令0x =得2py =-,∴12p-=-即2p =,即抛物线的方程为24x y =…………………………………………………7分(2)设切点2000(0)4x Q x x ⎛⎫< ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,…………9分∴所求切线方程2000()42x xy x x -=-, 即20024x x y x =- . ……………………………………………………………………………11分∵点()0,2-在切线上,∴224x -=-,∴0x =(舍去)或0x =- …………………………………………………………13分∴所求切线方程为2y =-. ……………………………………………………………14分21.解:(1)()2f x x a '=+.…………………………………………………………………1分①0a ≥时,()20f x x a '=+≥,()f x 在(,)-∞+∞上单调递增;②0a <时,()(2f x x a x x '=+=+-.令()0f x '=,得10x =,20x =.∴()1,x x ∈-∞时,()0f x '>;()12,x x x ∈时,()0f x '<;()2,x x ∈+∞时,()0f x '>. ∴()f x 在()1,x -∞,()2,x +∞上单调递增;在()12,x x 上单调递减.…………………………7分(2)当4a =-时,31()44,[,3]3f x x x x m =-+∈ ()()2()422f x x x x '=-=+-令()0f x '=得122,2x x =-= ……………………………………………………………………8分将x ,()f x ',()f x 变化情况列表如下:10分由此表可得28()(2)3f x f =-=极大,4()(2)3f x f ==-极小 …………………………………………11分 又28(3)13f =< ……………………………………………………………………………………12分故区间[,3]m 内必须含有2-,即m 的取值范围是2]-∞-(,. ………………………………14分。

2015年广东省高考文科数学试题及答案

2015年广东省高考文科数学试题及答案

2015 年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 2. 已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 3. 下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 4. 若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .25. 设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =cos A =,且b c <,则b =( )AB .2 C. D .3 6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交8.已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 9. 在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A =( )A .2B .3C .4D .510. 若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11. 不等式2340x x --+>的解集为 .(用区间表示)12. 已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 .13. 若三个正数a ,b ,c 成等比数列,其中5a =+5c =-则b = .(二)选做题(14、15题,考生只能从中选作一题)14. (坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15. (几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知tan 2α=.()1求tan 4πα⎛⎫+ ⎪⎝⎭的值;()2求2sin 2sin sin cos cos 21ααααα+--的值.17、(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.()1求直方图中x 的值;()2求月平均用电量的众数和中位数;()3在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18、(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.()1证明:C//B 平面D P A ;()2证明:C D B ⊥P ;()3求点C 到平面D P A 的距离.19、(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.20、(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . ()1求圆1C 的圆心坐标;()2求线段AB 的中点M 的轨迹C 的方程;()3是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.21、(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.()1若()01f ≤,求a 的取值范围; ()2讨论()f x 的单调性; ()3当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.参考答案1-5 BADBC 6-10 DBBAA11、(-4,1) 12、10 13、1 14、(2,-4) 15、3 16、(1)解:tan tan4tan()41tan tan 4tan 11tan παπαπααα++=-+=- ∵ tan 2α= ∴21tan()34121πα++==-- (2)222222222sin sin cos cos 21sin 1sin cos (cos sin )cos sin cos cos sin sin cos 2cos sin αααααααααααααααααα+--=-+--=-+-+=-+∵sin 22sin cos ααα=∴22222sin cos sin cos -2cos sin 2tan =tan 2tan 221222ααααααααα=+-+⨯==-+原式17、解:(1)(0.002+0.0025+0.005+x +0.0095+0.011+0.0125)⨯20=1∴0.0075x = (2)众数:230中位数:取频率直方图的面积平分线 0.0020.00950.0110.0225110.0252020.0250.02250.00250.0025202202240.0125++=⨯=∴-=⨯+=(3)[220,240):0.01252010025⨯⨯=[240,260):0.00752010015⨯⨯= [260,280):0.0052010010⨯⨯=[280,300):0.0025201005⨯⨯=共计:55户 ∴[220,240)抽取:2511555⨯=户 18、解:(1)∵ 四边形ABCD 为长方形∴BC AD∵BC PDA AD PDA ⊄⊂平面,平面 ∴BC PDA 平面(2)取DC 中点E ,连接PE∵PC=PD ∴ PE ⊥CD∵ 面PCD ⊥面ABCD ,面PCD ⋂面ABCD=CD PE ⊂面PCD ,PE ⊥CD ∴ PE ⊥面ABCD 而BC ⊂面ABCD ∴ BC ⊥PE∵ BC ⊥CD ,CD ⋂PE=E ∴ BC ⊥面PCD PD ⊂面PCD ∴ BC ⊥PD(3)由(2)得:PE 为面ABCD 的垂线∴P-ADC ΔACD 1V PE S 3=⨯⨯在等腰三角形PCD中,ACD 11S AD DC 36922∆=⨯⨯=⨯⨯=∴P-ADC 1V 93==设点C 到平面PDA 距离为h∴C-PDA PDA 1V S 3h ∆=⨯⨯而PDA 11S AD PD 34622∆=⨯⨯=⨯⨯=∴163h =⨯⨯∴h =,即:点C 到平面PDA19、解:(1)令n=2,则:43123123112124444348535151244135122155481542374237837371578848S S S S S a a a S a S a a S S S a S =+-=++=++====+=+=∴=⨯+-⨯==∴=-=-=(2)211112211211121321212112114584584584444{44}5344=4-4+1=04244=042=2-42=12-n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nS S S S S S S S a a a a a a a a a a a a a a a a a a a a a a a a a a a ++-+--++-+++-+++++++++++=+⎧⎨+=+⎩∴+=+∴-+=-+∴-+-+⨯⨯∴-+∴--∴为常数列211211114-2=112-21-12=2-21{-}2n n n n n n n n n n a a a a a a a a a a +++++++∴∴∴()()为等比数列(3)由(2)得:11{-}2n n a a +是首相为:2113-=22a a ,公比为12的等边数列111411()()22{}2,411()22=2+4()2121()()221n n n n n n n n n n na aa aan n n a n ++∴-=∴=∴-∴==-为首相公差为的等差数列(+1)=4-24-2 20、(1)解:2222650,34x y x x y +-+=-+=∴配方得:()圆心坐标为(3,0)(2)由题意得:直线l 的斜率一定存在,设直线l 的斜率为k ,则l :y kx =设1122(,),(,),(,)A x y B x y M x y12122222222122212222222222222650650(1)650661161313131()30(1)6500,,364(1)5011x x x y y y y kx x y x x k x x k x x x x k k ky y k x k k y k x xx x y k x x k k +⎧=⎪⎪∴⎨+⎪=⎪⎩=⎧⎨+-+=⎩∴+-+=∴+-+=-∴+=-=++∴+=+⎧=⎪⎪+∴⎨⎪=⎪+⎩∴=+∴-+=+-+=∴∆>-+>∴≤+<有解即29535(,3]13x k ∴=∈+(3)曲线C :22530(,3]3x x y x -+=∈2221233()()220354303543x y k k k -+=-==--==-的两个极限值:3|04|323433[{,}44k k k k --∴=±∴∈⋃-相切时:21、解:(1)222(0)||(1)||||f a a a a a a a a a a =+--=+-+=+ 10,21,21020,1,012a a a a a a a a R a a ≥≤≤∴≤≤<+≤∈∴<≤若即:若即:-综上所述: (2)22()()(1)()()()()(1)()x a x a a a x a f x x a x a a a x a ⎧-+---≥⎪=⎨-----<⎪⎩22(12)()()(12)2()x a x x a f x x a x a x a ⎧+-≥⎪=⎨-++<⎪⎩ 对称轴分别为:12122a x a a +==+>∴(,)a -∞在区间上单调递减,,a +∞在区间()上单调递增(3)由(2)得()f x 在(,)a +∞上单调递增,在(0,)a 上单调递减,所以2min ()()f x f a a a ==-. ①当2a =时,-22()(min ==)f x f ,⎩⎨⎧<+-≥-=24523)(22x x x x x x x f ,, 当04)(=+x x f 时,即)0(4)(>-=x xx f . 因为()f x 在(0,2)上单调递减,所以()(2)2f x f >=- 令xx g 4)(-=,则)(x g 为单调递增函数,所以在区间(0,2)上,2)2()(-=<g x g , 所以函数)(x f 与)(x g 在(0,2)无交点. 当2x ≥时,令xx x x f 43)(2-=-=,化简得32340x x -+=,即()()0122=+-x x ,则解得2=x综上所述,当2a =时,xx f 4(+)在区间()+∞,0有一个零点x=2. ②当2a >时,2min ()()f x f a a a ==-,当(0,)x a ∈时,(0)24f a => ,0)(2<-=a a a f , 而x x g 4)(-=为单调递增函数,且当),0(a x ∈时,04)(<-=xx g 故判断函数)()(x g x f 与是否有交点,需判断2)(a a a f -=与aa g 4)(-=的大小. 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以24()f a a a a=-<-,即)a g a f ()(< 所以,当),0(a x ∈时,)()(x g x f 与有一个交点;当),(+∞∈a x 时,)(x f 与)(x g 均为单调递增函数,而04)(<-=xx g 恒成立 而令a x 2=时,02)1()2(2>=--+=a a a a a a f ,则此时,有)2()2(a g a f >, 所以当),(+∞∈a x 时,)()(x g x f 与有一个交点; 故当2>a 时,()y f x =与xx g 4)(-=有两个交点.11 综上,当2a =时,4()f x x +有一个零点2x =; 当2>a ,4()f x x+有两个零点.。

(原创)2015广东高考文数解析版

(原创)2015广东高考文数解析版

绝密★启用前 试卷类型:B2015年高考真题—文科数学(广东卷)解析版一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若集合{}1,1M =-,{}2,1,0N =-,则MN =( )A .{}0,1-B .{}0C .{}1D .{}1,1-1.解析:本题考查集合的基本运算,属于基础题. {}1=N M ,故选C. 2、已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i 2.解析:本题考查复数的乘法运算,属于基础题.i i i i 221)1(22=++=+,故选D 3、下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+ B .2cos y x x =- C .122x xy =+D .sin 2y x x =+ 3、解析:本题考查函数的奇偶性.对于A ,()()()x x x x x x sin sin sin 222+±≠-=-+-,所以非奇非偶,对于B ,函数定义域为R ,关于原点对称.()x x x x cos )cos(22-=---,故为偶函数;对于C, 函数定义域为R ,关于原点对称,因为x x x xx f -+=+=22212)(,所以)(22)(x f x f x x=+=--,故为偶函数; D 中函数的定义域为R ,关于原点对称,且)2sin ()(2sin x x x x +-=-+-,故为奇函数. 故答案为A 。

4、若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 4、解析:本题考查线性规划问题。

在平面直角坐标系中画图,作出可行域,可得该可行域是由(-2,2),(4,-4),(4,-1)组成的三角形。

由于该区域是封闭的,可以通过分别代这三个个边界点进行检验,易知当x=4,y=-1时,z=2x+y 取得最大值5。

2015年广东高考文科数学答案解析一

2015年广东高考文科数学答案解析一

2015年广东高考文科数学答案解析一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合,,则()A.B.C.D.【答案】C考点:集合的交集运算.2.已知是虚数单位,则复数()A.B.C.D.【答案】D【解析】试题分析:,故选D.考点:复数的乘法运算.3.下列函数中,既不是奇函数,也不是偶函数的是()A.B.C.D.【答案】A【解析】试题分析:函数的定义域为,关于原点对称,因为,,所以函数既不是奇函数,也不是偶函数;函数的定义域为,关于原考点:函数的奇偶性.4.若变量,满足约束条件,则的最大值为()A.B.C.D.【答案】C【解析】试题分析:作出可行域如图所示:作直线,再作一组平行于的直线,当直线经过点时,取得最大值,由得:,所以点的坐标为,所以,故选C.考点:线性规划.5.设的内角,,的对边分别为,,.若,,,且,则()A.B.C.D.【答案】B【解析】试题分析:由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.6.若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()A.至少与,中的一条相交B.与,都相交C.至多与,中的一条相交D.与,都不相交【答案】A【解析】试题分析:若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则至少与,中的一条相交,故选A.考点:空间点、线、面的位置关系.7.已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为()A.B.C.D.【答案】B【解析】试题分析:件产品中有件次品,记为,,有件合格品,记为,,,从这件产品中任取件,有种,分别是,,,,,,,,,,恰有一件次品,有种,分别是,,,,,,设事件“恰有一件次品”,则,故选B.考点:古典概型.8.已知椭圆()的左焦点为,则()A.B.C.D.【答案】C【解析】试题分析:由题意得:,因为,所以,故选C.考点:椭圆的简单几何性质.9.在平面直角坐标系中,已知四边形是平行四边形,,,则()A.B.C.D.【答案】D考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.10.若集合,,用表示集合中的元素个数,则()A.B.C.D.【答案】D【解析】试题分析:当时,,,都是取,,,中的一个,有种,当时,,,都是取,,中的一个,有种,当时,,,都是取,中的一个,有种,当时,,,都取,有种,所以,当时,取,,,中的一个,有种,当时,取,,中的一个,有种,当时,取,中的一个,有种,当时,取,有种,所以、的取值有种,同理,、的取值也有种,所以,所以,故选D.考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11.不等式的解集为.(用区间表示)【答案】【解析】试题分析:由得:,所以不等式的解集为,所以答案应填:.考点:一元二次不等式.12.已知样本数据,,,的均值,则样本数据,,,的均值为.【答案】考点:均值的性质.13.若三个正数,,成等比数列,其中,,则.【答案】【解析】试题分析:因为三个正数,,成等比数列,所以,因为,所以,所以答案应填:.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为.【答案】【解析】试题分析:曲线的直角坐标方程为,曲线的普通方程为,由得:,所以与交点的直角坐标为,所以答案应填:.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.15.(几何证明选讲选做题)如图,为圆的直径,为的延长线上一点,过作圆的切线,切点为,过作直线的垂线,垂足为.若,,则.【答案】【解析】试题分析:连结,则,因为,所以,所以,由切割线定理得:,所以,即,解得:或(舍去),所以,所以答案应填:.考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16.(本小题满分12分)已知.(1)求的值;(2)求的值.【答案】(1);(2).【解析】试题分析:(1)由两角和的正切公式展开,代入数值,即可得的值;(2)先利用二倍角的正、余弦公式可得,再分子、分母都除以可得,代入数值,即可得的值.试题解析:(1)(2)考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17.(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?【答案】(1);(2),;(3).【解析】(2)月平均用电量的众数是因为,所以月平均用电量的中位数在内,设中位数为,由得:,所以月平均用电量的中位数是(3)月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,抽取比例,所以月平均用电量在的用户中应抽取户考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18.(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,,,.(1)证明:平面;(2)证明:;(3)求点到平面的距离.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)由四边形是长方形可证,进而可证平面;(2)先证,再证平面,进而可证;(3)取的中点,连结和,先证平面,再设点到平面的距离为,利用可得的值,进而可得点到平面的距离.试题解析:(1)因为四边形是长方形,所以,因为平面,平面,所以平面(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以(3)取的中点,连结和,因为,所以,在中,,因为平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是考点:1、线面平行;2、线线垂直;3、点到平面的距离.19.(本小题满分14分)设数列的前项和为,.已知,,,且当时,.(1)求的值;(2)证明:为等比数列;(3)求数列的通项公式.【答案】(1);(2)证明见解析;(3).【解析】试题分析:(1)令可得的值;(2)先将()转化为,再利用等比数列的定义可证是等比数列;(3)先由(2)可得数列的通项公式,再将数列的通项公式转化为数列是等差数列,进而可得数列的通项公式.试题解析:(1)当时,,即,解得:(2)因为(),所以(),即(),因为,所以因为,所以数列是以为首项,公比为的等比数列(3)由(2)知:数列是以为首项,公比为的等比数列,所以即,所以数列是以为首项,公差为的等差数列,所以,即,所以数列的通项公式是考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.20.(本小题满分14分)已知过原点的动直线与圆相交于不同的两点,.(1)求圆的圆心坐标;(2)求线段的中点的轨迹的方程;(3)是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.【答案】(1);(2);(3)存在,或.【解析】试题分析:(1)将圆的方程化为标准方程可得圆的圆心坐标;(2)先设线段的中点的坐标和直线的方程,再由圆的性质可得点满足的方程,进而利用动直线与圆相交可得的取值范围,即可得线段的中点的轨迹的方程;(3)先说明直线的方程和曲线的方程表示的图形,再利用图形可得当直线与曲线只有一个交点时,的取值范围,进而可得存在实数,使得直线与曲线只有一个交点.所以,所以,解得或,又因为,所以.所以满足即的轨迹的方程为.(3)由题意知直线表示过定点,斜率为的直线.结合图形,表示的是一段关于X轴对称,起点为按逆时针方向运动到的圆弧.根据对称性,只需讨论在X轴对称下方的圆弧.设,则,而当直线与轨迹相切时,.,解得.在这里暂取,因为,所以结合图形,可得对于X轴对称下方的圆弧,当或时,直线L与X轴对称下方的圆弧有且只有一个交点,根据对称性可知或.综上所述:当或时,直线与曲线只有一交点.考点:1、圆的标准方程;2、直线与圆的位置关系;3、圆锥曲线与圆的位置关系. 21.(本小题满分14分)设为实数,函数.(1)若,求的取值范围;(2)讨论的单调性;(3)当时,讨论在区间内的零点个数.【答案】(1);(2)在上单调递增,在上单调递减;(3)当时,有一个零点x=2;当,与有两个零点.【解析】试题分析:(1)先由可得,再对的取值范围进行讨论可得的解,进而可得的取值范围;(2)先写函数的解析式,再对的取值范围进行讨论确定函数的单调性;(3)先由(2)得函数的最小值,再对的取值范围进行讨论确定在区间内的零点个数.试题解析:(1),因为,所以当时,,显然成立;当,则有,所以.所以综上所述,的取值范围是.(2)对于,其对称轴为,开口向上,所以在上单调递增;对于,其对称轴为,开口向上,所以在上单调递减.综上,在上单调递增,在上单调递减.(3)由(2)得在上单调递增,在上单调递减,所以.(i)当时,,令=0,即(x>0).因为在上单调递减,所以而在上单调递增,,所以与在无交点.当时,,即,所以,所以,因为,所以,即当时,有一个零点x=2.(ii)当时,,当时,,,而在上单调递增,当时,.下面比较与的大小因为所以结合图像不难得当,与有两个交点.综上,当时,有一个零点x=2;当,与有两个零点.考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.。

(广东卷)2015年普通高等学校招生全国统一考试(文数)

(广东卷)2015年普通高等学校招生全国统一考试(文数)

2015年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}1,1M =-,{}2,1,0N =-,则M N = ( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C考点:集合的交集运算.2.已知i 是虚数单位,则复数()21i +=( )A .2- B .2 C .2i - D .2i 【答案】D 【解析】试题分析:()221121212i i i i i +=++=+-=,故选D .考点:复数的乘法运算.3.下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =- C .122xx y =+D .sin 2y x x =+ 【答案】A 【解析】试题分析:函数()2sin f x x x =+的定义域为R ,关于原点对称,因为()11sin1f =+,()1sin1f x -=-,所以函数()2sin f x x x =+既不是奇函数,也不是偶函数;函数()2cos f x x x =-的定义域为R ,关于原考点:函数的奇偶性.4.若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C 【解析】试题分析:作出可行域如图所示:作直线0:l 230x y +=,再作一组平行于0l 的直线:l 23x y z +=,当直线l 经过点A 时,23z x y =+取得最大值,由224x y x +=⎧⎨=⎩得:41x y =⎧⎨=-⎩,所以点A 的坐标为()4,1-,所以()max 24315z =⨯+⨯-=,故选C .考点:线性规划.5.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =( )A B .2 C . D .3 【答案】B 【解析】试题分析:由余弦定理得:2222cos a b c bc =+-A ,所以(222222b b =+-⨯⨯,即2680b b -+=,解得:2b =或4b =,因为b c <,所以2b =,故选B . 考点:余弦定理.6.若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 【答案】A 【解析】试题分析:若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A . 考点:空间点、线、面的位置关系.7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率 为( )A .0.4 B .0.6 C .0.8 D .1 【答案】B 【解析】试题分析:5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种,分别是(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,恰有一件次品,有6种,分别是(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,设事件A =“恰有一件次品”,则()60.610P A ==,故选B .考点:古典概型.8.已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 【答案】C 【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.9.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A = ( )A .2 B .3 C .4 D .5 【答案】D 【解析】考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算. 10.若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则()()card card F E +=( )A .50B .100C .150D .200 【答案】D 【解析】试题分析:当4s =时,p ,q ,r 都是取0,1,2,3中的一个,有44464⨯⨯=种,当3s =时,p ,q ,r 都是取0,1,2中的一个,有33327⨯⨯=种,当2s =时,p ,q ,r 都是取0,1中的一个,有2228⨯⨯=种,当1s =时,p ,q ,r 都取0,有1种,所以()card 642781100E =+++=,当0t =时,u 取1,2,3,4中的一个,有4种,当1t =时,u 取2,3,4中的一个,有3种,当2t =时,u 取3,4中的一个,有2种,当3t =时,u 取4,有1种,所以t 、u 的取值有123410+++=种,同理,v 、w 的取值也有10种,所以()card F 1010100=⨯=,所以()()card card F 100100200E +=+=,故选D . 考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.) (一)必做题(11~13题)11.不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1- 【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-.考点:一元二次不等式.12.已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 . 【答案】11考点:均值的性质.13.若三个正数a ,b ,c 成等比数列,其中5a =+5c =-b = . 【答案】1 【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以(2551b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为2x t y ⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4- 【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 15.(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D . 若4AB =,C E =D A = . 【答案】3 【解析】试题分析:连结C O ,则C D O ⊥E ,因为D D A ⊥E ,所以C//D O A ,所以C D O OE=A AE,由切割线定理得:2C E =BE⋅AE ,所以()412BE BE+=,即24120BE +BE -=,解得:2BE =或6BE =-(舍去),所以C 26D 34O ⋅AE ⨯A ===OE ,所以答案应填:3. 考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.) 16.(本小题满分12分)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.【答案】(1)3-;(2)1. 【解析】试题分析:(1)由两角和的正切公式展开,代入数值,即可得tan 4πα⎛⎫+⎪⎝⎭的值;(2)先利用二倍角的正、余弦公式可得222sin 22sin cos sin sin cos cos 21sin sin cos 2cos ααααααααααα=+--+-,再分子、分母都除以2cos α可得22sin 22tan sin sin cos cos 21tan tan 2αααααααα=+--+-,代入数值,即可得2sin 2sin sin cos cos 21ααααα+--的值.试题解析:(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+- 22tan tan tan 2ααα=+-222222⨯=+-1=考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5. 【解析】(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18.(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直, D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ; (2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.【答案】(1)证明见解析;(2)证明见解析;(3 【解析】试题分析:(1)由四边形CD AB 是长方形可证C//D B A ,进而可证C//B 平面D P A ;(2)先证C CD B ⊥,再证C B ⊥平面DC P ,进而可证C D B ⊥P ;(3)取CD 的中点E ,连结AE 和PE ,先证PE ⊥平面CD AB ,再设点C 到平面D P A 的距离为h ,利用C D CD V V -P A P-A =三棱锥三棱锥可得h 的值,进而可得点C 到平面D P A 的距离.试题解析:(1)因为四边形CD AB 是长方形,所以C//D B A ,因为C B ⊄平面D P A ,D A ⊂平面D P A ,所以C//B 平面D P A(2)因为四边形CD AB 是长方形,所以C CD B ⊥,因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,C B ⊂平面CD AB ,所以C B ⊥平面DC P ,因为D P ⊂平面DC P ,所以C D B ⊥P(3)取CD 的中点E ,连结AE 和PE ,因为D C P =P ,所以CD PE ⊥,在Rt D ∆PE中,PE ===因为平面DC P ⊥平面CD AB ,平面DC P 平面CD CD AB =,PE ⊂平面DC P ,所以PE ⊥平面CD AB ,由(2)知:C B ⊥平面DC P ,由(1)知:C//D B A ,所以D A ⊥平面DC P ,因为D P ⊂平面DC P ,所以D D A ⊥P ,设点C 到平面D P A 的距离为h ,因为C D CV V -PA P-A=三棱锥三棱锥,所以D CD 1133S h S ∆P A ∆A ⋅=⋅PE ,即CD D 136212342S h S ∆A ∆P A ⨯⨯⋅PE ===⨯⨯,所以点C 到平面D P A的距离是2 考点:1、线面平行;2、线线垂直;3、点到平面的距离.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =, 且当2n ≥时,211458n n n n S S S S ++-+=+. (1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.【解析】试题分析:(1)令2n =可得4a 的值;(2)先将211458n n n n S S S S ++-+=+(2n ≥)转化为2144n n n a a a +++=,再利用等比数列的定义可证112n n a a +⎧⎫-⎨⎬⎩⎭是等比数列;(3)先由(2)可得数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式,再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪ ⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式. 试题解析:(1)当2n =时,423458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a = (2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n na a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212n na n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122n n n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.【答案】(1)()3,0;(2)492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ;(3)存在,752752≤≤-k 或34±=k . 【解析】试题分析:(1)将圆1C 的方程化为标准方程可得圆1C 的圆心坐标;(2)先设线段AB 的中点M 的坐标和直线l 的方程,再由圆的性质可得点M 满足的方程,进而利用动直线l 与圆1C 相交可得0x 的取值范围,即可得线段AB 的中点M 的轨迹C 的方程;(3)先说明直线L 的方程和曲线C 的方程表示的图形,再利用图形可得当直线L:()4y k x =-与曲线C 只有一个交点时,k 的取值范围,进而可得存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点.所以202022054x x m y <=,所以20200543x x x <-,解得350>x 或00<x ,又因为300≤<x ,所以3350≤<x .所以),(00y x M 满足49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 即M 的轨迹C 的方程为492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x . (3)由题意知直线L 表示过定点T (4,0),斜率为k 的直线. 结合图形,49232020=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<3350x 表示的是一段关于X 轴对称,起点为⎪⎪⎭⎫ ⎝⎛-352,35按逆时针方向运动到⎪⎪⎭⎫ ⎝⎛352,35的圆弧.根据对称性,只需讨论在X 轴对称下方的圆弧.设P ⎪⎪⎭⎫ ⎝⎛-352,35,则752354352=-=PT k ,而当直线L 与轨迹C 相切时,.2314232=+-k k k ,解得43±=k .在这里暂取43=k ,因为43752<,所以k k PT <结合图形,可得对于X 轴对称下方的圆弧,当0752≤≤-k 或34=k 时,直线L 与X 轴对称下方的圆弧有且只有一个交点,根据对称性可知752752≤≤-k 或34±=k . 综上所述:当752752≤≤-k 或34±=k 时,直线L:()4y k x =-与曲线C 只有一交点.考点:1、圆的标准方程;2、直线与圆的位置关系;3、圆锥曲线与圆的位置关系.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a ≥时,讨论()4f x x +在区间()0,+∞内的零点个数. 【答案】(1)21≤a ;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点x=2;当2>a ,)(x f y =与xy 4-=有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x+在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a 综上所述,a 的取值范围是21≤a . (2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x a x x a x x f ,2)12(,12)(22 对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==.(i)当2=a 时,2)2()(min-==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f 令()4f x x +=0,即xx f 4)(-=(x>0). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f 而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x +有一个零点x=2.(ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a 4-的大小 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以aa a a f 4)(2-<-=结合图像不难得当2>a ,)(x f y =与x y 4-=有两个交点. 综上,当2=a 时,()4f x x +有一个零点x=2;当2>a ,)(x f y =与x y 4-=有两个零点.考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.。

2015年广东卷文科数学答案解析

2015年广东卷文科数学答案解析

一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若集合,,则()A.B.C.D.【答案】C【解析】试题分析:,故选C.考点:集合的交集运算.2. 已知是虚数单位,则复数()A.B.C.D.【答案】D考点:复数的乘法运算.3. 下列函数中,既不是奇函数,也不是偶函数的是()A.B.C.D.【答案】A【解析】试题分析:函数的定义域为,关于原点对称,因为,,所以函数既不是奇函数,也不是偶函数;函数的定义域为,关于原点对称,因为,所以函数是偶函数;函数的定义域为,关于原点对称,因为,所以函数是偶函数;函数的定义域为,关于原点对称,因为,所以函数是奇函数.故选A.考点:函数的奇偶性.4.若变量,满足约束条件,则的最大值为()A.B.C.D.【答案】C考点:线性规划.5.设的内角,,的对边分别为,,.若,,,且,则()A.B.C.D.【答案】B【解析】试题分析:由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.6. 若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是()A.至少与,中的一条相交B.与,都相交C.至多与,中的一条相交D.与,都不相交【答案】A考点:空间点、线、面的位置关系.7.已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为()A.B.C.D.【答案】B【解析】试题分析:件产品中有件次品,记为,,有件合格品,记为,,,从这件产品中任取件,有种,分别是,,,,,,,,,,恰有一件次品,有种,分别是,,,,,,设事件“恰有一件次品”,则,故选B.考点:古典概型.8.已知椭圆()的左焦点为,则()A.B.C.D.【答案】C【解析】试题分析:由题意得:,因为,所以,故选C.考点:椭圆的简单几何性质.9.在平面直角坐标系中,已知四边形是平行四边形,,,则()A.B.C.D.【答案】D【解析】试题分析:因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.10.若集合,,用表示集合中的元素个数,则()A.B.C.D.【答案】D考点:推理与证明.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11.不等式的解集为.(用区间表示)【答案】【解析】试题分析:由得:,所以不等式的解集为,所以答案应填:.考点:一元二次不等式.12.已知样本数据,,,的均值,则样本数据,,,的均值为.【答案】考点:均值的性质.13.若三个正数,,成等比数列,其中,,则.【答案】【解析】试题分析:因为三个正数,,成等比数列,所以,因为,所以,所以答案应填:.考点:等比中项.(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数),则与交点的直角坐标为.【答案】【解析】试题分析:曲线的直角坐标方程为,曲线的普通方程为,由得:,所以与交点的直角坐标为,所以答案应填:.考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点.15.(几何证明选讲选做题)如图,为圆的直径,为的延长线上一点,过作圆的切线,切点为,过作直线的垂线,垂足为.若,,则.【答案】考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16、(本小题满分12分)已知.求的值;求的值.【答案】(1);(2).考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.17、(本小题满分12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.求直方图中的值;求月平均用电量的众数和中位数;在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?【答案】(1);(2),;(3).【解析】试题解析:(1)由得:,所以直方图中的值是考点:1、频率分布直方图;2、样本的数字特征(众数、中位数);3、分层抽样.18、(本小题满分14分)如图,三角形所在的平面与长方形所在的平面垂直,,,.证明:平面;证明:;求点到平面的距离.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题解析:(1)因为四边形是长方形,所以,因为平面,平面,所以平面(2)因为四边形是长方形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以(3)取的中点,连结和,因为,所以,在中,,因为平面平面,平面平面,平面,所以平面,由(2)知:平面,由(1)知:,所以平面,因为平面,所以,设点到平面的距离为,因为,所以,即,所以点到平面的距离是考点:1、线面平行;2、线线垂直;3、点到平面的距离.19、(本小题满分14分)设数列的前项和为,.已知,,,且当时,.求的值;证明:为等比数列;求数列的通项公式.【答案】(1);(2)证明见解析;(3).考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015广东省高考最后一卷文科数学本试卷共4页,21小题,满分150分。

考试用时120分钟。

参考公式:球的表面积公式24S r π=,其中r 是球的半径. 锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 为锥体的高.线性回归方程ˆˆy bx a =+中系数计算公式为()()()121niii nii x x yyb x x ==--=-∑∑,ˆa y bx=-.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2,0M =,{}1,5B =,则A B =A .∅B .{}0C .{}0,1D .{}2,0,1,52.函数()lg 1()2x f x x -=-的定义域是 A .()1,+∞B .()()1,22,+∞C .()(),22,-∞+∞D .[)()1,22,+∞3.若复数11i z =+,21i z =-,则复数21z z 的模是A .1BC .2D .44.下列函数中,在其定义域内既是奇函数又是增函数的是 A .tan y x =B .2x y =C .y x =D .()lg y x 2=1+5.已知平面向量(1,2)=a ,(2,)y =b ,且//a b ,则y = A .1-B .1C .4-D .46.椭圆22194x y +=的实轴长是A .2B .3C .4D .67.经过坐标原点,且与圆()()22312x y -++=相切于第四象限的直线方程是 A .0x y -=B .0x y +=C .70x y -=D .70x y +=8.阅读如图所示的程序框图,若输入6m =,则输出S 等于 A .4 B .9 C .16D .25第7题图第8题图9.某几何体的三视图如图所示,它的表面积为 A .4πB .54π C .78πD .π10.设函数()2xf x e x =-,则 A .2x e=为()f x 的极小值点 B .2x e=为()f x 的极大值点 C .ln 2x =为()f x 的极小值点D . ln 2x =为()f x 的极大值点二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知{}n a 是递增等差数列,21=a ,且1a ,2a ,5a 成等比数列,则此数列的公差d =_________.正视图1 侧视图俯视图12.已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪≤⎨⎪-≤⎩则2z x y =+的最小值为_________.13.已知a b c ,,分别是ABC ∆的三个内角A B C ,,所对的边,若a =,1b =,cos 3C =,则sin B =_________.(二)选做题(14-15小题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,直线l 经过圆4cos ρθ=的圆心且与直线cos 4ρθ=平行,则直线l 与极轴的交点的极坐标为_________. 15.(几何证明选讲选做题)如图,过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,3PB =,4AB =,则AC =________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()()sin 0,0f x A x A ωω=>>的最大值为13,且最小正周期为2π. (1)求()f x 的解析式;(2)若145f θ⎛⎫=-⎪⎝⎭,3,2πθπ⎛⎫∈ ⎪⎝⎭,求cos 4πθ⎛⎫+ ⎪⎝⎭的值.17.(本小题满分13分)201515(2)求y 关于x 的线性回归方程,并预测甲在6月份的纯收入;(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间()3 3.5, 中的概率.BPAC18.(本小题满分14分)如图,直三棱柱111ABC A BC -中,2BAC π∠=,D 为AC 中点,E 为BC 上一点,且CDE ABC ∠=∠. (1)求证:11DE BCC B ⊥平面;(2)若122AA AC AB ===,求三棱锥1D BCB-的体积.19.(本小题满分13分)设数列{}n a 的前n 项和为n S ,且n S 满足232n n n S -=,n N *∈.(1)求数列{}n a 的通项公式; (2)设123n n n a b ++=,求数列{}n b 的前n 项和n T . 20.(本小题满分14分)设0p >,抛物线方程为2:2C x py =.如图所示,过焦点F 作x 轴的平行线,与抛物线在第一象限的交点为G ,已知抛物线在点G 的切线经过点()0,1-. (1)求满足条件的抛物线方程;(2)过点()0,2-作抛物线C 的切线,若切点在第二象限,求切线m 的方程;ECAC 1A 1B 1BD21.(本小题满分14分) 已知函数()3143f x x ax =++. (1)讨论函数()f x 的单调区间;(2)当4a =-时,若函数()f x 在区间[,3]m 上的最大值为283,求m 的取值范围.y2015广东省高考最后一卷数学(文科)试题参考答案及评分标准一、选择题 1.【答案】A【解析】A B =∅. 2.【答案】B【解析】∵1020x x ->⎧⎨-≠⎩,∴12x x ≥⎧⎨≠⎩,∴函数()f x 的定义域是()()1,22,+∞.3.【答案】A 【解析】∵()()()()211i 1i 1i i 1i 1i 1i z z ---===-++-,∴复数21z z 的模是i 1-==.4.【答案】C【解析】A 是奇函数但不是增函数;B 既不是奇函数也不是偶函数;C 既是奇函数又是增函数;D 是偶函数. 5.【答案】D 【解析】 ∵//a b ,∴220y -⨯=,∴4y =. 6.【答案】D【解析】实轴长26a =. 7.【答案】B【解析】依题意,设所求直线方程为y kx =,即0k x y -=,∵圆心到直线的距离为d ==1k =-或17k =(舍去),∴所求直线方程是是0x y +=.8.【答案】C【解析】根据程序框图,135716S =+++=. 9.【答案】B 【解析】根据三视图,该几何体为14个球,半径为1.∴它的表面积为22145311484πππ⨯⨯⨯+⨯⨯=.10.【答案】C【解析】 由()20xf x e '=-=,得ln 2x =,又ln2x <时,()0f x '<,ln 2x >时,()0f x '>,∴()f x 在ln 2x =时取得极小值. 二、填空题11.【答案】4【解析】依题意,d d 42,2,2++成等比数列,∴2(2)2(24)d d +=+,解得0d =(舍去)或4=d . 12.【答案】2【解析】如图,作出可行域,当目标函数直线经过点A 时取得最大值.由2,20,y x y =⎧⎨+-=⎩解得()0,2A ,∴max 2022z =⨯+=.13.【答案】3【解析】由余弦定理得c ==,∵0c π<<,cos 3C =,∴sin C =,∴由正弦定理得sin sin b C B c ===14.【答案】()2,0【解析】4cos ρθ=化为直角坐标方程()2224x y -+=,圆心为()2,0,cos 4ρθ=化为直角坐标方程4x =,∴直线l 方称为2x =,直线l 与极轴的交点的极坐标为()2,0. 15.【答案】8【解析】由切割线定理可得2PA PB PC =⋅,∴12PC =.∵PAB ∆∽PCA ∆,∴PA ABPC CA=,∴12486PC AB CA PA ⋅⨯===. 三、解答题16.解:(1)∵()f x 的最大值为13,0A > ∴13A = (2)分∵()f x 的最小正周期为2π∴22T ππω==又0ω> ∴4ω= (4)分 ∴1()sin 43f x x = (5)分 (2)∵11sin 435f θθ⎛⎫==-⎪⎝⎭ ∴3sin 5θ=- ………………………………………………………………………………………………7分 又3,2πθπ⎛⎫∈ ⎪⎝⎭∴4cos 5θ===- …………………………………………………………9分 ∴cos cos cos sin sin 444πππθθθ⎛⎫+=- ⎪⎝⎭4355⎛⎫=---= ⎪⎝⎭………………………………………………………………………12分 17.解:(1)由表中数据可知,甲的纯收入比乙的纯收入集中,故甲的纯收入较稳定.……………2分 (2)∵1(12345)35x =++++=, 1(2.9 3.3 3.6 4.4 4.8) 3.85y =++++=,()()()()()()25222221132333435310i x x=-=-+-+-+-+-=∑,()()51iii x x yy=--∑()()()()()()()()()()13 2.9 3.823 3.3 3.833 3.6 3.843 4.4 3.853 4.8 3.8=--+--+--+--+--4.9=∴()()()51521iii ii x x yyb x x ==--=-∑∑ 4.90.4910==,…………………………………………………………5分 ˆˆ 3.80.493 2.33ay bx =-=-⨯=. ……………………………………………………………6分 ∴所求回归方程为0.49 2.33y x ∧=+.……………………………………………………………7分令6x =,得0.496 2.33 5.27y ∧=⨯+=,∴预测甲在6月份的纯收入为5.27千元.……………………………………………………………8分(3)现从乙这5个月的纯收入中,随机抽取两个月的基本事件有: ()1,2,()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,()3,4,()3,5,()4,5,共10种…………………………………………………10分记“恰有1个月的纯收入在区间()3 3.5, 中”为事件A ,其中有:()1,3,()1,4,()1,5,()2,3,()2,4,()2,5,共6种………………………………………………………………………………………12分∴恰有1个月的纯收入在区间()3 3.5, 中的概率为()63105P A ==………………………………13分 18.(1)证明:∵111ABC A B C -是直三棱柱 ∴1B B ABC ⊥平面 又DE ABC ⊂平面∴1B B DE ⊥ ………………………………………………………………………………………………2分∵CDE ABC ∠=∠,DCE BCA ∠=∠ ∴EDC ∆∽ABC ∆ ∴2DEC BAC π∠=∠=即DE BC ⊥………………………………………………………………………………………………4分 又1B B BC B =I∴11DE BCC B ⊥平面……………………………………………………………………………………6分 (2)BCD ABC ABD S S S ∆∆∆=-1122AB AC AB AE =⋅-⋅ 1111211222=⨯⨯-⨯⨯=…………………………………………………………………………………9分 ∵1B B ABC ⊥平面∴1B B 为三棱锥1B BCD -的高…………………………………………………………………………10分∴11D BCB B BCD V V --=113BCD S B B ∆=⋅ 1112323=⨯⨯=……………………………………………………………………………………………13分19.解:(1)∵232n n n S -=①∴当2n ≥时,()()213112n n n S ----=② …………………………………………………………2分①-②得642n n a -=∴32n a n =- (4)分∵1n =时,得213112a ⨯-=,∴11a =,符合上式 ………………………………………………5分∴数列{}n a 的通项公式为32n a n =-………………………………………………………………6分(2)∵1123333n n n n n a n n b +++=== ……………………………………………………………………7分 ∴231233333n n n T =++++③ …………………………………………………………………………8分∴212331333n n n T -=++++④ ……………………………………………………………………9分④-③得21111213333n n nn T -=++++- 1113313n n n ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=--121333n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=- …………………………………………………………12分∴1113323n n n n T +=--⋅ (13)分 20.解:(1)由22x py =得212y x p=, 当2p y =得x p =±,∴G 点的坐标为,2p p ⎛⎫ ⎪⎝⎭,……………………………………………………2分 1'y x p=,'|1x p y ==,过点G 的切线方程为2p y x p -=-即2p y x =-,…………………………………………………5分 令0x =得2p y =-, ∴12p -=-即2p =,即抛物线的方程为24x y =…………………………………………………7分 (2)设切点2000(0)4x Q x x ⎛⎫< ⎪⎝⎭,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,…………9分 ∴所求切线方程2000()42x x y x x -=-, 即20024x x y x =- . ……………………………………………………………………………11分 ∵点()0,2-在切线上, ∴2024x -=-,∴0x =(舍去)或0x =- …………………………………………………………13分∴所求切线方程为2y =-. ……………………………………………………………14分 21.解:(1)()2f x x a '=+.…………………………………………………………………1分 ①0a ≥时,()20f x x a '=+≥,()f x 在(,)-∞+∞上单调递增;②0a <时,()(2f x x a x x '=+=+.令()0f x '=,得10x =<,20x =>.∴()1,x x ∈-∞时,()0f x '>;()12,x x x ∈时,()0f x '<;()2,x x ∈+∞时,()0f x '>. ∴()f x 在()1,x -∞,()2,x +∞上单调递增;在()12,x x 上单调递减.…………………………7分 (2)当4a =-时,31()44,[,3]3f x x x x m =-+∈ ()()2()422f x x x x '=-=+-令()0f x '=得122,2x x =-= ……………………………………………………………………8分将x ,()f x ',()f x 变化情况列表如下:10分 由此表可得28()(2)3f x f =-=极大,4()(2)3f x f ==-极小 …………………………………………11分 又28(3)13f =< ……………………………………………………………………………………12分 故区间[,3]m 内必须含有2-,即m 的取值范围是2]-∞-(,. ………………………………14分。

相关文档
最新文档