新人教版七年级上册数学全册教学案(2).

合集下载

人教版七年级上册数学教案

人教版七年级上册数学教案

人教版七年级上册数学教案人教版七年级上册数学教案1教学目标(一)通过复习一位数乘整百整十数不进位的口算,学生理解并掌握一位数乘两位数进位乘法的口算方法,能正确地进行一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,能够比较熟练地进行口算.教学重点和难点重点:在理解的基础上,掌握用一位数乘的口算过程.难点:理解并掌握满十向前一位进“1”的算理.教学过程设计(一)复习准备投影出示口算题:(用纸板覆盖,一题一题出示)10某514某2100某7130某220某334某2200某4210某3教师提问:14某2请你说一说口算过程.(学生回答10某2=20,4某2=8,20+8=28)教师追问:那么你能不能说一说140某2又是怎样口算的呢?(同座位的两个小朋友互相说一说)然后请同学回答(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280) 教师揭示课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出示例1:板书:口算14某3.想一想 14某3的意义是什么?(3个14是多少)根据14某3的意义,用小棒摆出来.想口算的顺序,先拿出表示10某3=30,3个十的小棒是30,再拿出表示4某3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14某3=42.比较14某3与14某2两道口算的异同:(同桌或四人小组的同学互相启发进行讨论)然后请同学回答:两道题口算过程是一样的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最后一步是整十加上两位数.做一做投影出示:16某2=26某3=25某2=要求同学在练习本上直接写出结果.再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体订正.分别请同学说出口算过程.16某2:10乘以2等于20,6乘以2等于12,20加上12等于32.26某3,25某2分别请同学互相说,集体说,个人说.反复叙述口算过程.出示例2:板书:口算:140某3=请同学想一想应该怎样做,然后试做.(教师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的.集中起来说出不同的想法:因为14某3=42,那么140某3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420.3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励.做一做投影出示:130某5=380某2=150某6=每人在自己本上直接写出结果.四人小组进行讨论,能用几种方法说出口算过程.小结今天我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”.(三)巩固反馈1.基本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学互相说一说.最后集体订正.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程.3.找朋友游戏.15某318某212某514某435某2220某4240某325某4310某332某326某2160某612某416某514某336某2120某4160某5240某2260某2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的朋友.45366056708807201009109652960489072424809004805204.文字叙述题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,订正时用.(1)乘数是7,被乘数是12,积是多少?12某7=84(2)250的3倍是多少?250某3=750作业:看书第1页.课堂教学设计说明本节课教学内容口算“一位数乘两位数、乘整百整十数”.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新知识做准备.讲授新课例1时,抓住满十进一这一难点,以旧知识引出新知识,通过新旧知识的比较,突出新旧知识的连接点,通过学生自己动手、动脑、动口获取知识,体现以学生为主体.使学生真正悟出新旧知识的内在联系.通过形式多样的练习,达到能准确、迅速地口算的目的.板书设计人教版七年级上册数学教案21.使学生经历“提出问题—估算—口算—笔算”的计算过程,在多样化的算法中能自主最优化。

最新人教版数学七年级上册教案(5篇)

最新人教版数学七年级上册教案(5篇)

最新人教版数学七年级上册教案(5篇)为大家准备的最新人教版数学七年级上册教案,欢迎大家前来参阅。

最新人教版数学七年级上册教案(篇1)教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。

【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

教学重难点【教学重点】数轴的意义及作用。

【教学难点】数轴上的点与有理数的直观对应关系。

课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。

3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。

4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

(2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

2.2.2有理数的除法(2)加减乘除混合运算(教案,新教材)-七年级数学上册(人教版2024)

2.2.2有理数的除法(2)加减乘除混合运算(教案,新教材)-七年级数学上册(人教版2024)

2.2.2有理数的除法(2)---加减乘除混合运算(教案,新教材)【教学目标】1.能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算;2. 能运用有理数的运算律简化运算;3. 通过有理数的加、减、乘、除混合运算提高学生的运算能力和解决简单的实际问题能力.【教学重点】能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算.【教学难点】能运用有理数的运算律简化运算.【教学过程】一、情境导入问题 1. 在小学我们已经学习过无括号的加、减、乘、除四则运算,其运算顺序是先算________,再算________.在有理数范围内时,怎样进行有理数加、减、乘、除混合运算呢?本节课开始学习2.2.2有理数的除法(2)----加减乘除混合运算(板书课题)二、合作探究活动一:探究有理数乘、除混合运算例1.计算: ()551(1)1255(2) 2.5.784;⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭学生活动:(1)把除法变成乘法,先确定符号,把51257看成51257+; (2)把小数化成分数,同时把除法变成乘法.教师活动:指导学生按照运算法则进行;方法总结:有理数乘、除混合运算方法,先统一成乘法,再计算.()5(1)1255751(125)7515112557512571257⎛⎫-÷- ⎪⎝⎭=+⨯=⨯+⨯=+= 51(2) 2.5845812541⎛⎫-÷⨯- ⎪⎝⎭=⨯⨯= 活动二:有理数无括号的加、减、乘、除混合运算例2.计算:()()()()(1)842(2)759015.;-+÷--⨯--÷-学生活动:讨论有理数无括号的加、减、乘、除混合运算,按照小学所学的混合运算一样,按照“先乘除,后加减”的顺序进行.教师活动:指导学生按照运算法则进行;方法总结:有理数加减乘除混合运算方法,按“先乘除,后加减”的顺序计算.()(1)8428(2)10;-+÷-=-+-=-()()()()(2)75901535635641.-⨯--÷-=--=+=活动三:有理数加、减、乘、除混合运算实际运用例3.某公司去年1月-3月平均每月亏损1.5万元,4月-6月平均每月盈利32万元,7月-10月平均每月盈利21.7万元,11月-12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?学生活动:学生试着根据题意先列出算式,根据运算法则计算.教师活动:提醒学生先确定盈利额为正数,再列算式.运算的顺序是“先乘除,后加减”.具体如下:记盈利额为正数,亏损额为负数.则有()()1.5332321.74 2.324.59686.8 4.6173.7-⨯+⨯+⨯+-⨯=-++-=活动四:使用计算器进行有理数加、减、乘、除混合运算教师活动:介绍计算器功能键及计算过程中的顺序.学生活动:利用计算器验证例3结论.用计算器进行课本练习第3题的计算.教师活动:观察学生计算器使用,给予指导.三、强化巩固1.练习1、2.抽学生板演,其余学生独立完成,教师评价订正.2. 拓展训练:计算:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13; (2)⎝⎛⎭⎪⎫-316-113+114×(-12). 师生活动:提醒学生:(1)先计算括号内的,再按“先乘除,后加减”的顺序进行;(2)可考虑利用乘法的分配律进行简便计算.具体解答如下:(1)⎝ ⎛⎭⎪⎫2-13×(-6)-⎝⎛⎭⎪⎫1-12÷⎝ ⎛⎭⎪⎫1+13=53×(-6)-12÷43=(-10)-12×34=-10-38=-1038; (2) ⎝ ⎛⎭⎪⎫-316-113+114×(-12)=⎝ ⎛-3-16 ⎭⎪⎫-1-13+1+14×(-12) =⎝⎛⎭⎪⎫-3-14×(-12)=-3×(-12)-14×12=3×12-14×12=36-3=33. 方法总结:在进行有理数的混合运算时,应先观察算式的特点,若能应用运算律进行简化运算,就先简化运算.四、总结拓展学生小组合作对知识总结:1. 有理数加、减、乘、除混合运算,按照“先乘除,后加减”的顺序进行.2.用计算器进行计算,给运算带来方便.学生小组合作对思想方法总结:有理数的加、减、乘、除混合运算的学习提高了我们的运算和解决简单的实际问题能力.五、作业布置必做作业:课本习题2.2第9(1、3),10(1、3),11(1、3),12题选做作业:课本习题2.2第13、14、15题。

人教版七年级数学上册教案(RJ) 第二章 整式的加减

人教版七年级数学上册教案(RJ) 第二章 整式的加减

第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册(全册)教案七年级数学上册教学计划一、基本情况分析1、学生情况分析:这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。

在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。

对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。

学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。

2、教材分析:1、第1章有理数:本章主要学习有理数的基本性质及运算。

本章重点内容是有理数的概念,性质和运算。

本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。

本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。

本章难点在于理解合并同类项和去括号的法则。

3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。

本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。

本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

4、第4章几何图形初步:本章主要学习线段和角有关的性质。

本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。

本章的难点在于线段和角的有关计算。

二、教学目标和要求(一)知识与技能1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。

体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

新人教版七年级上册数学第二章《整式的加减》全章教案

新人教版七年级上册数学第二章《整式的加减》全章教案

第1课时:整式(1)教学内容:教科书第54—56页,2.1整式:1.单项式。

教学目标和要求:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:分层次教学,讲授、练习相结合。

教学过程:一、复习引入:1、 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方形棱长,则正方形的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。

让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

)2、 请学生说出所列代数式的意义。

3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充,单独一个数或一个字母也是单项式,如a ,5。

2.练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

最新人教版七年级数学上册全册教案-人教版七年级数学上册电子书

最新人教版七年级数学上册全册教案-人教版七年级数学上册电子书

最新人教版七年级数学上册全册教案-人教版七年级数学上册电子书最新人教版七年级数学上册全册教案-人教版七年级数学上册电子书第一章有理数教材分析1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解。

(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)

人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。

难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。

同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。

)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。

(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。

人教版初中七年级上册数学全册教学设计(完整版)

人教版初中七年级上册数学全册教学设计(完整版)

人教版初中七年级上册数学全册教学设计(完整版)一. 教材分析人教版初中七年级上册数学教材主要内容包括:第一章有理数;第二章整式的加减;第三章几何图形初步;第四章数据的收集、整理与分析。

本册教材主要让学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了小学阶段的数学知识,具备一定的逻辑思维能力和运算能力。

但部分学生对数学学科的学习兴趣不高,学习主动性不足。

因此,在教学过程中,需要关注学生的学习兴趣,激发学生的学习积极性。

三. 教学目标1.知识与技能:使学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。

2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。

3.情感态度与价值观:培养学生对数学学科的兴趣,提高学生的自信心。

四. 教学重难点1.教学重点:有理数、整式的加减以及几何图形的知识。

2.教学难点:有理数的混合运算、整式的加减运算以及几何图形的性质。

五. 教学方法1.情境教学法:通过生活实例引入知识,使学生感受到数学与生活的紧密联系。

2.启发式教学法:引导学生主动思考问题,培养学生的逻辑思维能力。

3.合作学习法:鼓励学生之间相互讨论、交流,提高学生的合作能力。

六. 教学准备1.教师准备:熟练掌握教材内容,了解学生的学习情况。

2.学生准备:预习教材内容,了解本节课的学习目标。

3.教学资源:多媒体课件、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用生活实例引入本节课的知识,激发学生的学习兴趣。

例如,讲解温度、身高等概念,引出有理数的概念。

2.呈现(15分钟)讲解有理数的定义、性质以及运算规则。

通过示例演示有理数的加减乘除运算,让学生跟随老师一起动手操作,巩固知识点。

3.操练(15分钟)布置练习题,让学生独立完成。

题目难度可分为基础、提高、挑战三个层次,以满足不同学生的学习需求。

教师巡回指导,帮助学生解决问题。

人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案设计

人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案设计

2.2整式的加减(第1课时)一、内容和内容解析1.内容同类项的概念,合并同类项的法则.2.内容解析整式的加减运算是“数与代数”领域中最基本的运算,它是今后学习整式的乘除、因式分解、分式和根式运算、方程及函数等知识的重要基础.同类项及合并同类项的法则是学习整式的加减运算和一元一次方程的直接基础.整式的运算与数的运算具有一致性,整式中的字母表示数,因此数的运算性质和运算律在式的运算中仍然成立,可以类比数的运算来学习式的运算,用关于数的运算法则和运算律对式子进行变形和化简.这充分体现了“数式通性”及由数到式、由特殊(具体)到一般(抽象)的数学思想.合并同类项是把多项式中同类项合并成一项,经过合并同类项,多项式的项数会减少,这样多项式就得到了简化.同类项的概念是判断同类项的依据,“所含字母相同,相同字母的指数也相同”是同类项的本质特征.合并同类项的依据是数的运算律中的“分配律”,“合并” 是指同类项的系数相加,把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.基于以上分析,可以确定本节课的教学重点:同类项的概念及合并同类项的法则,感受其中的“数式通性”和类比的思想.二、教材解析本节课是整式的加减的第一课时,从章前引言中的问题(2)“在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1 倍,如果通过冻土地段需要t h,你能用含t 的式子表示这段铁路的全长吗?”出发,通过分析这个问题中的数量关系,列出式子100t +252t,引出对式子化简的问题.由字母表示数,运用类比思想,类比有理数的运算化简这个式子,引出了合并同类项的方法,重点引出合并同类项的依据是分配律,为更一般的同类项的合并提供方法指导.在此基础上类比式子100t+252t 的化简,讨论更一般的同类项(例如多项式中的项的次数高于1,字母不只一个等)的合并,然后分析几个式子的结构特征,抽象出同类项的特点,得出同类项的概念和合并同类项的方法.通过例题理解和巩固同类项的概念和合并同类项的方法,为继续学习整式的加减打基础.本节课重点是同类项的概念及合并同类项的法则,感受其中的“数式通性”和类比的数学思想.学生在学习中对正确判断同类项,准确合并同类项会有困难.要使学生会辨别同类项,必须准确地掌握判断同类项的两条标准(字母和字母指数).要准确合并同类项,必须理解整式中的字母表示数,整式的运算与数的运算具有一致性,因此依据分配律可以把多项式中同类项合并成一项.教学中充分运用类比的思想方法,探究合并同类项的法则,理解合并同类项的依据是分配律,理解数的运算性质和运算律在式的运算中仍然成立,体会“数式通性”.三、教学目标和目标解析1.教学目标(1) 理解同类项的概念;(2) 掌握合并同类项的方法;(3) 通过类比数的运算探究合并同类项的法则,从中体会数式通性和类比的思想.2.目标解析达成目标(1)的标志:会根据“所含字母相同,相同字母的指数也相同”的标准判断同类项,并说出判断的依据,会举例说明同类项,会在一个多项式中找到同类项;达成目标(2) 的标志:能准确合并同类项,并说出合并的方法,能通过合并同类项进行多项式的化简;目标(3)是“内容所蕴涵的思想方法”,学生需要体会的是在化简含有字母的式子时,由于整式中的字母表示数,字母可以像数一样参与运算,算式与含有字母的式子有相同的结构,可以对比数的运算,运用分配律合并同类项,体会“数式通性”和类比的数学思想.四、教学问题诊断分析在前面的学习中,学生已经掌握有理数的运算,了解字母表示数的意义,这些知识对本课的学习有着铺垫作用.七年级学生的认知水平、抽象概括能力和迁移能力都有待逐步提高,学生从熟悉的数的运算到理解含有字母的式子的运算,需要一个过程.在进行整式的加减运算时,对于如何判断同类项,为什么可以把同类项进行合并,如何合并同类项,学生理解和运用起来还是有困难的.还需要教师引导学生进行“数”与“式”的类比,正确分析含有字母的式子的结构,帮助学生理解由于字母表示数,字母可以像数一样参与运算,因此可以运用分配律合并同类项.教学中要多展示找同类项及合并同类项的过程,积累感性经验,丰富学习体验,逐步达到对“式”的运算的理解.本课的教学难点:正确判断同类项,准确合并同类项.人教版七年级上册数学2.2《整式的加减-同类项、合并同类项)》教案设计五、教学过程设计1.创设情境,引入课题问题1 青藏铁路西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的 2.1 倍,如果通过冻土地段需要t h,你能用含t 的式子表示这段铁路的全长吗?师生活动:学生尝试解答.如果学生得到100t+120×2.1t=100t+252t,教师可以追问:这个式子的结果是多少?你是怎样得到的?说明其中的道理.如果学生直接得到352t,教师可以追问:这个结果是怎样得到的?说明其中的道理.此环节教师应关注:(1)学生能否正确列式;(2)学生能否依据分配律化简100t+252t,并说明其中的道理;(3)学生能否体会在实际生活中,经常遇到含有字母的式子的运算问题.教师归纳:在实际生活中,经常遇到含有字母的式子的运算问题,学习含有字母的式子的运算是实际的需要,整式的运算是建立在数的运算基础之上的.【设计意图】引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要.理解化简100t +252t 的方法是运用分配律,初步体会“数式通性”,促使学生的学习形成正迁移.2.类比探究,学习新知问题2 整式的运算是建立在数的运算基础之上的,对于有理数的运算是怎样进行的呢?整式的运算与有理数的运算有什么联系?(1)运用运算律计算:100×2+252×2=;100 ×(-2)+252 ×(-2)=.师生活动:学生尝试回答,根据分配律可得100 ×2+252 ×2=(100+252)×2=352×2=704;100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2)教师追问:式子100t+252t 与问题2中的两个算式有什么联系?你是如何理解化简式子100t+252t 的方法的?师生活动:学生尝试解释,教师根据学生回答情况进行引导.教师引导学生归纳:①算式100×2+252×2与100×(-2)+252×(-2)实际上是在式子100t +252t 中,当t取2和-2时的算式,由于字母t代表的是一个因(乘)数,它们有相同的结构,因此根据分配律应有100t+252t=(100+252)t=352t.②整式中的字母表示数,因此可以类比数的运算,运用数的运算法则和运算律进行整式的运算.整式的运算与数的运算具有一致性,数的运算性质和运算律在式的运算中仍然成立,这体现了“数式通性”.【设计意图】回顾用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t +252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解式子100t+252t 中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想.(2)类比式子100t+252t 的运算,化简下列式子:①100t-252t;②3x2+2x2;③3ab2-4ab2.师生活动:学生先尝试独立解答,学生代表发言.此环节教师应关注:①学生在计算100t-252t 时,注意分配律的使用,正确区分运算符号和性质符号,即100t-252t=[100+(-252)]t=-152t;②学生能否正确理解运用分配律化简式子时“系数相加,字母连同它的指数不变”的道理.【设计意图】进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不只一个)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想.通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则作铺垫.问题3 观察多项式100t+252t,100t-252t,3x2+2x2,3ab2-4ab2.(1)上述各多项式的项有什么共同特点?(2)上述多项式的运算有什么共同特点?你能从中得出什么规律?师生活动:学生先独立思考,然后小组合作讨论,小组代表发言.教师巡视,指导学生归纳和表达.在讨论交流的基础上,教师引导学生归纳各多项式的项的共同特点:(1) 每个式子的两项含有相同的字母;(2) 并且相同字母的指数也相同.上述运算的共同特点:(1)根据分配律把多项式各项的系数相加;(2)字母连同它的指数保持不变.教师给出定义和法则:(1) 所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.(2) 把多项式中的同类项合并成一项,叫做合并同类项.(3) 合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.此环节教师应关注:(1)学生能否理解判断同类项的两条标准;(2)学生能否理解合并同类项的要点,一是“字母连同它的指数不变”,既包含字母不变,也包含字母的指数不变,二是“系数相加减”.【设计意图】在观察、比较中发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的概念及合并同类项的法则,培养观察、分析和抽象概括能力.问题4 你能举出一个同类项的例子吗?师生活动:学生代表举出同类项的例子,由其他学生合并所给出的同类项.教师在评价学生举例后,追问合并同类项的结果.【设计意图】通过举例,加深对同类项的概念和合并同类项法则的理解.问题5 化简多项式的一般步骤是什么呢?通过如下例题说明,找出多项式4x2+2x+7+3x-8x2-2 中的同类项并进行合并,思考下面的问题:每一步运算的依据是什么?应注意什么?学生尝试口述解题,教师适时追问,教师示范解答过程.解:4x2+2x+7+3x-8x2-2=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2)+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5.(按字母x降幂排列)教师引导学生归纳步骤:(1) 找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4) 按同一个字母的降幂(或升幂)排列.此环节教师应强调:(1)运用交换律、结合律将多项式变形时,不要丢掉各项系数的符号;(2)不要漏项;(3)运算结果通常按某一个字母的指数由大到小(降幂)或者由小到大(升幂)的顺序排列.【设计意图】类比数的运算,利用交换律、结合律、分配律将多项式中的同类项进行合并,归纳运算步骤和注意的问题,进一步体会“数式通性”,发展类比的数学思想.3.学以致用,应用新知例1 合并下列各式的同类项:2- 1 2(1) xy2-xy ;5(2) -3x2y+2x2y+3xy2-2xy2;(3) 4a2+3b2+2ab― 4a2― 4b2.学生先独立完成,然后互相纠错、评价,学生代表板演,教师巡视指导.【设计意图】加深对同类项的概念和合并同类项法则的理解和运用,提高运算能力.4.基础训练,巩固新知练习1 判断下列说法是否正确,正确的在括号内打“√,”错误的打“×.”(1) 3x 与3mx 是同类项;( )(2) 2ab 与-5ab 是同类项;( )1(3) 3xy2与2y2x 是同类项;( )(4) 5a2b 与-2a2bc 是同类项;( )(5) 23与32是同类项.( )【设计意图】进一步巩固同类项的概念.练习2 填空:(1) 若单项式2x m y3与单项式-3x2y n是同类项,则m=,n=.(2) 单项式-6ab2c3的同类项可以是(写出一个即可).(3) 下列运算,正确的是(填序号).① 2a+3a=5a2;②5a2b-3ab2=2ab;③3x2-2x2=x2;④6m2-5m2=1.(4) 多项式3ab-6a2b2-8ab2+4a2b2-9ab+2ab2-5,其中与ab2是同类项的是;与a2b2是同类项的是;将多项式中的同类项合并后结果是.【设计意图】进一步巩固同类项的概念和合并同类项的法则.5.小结归纳,自我完善教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)你能举例说明同类项的概念吗?(3) 举例说明合并同类项的方法.(4) 本节课主要运用了什么思想方法研究问题?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——同类项的概念,合并同类项的概念和法则,感受“数式通性”和类比的数学思想.布置作业:教科书第65页练习第1题,习题2.2 第1题.六、目标检测设计1.下列各组中的两项,属于同类项的是( ) .1A.a2与a B.-0.5ab与ba C.a2b与ab2D.a与b2【设计意图】检测学生用同类项的概念判断同类项.2.下列运算,正确的是( ).A.3a+2b=5ab B.3a2b-3ba2=0C.2x3+3x2=5x5 D .5y2-4y2=1【设计意图】通过几个合并同类项问题的辨析,引起对合并同类项产生错误的原因的分析和思考,检测学生对合并同类项法则的理解和运用.3.若单项式-3a m b2与单项式1a3b n是同类项,则m=,n=.3【设计意图】检测学生对同类项概念的理解.4.合并下列各式的同类项:(1) -a +0.5a +2.5a ;(2)7a+3a-2a-a +3;(3) 3x2-2xy-x2+5xy;(4) 3x3-3x2-y2+5y+x2-5y+y2.【设计意图】检测学生掌握合并同类项化简多项式的情况.。

新人教版七年级数学上册全册教案

新人教版七年级数学上册全册教案

新人教版七年级上册数学全册教案第一章 有理数1. 1正数和负数备课:七年级数学教研组【教学目标】一.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三、情感、态度与价值观:培养学生积极思考,合作交流的意识和能力.教学重点:两种意义相反的量教学难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学手段:多媒体等。

【教学过程】一、预习探究1、冬天,零度以下的数在天气预报中如何表示,如某地一月份某日的平均气温大约是零下3℃,可用____数表示,记作______。

2、零上24摄氏度表示为_______,零下3.5摄氏度表示为__________。

3、如果向南走2米记为+2,那么向北走10米应表示为 。

4、地图册上亚洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比 了392米。

二、课堂教学5、中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848米,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?学生思考讨论,尝试回答大于0的数叫做 ;小于0的数,或在正数前面加“-”号的数叫 ;0既不是 也不是 。

6、判断:下列各数中,哪些是正数?哪些是负数? 12, -9.24,31, -301, 427, 31.25, 0. 7、在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?8、北京冬季里某天的温度为-3℃~+3℃,它的确切含义是什么?9、课堂小结:三、反馈练习:1、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2、产品成本提高-10%,实际表示_________.3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。

七年级数学上册教案(优秀3篇)

七年级数学上册教案(优秀3篇)

七年级数学上册教案(优秀3篇)2023最新人教版数学七年级上册教案篇一一、教学目标1、理解一个数平方根和算术平方根的意义;2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;3、通过本节的训练,提高学生的逻辑思维能力;4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。

二、教学重点和难点教学重点:平方根和算术平方根的概念及求法。

教学难点:平方根与算术平方根联系与区别。

三、教学方法讲练结合。

四、教学手段多媒体五、教学过程(一)提问1、已知一正方形面积为50平方米,那么它的边长应为多少?2、已知一个数的平方等于1000,那么这个数是多少?3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。

下面作一个小练习:填空1、()2=9; 2.()2 =0.25;5、()2=0.0081.学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。

由练习引出平方根的概念。

(二)平方根概念如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。

用数学语言表达即为:若x2=a,则x叫做a的平方根。

由练习知:±3是9的平方根;±0.5是0.25的平方根;0的平方根是0;±0.09是0.0081的平方根。

由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:()2=-4学生思考后,得到结论此题无答案。

反问学生为什么?因为正数、0、负数的平方为非负数。

由此我们可以得到结论,负数是没有平方根的。

下面总结一下平方根的性质(可由学生总结,教师整理)。

(三)平方根性质1、一个正数有两个平方根,它们互为相反数。

2.0有一个平方根,它是0本身。

3、负数没有平方根。

(四)开平方求一个数a的平方根的运算,叫做开平方的运算。

新人教版七年级数学上册全部教案(精品)

新人教版七年级数学上册全部教案(精品)

教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量教学过程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是xx,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

2024年新人教版七年级上册数学教学计划(二篇)

2024年新人教版七年级上册数学教学计划(二篇)

2024年新人教版七年级上册数学教学计划本学期我担任初一(4)、(7)两个班的数学教学,由于学生刚由小学升入初中,好多的习惯还不规范,导致学习水平参差不齐,为了能顺利完成本学期的教学任务,特制定教学计划如下:一、本学期学情分析:本学期教学内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。

观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的空间,让学生能更好地自主学习。

因此对每一章的教学都要体现师生交往、互动、共同发展的过程。

要求老师成为学生数学学习的组织者和引导者,从学生的生活经验和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。

开学第一周我对学生的观察和了解中发现少部分学生基础还可以,而大部分学生基础和能力比较差.所以一定要想方设法,鼓励他们增强信心,改变现状。

在扎实基础上提高他们解题的基本技能和技巧。

二、教学计划:(一)掌握学生心理特征,激发他们学习数学的积极性。

学生由小学进入中学,心理上发生了较大的变化,开始要求“独立自主”,但学生环境的更换并不等于他们已经具备了中学生的诸多能力。

因此对学习道路上的困难估计不足。

鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。

从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。

(二)努力提高课堂____分钟效率(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。

给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。

同时作业也要分层次进行,使优生吃饱,差生吃好。

(2)重视学生能力的培养初一的数学是培养学生运算能力,发展思维能力和综合运用知识解决实际问题的能力,从而培养学生的创新意识。

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇

人教版初一上册数学教案优秀8篇七年级数学上册教案篇一教学目标:1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形2、在操作活动中认识棱柱的某些特性;3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;教学重点:通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法教学难点:根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

教学过程:一、导入情境让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做活动一:1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的`形式动手做做看。

2、操作完后,请学生展示他们制作的模型。

3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

4、教师介绍棱柱的各部分名称。

数学七年级上册教学设计篇二教学目标1 知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。

2 过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。

3 情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。

教学重难点1 教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。

2 教学难点:理解平行与垂直概念的本质特征。

教学工具多媒体设备教学过程1 情境导入,画图感知1、学生想象在无限大的平面上两条直线的位置关系。

教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。

(2)像这样很平的面,我们就称它为平面。

(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。

2022年人教版七年级数学上册第二章整式的加减教案 整式的加减(第2课时)

2022年人教版七年级数学上册第二章整式的加减教案  整式的加减(第2课时)

第二章有理数的加减2.2 有理数的加减第2课时一、教学目标【知识与技能】能运用运算律探究去括号法则,并且利用去括号法则将整式化简.【过程与方法】经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.【情感态度与价值观】培养学生主动探究、合作交流的意识,严谨治学的学习态度.二、课型新授课三、课时第2课时,共3课时。

四、教学重难点【教学重点】去括号法则,准确应用法则将整式化简.【教学难点】括号前面是“-”号去括号时,括号内各项变号容易产生错误.五、课前准备教师:课件、直尺、去括号法则等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课小明在求多项式6a–5b与多项式8a–4b的差时,列出算式(6a–5b)–(8a–4b). 但小明想:这种含括号的式子该如何计算呢?(出示课件2)(二)探索新知1.师生互动,探究去括号法则(出示课件4)教师问1:请同学们完成下面的题目:计算:-12×(14−13),你有几种方法?学生回答:两种方法,一种是先计算括号内的部分,再相乘;另一种是利用乘法分配律。

教师问2:思考:–7(3y–4)=?这个式子又该怎么计算呢师生讨论后认为:利用分配律,可以去括号,得:-7×3y+(-7)×(-4)=-21y+28教师:需要注意:出示课件5-6,师生一起解答问题教师问3:观察计算过程,你能发现去括号时符号变化的规律吗?师生一起总结:(出示课件7)去括号法则:1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.教师问4:讨论比较+(x-3)与-(x-3)的区别?学生回答:+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).教师问5:利用分配律,可以将式子中的括号去掉:+(x-3)与-(x-3).学生回答:利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3 (括号没了,括号内的每一项都没有变号)-(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号)教师问6:去括号时要注意什么呢?师生共同讨论后解答如下:去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.例.化简下列各式:(出示课件9)(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).(3)(2x2+x)–[4x2–(3x2–x)].师生共同解答如下:解:(1)原式=8a+2b+5a–b=13a+b;(2)原式=(5a–3b)–(3a2–6b)=5a–3b–3a2+6b=–3a2+5a+3b;(3)原式=2x2+x–(4x2–3x2+x)=2x2+x–(x2+x)=2x2+x–x2–x=x2.总结点拨:(出示课件10)1.当括号前面有数字因数时,可应用乘法分配律将这个数字因数乘以括号内的每一项,切勿漏乘.2.当含有多重括号时,可以由内向外逐层去括号,也可以由外向内逐层去括号.每去掉一层括号,若有同类项可随时合并,这样可使下一步运算简化,减少差错.例:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.问:(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?(出示课件12)师生共同解答如下:解:(1)顺水速度=船速+水速=(50+a)km/h,逆水速度=船速–水速=(50–a)km/h.2小时后两船相距(单位:km)2(50+a)+2(50–a)=100+2a+100–2a=200.(2)2小时后甲船比乙船多航行(单位:km)2(50+a)–2(50–a)=100+2a–100+2a=4a.例:先化简,再求值,已知x=-4,y=1.(出示课件15)2求5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y-xy 2的值.师生共同解答如下:5xy 2-[3xy 2-(4xy 2-2x 2y )]+2x 2y-xy 2=5xy 2当x =–4,y =12 时,原式=5×(–4)×(12)2= –5.总结点拨:在化简时要注意去括号时是否变号;在代入时若所给的值是负数、分数、有乘方运算的,代入时要添上括号.(三)课堂练习(出示课件17-21)1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=3,y=3B .x= –4,y= –2C .x=2,y=4D .x=4,y=22. 下列去括号的式子中,正确的是( )A. a 2–(2a –1)= a 2–2a –1B. a 2+(–2a –3)= a 2–2a+3C. 3a – [5b – (2c –1)]= 3a –5b +2c –1D. –(a +b) + (c –d)= –a – b –c+d3.不改变代数式的值,把代数式括号前的“–”号变成“+”号,a-(b-3c)结果应是( )A.a+(b –3c)B. a+(–b –3c)C. a+(b+3c)D. a+(–b+3c)x 2-2y x 2+2y4. 已知a–b= –3,c+d=2,则(b+c)–(a–d)的值为()A.1B.5C.–5D.–15. 已知a2+2a=1,则3(a2+2a)+2的值为__________.6. 化简下列各式:(1)8m+2n+(5m–n);(2)(5p–3q)–3(p2-2q ).7. 先化简,再求值:2(a+8a2+1–3a3)–3(–a+7a2–2a3),其中a=–2.参考答案:1.C 解析:A. x=3、y=3时,输出结果为32+2×3=15;B. x= –4、y= –2时,输出结果为(–4)2–2×(–2)=20;C. x=2、y=4时,输出结果为22+2×4=12;D. x=4、y=2时,输出结果为42+2×2=20.2.C3.D4.B5.5 解析:因为a2+2a=1,所以3(a2+2a)+2=3×1+2=5.6. 解:(1)8m+2n+(5m–n);=8m+2n+5m-n=13m+n(2)(5p–3q)–3(p2-2q ).=5p-3q-(3p2-6q)=5p-3q-3p2+6q=-3p2+5p+3q7. 解:原式=–5a2+5a+2a=–2时,原式=–28.(四)课堂小结今天我们学了哪些内容:1.去括号时要将括号前的符号和括号一起去掉;2.去括号时首先弄清括号前是“+”还是“-”;3.去括号时当括号前有数字因数应用乘法分配律,切勿漏乘.(五)课前预习预习下节课(2.2)67页到69页的相关内容。

七年级-人教版(2024新版)-数学-上册-【教学设计】初中数学-七年级上册-第二章--2

七年级-人教版(2024新版)-数学-上册-【教学设计】初中数学-七年级上册-第二章--2

2.1有理数的加法与减法(第3课时)教学目标1.理解有理数的减法法则.2.能利用减法法则进行有理数的减法运算.3.体会将有理数的减法运算转化为加法运算的转化思想.教学重点理解有理数减法法则,并能利用有理数减法法则进行有理数的减法运算.教学难点理解有理数减法法则的推导过程.教学准备准备一个带有刻度的普通温度计.教学过程新课导入温度计上显示的温度是3℃.(1)比1 ℃高多少摄氏度?3-1=2.(2)比-3 ℃高多少摄氏度?3-(-3)=6.新知探究一、探究学习【问题】观察下列算式,你有什么发现?3-(-3)=6;3+(+3)=6.【师生活动】先让学生观察、叙述,然后教师进行补充总结.【猜想】减去一个数,等于加这个数的相反数.【设计意图】通过与温度计有关的实际问题引入新课,并给学生独立思考、自主探究的机会.最后,教师补充并给出猜想,让学生试着独立验证猜想.【验证】(1)借助温度计写出左边算式的结果,再与右边算式的计算结果进行比较.①0-(-3)=3,0+(+3)=3;②(-1)-(-3)=2,(-1)+(+3)=2;③(-5)-(-3)=-2,(-5)+(+3)=-2.【发现】有理数的减法可以转化为加法来进行.(2)计算下面两组算式,从中又有什么新的发现?①9-8=1,9+(-8)=1;②15-7=8,15+(-7)=8.【思考】你会总结有理数的减法法则吗?【师生活动】让学生尝试验证刚才的猜想,教师适时给予一定的帮助,最后教师总结有理数减法法则,并说明注意事项.【设计意图】培养学生独立验证猜想的能力.【新知】有理数减法法则:减去一个数,等于加这个数的相反数.a-b=a+(-b).【问题】根据有理数减法法则,将相同结果的算式用线连接.【设计意图】让学生初步认识有理数减法法则.二、典例精讲【例1】计算:(1)(-3)-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5)113524⎛⎫⎪⎝⎭--.【答案】(1)2;(2)-7;(3)-3;(4)12;(5)384-.【师生活动】让学生独立完成后,展示结果并进行讲解.教师总结:0减去一个数等于这个数的相反数.【设计意图】给学生独立思考,自主探究的机会,并在探究的思路上加以引导.让学生体会有理数减法法则和加法法则之间的联系.【归纳】要进行减法运算,根据减法法则,先把减法变为加法,再根据加法法则进行运算.【思考】在小学,只有当a大于或等于b时(其中a,b是0或正数),我们才能计算a-b(如2-1,1-1).现在,当a小于b时,你会做a-b(如1-2,(-1)-1)吗?一般地,在有理数范围内,较小的数减去较大的数,所得差的符号是什么?【师生活动】小数减大数,等于大数减小数的相反数.【设计意图】一方面是要得出“小数减大数所得的差是负数”,另一方面也是为了引导学生体会引入负数的好处.【例2】世界上最高的山峰是珠穆朗玛峰,其海拔是8 848.86 m,吐鲁番盆地的海拔是-155 m.两处高度相差多少?【答案】解:8 848.86-(-155)=8 848.86+155=9 003.86(m)答:两处高度相差9 003.86 m.【师生活动】学生独立完成后,全班交流.【设计意图】利用有理数减法法则解决实际问题,体现数学的应用价值.三、拓展提升【新知】作差法比较大小利用有理数的减法可以比较两个数的大小,即如果要比较a与b的大小,先求a与b的差a-b.当a-b>0时,a>b;当a-b=0时,a=b;当a-b<0时,a<b.这种比较两个数大小的方法叫做作差法.【问题】下列四组有理数大小的比较正确的是().A.1123->B.-|-1|>-|+1|C.1123<D.1123->【答案】D【设计意图】让学生用刚刚学习的作差法解决比较大小问题.课堂小结板书设计一、有理数减法法则1.法则2.实质3.方法二、作差法比较大小课后任务完成教材P32练习1~2题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档