最新北师大版初中数学分层提优训练八年级下第3章《图形的平移与旋转》A卷(含详细答案及解析)

合集下载

北师大版数学八年级下册第三章 图形的平移与旋转 达标测试卷(含答案)

北师大版数学八年级下册第三章  图形的平移与旋转 达标测试卷(含答案)

第三章图形的平移与旋转达标测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数学来源于生活,下列生活中的运动属于旋转的是()A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输的东西2.下列四个图形中,既是轴对称图形,又是中心对称图形的是()3.【2022·汕头澄海区期末】将点P(-3,4)先向右平移4个单位,再向下平移3个单位得到的点的坐标是()A.(-7,1) B.(-7,7) C.(1,7) D.(1,1)4.如图,在正方形网格中,△EFG绕某一点旋转某一角度得到△RPQ,则旋转中心可能是()A.点A B.点B C.点C D.点D5.如图,点A(0,8),△AOB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=45x上,则△AOB向右平移的长度为()A.241 B.10 C.8 D.66.如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,则∠C的度数为()A.16°B.15°C.14°D.13°7.如图,将等边三角形OAB放在平面直角坐标系中,A点坐标为(1,0),将△OAB 绕点O逆时针旋转60°,则旋转后点B的对应点B′的坐标为()A.(-12,32) B.(-1,12) C.(-32,32) D.(-32,12)8.如图,在平面直角坐标系中,点A,B的坐标分别为(2,0),(0,1),将线段AB 平移至A′B′,那么a+b的值为()A.2 B.3 C.4 D.59.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,连接BB′,则△A′BB′的周长为()A. 3 B.1+ 3 C.2+ 3 D.3+ 310.如图,矩形ABCD的顶点A,B分别在x轴,y轴上,OA=OB=2,AD=42,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2 023次旋转结束时,点C的坐标为()A.(6,4) B.(-6,-4) C.(4,-6) D.(-4,6)二、填空题:本大题共5小题,每小题3分,共15分.11.在平面直角坐标系中,点A的坐标为(m+1,2m-4),将点A向上平移两个单位后刚好落在x轴上,则m的值为______________.12.如图,将△ABC沿CB向左平移3 cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12 cm,那么四边形ACED的周长为______________.13.如图是一块长方形场地ABCD,长AB=a米,宽AD=b米,A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为______________平方米.14.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,则△2 023的直角顶点的坐标为______________.15.如图,在△ABC中,∠ACB=50°,将△ABC绕点C逆时针旋转得到△DEC(点D、E分别与点A、B对应),如果∠ACD与∠ACE的度数之比为32,当旋转角大于0°且小于180°时,旋转角的度数为______________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.请你将下面的图形通过平移、旋转或轴对称,设计出一幅图案.17.如图,△ABC绕着顶点A逆时针旋转得到△ADE,∠B=40°,∠E=60°,AB∥DE,求∠DAC的度数.18.如图,四边形ABCD各顶点的坐标分别为A(-3,-4)、B(0,-3)、C(-1,-1),D(-3,-2).画出将四边形ABCD先向右平移3个单位长度,再向上平移3个单位长度得到的四边形A′B′C′D′,并写出点C′的坐标.四、解答题(二):本大题共3小题,每小题9分,共27分.19.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-1,0)、B(-3,3)、C(-4,-1)(每个方格的边长均为1个单位长度).(1)画出△ABC关于原点对称的图形△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕点O逆时针旋转90°后得到的图形△A2B2C2,并写出点B2的坐标;(3)写出△A1B1C1经过怎样的旋转可直接得到△A2B2C2.(请将(1)(2)小问的图都作在所给图中)20.如图,在Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位长度,记平移后得到的三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.21.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB 边上时,(1)猜想线段DE与AC的位置关系是____________,并加以证明;(2)设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是____________,并加以证明.五、解答题(三):本大题共2小题,每小题12分,共24分.22.数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中,若AB=5,AC =3,求BC边上的中线AD的取值范围.解决方法:延长AD到E,使DE=AD.再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”的字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,解答下列问题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.23.如图,在△ABC中,∠BAC=90°,AB=AC,边BA绕点B顺时针旋转α得到线段BP,连接P A,PC,过点P作PD⊥AC于点D.(1)如图1,若α=60°,求∠DPC的度数;(2)如图2,若α=30°,求∠DPC的度数;(3)如图3,若α=150°,依题意补全图,并求∠DPC的度数.答案一、1.C2.D3.D4.C5.B6.C7.A8.A9.D点拨:∵∠ACB=90°,∠A=60°,AC=1,∴BC=3AC=3,AB=2AC=2,∵△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,∴CA=CA′,CB=CB′,AB=A′B′,∠ACA′=∠BCB′,∵CA=CA′,∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,AA′=AC=1,∴∠BCB′=60°,A′B=AB-AA′=1,∴△CBB′为等边三角形,∴BB′=CB=3,∴△A′BB′的周长为A′B+A′B′+BB′=1+2+3=3+ 3.10.B点拨:如图,过点C作CE⊥y轴于点E,连接OC,∵OA=OB=2,∴∠ABO=∠BAO=45°,∵∠ABC=90°,∴∠CBE=45°,∵BC=AD=42,∴CE=BE=4,∴OE=OB+BE=6,∴C(-4,6),∵矩形ABCD绕点O顺时针旋转,每次旋转90°,则第1次旋转结束时,点C的坐标为(6,4);则第2次旋转结束时,点C的坐标为(4,-6);则第3次旋转结束时,点C的坐标为(-6,-4);则第4次旋转结束时,点C的坐标为(-4,6);….发现规律:旋转4次为一个循环,∵2 023÷4=505……3,则第2 023次旋转结束时,点C的坐标为(-6,-4).二、11.112.18 cm13.(ab-a-2b+2)14.(8 088,0)点拨:∵点A(-3,0),B(0,4),∴AB=32+42=5.由图可知,△OAB每旋转三次为一个循环,一个循环前进的长度为4+5+3=12.∵2 023÷3=674……1,∴△2 023的直角顶点是第675个循环组的第一个三角形的直角顶点,其与第674个循环组的最后一个三角形的直角顶点坐标相同.∵674×12=8 088,∴△2 023的直角顶点的坐标为(8 088,0).15.30°或150°点拨:当旋转角小于50°时,如图,旋转角为∠BCE.∵∠ACB=50°,△ABC绕点C逆时针旋转得到△DEC,∴∠DCE=50°,∵∠ACD与∠ACE的度数之比为3∶2,∴∠ACE=23+2×50°=20°,∴∠BCE=∠ACB-∠ACE=30°;当旋转角大于50°时,如图,∵∠ACD与∠ACE的度数之比为3∶2,∠DCE=∠ACB=50°,∴∠ACE=2∠DCE=100°,∴∠BCE=∠ACB+∠ACE=150°.三、16.解:如图所示.(答案不唯一)17.解:∵△ABC绕着顶点A逆时针旋转得到△ADE,∴△ABC≌△ADE,∴∠BCA=∠E=60°,∠D=∠B=40°,∴∠BAC=180°-40°-60°=80°,∵AB∥DE,∴∠BAD=∠D=40°,∴∠DAC=∠BAC-∠BAD=80°-40°=40°,∴∠DAC的度数为40°.18.解:如图所示,四边形A′B′C′D′即为所求,点C′的坐标为(2,2).四、19.解:(1)如图,△A1B1C1即为所求,点C1的坐标为(4,1);(2)如图,△A2B2C2即为所求,点B2的坐标为(-3,-3);(3)△A1B1C1绕点O顺时针旋转90°后得到△A2B2C2.(答案不唯一) 20.解:(1)∵将△ABC沿AB边所在直线向右平移3个单位长度得到△DEF,∴AD=3,∵AB=5,∴DB=AB-AD=2;(2)如图,作CG⊥AB于点G,在△ACB中,∠ACB=90°,AC=3,AB=5,由勾股定理得BC=AB2-AC2=4,由三角形的面积公式得CG·AB=AC·BC,∴3×4=5×CG,∴CG=12 5,∵将△ABC沿AB边所在直线向右平移3个单位长度得到△DEF,∴CF=BE=3,∴梯形CAEF的面积为12(CF+AE)×CG=12×(3+5+3)×125=665.21.解:(1)DE∥AC(或填平行)证明:∵△DEC绕点C旋转,点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)S1=S2证明:∵∠B=30°,∠ACB=90°,∴CD=AC=12AB,由(1)可得∠DCB=30°,∴∠B=∠DCB,∴BD=CD=12AB,∴BD=AD=AC,根据等边三角形的性质可知,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2.五、22.(1)证明:如图,延长FD到G,使得DG=DF,连接BG,EG(或把△CFD绕点D逆时针旋转180°得到△BGD).易得△CFD≌△BGD,∴CF=BG,又∵DE⊥DF,∴ED垂直平分GF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF;(2)解:BE2+CF2=EF2.证明:∵∠A=90°,∴∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.23.解:(1)∵边BA绕点B顺时针旋转α得到线段BP,∴BA=BP,∵α=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=AC,又∵∠BAC=90°,∴∠P AC=30°,∴∠ACP=75°,∵PD⊥AC于点D,∴∠DPC=15°;(2)如图1,过点A作AE⊥BP于点E,∵∠1=30°,∴∠BAE=60°,∵BA=BP,∴∠BAP=∠BP A=12×(180°-∠1)=75°,∴∠2=∠BAP-∠BAE=75°-60°=15°,又∵∠3=∠BAC-∠BAP=90°-75°=15°,PD⊥AC,∴∠APD=75°,∴∠APD=∠APB=75°,∴P A平分∠BPD,又∵BP⊥AE,PD⊥AD,∴AE=AD,又∵在Rt△ABE中,∠1=30°,∴AE=12AB=12AC,∴AD=12AC=DC,∴∠DPC=∠APD=75°;(3)如图2,过点A作AE⊥BP,交PB的延长线于点E. ∴∠AEB=90°,∵∠ABP=150°,∴∠1=30°,∠BAE=60°,又∵BA=BP,∴∠2=∠3=12∠1=15°,∴∠P AE=75°,∵∠BAC=90°,∴∠4=75°,∴∠P AE=∠4,∵PD⊥AC于点D,∴∠AEP=∠ADP=90°,在△APE和△APD中,∵∠AEP=∠ADP,∠P AE=∠4,P A=P A,∴△APE≌△APD,∴AE=AD,在Rt△ABE中,∠1=30°,∴AE=12AB,又∵AB=AC,∴AE=AD=12AB=12AC,∴AD=CD,又∵∠ADP=∠CDP=90°,∴PD垂直平分AC,∴P A=PC,∴∠DCP=∠4=75°,∴∠DPC=15°.。

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

北师大八年级下《第三章图形的平移与旋转》单元测试(含答案)

第三章图形的平移与旋转一、旋转题1.如图,所给图形中是中心对称图形但不是轴对称图形的是()A. B. C. D.2.用放大镜将图形放大,应该属于()A. 平移变换B. 相似变换C. 对称变换D. 旋转变换3.将点M(﹣1,﹣5)向右平移3个单位长度得到点N,则点N所处的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED 的面积等于8,则平移距离等于()A. 2B. 4C. 8D. 165.如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为()A. 6cmB. 4πcmC. 2πcmD. 3cm6.如图,Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连结CC′,则∠CC′B′的度数是()A. 45°B. 30°C. 25°D. 15°7.如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点H,则图中△AHC′的面积等于()A. 12﹣6B. 14﹣6C. 18﹣6D. 18+68.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A. ②B. ③C. ④D. ⑤9.如图,在正方形ABCD中,AB=3,点E在CD边上,DE=1,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A. B. C. 4 D.10.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( ).A. 75°B. 60°C. 45°D. 15°二、填空题11.在等边三角形、正方形、直角三角形、等腰梯形中,既是轴对称图形,又是中心对称图形的是________ .12.在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB'C',则∠B'AC=________.13.如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=________ cm.14.点P(﹣2,1)向上平移2个单位后的点的坐标为________15.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为________ cm.16.某景点拟在如图的矩形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为________m.三、解答题17.如图所示,有一条宽相等的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,若要硬化这条小路,且每平方米造价50元,则需要多少元钱?18.请把下面的小船图案先向上平移3格,再向右平移4格,最后为这个图案配上一句简短的解说词.19.每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2.参考答案一、旋转题C BD A C D C D A B二、填空题11.正方形12.17°13.114.(﹣2,3)15.1316.200三、解答题17.解:在矩形ABCD中,AF∥EC,又∵AF=EC,∴四边形AECF是平行四边形.在Rt△ABE中,AB=60,AE=100,根据勾股定理得BE=80,∴EC=BC﹣BE=4,所以这条小路的面积S=EC•AB=4×60=240(m2).240×50=1200元.答:需要1200元钱18.解:如图所示:解说词:两只小船在水中向前滑行19.解:如图所示:。

北师大版八年级数学下册 第三章 图形的平移与旋转 练习(含答案)

北师大版八年级数学下册 第三章 图形的平移与旋转 练习(含答案)

第三章 图形的平移与旋转一、单选题1.下面A 、B 、C 、D 四幅图案中,能通过上排左面的图案平移得到的是( )A .B .C .D . 2.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .263.如图,,A B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则+a b 的值为( )A .5B .4C .3D .24.如图,在下面的网格中,每个小正方形的边长均为1,△ABC 的三个顶点都是网格线的交点.已知A (-2,2)、C (-1,-2),将△ABC 绕着点C 顺时针旋转90°,则点A 对应点的坐标为( )A .(2,-2)B .(-5,-3)C .(2,2)D .(3,-1) 5.如图,ABC ∆由'''A B C ∆绕O 点旋转180︒而得到,则下列结论不成立的是( )A .点A 与点'A 是对应点B .'BO B O =C .'''ACB C A B ∠=∠D .//''AB A B6.如图,将△ABC 绕点C 顺时针旋转,点B 的对应点为点E ,点A 的对应点为点D ,当点E 恰好落在边AC 上时,连接AD ,若∠ACB=30°,则∠DAC 的度数是( )A .60oB .65oC .70oD .75o7.下列是几个汽车的标志,其中是中心对称图形的是( )A .B .C .D . 8.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是( )A .(2,﹣3)B .(﹣3,﹣2)C .(3,2)D .(3,﹣2) 9. 我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是( )A .①③B .①④C .②③D .②④10.如图,在平面直角坐标系中,123A A A ∆,345A A A ∆,567A A A ∆,…都是等边三角形,其边长依次为2,4,6,…,其中点1A 的坐标为(2,0),点2A 的坐标为(1,3)-,点3A 的坐标为(0,0),点4A 的坐标为(2,23),…,按此规律排下去,则点2020A 的坐标为( )A .(1,10093)-B .(1,10103)-C .(2,10093)D .(2,10103)二、填空题 11.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.12.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .13.如图,将等边ABC △绕顶点A 顺时针方向旋转,使边AB 与AC 重合得ACD V ,BC 的中点E 的对应点为F ,则EAF ∠的度数是_______.14.如图所示,等腰直角三角形ABC 中,90B =o ∠,AB a =,O 为AC 的中点,EO OF ⊥.则四边形BEOF 的面积为______.三、解答题15.在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示点'A 的坐标是()2,2-,现将三角形ABC 平移,使点A 变换为点'A ,点''B C 、分别是B C 、的对应点 ()1请画出平移后的三角形'''A B C (不写画法)并直接写出点B'的坐标:'B ()2若三角形ABC 内部一点P 的坐标为(),a b ,则点P 的对应点P'的坐标是 ()3ABC ∆的面积是16.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使P A +PB 的值最小,请直接写出点P 的坐标.17.如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.18.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB 的延长线上的点E重合.(1)三角尺旋转了度.(2)连接CD,试判断△CBD的形状;(3)求∠BDC的度数.在直角坐标系中(A,B,C三点在正方形网格的交点上)按如图所示的方式19.ABC放置,请解答下列问题:(1)A ,B ,C 三点的坐标分别为:____________,_____________,____________; (2)A 点关于y 轴对称的点为点A ',则点A '的坐标为______________;B 点关于x 轴对称的点为点B ',则点B '的坐标为____________;将点C 向下移动得到点D ,若直线//BD x 轴,则点D 的坐标为______________答案1.D2.D3.D4.D5.C6.D7.A8.D9.D10.D11.8.412.42.13.6014.214a 15.(1)如图所示:B′(-4,1 );(2)A (3,4)变换到点A′的坐标是(-2,2),横坐标减5,纵坐标减2,∴点P 的对应点P′的坐标是( a-5,b-2 );(3)△ABC 的面积为:3×3-2×2÷2-3×1÷2-2×3÷2=3.5. 16.(1)如图1所示,△A 1B 1C 1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).17.(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB =90°,∴∠BCD+∠DCE =90°,∴∠BCD =∠ECF ,在△BDC 和△EFC 中,{CE BCBCD ECF CD CF=∠=∠=,∴△BDC ≌△EFC (SAS );(2)∵EF ∥CD ,∴∠F+∠DCF =180°,∵∠DCF =90°,∴∠F =90°,∵△BDC ≌△EFC ,∴∠BDC =∠F =90°.18.(1)∵三角尺旋转的度数即为一条边旋转后与原边组成的角,∴三角尺的斜边AB 旋转到EB 后AB 与BE 所组成的角∠ABE=180°-∠ABC=180°-30°=150°. (2)∵图形旋转前后两图形全等,∴CB=DB ,故△CBD 为等腰三角形.(3)∵三角形CBD 中∠DBE 为∠CBA 旋转以后的角,∴∠DBE=∠CBA=30°,故∠DBC=180°-∠DBE=180°-30°=150°,又∵BC=BD ,∴∠BDC=∠BCD=1801502︒-︒=15°. 19.(1)如图所示:A ,B ,C 三点的坐标分别为:A (2,4),B (-3,-2),C (3,1) (2)A 点关于y 轴对称的点为点A ',则点A '的坐标为(-2,4);B 点关于x 轴对称的点为点B ',则点B '的坐标为(-3,2); 将点C 向下移动得到点D ,若直线//BD x 轴,则点D 的坐标为(3,-2)。

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、下列各网格中的图形是用其图形中的一部分平移得到的是()A. B. C.D.5、下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.6、下列交通标志图案中,是中心对称图形的是()A. B. C. D.7、下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8、下列图形是中心对称图形的是()A. B. C. D..9、下列图形中可以由一个基础图形通过平移变换得到的是()A. B. C. D.10、如图,将△ABC沿边BC向右平移2个单位长度得到△DEF,若AC的长为3个单位长度,则四边形ACFD的周长为()A.6B.10C.8D.1211、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B. C. D.12、如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格13、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形15、将点 A( 2, -1) 向左平移 3 个单位长度,再向上平移 4 个单位长度得到点 B ,则点B 的坐标是()A.(5, 3)B.( -1, 3)C.( -1, -5)D.(5, -5)二、填空题(共10题,共计30分)16、在直角坐标系中,△ABC的顶点坐标是A(﹣1,2)、B(﹣3,1)、C (0,﹣1).(1)若将△ABC向右平移2个单位得到,画出△A′B′C′,A点的对应点A′的坐标是________ .(2)若将△A′B′C′绕点C′按顺时针方向旋转90°后得到△A1B1C′,则A′点的对应点A1的坐标是________ .(3)直接写出两次变换过程中线段BC扫过的面积之和为________ .17、将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)18、如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=________.19、如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是________20、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是________.21、如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________度.22、中,,,,将此三角形绕点旋转,当点落在直线上的点处时,点落在点处,此时点到直线的距离为________.23、如图,已知在矩形0ABC中,0A=3,OC=2,以边OA,OC所在的直线为轴建立平面直角坐标系xOy,反比例函数y= (x>0)的图象经过点B,点P(t,0)是x轴正半轴上的动点,将点B绕点P顺时针旋转90°,使点B恰好落在反比例y= (x>0)的图象上,则t的值是________。

北师大版八年级数学下册 第三章 图形的平移与旋转 练习(含答案)

北师大版八年级数学下册 第三章 图形的平移与旋转 练习(含答案)

北师大版八年级数学下册 第三章 图形的平移与旋转 练习一、单选题1.下列大学校徽内部图案中可以看成由某一个基本图形通过平移形成的是( ) A . B . C . D . 2.把点(2,一3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是 ( )A .(5,-1)B .(-1,-5)C .(5,-5)D .(-1,-1) 3.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D 4.如图,在ABC ∆中,70CAB ∠=︒,将ABC ∆绕点A 按逆时针方向旋转一个锐角α到AB C ''∆的位置,连接CC ',若CC AB '∥,则旋转角α的度数为( )A .40︒B .50︒C .30°D .35︒ 5.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点CAB,且A,'B,'A在顺时针旋转得到,其中点'A与点A、点'B与点B是对应点,连接'AA的长为(,同一条直线上,则'A.3B.C.4D.6.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形D.平行四边形7.在平面直角坐标系xOy中,点A(﹣2,3)关于点O中心对称的点的坐标是()A.(2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(﹣2,3)8.如图,,DEF经过怎样的平移得到,ABC()A.把,DEF向左平移4个单位,再向下平移2个单位B.把,DEF向右平移4个单位,再向下平移2个单位C.把,DEF向右平移4个单位,再向上平移2个单位D.把,DEF向左平移4个单位,再向上平移2个单位9.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片黏到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的黏合方法是( )A.B.C.D.10.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(6715,95)D.(7915,95)二、填空题11.如图,在一块长方形ABCD草地上,AB=10,BC=15,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2个单位),空白部分表示的草地面积是________.12.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,以下四个结论:①AC =AD ;②AB ⊥EB ;③BC =EC ;④∠A =∠EBC ,其中一定正确的是_____.13.在直角坐标系中,点()1,5A 和(),B a b 关于原点成中心对称,则a b -=__________. 14.两个形状和大小完全一样的梯形纸片如图(a )所示摆放,将梯形纸片ABCD 沿上底AD 方向向右平移得到图(b ).已知4=AD ,8BC =,若阴影部分的面积是四边形A B CD ''的面积的13.则图(b )中平移距离为____.三、解答题15.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.,1,B 点关于y 轴的对称点坐标为______ ,,2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1,,3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为______ ,16.如图,ABO V 与CDO V 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .17.在△ABC 中,∠B +∠ACB =30°,AB =4,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE 的度数和AE 的长.18.如图,点P 是正方形ABCD 内一点,点P 到点A 、B 和D 的距离分别为1,,,ADP 沿点A 旋转至,ABP′,连结PP′,并延长AP 与BC 相交于点Q .(1)求证:,APP′是等腰直角三角形;(2)求,BPQ的大小;(3)求CQ的长.答案1.C2.C3.B4.A5.A6.D7.C8.A9.A10.A11.13012.③④13.414.315.(1)B点关于y轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).故答案为(a﹣3,b+2).16.证明:,,ABO与,CDO关于O点中心对称,,OB=OD,OA=OC,,AF=CE,,OF=OE,,在,DOF和,BOE中,OB ODDOF BOEOF OE=⎧⎪∠=∠⎨⎪=⎩,,,DOF,,BOE,SAS,,,FD=BE,17.(1)在,ABC中,,,B+,ACB=30°,,,BAC=150°,当,ABC逆时针旋转一定角度后与,ADE重合,,旋转中心为点A,,BAD等于旋转角,即旋转角为150°;(2),,ABC绕点A逆时针旋转150°后与,ADE重合,,,DAE=,BAC=150°,AB=AD=4,AC=AE,,,BAE=360°-150°-150°=60°,,点C为AD中点,,AC=12AD=2,,AE=2.18.解:(1),,ADP沿点A旋转至,ABP′,,根据旋转的性质可知,,APD,,AP′B,,AP=AP′,,PAD=,P′AB,,,PAD+,PAB=90°,,,P′AB+,PAB=90°,即,PAP′=90°,,,APP′是等腰直角三角形;(2)由(1)知,PAP′=90°,AP=AP′=1,,PB=,222'='+,P B PP PB,,P′PB=90°,,,APP′是等腰直角三角形,,,APP′=45°,,,BPQ=180°﹣90°﹣45°=45°;(3)作BE,AQ,垂足为E,,,BPQ=45°,PB=,,PE=BE=2,,AE=2+1=3,,,,EBQ=,EAB ,cos,EAB=A AE A AB B E ==,, ,cos,EBQ=BEBQ ,2BQ =,,BQ=3,.。

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案

北师大版八年级数学下册《第三章图形的平移与旋转》单元检测题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如左图是新疆维吾尔自治区第十四届运动会的会徽.平移此会徽中的图形,可以得到的是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.在平面直角坐标系中,将点A(3,−2)向右平移4个单位长度后的对应点的坐标是()A.(−1,−2)B.(7,−2)C.(3,−6)D.(3,2)4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为14cm,则四边形ABFD的周长为()A.14cm B.17cm C.20cm D.23cm5.在平面直角坐标系中,以原点为中心,若将点Q(4,5)按逆时针方向旋转90°得到点P,则P的坐标是()A.(−5,4)B.(−4,−5)C.(−5,−4)D.(5,−4)6.如图,在△ABD中∠BAD=90°,将△ABD绕点A逆时针旋转后得到△ACE,此时点C恰好落在BD边上.若∠BAC=48°,则∠E的度数为()A.20°B.24°C.28°D.32°7.如图,△ABC的边BC长为5cm.将△ABC向上平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为()A.50cm2B.25cm2C.20cm2D.10cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上.将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(3,0),B(0,4),点B2024的坐标为()A.(12132,0)B.(12144,4)C.(12140,4)D.(12152,0)二、填空题9.在平面直角坐标系中,已知点A(2a−b,−8)与点B(−2,a+3b)关于原点对称,a+b=.10.为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为600m,且桥宽忽略不计,则小桥总长为m.11.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置AB=9,DO=4阴影部分面积为35,则平移距离为.12.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,其中,点A的对应点为点C,若C(3,a),D(b,1),则a−b的值为.13.如图,将△ABC沿BA方向平移得到△DEF.若DB=15,AE=2则平移的距离为.14.如图,在Rt△ABC中∠ACB=90°,AC=4,BC=5将△ABC绕点A逆时针旋转α(0°<α<90°)得到△ADE,延长BC交ED于点F.若∠EAB=90°,则线段EF的长为.15.如图,在△ABC,∠C=90°,将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上,连接BB′,若∠BB′C′=35°,则∠BAC=°.16.如图,△ABC的顶点坐标分别为A(2,4),B(0,1),C(0,4),将△ABC绕某一点旋转可得到△A′B′C′,△A′B′C′的三个顶点都在格点上,则旋转中心的坐标是.三、解答题17.如图,在4×4的方格中,有4个小方格被涂黑成“L形”.(1)在图1中再涂黑4格,使新涂黑的图形与原来的“L形“关于对称中心点O成中心对称;(2)在图2和图3中再分别涂黑4格,使新涂黑的图形与原来的“L形”所组成的新图形既是轴对称图形又是中心对称图形(两个图各画一种).18.如图,在△ABC中∠B=40°,∠BAC=80°将△ABC绕点A逆时针旋转一定角度后得到△ADE.(1)求∠E的度数;(2)当AB∥DE时,求∠DAC的度数.19.如图,在12×8的正方形网格中,每个小正方形的边长都是1个单位长度,点A,B,C,O都在格点上.按下列要求画图:(1)画出将△ABC向右平移8个单位长度后的△A1B1C1;(2)画出将△ABC以点O为旋转中心、顺时针旋转90°后的△A2C2B2(3)△A1B1C1与△A2C2B2是否成轴对称?若是,请画出对称轴.20.如图,在△ABC中∠BAC=80°,三个内角的平分线交于点O.(1)∠BOC的度数为________.(2)过点O作OD⊥OB交BC于点D.①探究∠ODC与∠AOC之间的数量关系,并说明理由;②若∠ACB=60°,将△BOD绕点O顺时针旋转α得到△B′OD′(0°<α<90°),当B′D′所在直线与OC平行时,求α的值.21.如图,在平面直角坐标系中,已知A(−1,0),B(3,0),M为第三象限内一点.(1)若点M(2−a,2a−10)到两坐标轴的距离相等.①求点M的坐标;②若MN∥AB且MN=AB,求点N的坐标.(2)若点M为(n,n),连接AM,BM.请用含n的式子表示三角形AMB的面积;(3)在(2)的条件下,将三角形AMB沿x轴方向向右平移得到三角形DEF(点A,M的对应点分别为点D,E),若三角形AMB的周长为m,四边形AMEF的周长为m+4,求点E的坐标(用含n的式子表示).22.如图,在锐角△ABC中∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,K为射线CD上一点CK=BE.①求证:BD=BK;②求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.参考答案1.解:根据平移的性质可知:能由如图经过平移得到的是B.故选:B2.解:A、是中心对称图形,但不是轴对称图形,故不符合题意;B、既是轴对称图形又是中心对称图形,故符合题意;C、是轴对称图形,但不是中心对称图形,故不符合题意;D、是轴对称图形,但不是中心对称图形,故不符合题意;故选B.3.解:将点A(3,−2)向右平移4个单位长度后的对应点的坐标是(3+4,−2),即(7,−2)故选:B.4.解:由平移的性质得:AD=BE=CF=3cm,AC=DF∵△ABC的周长为14cm∵AB+BC+AC=14cm∵四边形ABFD的周长为AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=14+3+3=20cm.故选:C.5.解:如图,过点Q作QM⊥x轴,过点P作PN⊥x轴∴∠PNO=∠QMO=90°∵Q(4,5)∴OM=4由旋转的性质可知OQ=OP,∠POQ=90°∴∠PON+∠QOM=90°∵∠PON+∠OPN=90°∴∠OPN=∠QOM∴△PON≌△OQM(AAS)∴ON=QM=5,PN=OM=4∵点P在第二象限∴点P的坐标是(−5,4)故选:A.6.解:∵△ABD旋转得到△ACE∵AB=AC,∠ABC=∠ACE,∠E=∠D∵∠BAC=48°∴∠ABD=∠ACD=180°−∠BAC=66°2∵∠BAD =90°∵∠D =180°−∠ABC −∠BAD =24°∵∠E =∠D =24°.故选:B .7.解:三角形ABC 的边BC 的长为5cm .将三角形ABC 向上平移2cm 得到三角形A ′B ′C ′,且BB ′⊥BC 则:S △ABC =S △A ′B ′C ′,四边形BCC ′B ′是长方形,BB ′=2∵S 阴影=S △A ′B ′C ′+S 长方形BB ′C ′C −S △ABC =S 长方形BB ′C ′C =BC ×BB ′=5×2=10(cm 2)故选D .8.解:∵点A(3,0),B(0,4)∵OA =3,OB =4∵AB =√32+42= 5∵OA +AB 1+B 1C 2=3+5+4=12观察图象可知B 、B 2、B 4…每偶数之间的B 的横坐标相差12个单位长度,点B 2n 的纵坐标为4∵2024÷2=1012∵点B 2024的横坐标为1012×12=12144,点B 2024的纵坐标为4∵点B 2024的坐标为(12144,4).故选:B .9.解:依题意可得:{2a −b =−(−2)a +3b =−(−8)∴{a =2b =2∴a +b =2+2=4故答案为:4.10.解:由平移的性质得,小桥总长=长方形周长的一半∵600÷2=300m∵小桥总长为300m .故答案为:300.11.解:∵Rt △ABC ,沿着点B 到C 点的方向平移到△DEF 的位置∵△ABC≌△DEF∵AB =DE ,S △ABC =S △DEF∵S阴影=S梯形ABEO=35∵AB=9,DO=4∵OE=DE−OH=9−4=5∵12(5+9)×BE=35解得:BE=5,即为平移的距离;故答案为:5.12.解:由题意得,线段AB向右平移2个单位,向上平移1个单位得到线段CD∴2+2=b,2+1=a∴a=3,b=4∴a−b=3−4=−1故答案为:−1.13.解:平移的性质可得:AD=BE又∵DB=15,AE=2∵AD=BE=DB−AE2=6.5即平移的距离为6.5故答案为:6.5.14.解:连接AF∵∠ACB=90°,AC=4,BC=5∵AB=√42+52=√41由旋转的性质得AE=AC,∠E=∠ACB=90°∵∠E=∠ACF=90°∵AF=AF∵Rt△AFE≌Rt△AFC(HL)∵EF=FC,∠EFA=∠CFA∵∠EAB=90°∵DE∥AB∵∠EFA=∠FAB∵∠BFA=∠FAB∵BF=AB=√41∵EF=FC=BF−BC=√41−5故答案为:√41−5.15.解:∵将Rt△ABC绕顶点A顺时针旋转一定角度得到Rt△AB′C′,此时点C的对应点C′恰好落在AB边上∵AB=AB′,∠BC′B′=90°,∠B′AC′=∠BAC∵∠ABB′=∠AB′B而∠BB′C′=35°∵∠ABB′=90°−35°=55°∵∠B′AC′=∠BAC=180°−55°×2=70°.故答案为:70.16.解:如图所示:连接AA′,BB′,然后作AA′,BB′的垂直平分线,这两条垂直平分线交于一点,记为点P,为旋转中心,此时旋转中心的坐标是(−1,0)故答案为:(−1,0)17.解:(1)所求图形,如图所示.(2)所求图形,如图所示.18.(1)解:由旋转可得:∠E=∠C.∵∠B=40°,∠BAC=80°∵∠C=180°−∠B−∠BAC=60°∵∠E=60°.(2)如图1,当DE在AB下方时.由旋转可得:∠D=∠B=40°.∵AB∥DE∵∠BAD=∠D=40°∵∠DAC=∠BAC−∠BAD=80°−40°=40°.如图2,当DE在AB上方时.∵AB∥DE∵∠BAD+∠D=180°∵∠BAD=180°−∠D=180°−40°=140°∵∠DAC=360°−∠BAC−∠BAD=360°−80°−140°=140°.综上所述,∠DAC的度数为40°或140°.19.(1)解:如图,∴△A1B1C1为所求画的三角形;(2)解:如图∴△A2C2B2为所求画的三角形;(3)解:成轴对称,如图∴直线OD为所求画的对称轴.20.(1)解:∵三个内角的平分线交于点O,(∠ABC+∠ACB)∵∠OBC+∠OCB=12∵∠BAC=80°∵∠ABC+∠ACB=180°−∠BAC=100°∵∠OBC+∠OCB=50°∵∠BOC=180°−(∠OBC+∠OCB)=180°−50°=130°故答案为:130°;(2)解:①∠ODC=∠AOC,理由如下:∵三个内角的平分线交于点O,(∠BAC+∠ACB)∵∠OAC+∠OCA=12∵∠BAC+∠ACB=180°−∠ABC∵∠OAC+∠OCA=12(180°−∠ABC)=90°−12∠ABC∵∠AOC=180°−(∠OAC+∠OCA)=180°−(90∘−12∠ABC)=90°+12∠ABC∵OD⊥OB∵∠BOD=90°∵∠ODC=∠BOD+∠OBD=90°+12∠ABC∵∠ODC=∠AOC;②如图∵OC平分∠ACB,∠ACB=60°∵∠OCD=12∠ACB=30°由(1)知∠BOC=130°∵∠BOD=90°∵∠COD=40°∵∠BDO=∠COD+∠OCD=70°由旋转性质可知:∠BDO=∠B′D′O=70°∵B′D′∥OC∵∠COD′=∠B′D′O=70°∵∠DOD′=∠COD′−∠COD=30°,即此时旋转角度α=30°∵α的值为30°.21.(1)解:①∵M(2−a,2a−10)到两坐标轴的距离相等,且在第三象限∵−(2−a)=−(2a−10)∵a=4∵M(−2,−2);②∵A A(−1,0),B(3,0)∵AB=4∵MN∥AB,MN=AB,M(−2,−2)∵N(−6,−2)或(2,−2);(2)解:∵M(n,n)在第三象限∵n<0∵三角形AMB的面积为12×4×(−n)=−2n;(3)解:∵△AMB沿x轴方向向右平移得到△DEF ∵BM=EF,AD=ME=BF.∵△AMB的周长为m∵AM+MB+AB=m.∵四边形AMEF的周长为m+4∵AM+ME+EF+AF=m+4,即2ME=4∵解得ME=2∵点E的坐标为(n+2,n).22.(1)解:①证明:在△BCE与△CBK中{BE=CK ∠BCK=∠CBE BC=CB∵△BCE≌△CBK(SAS)∵CE=BK∵BD=CE∵BD=BK;②由①知:BD=BK,∵∠BKD=∠BDK∵△BCE≌△CBK(SAS)∵∠BKC=∠CEB∵∠BDK=∠CEB∵∠BDK=∠ADC∴∠ADC=∠CEB∵∠CEB+∠AEF=180°∴∠ADF+∠AEF=180°∴∠A+∠EFD=180°∵∠A=60°∴∠EFD=120°∴∠CFE=180°−∠EFD=180°−120°=60°;(2)解:结论:BF+CF=2CN.理由:如图2中∵AB=AC,∠A=60°∴△ABC是等边三角形∴AB=CB=AC,∠A=∠CBD=∠ACB=60°∵AE=BD∴△ABE≌△BCD(SAS)∴∠BCF=∠ABE∴∠FBC+∠BCF=60°∴∠BFC=120°∵∠BFD=60°由旋转可得:AC=CM∵BC=CM,∠BCM=∠ACB+∠ACM=120°如图2中,延长CN到Q,使得NQ=CN,连接FQ∵NM=NF,∠CNM=∠FNQ,CN=NQ∴△CNM≌△QNF(SAS)∴CM=QF,∠MCN=∠NQF∴CM=BC延长CF到P,使得PF=BF∵PF=BF∵△PBF是等边三角形∵∠BPC=60°∴∠PBC+∠PCB=∠PCB+∠FCM=120°∴∠FCM=∠PBC∵∠PFQ=∠FCQ+∠CQF=∠FCQ+∠MCN=∠FCM∵∠PFQ=∠PBC∵PB=PF∴△PFQ≌△PBC(SAS)∴PQ=PC,∠CPB=∠QPF=60°∴△PCQ是等边三角形∴BF+CF=PC=QC=2CN.。

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

第三章图形的平移与旋转一、选择题1.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2..下列说法正确的是()A.平移不改变图形的形状和大小,而旋转改变图形的形状和大小B.平移和旋转都不改变图形的形状和大小C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.在平移和旋转图形的过程中,对应角相等,对应线段相等且平行3.如图,将边长为4的等边△沿边BC向右平移2个单位得到△,则四边形的周长为()A.12B.16C.20D.244.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是()A.1B.2C.3D.45.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第5题图第7题图第8题图6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是() A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-17.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于点D.若△A′DC=90°,则△A的度数为()A.45° B.55° C.65° D.75°8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(B)A.点M B.点N C.点P D.点Q9.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个10.如图,在Rt△ABC中,△C=90°,△ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.1611.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)△→△是旋转;(2)△→△是平移;(3)△→△是平移;(4)△→△是旋转.A.1个B.2个C.3个D.4个12.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是()A.AE△BCB.△ADE=△BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题1.将点A(2,1)向左平移3个单位长度得到的点B的坐标是________.2.如图,将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C.若△A=40°,△B′=110°,则△BCA′的度数是________.第2题图第3题图3.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若△CAB=50°,△ABC=100°,则△CBE的度数为________.4.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,这四次旋转中旋转角度最小是________度.第4题图第5题图5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.6.如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.第6题图第8题图7.在等腰三角形ABC中,△C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为________.8.如图,Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.三、解答题1.如图,经过平移,△ABC的顶点移到了点D,作出平移后的△DEF.2.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.3.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.4.如图,在Rt△ABC中,△ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF△CD,求证:△BDC=90°.5.如图,Rt△ABC中,△ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.6.如图,4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.7.两块等腰直角三角形纸片AOB和COD按图△所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图△所示.(1)在图△中,求证:AC=BD,且AC△BD;(2)当BD与CD在同一直线上(如图△)时,若AC=7,求CD的长.答案一、选择题ABBCA DBBAA CB二、填空题1.(-1,1)2.80°3.30°4.725.136.-57.25cm8.30三、解答题1.解:如图,△DEF即为所求.(8分)2.证明:△△ABO与△CDO关于O点中心对称,△OB=OD,OA=OC.△AF=CE,△OF =OE.(3分)在△DOF和△BOE中,OD=OB,△DOF=△BOE,OF=OE,△△DOF△△BOE(SAS),(6分)△FD=BE.(8分)3.解:(1)如图所示,△AB ′C ′即为所求.(3分) (2)如图所示,△A ′B ″C ″即为所求.(6分)(3)△AB =42+32=5,(8分)△线段AB 在变换到AB ′的过程中扫过区域的面积为半径为5的圆的面积的14,即14×π×52=254π.(10分)4.(1)解:补全图形,如图所示.(4分)(2)证明:由旋转的性质得△DCF =90°,DC =FC ,△△DCE +△ECF =90°.(5分)△△ACB=90°,△△DCE +△BCD =90°,△△ECF =△BCD .△EF △DC ,△△EFC +△DCF =180°,△△EFC =90°.(6分)在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,△BCD =△ECF ,BC =EC ,△△BDC △△EFC (SAS),△△BDC =△EFC =90°.(8分) 5.解:(1)△将△ABC 沿AB 边所在直线向右平移3个单位到△DEF ,△AD =BE =CF =3.△AB =5,△DB =AB -AD =2.(3分)(2)过点C 作CG △AB 于点G .在△ACB 中,△△ACB =90°,AC =3,AB =5,△由勾股定理得BC =AB 2-AC 2=4.(6分)由三角形的面积公式得12AC ·BC =12CG ·AB ,△3×4=5×CG ,解得CG =125.(8分)△梯形CAEF 的面积为12(CF +AE )×CG =12×(3+5+3)×125=665.(10分)6.解:(1)如图所示.(5分)(2)如图所示.(10分)7.(1)证明:如图,延长BD 交OA 于点G ,交AC 于点E .(1分)△△AOB 和△COD 是等腰直角三角形,△OA =OB ,OC =OD ,△AOB =△COD =90°,△△AOC +△AOD =△DOB +△DOA ,△△AOC =△DOB .(3分)在△AOC 和△BOD 中,⎩⎪⎨⎪⎧OA =OB ,△AOC =△BOD ,OC =OD ,△△AOC △△BOD ,△AC =BD ,△CAO =△DBO .(5分)又△△DBO +△OGB =90°,△OGB =△AGE ,△△CAO +△AGE =90°,△△AEG =90°,△AC △BD .(2)解:由(1)可知AC =BD ,AC △BD .△BD ,CD 在同一直线上,△△ABC 是直角三角形.由勾股定理得BC =AB 2-AC 2=252-72=24.(10分),△CD =BC -BD =BC -AC =17.。

北师大版八年级下《第三章图形的平移与旋转》测试题(含答案)

北师大版八年级下《第三章图形的平移与旋转》测试题(含答案)

第三章 图形的平移与旋转一、选择题(本大题共7小题,每小题4分,共28分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )图12.已知△ABC 沿水平方向平移得到△A ′B ′C ′,若AA ′=3,则BB ′等于( ) A.32B .3C .5D .10 3.已知点A (a ,2018)与点A ′(-2019,b )是关于原点O 的对称点,则a +b 的值为( ) A .1B .5C .6D .44.如图2,△ABC 绕点A 顺时针旋转80°得到△AEF ,若∠B =100°,∠F =50°,则∠α的度数是( )图2A .40°B .50°C .80°D .100°5.正方形ABCD 在平面直角坐标系中的位置如图3所示,将正方形ABCD 绕点A 顺时针旋转180°后,点C 的坐标是( )图3A .(2,0)B .(3,0)C .(2,-1)D .(2,1)6.如图4,将边长为4的等边三角形OAB 先向下平移3个单位长度,再将平移后的图形沿y 轴翻折,经过两次变换后,点A 的对应点A ′的坐标为( )图4A .(2,3-23)B .(2,1)C .(-2,23-3)D .(-1,23)7.如图5,P 是正方形ABCD 内一点,将△ABP 绕着B 沿顺时针方向旋转到与△CBP ′重合,若PB =3,则PP ′的长为( )图5A.2 2 B.3 2C.3 D.无法确定二、填空题(本大题共5小题,每小题4分,共20分)8.有一种拼图游戏是当每一行的小方格铺满后,这一行消失并使玩家得分.若在游戏过程中,已拼好的图案如图6,又出现了一小方格体向下运动,为了使所有图案消失,最简单的操作是将这个小方格体先________时针旋转________°,再向________平移,再向________平移,才能拼成一个完整的图案,从而使图案消失.图69.如图7,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=________°.10.已知点A(1,-2),B(-1,2),E(2,a),F(b,3),若将线段AB平移至EF,点A,E为对应点,则a+b的值为________.图711.如图8所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.图812.如图9,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为__________.图9三、解答题(本大题共4小题,共52分)13.(12分)如图10,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的函数表达式.图1014.(12分)如图11,将一个直角三角板ACB(∠C=90°)绕60°角的顶点B顺时针旋转,使得点C旋转到AB的延长线上的点E处,请解答下列问题:(1)三角板旋转了多少度?(2)连接CE,请判断△BCE的形状;(3)求∠ACE的度数.图1115.(14分)在网格中画对称图形.(1)如图12是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼成一个图形,使得所拼成的图形满足下列条件,并分别画在图13①②③中(只需各画一个,内部涂上阴影);图12图1①是轴对称图形,但不是中心对称图形;②是中心对称图形,但不是轴对称图形;③既是轴对称图形,又是中心对称图形.(2)请你在图13④的网格内设计一个商标,满足下列要求:①是顶点在格点的凸多边形(不是平行四边形);②是中心对称图形,但不是轴对称图形;③商标内部涂上阴影.16.(14分)如图14,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C按顺时针方向旋转60°得到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?图141.[答案]C2.[解析]B根据平移的定义及性质解题.平移是在平面内,把一个图形沿某个方向移动一定的距离的运动.平移不改变图形的形状和大小,只改变图形的位置.本题中AA′与BB′都是对应点所连的线段,所以BB′=3.3.[答案]A4.[答案]B5.[答案]B6.[解析]C∵等边三角形OAB的边长为4,∴A(2,23).∵先向下平移3个单位长度,∴点A的对应点坐标为(2,23-3).∵再将平移后的图形沿y轴翻折,∴这时点A的对应点A′的坐标为(-2,23-3).故选C.7.[答案]B8.[答案]顺90右下9.[答案]4610.[答案] -1[解析]∵线段AB平移至EF,即点A平移到点E,点B平移到点F,而A(1,-2),B(-1,2),E(2,a),F(b,3),∴点A向右平移1个单位长度到点E,点B向上平移1个单位长度到点F,∴线段AB先向右平移1个单位长度,再向上平移1个单位长度得到EF,∴-2+1=a,-1+1=b,∴a=-1,b=0,∴a+b=-1+0=-1.11.[答案]8[解析]S阴影=S△A′B′C′-S△BC′D=252-92=8.12.[答案] (8076,0)[解析]∵点A(-3,0),B(0,4),∴AB=32+42=5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为4+5+3=12.∵2019÷3=673,∴△2019的直角顶点是第673个循环组的第三个三角形的直角顶点.∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).13.解:(1)△A1B1C1如图所示.(2)△D1E1F1如图所示.(3)△A1B1C1和△D1E1F1y=x或y=-x-2.14.解:(1)∵∠ABC=60°ACB绕顶点B 顺时针旋转得到△DEB,∴∠CBE等于旋转角,∴三角板旋转了120°.(2)连接CE,∵直角三角板ACB绕顶点B顺时针旋转得到△DEB,∴BC=BE,∴△BCE为等腰三角形.(3)∵∠CBE =120°,△BCE 为等腰三角形,∴∠BCE =12×(180°-120°)=30°,∴∠ACE =∠ACB +∠BCE =90°+30°=120°.15.解:(1)如图①,是轴对称图形,但不是中心对称图形(答案不唯一); 如图②,是中心对称图形,但不是轴对称图形; 如图③,既是轴对称图形,又是中心对称图形. (2)16.解:(1)ADC , ∴CO =CD ,∠OCD =60°, ∴△COD 是等边三角形. (2)当α=150°时,△AOD 是直角三角形. 理由:∵△BOC ≌△ADC , ∴∠ADC =∠BOC =150°. ∵△COD 是等边三角形, ∴∠ODC =60°,∴∠ADO =∠ADC -∠ODC =90°, 即△AOD 是直角三角形.(3)①要使OA =AD ,需∠AOD =∠ADO , ∵∠AOD =360°-110°-60°-α=190°-α,∠ADO =α-60°, ∴190°-α=α-60°, ∴α=125°;②要使OA =OD ,需∠OAD =∠ADO. ∵∠OAD =180°-(∠AOD +∠ADO)=180°-(190°-α+α-60°)=50°, ∴α-60°=50°, ∴α=110°;③要使OD =AD ,需∠OAD =∠AOD. ∵∠AOD =360°-110°-60°-α=190°-α,∠OAD =180°-(α-60°)2=120°-α2,∴190°-α=120°-α2,解得α=140°.综上所述,当α的度数为125°,110°或140°时,△AOD 是等腰三角形.。

完整版北师大版八年级数学下册第三章图形的平移与旋转单元培优卷含答案

完整版北师大版八年级数学下册第三章图形的平移与旋转单元培优卷含答案

北师大版2019年八年级数学下册图形的平移与旋转单元培优卷—■、选择题1 •在如图五幅图案中,(2)、(3)、(4)、(5)中哪•幅图案可以通过平移图案(1)得到()3.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( )A ・1个 B. 2个 C. 3个 D. 4个4. 如图,在10X6的网格中,每个小方格的边长都是1个单位,将AABC 平移到ADEF 的位置,) 下闻正确的平移步骤是(・D •先向右平移5个单位,再向下平移2个单位5•如图,在AABC 中,ZCAB=90° ,将ZiABC 绕点A 顺时针旋转60。

得AADE,则ZEAB 的度数为A. 20°B. 25°C. 28°D. 30° 6.如图,在平面直角坐标系中,点B 、C 、E 、在y 轴上,RtAABC 经过变换得到RtAODE.若) 则这种变换可以是(AC=2), 1, 0的坐标为(C 点. A.A ABC 绕点C 顺时针旋转90° B. A ABC 绕点C 顺时针旋转90° C. A ABC 绕点C 逆时针旋转90° D. A ABC 绕点C 逆时针旋转90° ,再向下平移3,再向下平移1,再向下平移1,再向下平移37 •如图,在平面虎角坐标系A ABC 绕某•点F 旋转•定的角度得到AA' B‘ C' •根据图形变换前后的关系可得点P 的坐标为( )A. (2)B. (3)C. (4)D. (5) 2.民族图案是数学文化中的•块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是A •先向左平移5个单位, B.先向右平移5个单位, C •先向左平移5个单位, 再向下平移2个单位再向下平移2个单位再向上平移2个单位A. (0, 1) B・(1,・ 1) C. (0, - 1) D. (1,0)8.如图,在ZkABC中,ZCAB=65°,将Z\ABC在平而内绕点A旋转到AAB' C'的位置,使CC' 〃AB,则旋转角的度数为( )° 65. D° 50. C° 40. B° 35. A・9•如图,把直角梯形ABCD沿AD方向平移到梯形EFGH, HG=24m, MG=8m, MC=6m.则阴影部:. m )分地的面积是(.A. 168B. 128C. 98D. 15610•将两个斜边长相等的三角形纸片如图①放置,其中ZACB=ZCED=90° , ZA=45° , ZD=30°•把△DCE绕点C顺时针旋转15°得到ADCE,如图②,连接DB,则ZEDB的叫度数为()A. 10°B. 20°C. 7.5°D. 15°二、填空题.,,要在台阶上铺满地毯水平距离米1. 5,其高度AB=4米,BC = 5米如图11.,台阶的宽度为则地毯的面积为.12.如图,为了把AABC 平移得到AA' B‘ C',可以先将AABC向右平移格,再向上平移格.13.如图,将周长为8的AABC沿BC方向向右平移1个单位得到ADEF,则四边形ABFD的周长为.14•如图,将AAOB绕点0逆时针旋转90°,得到AA' OB' •若点A的坐标为(a,b),则・_________ 的坐标为A点.15.逆时针旋PC=10・若将APAC绕点A,如图,P是正三角形ABC内的•点.且PA=6PB=8, °・,ZAPB= 转后,得到AMAB,则点P与点M之间的距离为的对应点的坐标为 .90 (3, 4)绕原点逆时针旋转。

北师大版八年级数学下册第三章 图形的平移与旋转 单元测试题(含答案)

北师大版八年级数学下册第三章 图形的平移与旋转 单元测试题(含答案)

第三章《图形的平移与旋转》单元测试卷一.选择题(每小题3分36分)1.下列四组图形中,平移其中一个三角形可以得到另一个三角形的一组图形是()2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为()A.2B.3C.5D.73.如图,把△ABC绕点C顺时针旋转某个角度q后得到△A′B′C′,若∠A=30°,∠1=70°,则旋转角q等于()A.30°B.50°C.40°D.100°4.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于A.55°B.70°C.125°D.145°5.下列标志既是轴对称图形又是中心对称图形的是()6.点P(2,3)关于原点对称的点的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是().A.110°B.80°C.40°D.30°8.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)9.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D 的坐标是()A.(2,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)10.下列图形:线段、角、圆、平行四边形、矩形、正方形中,既是轴对称图形又是中心对称图形的有()A.6个B.5个C.4个D.3个11.如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( ). A.30,2 B.60,2 C.60,23D.60,312.如图,O 是等边△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB =150°;④四边形AOBO ′的面积为;⑤AOCAOBS S+=其中正确的结论是( )A. ①②③B.①②③④C.①②③⑤D.①②③④⑤二.填空题(题型注释)13.点P (-2,1)向上平移2个单位后的点的坐标为__________ .14.如图,等腰直角△ABC 中,AC =BC ,∠ACB =90°,点O 分斜边AB 为BO :OA =1将△BOC 绕C 点顺时针方向旋转到△AQC 的位置,则∠AQC = .15. 如图,在正方形ABCD 中,边AD 绕点A 顺时针旋转角度m (︒<<︒3600m ),得到线段AP ,连接PB ,PC .当△BPC 是等腰三角形时,m 的值为 .16.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (3,0),B (0,4),则点B 100的坐标为_________.三.解答题(共52分)17.如图,已知△ABC 三个顶点的坐标分别为A (-2,-1),B (-3,-3),C (-1,-3),(1)、画出△ABC 向右平移三个单位的对应图形△111C B A ,并写出1A 的坐标; (2)、画出△ABC 关于原点O 对称的△222C B A ,并写出2A 的坐标;18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 绕点B 顺时针旋转90°得到△A ′BC ′,请画出△A ′BC ′;(2)求BA边旋转到B A′位置时所扫过图形的面积.19.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.20.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(4分)(2)当AE=1时,求EF的长.(4分)21.已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD 的长.22.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用.旋转的性质证明.......你的结论。

八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)

八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)

八年级数学下册第三章《图形的平移与旋转》单元测试题-北师大版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.今年4月,被称为“猪儿虫”的璧山云巴正式运行.云巴在轨道上运行可以看作是( )A .对称B .旋转C .平移D .跳跃2.在平面直角坐标系中,点(4,)P m n -,(,2)Q m n -均在第一象限,将线段PQ 平移,使得平移后的点P 、Q 分别落在x 轴与y 轴上,则点P 平移后的对应点的坐标是( )A .(4,0)-B .(4,0)C .(0,2)D .(0,2)-3.如图,在Rt ABC △中,90ABC ∠=︒,2AB BC =ABC 绕点A 逆时针转60°得到AB C ''△,则BC '的长是( )A 31B .232C .32D .234.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒5.下列命题是真命题的是( )A .一个角的补角一定大于这个角B .平行于同一条直线的两条直线平行C .等边三角形是中心对称图形D .旋转改变图形的形状和大小6.如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A .AB AN = B .AB NC ∥ C .AMN ACN ∠=∠D .MN AC ⊥7.如图,点A 的坐标为()0,2,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60°得到线段AC .若点C 的坐标为(),3m ,则m 的值为( )A 43B 221C 53D 421 8.以图(1)(以O 为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是( )A .绕着OB 的中点旋转180°即可 B .先绕着点O 旋转180°,再向右平移1个单位C .先以直线AB 为对称轴进行翻折,再向右平移1个单位D .只要向右平移1个单位9.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-10.小明把一副三角板按如图所示叠放在一起,固定三角板ABC ,将另一块三角板DEF 绕公共顶点B 顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF 旋转的度数可能是( )A .15°或45°B .15°或45°或90°C .45°或90°或135°D .15°或45°或90°或135°11.如图,ABC 与A B C '''关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A '是对称点B .BO B O '=C .AOB A OB ''∠=∠D .ACB C A B '''∠=∠ 12.如图,已知△ABC 中,∠CAB =20°,∠ABC =30°,将△ABC 绕A 点逆时针旋转50°得到△AB ′C ′,以下结论:∠BC =B ′C ′,∠AC ∠C ′B ′,∠C ′B ′∠BB ′,∠∠ABB ′=∠ACC ′,正确的有( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠二、填空题(本大题共8小题,每小题3分,共24分)13.已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.14.如图.两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF 的位置,8,3==AB DP ,平移距离为6,则阴影部分的面积为____________.15.如图,边长为2的等边ABO 在平面直角坐标系的位置如图所示,点O 为坐标原点,点A 在x 轴上,以点O 为旋转中心,将ABO 按顺时针方向旋转120°,得到OA B ''△,则点A '的坐标为_____.16.如图,在ABC 中,∠C =90°,点D 、E 分别在AC 、BC 上,∠CDE =45°,ECD 绕点D 顺时针旋转x 度(45<x <180)到11E C D △,则1BEE ∠等于______度.(用含x 的代数式表示)17.如图,在宽为13米、长为24米的长方形地面上修筑同样宽的道路(图中阴影部分),道路的宽为2米,余下部分种植草坪. 则草坪的面积为__________.18.如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.19.线段MN 是由线段EF 经过平移得到的,若点(1,3)-E 的对应点(4,7)M -,则点(3,2)F --的对应点N 的坐标是____________.20.如图,DEF ∆是由ABC ∆通过平移得到,且点,,,B E C F 在同一条直线上,如果14BF =,6EC =.那么这次平移的距离是_________.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,已知图中A 点和B 点的坐标分别为()2,4-和()2,2-.(1)请在图1中画出坐标轴建立适当的直角坐标系;(2)写出点C 的坐标为______;(3)在y 轴上有点D .满足20DBC S =△,则点D 的坐标为______;(4)已知第一象限内有两点()4,M m n -,(),3N m n -.平移线段MN 使点M 、N 分别落在两条坐标轴上.则点M 平移后的对应点的坐标是______.22.如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.23.如图,()1,0A ,点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,点C 的坐标为()3,2-.(1)点B 的坐标为_______,点E 的坐标为______;(2)点P 从点O 出发,沿OB BC CD →→移动,若点P 的速度为每秒1个单位长度,运动时间为()0t t >秒. ∠用含t 的式子表示点P 的坐标;∠当t 为多少时,点P 的横坐标与纵坐标互为相反数;∠当三角形AEP 的面积为2时,直接..写出此时t 的值.24.在平面直角坐标系中,A(-2,4),B(-3,-1),C(0,2).将∠ABC平移至∠A1B1C1,点A对应点A1(3,3),点B对应点B1,点C对应点C1.(1)画出平移后的∠A1B1C1,并写出B1的坐标;(2)求∠ABC的面积;(3)若存在点D(m,n)使得∠BB1D和∠BB1C面积相等,其中m,n均为绝对值不超过5的整数,则点D的坐标为_________.25.在平面直角坐标系xOy中,对于点A,规定点A的α变换和β变换.α变换:将点A向左平移一个单位长度,再向上平移两个单位长度;β变换:将点A向右平移三个单位长度,再向下平移一个单位长度(1)若对点B进行α变换,得到点(1,1),则对点B进行β变换后得到的点的坐标为.=,求m的值.(2)若对点C(m,0)进行α变换得到点P,对点C(m,0)进行β变换得到点Q,OP OQ(3)点D为y轴的正半轴上的一个定点,对点D进行α变换后得到点E,点F为x轴上的一个动点,对点F进行β变+的最小值为,直接写出点D的坐标.换之后得到点G,若DG EF参考答案1.C2.A3.A4.B5.B6.C7.C8.D9.B10.D11.D12.B13.514.3915.(1316.452x ⎛⎫+ ⎪⎝⎭ 17.242平方米18.()1,3-19.(−6,2)20.421.(1)1(2)(3,2)(3)(0,﹣6)或(0,10)(4)(0,3)或(﹣4,0)22.(1)(3,37°)23.(1)(0,2),(2-,0)(2)∠当点P 在OB 上时,点P 的坐标为(0,t );点P 在BC 上时,点P 的坐标(2t -,2);当点P 在CD 上时,点P 的坐标为(3-,7t -);∠当t =4时,点P 的横坐标与纵坐标互为相反数;∠t 的值为43或17324.(1)B1的坐标(2,﹣2)(2)6(3)(﹣5,3)或(0,2)或(5,1)或(﹣1,﹣5)25.(1)(5,-2)(2)58m=-(3)(0,32)。

北师大版数学八年级下册 第三章 图形的平移与旋转 综合测试卷(含答案)

北师大版数学八年级下册 第三章 图形的平移与旋转 综合测试卷(含答案)

第三章图形的平移与旋转综合测试卷一、选择题01下列选项中,右边图形可由左边图形平移得到的是( )A .B .C .D .02如图,将△ABE向右平移2 cm得到△DCF.如果△ABE的周长是16 cm,那么四边形ABFD的周长是( )A.16 cm B.18 cm C.20 cm D.21 cm03线段CD是由线段AB平移得到的.点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(2,9) B.(1,2) C.(5,3) D.(-9,-4)04下列图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看成由“基本图案”经过平移得到的是 ( )A .B .C .D .05下列运动属于旋转的是( )A.扶梯的上升 B.一个图形沿某直线对折C.气球升空的运动 D.钟表钟摆的摆动06如图,将矩形ABCD绕点A顺时针旋转90º后,得到矩形AB′C′D′,若CD=10,AD=6,连接CC′,那∠CC′的长是( ) A..D.10007已知△ABC和△EDF关于点O对称,相应的对称点如图所示,则下列结论正确的是( )A.AO=BO B.BO=EOC.点A关于点O的对称点是点D D.点D在BO的延长线上08 下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .B .C .D .09在平面直角坐标系中,点A(5,-3)关于原点对称的点的坐标为 ( ) A.(-5,-3) B.(5,3) C.(-5,3) D.(5,-3)10将下图方格纸中的图形绕点O顺时针旋转90º得到的图形是( )A .B .C .D .11如图,在△ABC中,∠ABC=50º,∠C=30º,将△ABC绕点B逆时针方向旋转α(0º<α≤90º)得到△DBE,若DE∥AB,则α为 ( )A .50ºB .70ºC .80ºD .90º12如图,在方格纸上,△ABC 经过变换得到△DEF ,下列对变换过程的叙述正确的是( )A .△ABC 绕着点A 顺时针旋转90º,再向右平移7格B .△ABC 向右平移4格,再向上平移7格C .△ABC 绕着点A 逆时针旋转90º,再向右平移7格D .△ABC 向右平移4格,再绕着点B 逆时针旋转90º二、填空题。

北师大版初二数学下册第3章《图形的平移与旋转》单元测试题 (含答案)

北师大版初二数学下册第3章《图形的平移与旋转》单元测试题  (含答案)

北师大版八年级数学下册第3章《图形的平移与旋转》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.下列现象中是平移的是()A.将一张纸沿它的中线折叠B.电梯的上下移动C.飞碟的快速转动D.翻开书中的每一页纸张2.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格3.观察下列四个图形,中心对称图形是()A.B.C.D.4.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是()A.B.C.D.5.在正三角形、平行四边形、矩形、菱形和圆这五个图形中,既是轴对称图形又是中心对称图形有()A.4个B.3个C.2个D.1个6.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)7.时间经过25分钟,钟表的分针旋转了()A.150°B.120°C.25°D.12.5°8.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°9.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′10.如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转130°得到△AB′C′,连接BB′,若AC′∥BB',则∠CAB′的度数为()A.75°B.85°C.95°D.105°二.填空题(共5小题,满分15分,每小题3分)11.小明把自己的左手手印和右手手印按在同一张白纸上,左手手印(填“能”或“不能”)通过旋转与右手手印完全重合在一起.12.在下列图案中可以用平移得到的是(填代号).13.如图,将△ABC沿BC方向平移2cm得到△DEF.如果四边形ABFD的周长是20cm,则△ABC周长是cm.14.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围是.15.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a﹣b的值为.三.解答题(共8小题,满分55分)16.如图,平移方格纸中的图形,使点A平移到点A′处,画出平移后的图形.17.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.18.已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.(1)将△ABC绕点C逆时针旋转90°得到△A1B1C1;(2)画△ABC关于点O的中心对称图形△A2B2C2.19.如图,将△ABC沿直线AB向右平移后到达△BDE的位置.(1)若AC=6cm,则BE=cm;(2)若∠CAB=50°,∠BDE=100°,求∠CBE的度数.20.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)填空:点A的坐标是,点B的坐标是;(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′.请写出△A′B′C′的三个顶点坐标;(3)求△ABC的面积.21.如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3b,4a﹣b)与点Q(2a﹣9,2b﹣9)也是通过上述变换得到的对应点,求a,b的值.22.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.23.如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC 与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′=°,∠ACB′=°.(2)求证:BC′∥CB′.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、将一张纸沿它的中线折叠,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、飞蝶的快速转动,不符合平移定义,故本选项错误;D、翻开书中的每一页纸张,不符合平移的定义,故本选项错误.故选:B.2.解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.3.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.4.解:根据旋转的性质和旋转的方向得:△ABC绕O点按逆时针旋转90°后的图案是A,故选:A.5.解:正三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;矩形是轴对称图形,是中心对称图形;菱形是轴对称图形,也是中心对称图形;圆是轴对称图形,也是中心对称图形;既是轴对称图形又是中心对称图形有3个,故选:B.6.解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.7.解:如图所示:因为分针每分钟转6°,所以25分钟旋转了6°×25=150度.故选:A.8.解:延长直线,如图:,∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣68°=112°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=112°,故选:D.9.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.10.解:∵将△ABC绕点A按逆时针方向旋转l30°得到△AB′C′,∴∠BAB′=∠CAC′=130°,AB=AB′,∴∠AB′B=(180°﹣130°)=25°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=25°,∴∠CAB′=∠CAC′﹣∠C′AB′=130°﹣25°=105°.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.解:不能,因为无论怎么旋转,两个图形都不能重合,故答案为:不能.12.解:①、②、⑥通过旋转得到;③、④、⑤通过平移得到.故答案为:③④⑤13.解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=△ABC的周长+2+2=20故△ABC的周长=16cm.故答案为:16.14.解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M在第三象限,∴,解得:0.5<m<1.故答案为:0.5<m<1.15.解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(3,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,b=1+1=2,∴a﹣b=1﹣2=﹣1.故答案为:﹣1.三.解答题(共8小题)16.解:17.解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.18.解:(1)如图,到△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.19.解:(1)∵将△ABC沿直线AB向右平移得到△BDE,∴△ABC≌△BDE,∴BE=AC=6cm,故答案为:6;(2)由(1)知△ABC≌△BDE,∴∠DBE=∠CAB=50°、∠BDE=∠ABC=100°,∴∠CBE=180°﹣∠ABC﹣∠DBE=30°.20.解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1),(4,3);(2)如图,△A′B′C′为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)△ABC的面积=3×4﹣×2×4﹣×3×1﹣×3×1=5.21.解:(1)点A的坐标为(2,3),点D的坐标为(﹣2,﹣3),点B的坐标为(1,2),点E的坐标为(﹣1,﹣2),点C的坐标为(3,1),点F的坐标为(﹣3,﹣1),对应点的横、纵坐标分别互为相反数;(2)由(1)得,,解得,,答:a=2,b=1.22.(1)证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF.∵将线段AC绕A点旋转到AF的位置,∴AC=AF.在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;(2)解:∵AB=AE,∠ABC=65°,∴∠BAE=180°﹣65°×2=50°,∴∠F AG=∠BAE=50°.∵△ABC≌△AEF,∴∠F=∠C=28°,∴∠FGC=∠F AG+∠F=50°+28°=78°.23.解:(1)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC=30°,∴∠BAC'=100°,且AB=AC',∴∠ABC'=40°,∵∠CAB'=∠CAC'﹣∠B'AC'=40°,且AC=AB'∴∠ACB'=70°故答案为40,70(2)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=α,∠B'AC'=∠BAC=30°,∴∠BAC'=30°+α,∠CAB'=α﹣30°,且AB=AC=AB'=AC',∴∠ABC'=,∠ACB'=∵∠AEF=∠ABE+∠BAC∴∠AEF=∴∠AEF=∠ACB',∴BC'∥B'C。

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

北师大版八年级数学下册第三章图形的平移与旋转单元复习试题(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】第三章复习一、选择题(每小题3分,共30分)1、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能2、在图形平移的过程中,下列说法中错误的是( )A 、图形上任意点移动的方向相同B 、图形上任意点移动的距离相同C 、图形上可能存在不动的点D 、图形上任意两点连线的长度不变 3、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 C 、图形上可能存在不动点D 4、如右图所示,观察图形,下列结论正确的是( ) A 、它是轴对称图形,但不是旋转对称图形; B 、它是轴对称图形,又是旋转对称图形; C 、它是旋转对称图形,但不是轴对称图形; D 、它既不是旋转对称图形,又不是轴对称图形。

5、下列图形中,既是轴对称图形,又是旋转对称图形的是( ) A 、等腰三角形 B 、平行四边形 C 、等边三角形 D 、三角形6、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合( ) A 、三条中线的交点,60° B 、三条高线的交点,120° C 、三条角平分线的交点,60° D 、三条中线的交点,180°7、如图1,△BOD 的位置经过怎样的运动和△AOC 重合( ) A 、翻折 B 、平移 C 、旋转90° D 、旋转180°8、钟表上12时15分钟时,时针与分针的夹角为( ) A 、90° B 、82.5° C 、67.5° D 、60° 二、填空题(每小题4分,共32分)9、经过平移, 和 平行且相等, 相等。

10、如图2,△ABC 中,∠ACB=90°,AB=13,AC=12,将△ABC 沿射线BC 的方向平移一段距离后得到△DCE ,那么CD= ;BD= 。

北师大版数学八年级下册 第3章图形的平移与旋转测试卷(含答案)

北师大版数学八年级下册  第3章图形的平移与旋转测试卷(含答案)

第3章测试卷(满分120分,时间120分钟)题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合要求的)1.如图,在图形M到图形N的变化过程中,下列述正确的是( )A.先向下平移3个单位,再向右平移3个单位B.先向下平移3个单位,再向左平移3个单位C.先向上平移3个单位,再向左平移3个单位D.先向上平移3个单位,再向右平移3个单位2.下列图形中,既是轴对称图形又是中心对称图形的是( )3.如图,在△AOB中,∠B=30°,将△AOB绕点O顺时针旋转52°得到△A'OB',边A'B'与OB 交于点C (A'不在OB 上),则∠A'CO的度数为( )A.22°B.52°C.60°D.82°4.关于“线段、角、正方形、平行四边形、圆”这些图形中,其中是中心对称图形的个数为( )A.2B.3C.4D.55.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C'还可以看作是△ABC经过怎样的图形变化得到? 下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A.①④B.②③C.②④D.③④6.下面每组图形中,左面的图形平移后可以得到右面的图形的是( )7.在平面直角坐标系中,有C(1,2)、D(1,-1)两点,则点 C 可看作是由点D( )A.向上平移3个单位长度得到B.向下平移3个单位长度得到C.向左平移1个单位长度得到D.向右平移1个单位长度得到8.如图,将一副三角板顶点重合,三角板ABC绕点A 顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边 AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°9.如图,直角△ABC沿射线BC 的方向平移3个单位长度,得到△DEF,线段DE交AC 于点H,已知AB=5,D H=2,则图中阴影部分的面积为( )A.12B.24C.48D.不能确定10.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转(60°得到线段BO',下列结论:①△BO'A可以由△BOC绕点 B 逆时针旋转 60°得到;②点 O 与O′的距离为 4;③∠AOB=150°;④S四边形=6+33.其中正确的结论有( )MOBO′A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.如图,将周长为18cm的△ABC沿BC平移1cm得到△DEF.则AD= cm.12.如图,△COD是△AOB绕点O 顺时针方向旋转35°后所得的图形,点C 恰好在AB 上,∠AOD=90°,则∠BOC的度数是 .13.如图所示,四个图形中,是中心对称图形的是,是轴对称图形的是 (填序号).14.如图,A,B的坐标为(2,0),(0,1),若将线段AB 平移至A₁B₁,则(a+b=.15.在△ABC中,AC=BC=10,AB=14,将△ABC绕点A 按顺时针方向旋转得到△ADE旋转角为a(0°<a<180°),点 B,点 C的对应点分别为点 D,点 E,过点 D 作直线AB 的垂线,垂足为 F,过点 E 作直线AC的垂线,垂足为P,当∠DAF=∠CBA时,点 P 与点C 之间的距离是 .16.如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,运用你所学的知识求出这块草地的绿地面积为 m².17.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点 A,B的坐标分别为((−1,0),(0,3).现将该三角板向右平移使点 A与点O重合,得到△OCB',则线段,BB′=.18.如图,在△ABC中,∠ACB=90°,AC=15,BC=9,点 P 是线段AC上的一个动点,连接BP,将线段 BP绕点P 逆时针旋转 90°得到线段 PD,连接AD,则线段AD 的最小值是 .三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(9分)如图,△ABC与△DEF关于点O对称,请你写出两个三角形中的对称点,相等的线段,相等的角.20.(9分)如图,△ABC是由△A₁B₁C₁向右平移3个单位,再向下平移1个单位所得.已知A(2,1),B(5,3), C(3,4).(1)直接写出△A₁B₁C₁三个顶点的坐标;(2)求△ABC的面积.21.(10分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:(1)画出△ABC关于原点O 的中心对称图形.△A₁B₁C₁;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A₂B₂C₂;(3)设P(a,b)为△ABC边上一点,在△A₂B₂C₂上与点 P 对应的点是P₁,则点P₁坐标为 .22.(10分)如图,已知射线CD∥OA,E、F 是OA 上的两动点,CE平分∠OCF且满足∠FCA=∠FAC,∠O=∠ADC.(1)判断 AD 与OB 的位置关系,并证明你的结论;(2)当.∠O=60°时,求∠ACE的度数;(3)在(2)的条件下,当左右平移AD时,请直接写出∠OEC与∠CAD之间的数量关系.23.(10分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A₁B₁C₁;②将△A₁B₁C₁绕点B₁逆时针旋转90°,得到△A₂B₁C₂;(2)在x轴上求作点P,使|PC-PA|最大,请直接写出点 P 的坐标.24.(10分)如图,在平面直角坐标系中,点A(0,5),B(-2,0),C(3,3),线段AB经过平移得到线段CD,其中点B的对应点为点C,点 D在第一象限,直线AC交x轴于点 F.(1)点 D 坐标为 ;(2)线段 CD 由线段AB 经过怎样平移得到?(3)求△BCF的面积.第3章测试卷1. A2. A3. D4. C5. D6. D7. A8. C9. A 10. C11.112.20° 13.① ②③④ 14.3 15.3或17 16.216 17.1 18.3 219.解:对称点为A 和D,B 和E,C 和F.相等的线段有AC=DF,AB=DE,BC=EF.相等的角有∠A=∠D,∠B=∠E,∠C=∠F.20.解:(1)因为△ABC 是由 △A₁B₁C₁向右平移3个单位,再向下平移1个单位所得所以 △A₁B₁C₁是由△ABC 向左平移3个单位,再向上平移1个单位所得 A₁(−1,2),B₁(2,4),C₁(0,5).(2)如图,△ABC 的面积 =3×3−12×1×3−12×1×2− 12×2×3=3.5.21.解:(1)如图, △A₁B₁C₁为所作.(2)如图, △A₂B₂C₂为所作.(3)点P ₁坐标为(b,-a).22.解:(1)∵CD∥OA,∴∠BCD=∠O,∵∠O=∠ADC,∴∠BCD=∠CDA,∴AD∥OB.(2)∵∠O=∠ADC=60°,∴∠BCD=60°,∴∠OCD=120°,∵CD∥OA,∴∠DCA=∠CAO,∵∠FCA=∠FAC,∴∠DCA=FCA,∵CE 平分∠OCF,∴∠OCE=∠FCE,∠ECF +∠ACF =12∠OCD =60∘,∴∠ACE =60 .(3)∠CAD+∠OEC=180°.理由如下:∵AD∥OC,∴∠CAD=∠OCA,∵∠OCA=∠OCE+∠ACE=60°+∠OCE,∠AEC=∠O+∠OCE=60°+∠OCE,∴∠AEC=∠CAD,∵∠AEC+∠OEC=180°,∴∠CAD+∠OEC=180°.23.解:(1)①如图, △A₁B₁C₁即为所求.②如图, △A₂B₁C₂即为所求.(2)延长CA 交x 轴于点P,此时|PC--PA|的值最小,点P 的坐标(0,0).24.解:(1)∵点B 向右平移2个单位,再向上平移5个单位得到点A ,∴点C(3,3)向右平移2个单位,再向上平移5个单位得到点D(5,8).故答案为(5,8).(2)向右平移5个单位,再向上平移3个单位(3)设直线AC 的解析式为y=kx+b,则 {b =5,3k +b =3,解得 {k =−23,b =5,∴直线AC 的解析式为 y =−23x +5,∴点F 的坐标为 (152,0),∴OF =152, ∵OB =2,∴BF =192, ∴S RF =12×BF ×c y =12×192×3=574.。

北师大版八年级下册数学第三章《图形的平移与旋转》练测卷(A)(含答案)

北师大版八年级下册数学第三章《图形的平移与旋转》练测卷(A)(含答案)

北师大版八年级下册数学第三单元《图形的平移与旋转》练测卷(A)学校题号一二三总分得分一、选择题1.在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,将点A(4,5)向左平移2个单位长度,所得到的点的坐标为() A.(2,5) B.(6,5) C.(4,7) D.(2,3)3.下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是()A.①②B.①③C.②③D.③④4.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C 顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°4题图6题图8题图10题图5.下列图形中,既是轴对称图形,又是中心对称图形的是().A.等边三角形B.平行四边形C.等腰梯形D.正六边形6.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为( )A .30°B .90°C .120°D .180°7.在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形.从这6张卡片随机地抽取一张卡片,则这张卡片上的图形是中心对称图形的概率是( )A .B .C .D .8.如果图示中六边形ABCDEF 是正六边形,那么这个图形( )A .既是轴对称图形也是中心对称图形B .是轴对称图形但并不是中心对称图形C .是中心对称图形但并不是轴对称图形D .既不是轴对称图形也不是中心对称图形 9.下列说法中:①两个全等三角形周长一定相等;②两个图形关于直线a 成轴对称,则这两个图形一定分别在直线a 两侧;③两个全等三角形一定关于某条直线成轴对称;④轴对称图形一定有对称轴;⑤关于某条直线对称的两个三角形一定是全等三角形,其中说法正确的是( )A .①④⑤B .①③④C .①②⑤D .①②④ 10.如图将直角三角形ABC 绕直角顶点C 按顺时针方向旋转90︒后得到三角形A /B /C ,连接AA / ,若∠1=25︒,则∠B 的度数是( )A .55︒B .65︒C .60︒D .70︒二、填空题 11.在平面直角坐标系中,将点()13A -,向左平移a 个单位后,得到点()33,'-A ,则a 的值为_________;12.如图,当半径为30cm 的转动轮转过120°角时,转动带上的物体A 平移的距离为 cm (物体A 不打滑).12题图13题图16题图A B O 17题图13.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B =120°,OA =1,将菱形OABC 绕原点顺时针旋转105°至OA 'B ′C '的位置,则点B '的坐标为_____.14.已知平面直角坐标系上的三个点D (0,0),A (﹣1,1),B (﹣1,0).将△ABD 绕点D 旋转180°,则点A 、B 的对应点A 、B 的坐标分别是A 1_____,B 1_____15.点P 先向右移动2个单位,再向下移动3个单位的点P 1的坐标是(2,3),则点P 关于x 轴的对称点P 2的坐标是_____.16.如图,在平面直角坐标系中,三角形②是由三角形①绕点P 旋转后所得的图形,则旋转中心P 的坐标是______.17.如图,O 是坐标原点,点B (0,2)在x 轴上,∠AOB=300,∠A=900,将△OAB 绕点O 逆时针旋转60°,则A 的对应点A '的坐标是 ,B 的对应点B '的坐标是18.如图,将等边△ABD 沿BD 中点旋转180°得到△BDC .现给出下列命题:①四边形ABCD 是菱形;②四边形ABCD 是中心对称图形;③四边形ABCD 是轴对称图形;④AC =BD .其中正确的是________(写上正确的序号).三、解答题19.已知ABC ∆的顶点A 、B 、C 在格点上,按下列要求在网格中画图.(1)将ABC ∆绕点C 逆时针旋转90°得到111A B C ∆;(2)画ABC ∆关于点O 的中心对称图形222A B C ∆.20.如图中,△ABC 的顶点都在网格点上,其中C 点坐标为(1,2).(1)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′则三个顶点坐标分别是:A ′( , ),B ′( , ),C ′( , ).(2)求△ABC 的面积.21.在平面直角坐标系中,已知点(3,1)A ,A B 、两点关于原点对称,将点A 向左平移3个单位到达点C ,设点(3,)D m -,且3BD =.(1)求实数m 的值;(2)画出以点A B C D 、、、为顶点的四边形,并求出这个四边形的面积.22.已知111A B C △是由ABC V 经过平移得到的,其中A ,B ,C 三点的对应点分别是1A ,1B ,1C ,它们在平面直角坐标系中的坐标如下表所示:ABC V()1,0A - ()2,0B ()4,5C 111A B C △ ()3,2A ()6,B b ()1,7C c (1)观察表中各对应点坐标的变化,并填空:b =__________,c =__________.(2)在下图的平面直角坐标系中画出ABC V 和111A B C △.(3)写出ABC V 是怎样平移得到111A B C △的?23.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现:如图1,△CDE的形状是三角形.(2)探究证明:如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE 周长的最小值;若不存在,请说明理由.(3)解决问题:是否存在m的值,使△DEB是直角三角形?若存在,请直接写出m的值;若不存在,请说明理由.参考答案1.D2.A3.A4.B5.D6.C7.C8.B9.A10.D11.212.. 13.22() 14.(1,﹣1) (1,0)15.(0,-6)16.(0,1)17.A '(03,B '(13.18.①②③.19.(1)略;(2)略.20.(1)A ′(0, 0),B ′(2, 4),C ′(﹣1, 3);(2)5.21.(1)2m =或4m =-;(2)略,12S =,6S =,152S =,92S =. 22.(1)2,8;(2)略;(3)ABC V 先向右平移4个单位长度,再向上平移2个单位长度(或先向上平移2个单位长度,再向右平移4个单位长度)可得111A B C △23.(1)等边;(2)存在,当6<t <10时,△BDE 的最小周长3+4;(3)当m =2或14时,以D 、E 、B 为顶点的三角形是直角三角形.。

北师大版八年级数学下《第3章 图形的平移与旋转》单元测试(含解析)

北师大版八年级数学下《第3章 图形的平移与旋转》单元测试(含解析)

第三章图形的平移与旋转单元测试一、选择题1.下列说法正确的是( )A.一个图形平移后,它各点的横、纵坐标都发生变化B.一个图形平移后,它的大小发生变化,形状不变C.把一个图形沿y轴平移若干个单位长度后,与原图形相比各点的横坐标没有发生变化D.图形平移后,一些点的坐标可以不发生变化2.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是( )A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)3.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位4.已知三角形的三个顶点坐标分别是A(﹣2,﹣1),B(1,﹣2),C(0,2).若将△ABC先向右平移2个单位,再向上平移3个单位长度,则所得三角形的三个顶点的坐标分别为( )A.(﹣4,2),(﹣1,1),(﹣2,5)B.(0,2),(3,1),(2,5)C.(﹣4,5),(﹣1,4),(﹣2,8)D.(1,1),(4,0),(3,4)5.已知:如图△ABC的顶点坐标分别为A(﹣4,﹣3),B(0,﹣3),C(﹣2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为( )A.S1>S2B.S1=S2 C.S1<S2D.不能确定6.如图,把图中的⊙A经过平移得到⊙O(如图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为( )A.(m+2,n+1)B.(m﹣2,n﹣1)C.(m﹣2,n+1)D.(m+2,n﹣1)7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )A.2B.3C.4D.5二、解答题8.点(3,﹣2)先向右平移2个单位,再向上平移4个单位,所得的点关于以y轴为对称点的坐标为 .9.如图,一群大雁成人字形向南飞去,分别写出它们的坐标,30秒后,领头大雁飞到A′位置,其他大雁B、C、D、E、F、G飞到什么位置?分别写出这6只大雁的新位置的坐标,并计算出AA′的长度.10.如图①,三角形ABC经平移后点A的对应点是点A′,请你在图②中作出平移后所得到的三角形A′B′C′,并计算平移的距离.11.如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1.(1)求A1,B1,C1的坐标;(2)指出这一平移的平移方向和平移距离.12.在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′ 、C′ ;(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是 .13.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是 ,B4的坐标是 ;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是 ,B n的坐标是 .参考答案与试题解析一、选择题1.下列说法正确的是( )A.一个图形平移后,它各点的横、纵坐标都发生变化B.一个图形平移后,它的大小发生变化,形状不变C.把一个图形沿y轴平移若干个单位长度后,与原图形相比各点的横坐标没有发生变化D.图形平移后,一些点的坐标可以不发生变化【考点】平移的性质.【分析】利用平移的性质逐一判断后即可得到结论.【解答】解:A、一个图形平移后有时候横坐标不变,有时候纵坐标不变,故错误;B、一个图形平移后其大小形状均不变,故错误;C、正确;D、图形平移后,一些点的坐标必然会发生变化,故选C.【点评】本题考查了图形平移的性质,图形平移后与原图形全等.2.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是( )A.(﹣5,3)B.(1,3)C.(1,﹣3)D.(﹣5,﹣1)【考点】坐标与图形变化﹣平移.【专题】应用题.【分析】根据平移的基本性质,向上平移a,纵坐标加a,向右平移a,横坐标加a;【解答】解:∵A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,∴1+2=3,﹣2+3=1;点B的坐标是(1,3).故选B.【点评】本题考查了平移的性质,①向右平移a个单位,坐标P(x,y)⇒P(x+a,y),①向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),①向上平移b个单位,坐标P(x,y)⇒P(x,y+b),①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b).3.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位【考点】生活中的平移现象.【专题】网格型.【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.【点评】本题考查了生活中的平移现象,利用对应点的平移规律确定图形的平移规律是解题的关键.4.已知三角形的三个顶点坐标分别是A(﹣2,﹣1),B(1,﹣2),C(0,2).若将△ABC先向右平移2个单位,再向上平移3个单位长度,则所得三角形的三个顶点的坐标分别为( )A.(﹣4,2),(﹣1,1),(﹣2,5)B.(0,2),(3,1),(2,5)C.(﹣4,5),(﹣1,4),(﹣2,8)D.(1,1),(4,0),(3,4)【考点】坐标与图形变化﹣平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减即可得到答案.【解答】解:∵A(﹣2,﹣1),B(1,﹣2),C(0,2),∴将△ABC先向右平移2个单位,再向上平移3个单位长度,所得坐标是:(﹣2+2,﹣1+3),(1+2,﹣2+3),(0+2,2+3),即:(0,2,)(3,1)(2,5),故选:B.【点评】此题主要考查了坐标与图形的变化,关键是掌握点的平移的变化规律.5.已知:如图△ABC的顶点坐标分别为A(﹣4,﹣3),B(0,﹣3),C(﹣2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为( )A.S1>S2B.S1=S2C.S1<S2D.不能确定【考点】坐标与图形变化﹣平移.【分析】根据平移的性质可知.【解答】解:△ABC的面积为S1=×4×4=8,将B点平移后得到B1点的坐标是(2,1),所以△AB1C的面积为S2=×4×4=8,所以S1=S2.故选B.【点评】本题考查了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应该借助图形,理解掌握平移的性质.6.如图,把图中的⊙A经过平移得到⊙O(如图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为( )A.(m+2,n+1)B.(m﹣2,n﹣1)C.(m﹣2,n+1)D.(m+2,n﹣1)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由点A的平移规律可知,此题点的移动规律是(x+2,y﹣1),照此规律计算可知P’的坐标为(m+2,n﹣1).故选:D.【点评】本题考查了图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )A.2B.3C.4D.5【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.二、解答题8.点(3,﹣2)先向右平移2个单位,再向上平移4个单位,所得的点关于以y轴为对称点的坐标为 (﹣5,2) .【考点】坐标与图形变化﹣平移.【分析】根据平移时点的坐标变化规律与点关于坐标轴对称性质可得所求点的坐标.【解答】解:已知点坐标为(3,﹣2),根据平移时点的变化规律,平移后,所得点的坐标为(3+2,﹣2+4)即为(5,2),所得点(5,2)关于y轴对称,得点的坐标为(﹣5,2).故答案为:(﹣5,2).【点评】本题考查图形的平移与轴对称变换.平移时,左右平移时点的纵坐标不变,上下平移时点的横坐标不变;点关于x轴对称时,横坐标不变,纵坐标变为相反数,点关于y轴对称时,横坐标变为相反数,纵坐标不变.平移与轴对称变换是中考的常考点.9.如图,一群大雁成人字形向南飞去,分别写出它们的坐标,30秒后,领头大雁飞到A′位置,其他大雁B、C、D、E、F、G飞到什么位置?分别写出这6只大雁的新位置的坐标,并计算出AA′的长度.【考点】坐标与图形变化﹣平移.【专题】应用题.【分析】根据平面直角坐标系写出各点的坐标即可;再根据网格结构找出30秒后各大雁的位置,然后根据平面直角坐标系写出各点的坐标,再利用勾股定理列式计算即可求出AA′的长度.【解答】解:A(1,﹣1),B(2,1),C(﹣1,0),D(3,3),E(﹣3,1),F(5,5),G (﹣5,2);30秒后,这6只大雁的新位置的坐标分别是:B′(5,﹣3),C′(2,﹣4),D′(6,﹣1),E′(0,﹣3),F′(8,1),G′(﹣2,﹣2),AA′==5.【点评】本题考查了坐标与图形变化﹣平移,是基础题,主要利用了在平面直角坐标系中确定点的位置和写出点的坐标.10.如图①,三角形ABC经平移后点A的对应点是点A′,请你在图②中作出平移后所得到的三角形A′B′C′,并计算平移的距离.【考点】作图﹣平移变换.【分析】先根据题意得出A、B、C、A′的坐标,再得出B′、C′的坐标,在坐标轴上描出点B′,C′,然后顺次连接A′、B′、C′,再根据平移后的距离=AA′即可得出结论.【解答】解:由图可知,A(﹣2,2),B(﹣3,﹣2),C(﹣1,﹣3),∵A′(4,﹣1),∴B′(3,﹣5),C′(5,﹣6),在坐标轴上描出点B′,C′,然后顺次连接A′B′C′即可.平移后的距离=AA′=3.【点评】本题考查的是平移变换,熟知平移后的图形与原图形的大小、形状完全相同是解答此题的关键.11.如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1.(1)求A1,B1,C1的坐标;(2)指出这一平移的平移方向和平移距离.【考点】坐标与图形变化﹣平移.【分析】(1)让原来A、B、C各点的横坐标减去2,纵坐标加上3,即为A1、B1、C1的坐标;(2)根据平移的性质即可确定平移的方向和平移的距离.【解答】解:(1)∵原来点A的坐标为(1,1),B的坐标为(﹣1,﹣1),C的坐标为(4,﹣2),点P(a,b)经平移后对应点P1(a﹣2,b+3),∴A1(﹣1,4);B1(﹣3,2);C1(2,1);(2)将△ABC平移得到△A1B1C1,平移的方向是由A到A1的方向,平移的距离为线段AA1的长度,AA1==,即平移的距离为个单位长度.【点评】本题考查了坐标与图形变化﹣平移,图形上对应点的平移规律就是图形上所有点的平移规律;同时考查了平移方向与平移距离的确定,难度适中.12.在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′ (﹣4,1) 、C′ (﹣1,﹣1) ;(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是 (a﹣5,b﹣2) .【考点】作图﹣平移变换.【专题】作图题.【分析】根据平移的作图方法作图后直接写出坐标;根据平移的规律可求P′的坐标是(a﹣5,b﹣2).【解答】解:如图:△A′B′C′就是所作的三角形.(1)B′(﹣4,1),C′(﹣1,﹣1);(2)P′的坐标是(a﹣5,b﹣2).【点评】本题考查的是平移变换作图.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.13.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是 (16,3) ,B4的坐标是 (32,0) ;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是 (2n,3) ,B n的坐标是 (2n+1,0) .【考点】规律型:图形的变化类;点的坐标.【专题】规律型.【分析】根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.【解答】解:(1)因为A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,那么A4(16,3);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,横坐标都和2有关为2n+1,那么B4的坐标为(32,0);(2)由上题规律可知A n的纵坐标总为3,横坐标为2n,B n的纵坐标总为0,横坐标为2n+1.【点评】依次观察各点的横纵坐标,得到规律是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新北师大版初中数学分层提优训练八年级下第3章《图形的平移与旋转》A卷
(含详细答案及解析)
一、选择题
1. 如图,将向右平移个单位长度,再向下平移个单位长度,则顶点平移后的坐标

C.
2. 分别以直线为对称轴,所作轴对称图形错误的是
A. B.
C. D.
3. 如图,在的网格中,每个小方格的边长都是个单位长度,将平移到
的位置,下面正确的平移步骤是
A. 先向左平移个单位长度,再向下平移个单位长度
B. 先向右平移个单位长度,再向下平移个单位长度
C. 先向左平移个单位长度,再向上平移个单位长度
D. 先向右平移个单位长度,再向上平移个单位长度
4. 下列四个图形中是中心对称图形的是
A. B.
C. D.
5. 下列图形中,绕某个点旋转能与自身重合的图形有
( 1 )正方形;( 2 )等边三角形;( 3 )长方形;( 4 )角;( 5 )平行四边形;( 6 )圆.
A. 个
B. 个
C. 个
D. 个
6. 将如图所示图案顺时针旋转,能够得到的图形是
A. B.
C. D.
7. 如图,是等边三角形,为边上的点,,经旋转后到达
的位置,那么旋转了
A. B. C. D.
8. 如图所示的四个图案,能通过基本图形旋转得到的有
A. 个
B. 个
C. 个
D. 个
9. 如图,在平面直角坐标系中,的顶点都在方格纸的格点上,如果将先向右平移
个单位长度,在向下平移个单位长度,得到,那么点的对应点的坐标为
A. B. C. D.
10. 下列图形中,由如图经过一次平移得到的图形是
A. B.
C. D.
二、填空题
11. 中心对称的性质:成中心对称的两个图形中,对应点所连线段经过且被对称中
心.
12. 中心对称图形:把一个图形绕某个点旋转,如果旋转后的图形能与原来的图形重合,
那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
13. 如图,在由四个小正方形组成的田字格中,的顶点都是小正方形的顶点.在田字格上画
与成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形共有个.
14. 在方格纸中,选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形
为中心对称图形,该小正方形的序号是.
15. 是等边三角形,点是三条中线的交点,以点为旋转中心,则至少旋
转,才能与原来的图形重合.
16. 如图,在正方形网格中,线段可以看作是线段经过若干次图形的变化(平移、旋转、
轴对称)得到的,写出一种由线段得到线段的过程:.
17. 如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“”平移到刻度“”,则顶点平移的距
离.
18. 线段是由线段平移得到的,点的对应点为,则点的对
应点的坐标为.
19. 如图,在中,,将绕点按逆时针方向旋转后得到,
则阴影部分的面积为.
20. 如图,将放在每个小正方形的边长为的网格中,点,点,点均落在格点上.
(I)的面积等于;
(II)请在如图所示的网格中,用无刻度的直尺,以所在直线为对称轴,作出关于直线对称的图形,并简要说明画图方法(不要求证明).
三、解答题
21. 作图题
在平面直角坐标系中的位置如图所示.
(1)作关于点成中心对称的;
(2)将向右平移个单位,作出平移后的.
22. 如图甲所示,桌面上有两个全等的直角三角形,请你说明通过旋转、翻折、平移、拼图,可以
得到图乙和图丙的方法.
23. 如图,指出这些图形分别是怎样的对称图形.
24. (1)按要求在网格中画图:如图,画出图形关于直线的对称图形,再将所画图形与原
图形组成的图案向右平移格.
(2)根据以上构成的图案,请写一句简短、贴切的解说词.
25. 在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角
之间的关系进行了探究.
如图1,在四边形中,,,,点,分别在线段,上,,连接.
(1)如图2,将绕点逆时针旋转后得到(与重合),请直接写出度,线段,,之间的数量关系为;
(2)如图3,当点,分别在线段,的延长线上时,其他条件不变,请探究线段,,之间的数量关系,并说明理由.
26. 同学们,届中考试的时候我们考了一个关于轴对称的图案设计问题,大家答得不错,开动
脑筋,挑战一下下面这个题吧!相信你会做得更好!
(1)下面图均为的网格,每个小正方形的边长为,观察阴影部分组成的图案,请写出这四个图案都具有的两个共同特征:
(2)借助下面的网格,请设计三个新的图案,使该图案同时具有你在解答()中所写出的两个共同特征.(注意:新图案与①~④的图案不能重合)
27. 如图,各顶点的坐标分别为,,,将先向右平移
个单位长度,再向上平移个单位长度,得到.
(1)分别写出各顶点的坐标;
(2)如果将看成是由经过一次平移得到的,请指出这一平移的平移方向和平移距离.
28. 如图,与关于点成中心对称,点,在线段上,且.求
证:.
29. 在平面直角坐标系中,已知的三个顶点的坐标分别为,,
.
(1)请按下列要求画图.
①将先向右平移个单位长度,再向上平移个单位长度,得到,画
出;
②与关于原点成中心对称,画出 .
(2)在第1题中,所得的和关于点成中心对称,请直接写出点的坐标.
30. 如图,正方形的边,在坐标轴上,点坐标,将正方形绕点
顺时针旋转角度,得到正方形,交线段于点,的延长线交线段于点,连,.
(1)求证:;
(2)求的度数;并判断线段,,之间的数量关系,说明理由;
(3)当时,一次函数经过点,,求它的解析式.
答案
第一部分
1. A 【解析】由题意可知此题规律是,照此规律计算可知顶点平移后
的坐标是.
2. C
3. A
4. D 【解析】在平面内,把一个图形绕着某个点旋转,如果旋转后的图形与原图形重合,那么该图形是中心对称图形.据此可以判断,选项 D 中的图形是中心对称图形.
5. C
6. B
7. B 【解析】是等边三角形,
,,
经旋转后到达的位置,
等于旋转角,
即旋转角等于.
8. D
9. D
10. C
第二部分
11. 对称中心,平分
12.
13.
14. ②
15.
16. 将线段绕点逆时针旋转,再向左平移个单位长度
18.
19.
【解析】根据旋转的性质得到,,
所以是等腰三角形,,可得到等腰三角形的面积,
由图形可以知道,得到阴影部分的面积.
20. ,如图,
取格点,,连接.取格点,作直线与相交,得点.连接,.则即为所求
第三部分
21. (1)如图所示:,即为所求;
(2)如图所示:,即为所求.
22. 图乙是由图甲的第一个图形沿着斜边对称得到的,
图丙是由图甲的第二个图形绕着短直角边的中点旋转度得到的.
23. 略
24. (1)如图
(2)解说词合理即可,如“爱心传递”或“我们心连心”等.
25. (1);
【解析】由旋转的性质知,,,.,,
,,

在和中,


即.


(2)如图,在上截取,连接,
在和中,

,.




在和中,


,,

即线段,,之间的数量关系为.
26. (1)这四个图案都具有的两个共同特征是:①都是轴对称图形.②面积都是.
(2)如图:
27. (1),,,将先向右平移个单位长度,再向上平移个单位长度,得到.
,,.
(2)连接,
由图可知,,
如果将看成是由经过一次平移得到的,那么这一平移的平移方向是由到的方向,平移的距离是个单位长度.
28. 与关于点成中心对称,
,.


即.
在和中,

29. (1)
和即为所求.
(2)点的坐标为 .
30. (1),在和中,

(2).
由(1)同理可证,则,由(1)可知,,又,
所以,,即,故

,,
,,

(3),

,,,




在中,,,则点坐标为,

在中,,则点坐标为.
因为,一次函数经过点,,则
解得
所以,一次函数的解析式为.。

相关文档
最新文档