分式复习教案(二)

合集下载

分式复习教案

分式复习教案

分式复习教案教案标题:分式复习教案教案目标:1. 复习和巩固学生对分式的理解和运用。

2. 帮助学生熟练掌握分式的加减乘除运算。

3. 提高学生解决实际问题时运用分式的能力。

教学内容:1. 分式的定义和基本概念。

2. 分式的化简和约分。

3. 分式的加减运算。

4. 分式的乘除运算。

5. 分式在实际问题中的应用。

教学准备:1. 教师准备白板、黑板笔、教学PPT等教学工具。

2. 学生准备教科书、笔记本和计算器。

教学过程:一、导入(5分钟)1. 教师通过提问和回顾上节课的知识,激发学生对分式的兴趣和回忆。

2. 提问:你们还记得分式的定义和基本概念吗?请举个例子。

二、知识讲解与示范(15分钟)1. 教师通过教学PPT或板书,对分式的定义和基本概念进行讲解,并给出示例进行说明。

2. 教师讲解分式的化简和约分的方法,并进行相关的示范演示。

三、练习与巩固(20分钟)1. 学生个别或小组完成一些基础练习题,巩固分式的化简和约分。

2. 学生进行分式的加减运算练习,教师进行讲解和指导。

3. 学生进行分式的乘除运算练习,教师进行讲解和指导。

四、拓展与应用(15分钟)1. 教师通过实际问题的讲解,引导学生将所学的分式知识应用到实际生活中。

2. 学生个别或小组完成一些实际问题的解答,教师进行讲解和指导。

五、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要继续巩固和复习的部分。

2. 学生进行自我评价和反思,教师进行必要的点评和指导。

教学延伸:1. 鼓励学生进行分式的综合运用,解决更复杂的实际问题。

2. 提供更多的分式练习题和挑战题,以满足学生的不同需求和能力水平。

教学评估:1. 教师通过课堂练习和个别辅导,对学生的掌握情况进行评估。

2. 教师可以设计小测验或作业,检验学生对分式的理解和运用能力。

教学反思:1. 教师应根据学生的实际情况,调整教学内容和教学方法,确保教学效果。

2. 教师应及时收集学生的反馈和意见,不断改进教学策略和方法。

分式复习(第2课时)教案(新人教版八年级下)

分式复习(第2课时)教案(新人教版八年级下)

分式复习教课设计第2课时教课要点:掌握分式的约分、通分、混淆运算。

教课难点:分式的混淆运算。

教课设计设计:凌桂军 教课过程:一、知识构造与知识点:1.分式的约分2.分式的通分 3.分式的乘除4.分式的混淆运算5.零指数,负整数,整数,整数指数幂的运算a) 零指数 a 01( a 0)b) 负整数指数a p1p (a0, p 为正整数 ).aa m a n a m n , c) 注意正整数幂的运算性质a m a n a m n (a 0), ( a m ) n a mn ,( ab )na nb n能够推行到整数指数幂,也就是上述等式中的m 、 n 能够是 O 或负整数.二、例题解说:(一) 分式的约分与通分8xy0.8x 2 n y 2 n 11.约分:①12x 3 y 2②1.4x 2n 1 y 2 n 12.通分注意点:什么是分式的约分与通分?其要点是什么?它们的理论依照是什么?(二)分式的乘除 a c ac ;( a )na nb d bdn.a c ad ad bb;bd b c bc6-5x+x 2 x-3 x 2+5x+4 化简 x 2-16 ÷ 4-x ·4-x 2(三 )分式的加减x yx 2 y 21 a+16(2)2x2y x 2y2(1) +-2a-3 6+2aa-9(四)分式的混淆运算(1) (14 )( x 4 4) 3 (41)a a 2 2a a 1 (2)(a-)24 a 23a 2x 2 x xa 1a(3)112x 4x 38x 7a x a x a2x2a4x4x8a8( 五 ) 求代数式的值1. 化简并求值:x 332x+2x -y(x-y) 2.x 2+xy+y 2+(x-y – 2), 此中 x=cos30 °,y=sin90 °2. 先化简后再求值: x-3 x 2-2x-3 12 +1 2 ÷ 2+, 此中 x= x -1 x +2x+1 x+1三、小结:四、教课反省:五、同步训练:4 AB1.已知 x 2 -1 = x - 1 + x + 1 是恒等式,则 A =___, B =___。

《分式复习》教案

《分式复习》教案

《分式复习》教案一、教学目标:1. 知识与技能:(1)理解分式的概念,掌握分式的基本性质;(2)熟练运用分式的化简、运算和比较大小;(3)能够解决实际问题,运用分式进行合理计算。

2. 过程与方法:(1)通过复习,巩固分式的基本概念和性质;(2)运用举例、讲解、练习等方法,提高学生对分式的理解和运用能力;(3)培养学生独立思考、合作交流的学习习惯。

3. 情感态度与价值观:(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生运用数学知识解决实际问题的能力。

二、教学内容:1. 分式的概念与基本性质;2. 分式的化简与运算;3. 分式的比较大小;4. 分式在实际问题中的应用。

三、教学重点与难点:1. 重点:分式的概念、基本性质、化简、运算和比较大小;2. 难点:分式的化简与运算,以及分式在实际问题中的应用。

四、教学过程:1. 导入:回顾分式的概念和基本性质,引导学生进入复习状态;2. 新课:讲解分式的化简与运算,通过例题展示解题思路和方法;3. 练习:学生独立完成练习题,教师巡回指导,解答疑难问题;4. 应用:结合实际问题,引导学生运用分式进行计算和解决问题;五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性;2. 练习完成情况:检查学生完成的练习题,评价学生的掌握程度;3. 实际应用:评估学生在解决实际问题时运用分式的准确性和灵活性。

教学资源:教材、PPT、练习题、实际问题案例。

教学时间:1课时。

六、教学步骤:1. 复习分式的概念与基本性质,通过提问方式检查学生对分式知识的掌握情况。

2. 讲解分式的化简与运算,包括分式的乘法、除法、加法和减法,通过例题展示解题思路和方法。

3. 进行分式化简与运算的练习,学生独立完成练习题,教师巡回指导,解答疑难问题。

4. 结合实际问题,引导学生运用分式进行计算和解决问题,培养学生的应用能力。

七、教学方法:1. 采用问题驱动法,通过提问引导学生思考和复习分式的概念与基本性质。

2013年苏教版八下第八章分式期末复习教学案

2013年苏教版八下第八章分式期末复习教学案

苏科版八年级(下)数学复习教学案(2)第八章 分式复习目标与要求:(1)了解分式的意义及分式的基本性质;(2)会利用分式的基本性质进行约分和通分;(3)会进行简单的分式加、减、乘、除运算;(4)会解可化为一元一次方程的分式方程;(5)能够根据具体问题中的数量关系,用可化为一元一次方程的分式方程解决实际问题。

知识梳理:(1)分式的意义及分式的基本性质,用分式的基本性质进行约分和通分;(2)加、减、乘、除运算;(3)可化为一元一次方程的分式方程的解法及应用。

基础知识练习:1、下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有( ) A 、1个 B 、2个 C 、3个 D 、4个2、若分式112+-x x 的值为0,则x 的取值为( ) A 、1=x B 、1-=x C 、1±=x D 、无法确定3、如果把分式yx x +2中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、缩小6倍 D 、不变 4. 如果解分式方程14132=+--+x x x 出现了增根,那么增根可能是( ) A 、-2 B 、3 C 、3或-4 D 、-4 5. 当x 时,分式31-+x x 有意义,当x 时,分式32-x x 无意义。

6. xyzx y xy 61,4,13-的最简公分母是 。

7. 一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙合作 小时完成。

8. 若分式方程21=++ax x 的一个解是1=x ,则=a 。

典型例题分析: 例1:计算:(1).y x a xy 26512÷ (2).x y x y 2211-+-(3).212293m m --- (4).22424422x x x x x x x ⎛⎫---÷ ⎪-++-⎝⎭例2:解下列方程:(1).512552x x x +=-- (2). 253+=x x(3).2113x x x +=- (4).()22104611x x x x -=--例3:已知12,4-=-=+xy y x ,求1111+++++y x x y 的值。

分式 复习课 教学课件(两课时)

分式 复习课 教学课件(两课时)

4.分式的混合运算的顺序是 先乘方、再乘除、后加减,如有括号,先算括号内。 注意:分式运算的结果要化为最简分式。
小试牛刀:
a b c 2b , , 12a 1、分式 2b 3a 2 4ab 的最简公分母是 1 1 1 1 1 , , 2 , 2 2、分式 , x x 1 x 1 x 1 x 2 x 的最简公分母是 1
一展身手:
1.不改变分式的值,使下列分 式的分子与分母的最高次项的 系数是正数:
x (1) 2 1 x
(2)
y y (3) 2 y y
2
2 x 2 x 3
2.不改变分式的值,把下列各式的分子 与分母中最高次项的系数都化为正整数。
1 1 a 2 (1) 1 a 3
a 0.2a (2) 2 3 a 0.3a
2
3、若将分式 a、b的值分别扩大为原来的2倍,则分式的值 为( ) 1 A.扩大为原来的2倍 B.缩小为原来的 2 C.不变 D.缩小为原来的 1
ab (a 、 b 均为正数)中的字母 ab
4 2 x2 4 1 m 3x 1 , , , (a b), , 4、下列各式中, 3x 2 2 y 3 x2
( A B 1) x (2 A B 5) 0
A B 1 0 2 A B 5 0
A 2 解得: B 1
例6、某工程要求限期完成,甲队独做正好 按期完成,乙队独做则要误期3天,现甲、乙 两队合做2天后,余下的工程由乙队独做,正 好按期完成,问该工程限期多少天? 例7、正在修建的西塔(西宁~塔尔寺)高速 公路上,有一段工程,若甲、乙两个工程队单 独完成,甲工程队比乙工程队少用10天;若甲、 乙两队合作,12天可以完成.若设甲单独完成 这项工程需要x天.则根据题意,可列方程为 _______________-

八年级分式复习教案

八年级分式复习教案

教案:八年级分式复习一、教学目标:1.复习分数及其运算,能够灵活运用分数进行计算。

2.能够将分数化简为最简形式。

3.能够根据实际情境,灵活地选择分数的运算方法。

二、教学内容:1.分数的概念及表示方法。

2.分数的加、减、乘、除法运算。

3.分数的化简。

三、教学步骤:步骤一:引入新知识(5分钟)1.让学生回忆并复习分数的概念及表示方法。

2.引导学生思考分数的实际应用,例如:分数在日常生活中的运用。

步骤二:知识讲解与讨论(15分钟)1.讲解分数的加法:a.分母相同的两个分数相加,直接把分子相加,分母不变。

b.分母不同的两个分数相加,先通分,再进行相加。

2.讲解分数的减法:a.分母相同的两个分数相减,直接把分子相减,分母不变。

b.分母不同的两个分数相减,先通分,再进行相减。

3.讲解分数的乘法:a.将两个分数的分子和分母相乘,得到新的分数。

b.可以约分化简。

4.讲解分数的除法:a.将除数的倒数乘以被除数。

b.可以约分化简。

步骤三:实例操作(30分钟)1.分数的加减法:a.例子1:1/2+1/3=?b.例子2:2/5-1/4=?2.分数的乘除法:a.例子1:2/3×1/4=?b.例子2:3/4÷1/2=?3.实际应用题:a.例子1:小明一共走了2/3公里,其中的1/4公里是小王走的,剩下的部分是小明走的,求小明走了多少公里?b.例子2:一台机器每分钟生产1/6个产品,要生产10个产品,需要多长时间?步骤四:巩固练习(20分钟)1.完成课本上的练习题。

步骤五:小结归纳(5分钟)1.归纳分数的加、减、乘、除法运算的方法。

2.归纳分数化简的方法。

四、教学总结:通过本次分式复习课,学生们复习了分数的加、减、乘、除法运算,掌握了分数化简的方法,更加熟练地运用分数进行计算和解决实际问题。

五、教后反思:本节复习课以复习为主,主要通过讲解、例题及实际应用题的方式进行,学生能够积极参与课堂讨论,通过实例练习巩固所学知识。

人教版数学八年级上册第十五章分式全章复习(第二课时)教学设计

人教版数学八年级上册第十五章分式全章复习(第二课时)教学设计
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的学习兴趣,引导学生主动参与课堂。
(3)采用分组合作学习,培养学生的团队协作能力和交流表达能力。
2.教学过程:
(1)导入:通过回顾分式的概念,引导学生思考分式在生活中的应用,为新课的学习做好铺垫。
(2)新知传授:以问题为导向,引导学生探究分式的性质和运算法则,总结解题方法。
4.能够利用分式解决一些生活中的优化问题,如折扣、百分比等,提高学生的应用能力。
(二)过程与方法
1.通过对分式的复习,培养学生自主探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
2.引导学生运用数形结合的思想,通过绘制图像、列式分析等方法,加深对分式性质和运算的理解。
3.通过设计不同难度的练习题,让学生在解答过程中逐步掌握分式运算的技巧和方法,提高解题效率。
4.引导学生总结分式学习中的常见错误,分析原因,培养学生自我纠正和反思的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,激发学生主动参与课堂活动的积极性。
2.通过分式的学习,让学生认识到数学与实际生活的紧密联系,增强学生的应用意识。
3.培养学生严谨、细致的学习态度,提高学生的逻辑思维能力和判断力。
4.鼓励学生面对困难时,保持积极的心态,培养良好的学习习惯和自主学习能力。
在教学过程中,教师要关注学生的个体差异,因材施教,充分调动学生的积极性,使学生在复习分式的过程中,既能巩固基础知识,又能提高解决问题的能力,从而达到教学目标。
二、学情分析
八年级学生在学习分式这一章节时,已经具备了一定的代数基础,掌握了整式的运算和方程求解,这为学习分式打下了基础。然而,分式的概念和运算对学生来说仍存在一定的难度,尤其是在分式的有理化、分式方程的求解等方面,学生容易产生混淆和错误。此外,学生在解决实际问题时,往往难以将分式知识灵活运用,需要教师引导和指导。

分式运算复习课教案

分式运算复习课教案

分式运算复习课教案【篇一:九年级数学复习教案-分式及其运算】九年级数学复习《分式及其运算》导学案白桑九年一贯制学校关成莲【复习目标】切实掌握分式的概念,分式的基本性质,能熟练地进行分式变形及约分、通分.能准确、熟练地进行分式的乘除、加减以及混合运算.在学生掌握基本概念、基本方法的基础上将知识融汇贯通,培养学生对知识综合掌握综合运用的能力.【重难点】重点:熟练而正确地掌握分式四则运算难点:四则混合运算中的去括号及符号问题。

【教学方法】讲练结合,以练为主.【过程设计】◆课前热身a.1 b.2 c.3 d.42. 若分式2有意义,则x的取值范围是() x-1a.x≠1 b.x1 c. x=1 d.x1x2-93.若分式的值为0,则x=。

x+34.把分式x(x≠0,y≠0)的分子、分母中的x、y同时扩大2倍,那么分式的值() x+y1 d. 不改变 4a. 扩大2倍b. 缩小2倍c. 改变原来的5.填写出未知的分子或分母: (1) 3x( )y+11=2 (2) =2x+yx-y)y2+2y+1(xy+=________. x+yy+x6.计算:7.化简: x+3+2-x=_______. x+2x2-4m-1n=。

?mnm-1◆要点回顾 8.计算:aa1. 分式的概念:整式a除以整式b,可以表示成的形式,如果除式b中含有,那么称为分bbaa式.若,则有意义;若,则=0. bb2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的.用式子表示为 .13. 约分:把一个分式的分子和分母的约去,这种变形称为分式的约分.约分后,分子、分母不含的分式叫做最简分式。

4.通分:根据分式的基本性质,把异分母的分式化为同分母的分式,这一过程称为分式的通分.5.分式的运算⑴加减法法则:同分母的分式相加减: .异分母的分式相加减: .⑵乘法法则:乘方法则:⑶除法法则:6.混合运算的运算顺序:先算,再算,最后算,若有括号,先算括号里面的。

(完整word)分式复习教案

(完整word)分式复习教案

一.教学知识回顾分式:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式 分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

最简分式:分子与分母没有公因式的分式。

分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

db c a d c b a ••=• 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.cb d acd b a d c b a ••=•=÷ 分式乘方要把分子、分母分别乘方。

分式的加减法法则:同分母分式想加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

二.教学过程/例题精讲1、对于分式122x x -+(1)当________时,分式的值为0 (2)当________时,分式的值为1 (3)当________时,分式无意义 (4)当________时,分式有意义2.化简(1)6425633224a b c a b c= (2)224488a b a b -=-(4) b a ab a --2; (5) 2242xx x ---244)4(824)6(2222-+-•-÷-+-a a a a a a a3.将下列各式通分(1)1a ,234a b ,216ab c(2)12x +,42x -(3)122x -,21(1)x - (4)1()()a b b c --,2()()b c a c --4、计算:(1)223a 2y 4y 3a⋅ (2)22122a a a a +⋅-+(3)2222335010a b a b ab a b -⋅- (4)22432a b ab ab a b -⋅-(5)2222324ab a b c cd -÷ (6)2233y xy x-÷(7)2()x y xy x xy --÷ (8)222244(4)2x xy y x y x y -+÷--5、试一试:2323a b c-() 解:原式==⋅⋅=333333)()()()()()((1)=⎪⎪⎭⎫ ⎝⎛-23y x ;(2)=⎪⎪⎭⎫ ⎝⎛-3322y x ;(3)=⎪⎭⎫ ⎝⎛41ab ; 6。

分式复习教案

分式复习教案

分式复习教案Part 1: 什么是分式?在我们的生活中,有很多数量、部分、比例都可以表示为分式。

但是,对于初中生来说,分式是一门新的知识。

那么,什么是分式呢?分式是指有分数形式的式子。

其中,分母表示每份的大小,分子表示所要表示的数量或部分的大小。

在分式中,分母不能为零,因为任何数除以零是无法进行的,也没有意义。

例如,$\frac{1}{2}$ 表示一个圆形蛋糕被平均分成了两份,其中一份就是 $\frac{1}{2}$。

同样地,$\frac{3}{4}$ 表示一个圆形蛋糕被平均分成了四份,其中三份就是 $\frac{3}{4}$。

Part 2: 分式的基本运算在分式的运算中,最基本的有四种:加、减、乘、除。

下面我们分别来看一下。

对于分式的加减,我们需要先找到它们的公共分母,然后再将分子相加(减),分母不变。

例如:$\frac{2}{5} + \frac{1}{2} = \frac{4}{10} + \frac{5}{10} = \frac{9}{10}$$\frac{3}{4} - \frac{1}{3} = \frac{9}{12} - \frac{4}{12} =\frac{5}{12}$值得一提的是,对于分式的加减,我们需要将它们约分到最简式,即分子和分母的最大公约数都为 $1$。

(二)分式的乘法对于分式的乘法,我们直接将分子相乘,分母相乘即可。

例如:$\frac{2}{3} \times \frac{5}{7} = \frac{10}{21}$对于分式的除法,我们需要将第二个分式倒数(即将分子和分母的位置互换),然后再将它们相乘即可。

例如:$\frac{2}{3} \div \frac{5}{7} = \frac{2}{3} \times\frac{7}{5} = \frac{14}{15}$Part 3: 分式的化简在分式的化简中,最常见的是约分和通分。

下面我们分别来看一下。

(一)约分约分是指将一个分式的分子和分母同时除以它们的最大公约数,使得这个分式变为最简式的过程。

分式的小结与复习 教学设计(二)

分式的小结与复习  教学设计(二)

分式的小结与复习教学设计(二)
一、教材分析:分式的混合运算是整式运算、多项式因式分解和分式运算的综合运用.由于计算步骤多,解题方法灵活,符号变化又易出错,要认真细心进行运算,努力提高自己的运算能力.
二、教学建议:
回顾知识内容,在做题时查漏补缺。

在复习小结时,还是应当结合典型问题的研究,提高学生分析问题、解决问题的能力.
三、教学设计思想:复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力。

因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点。

四、重点:熟练掌握分式的四则混合运算.
难点:四则混合运算中的去括号及符号问题
五、教学目标
1、系统了解本章的知识结构及知识内容.
2、熟练地进行分式的四则混合运算。

提高综合运用知识的能力.
3、培养学生对知识综合掌握、综合运用的能力,提高学生的运算能力.培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

六、教学方法
类比猜想,讲练结合
七、教学设计:
解决办法:通过对比分数的乘法运算来学习分式的乘法运算,通过练习来巩固法则。

分式方程复习教案

分式方程复习教案

分式方程复习学案学习目标:1系统了解本章的知识体系及知识内容.能熟练的用去分母法解分式方程,并理解增根产生的原因.知道解分式方程必须检验。

2.能根据题意,找出等量关系,列出分式方程解决实际问题. .学习重点;1、能熟练的解分式方程,理解增根产生的原因,会对分式方程进行检验。

2.能正确分析题意,找准题目中的等量关系,列分式方程解决实际问题。

学习难点:列出分式方程解决实际问题。

学习过程基础回顾(一):分式方程的定义及解法。

1.分式方程:分母中含有 的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3.易错知识辨析:(1) 去分母时,不要漏乘没有分母的项.(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3) 如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.基础过关1、在下列方程中,关于x 的分式方程的个数有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个 2、把分式方程x x 22422=-化为整式方程,方程两边需同时乘以 ( ) A .2x B.2x-4 C.2x(x-2) D. 2x(2x-4)3. 下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ;B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 4、方程0111=----x x x m 有增根,则x= . 典例精析例1 解分式方程:1233x x x=+--跟踪练习:1.方程22123=-+--xx x 的解是x= . 2..2.解方程12112-=-x x 会出现的增根是( ) A .1=x B.1-=x C. 1=x 或1-=x D.2=x3.如果分式12-x 与33+x 的值相等,则x 的值是( ) A .9 B .7 C .5 D .3例2 若关于x 的方程4233k x x x -+=--有增根,求k 的值.变式练习:1、若分式方程x x +1 =m x +1无解,则m =_____。

分式复习教学设计

分式复习教学设计

《分式复习》教学设计教学目标知识目标:1、掌握分式概念,知道分式有意义,无意义,值为零成立的条件。

2、熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算。

3、初步感知分式在生活中的应用。

能力目标:(1)能用分式表示现实情境中的数量关系,体会分式的建模。

(2)使学生掌握分式乘除及其加减运算的法则,并会应用到具体的运算之中,培养学生的转化思想与化归能力。

情感目标:(1)促进学生养成自主探索与交流合作的学习习惯,发展学生有条理地思考的能力。

(2)培养学生数学运算能力。

教学重点:分式的基本性质和分式的四则运算。

教学难点:分式的异分母相加减,简单的分式应用题。

教学方法:1、以学生为主体,教师为主导,指导学生归纳小结,进一步构建分式知识网络。

2、拓展、探究、提升,最后达到整体巩固知识分式的目的。

教学设计:一、开门见山,导入新课师:很高兴能和大家一块学习,本节课我们对分式的内容作一下梳理。

师; 关于分式我们学习了那些内容?师:说的很好,我们一起来看本节课有复习目标。

(大屏幕)(齐读)1、掌握分式概念,知道分式有意义,无意义,值为零成立的条件。

2、熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算。

3、初步感知分式在生活中的应用。

二、展示自我,知识梳理师:我们一起看一下知识结构。

幻灯4(大体结构)师:分式这章包括概念,运算,简单应用,下面我们再进一步对分式的内容做细致的梳理。

幻灯5分式概念、幻灯6有意义等由学生归纳小结:在什么情况下,分式有意义、无意义、分式的值为零,复习分式的定义、有意义的条件、值为0时的条件。

(基本考点有三)幻灯7基本性质(文字表述,符号表达)幻灯8基本性质应用(约分,通分)幻灯9具体运算法则(分式乘除法,加减法)师:通过以上我们对知识的梳理,使分式的内容在我们的大脑里再次留下深刻的印象。

下面老师要考考大家。

三、分层训练,巩固提升(一)基础训练幻灯10 基础闯关一 填一填(做对的同学主动在自己的星级评价卡上画星)1、在代数式中,分式共有_____个。

数学:第二章《分式》复习教案(二)(湘教版八年级下)

数学:第二章《分式》复习教案(二)(湘教版八年级下)

分式复习(二)学习目标:1、能熟练地解可化为一元一次方程的分式方程。

2、通过分式方程的应用,培养学生数学应用意识3. 使学生有目的的梳理知识,形成这一章完整的知识体系.4. 使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的人..学习过程:(一)【我预习我会学】:1、分式方程:①什么叫分式方程? ②解分式方程的关键是什么?③解分式方程的步骤是什么? ④解分式方程应注意哪些问题?2、分式方程的应用:①要恰当的设出 ,②找出 关系列出方程,并求解,③检验,检验须考虑哪两个方面?(二)【我归纳我明了】(三)【我自测我提高】1、解方程:(1)、164412-=-x x (2)、0)1(213=-+--x x x x (3)、33132=-+--x x x2、分式方程的应用:(1)、甲、乙两地相距360km,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2h。

试确定原来的平均速度。

(2)、一轮船往返于A、B两地之间,顺水比逆水快1小时到达。

已知A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度。

(3)、市政府打算把一块荒地建成公园,动用了一台甲型挖土机,4天挖完了这块地的一半。

后又加一台乙型挖土机,两台挖土机一起挖,结果1天就挖完了这块地的另一半。

乙型挖土机单独挖这块地需要几天?(4)、工厂生产一种电子配件,每只成本为2元,利率为25%.后来通过工艺改进,降低成本,在售价不变的情况下,利率增加了15%.问这种配件每只的成本降低了多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例3】解下列方程组
题型三:求待定字母的值
【例4】若关于 的分式方程 有增根,求 的值.
【例5】若分式方程 的解是正数,求 的取值范围.
提示: 且 , 且 .
题型四:解含有字母系数的方程
【例6】解关于 的方程
提示:(1) 是已知数;(2) .
题型五:列分式方程解应用题
练习:
1.解下列方程:
(1) ;(2) ;
例2分式方程的特殊解法
例3
例4分式方程求待定字母值的方法
例5
教后反思
备课专用稿纸
课题
分式复习教案(二)
主备教师
张华伟
备课时间
2012.2.29
课型
新授课
授课教师
授课时间
授课班级
八年级
教学目标
1.复习分式方程的概念以及解法;
2.复习分式方程产生增根的原因
3.复习分式方程的应用题
重点难点
重点:分式方程的应用。
难点:分式方程的应用。
教法学法
引导启发、讲练结合、归纳总结
教具学具
例3.若关于 分式方程 有增根,求 的值。
例4.若关于 的方程 有增根 ,求 的值。
课堂小结:
1.分式方程主要是看分母是否有外未知数;
2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.
3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.
板书设计
分式复习教案(二)
例1例6
投影仪
教学过程
时间
批注
教学过程:
题型一:用常规方法解分式方程
【例1】解下列分式方程
(1) ;(2) ;(3) ;
提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验
题型二:特殊方法解分式方程
【例2】解下列方程
(1) ;(2)
提Байду номын сангаас:(1)换元法,设 ;(2)裂项法, .
(3) ;(4)
(5) (6)
2.解关于 的方程:
(1) ;(2) .
3.如果解关于 的方程 会产生增根,求 的值.
4.当 为何值时,关于 的方程 的解为非负数.
(二)分式方程的特殊解法
解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:
一、交叉相乘法
例1.解方程:
二、化归法
例2.解方程:
三、左边通分法
例3:解方程:
四、分子对等法
例4.解方程:
五、观察比较法
例5.解方程:
六、分离常数法
例6.解方程:
七、分组通分法
例7.解方程:
(三)分式方程求待定字母值的方法
例1.若分式方程 无解,求 的值。
例2.若关于 的方程 不会产生增根,求 的值。
相关文档
最新文档