4.2_直线、射线、线段(第1课时)

合集下载

人教版七年级数学上册同步备课4.2直线、射线、线段(第1课时)认识直线、射线、线段(教学设计)

人教版七年级数学上册同步备课4.2直线、射线、线段(第1课时)认识直线、射线、线段(教学设计)

4.2 直线、射线、线段(第1课时)认识直线、射线、线段教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.2直线、射线、线段第1课时,内容包括两点确定一条直线;直线、射线、线段的表示方法.2.内容解析“两点确定一条直线”是人们在长期生产生活实践中总结出来的基本事实,这个事实很好地刻画了直线的特性,是数学知识抽象性与实用性的典型体现.“两点确定一条直线”是图形与几何领域首次用“公理”的方式确定的一个结论,是公理化思想的起点.直线、射线、线段都是重要而基本的几何图形,它们之间既有密切的联系,又有着本质区别.它们的概念、性质、表示方法、画法、计算等,都是重要的几何基础知识,是学习后续图形与几何以及其他数学知识必备的基础.直线、射线、线段的表示,是“图形语言→文字语言→符号语言”层层抽象的数学语言的运用的一个典型例子,掌握这些表示方法是学好图形与几何知识的必备条件.基于以上分析,可以确定本节课的教学重点为:探究“两点确定一条直线”;直线、射线、线段的示方法.二、目标和目标解析1.目标(1)掌握“两点确定一条直线”的基本事实.(2)进一步认识直线、射线、线段,掌握直线、射线、线段的表示方法.(3)初步体会几何语言的应用.2.目标解析达成目标(1)的标志是:通过动手实践自主探索得出基本事实,理解“确定”含义中的存在性与唯一性;经过两点肯定有一条直线,且经过两点只有一条直线;能举出一些实例,说明这一事实在生产生活中的应用.达成目标(2)的标志是:能够根据表示方法正确画出直线、射线、线段;能够恰当选择大写或小写字母表示直线、射线、线段,并认识表示方法的合理性.达成目标(3)的标志是:学生能够根据图形选择恰当的文字或符号,准确描述点与直线、直线与直线的位置关系;能够理解文字或符号所表达的图形及关系.三、教学问题诊断分析虽然在小学阶段,学生对于直线、射线、线段已经有了初步的感性认识,但都是形象化的,比较粗浅的,需要通过进一步学习提高到理性认识.其中直线、射线、线段的表示方法是首次用符号来表示几何图形,学生没有相关经验,再加上直线、射线、线段的表示方法多,容易混淆,学生会感到困难.几何语言的学习,学生要经历“几何模型→图形→文字→符号”逐步加深的抽象过程,尤其符号语言是对文字语言的简化和再次抽象,是七年级学生未曾经历过的体验.除此以外,本课学生还会经历“符号语言→文字语言→图形语言”的转换,既要理解几何语句的意义并能建立几何语句与图形之间的联系,又要将它们用图形直观地表示出来,也是比较困难的学习任务.教学中,教师通过讲解示范并安排形式多样的练习,帮助学生在解决问题的过程中,达到“符号语言→文字语言→图形语言”三种数学语言的自如转换,融会贯通.基于以上分析,确定本节课的教学难点为:直线、射线、线段的表示方法及三种几何语言之间的转换.四、教学过程设计(一)以旧悟新,探求新知我们已经学习了平面图形、立体图形、体等概念,让我们对周围世界有了新的认识.这节课,我们要着重研究直线、射线、线段,学习它们的表示方法、性质特点、实际应用等,使我们对这些基本几何图形加深认识.问题1:我们在小学学过直线、射线、线段,你能说出它们的联系与区别吗?师生活动:学生独立思考后交流.【设计意图】从学生原有的知识出发,激活学生原有的认知结构中的有关知识.问题2:探究并回答下面的问题:(1)如图1,经过一点O画直线,能画几条?经过两点A,B呢?动手试一试.图 1(2)经过两点画直线有什么规律?怎样用简练的语言概括呢?师生活动:学生画图后在小组内讨论交流,然后派学生代表在全班交流,教师点评.师生共同归纳:经过两点有一条直线,并且只有一条直线,简单说成:两点确定一条直线.【设计意图】通过动手实践,由学生自主发现“两点确定一条直线”的基本事实,有利于学生对这一基本事实的理解和接受;让学生经历“动手实践→抽象概括”的认知过程,将感性认识上升到理性认识,体会知识的产生和发展.(3)如果经过两点任意画曲线或折线,试一试能画几条?想一想这又说明什么?师生活动:学生画图后相互交流.【设计意图】与“两点确定一条直线”形成鲜明对比,让学生理解这个基本事实是对“直线”特性的刻画,从而更准确把握直线的性质.(4)怎样理解“确定”一词的含义?师生活动:学生独立思考后讨论交流,并尝试阐述.教师明确:“确定”可以解释为“有且仅有”,“有”意味着存在;“仅有”意味着唯一.【设计意图】“确定”是具有特定数学意义的词汇,要让学生准确把握它的双重意义:“存在”且“唯一”.(5)想一想,生产生活中还有哪些应用“两点确定一条直线”原理的例子,与同学交流一下.师生活动:教师参与学生讨论交流,举出生活中的实例:用两个钉子可以将木条固定在墙上;把墨盒两端固定,木工师傅就可以弹出一条笔直的墨线;植树时只要定出两个树坑的位置,就能使同一行树坑在一条直线上(图2)……图 2【设计意图】加深学生对“两点确定一条直线”的理解,并体会这一事实的应用价值.(二)学习语言,丰富新知问题3:为了便于说明和研究,几何图形一般都要用字母来表示.用字母表示图形,要符合图形自身的特点,并且要规范.通过以往的学习,我们知道可以用一个大写字母表示点,那么结合直线自身的特点,请同学们想一想,该怎样用字母表示一条直线呢?师生活动:结合以上问题,请同学们阅读教科书,然后独立完成下面的任务:(1)用不同的方法表示图3中的直线:图3(2)判断下列语句是否正确,并把错误的语句改正过来:①一条直线可以表示为“直线A”;②一条直线可以表示为“直线ab”;③一条直线既可以记为“直线AB”又可以记为“直线BA”,还可以记为“直线m”.①×;一条直线可以表示为“直线a”;②×;一条直线可以表示为“直线AB”;③√(3)归纳出直线的表示方法.学生独立完成后,进行小组内讨论、纠正,教师参与学生讨论,并明确直线的表示方法.【设计意图】自主探索与合作交流相结合得出直线的表示方法,教师再结合学生易犯的错误加以规范,利于学生准确掌握.(4)想一想,用两个点表示直线合理吗?为什么?师生活动:学生独立思考后讨论交流,并尝试阐述:用两个点表示直线符合“两点确定一条直线”的基本事实,所以表示方法是合理的.【设计意图】使学生理解表示方法的合理性.教师:学习图形与几何知识,不仅要认识图形的形状,还要学习图形之间的位置关系.问题4:(1)观察图4,然后选择恰当的词语填空:①点A在直线l(上,外);直线l(经过,不经过)点A.②点B在直线l(上,外);直线l(经过,不经过)点B.总结点与直线的位置关系,与同学交流一下.图4师生活动:学生完成后尝试回答,教师点评纠正,并明确点与直线的位置关系.(2)如图5,尝试描述直线a和直线b的位置关系,与同学交流一下.图 5师生活动:学生讨论交流,教师在点评的基础上明确:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.(3)根据下列语句画出图形:①直线AB与直线CD相交于点P;②三条直线m,n,l相交于一点E.师生活动:学生完成画图并相互纠正,教师板书示范.【设计意图】发挥学生的主体作用,自主探索并掌握点与直线的位置关系、直线与直线相交的概念.(三)针对训练1. 按语句画图:(1)直线EF经过点C;(2)点A在直线m外.2. 建筑工人在砌墙时,如何拉参照线?请用学过的几何知识解析他们这样做的道理.3. 木工师傅木板时,怎样用墨盒弹墨线?请用学过的几何知识解析他们这样做的道理.【设计意图】通过及时练习,学习图形语言、文字语言和符号语言的转化,培养学生运用几何语言的能力.(四)类比迁移,拓展新知问题5:射线和线段都是直线的一部分,类比直线的表示方法,想一想应怎样表示射线、线段?师生活动:学生阅读教科书,自主探索射线、线段的表示方法,然后回答下列问题:(1)如图6,类比直线的表示方法,想一想射线该如何表示?图 6(2)“一条射线既可以记为射线AB又可以记为射线BA”的说法对吗?为什么?(3)如图7,类比直线的表示方法,想一想线段该如何表示?图7(4)如图8,怎样由线段AB得到射线AB和直线AB?图8教师检查学生学习情况,强调表示射线时应注意字母的顺序.【设计意图】以直线的表示方法为基础进行类比迁移,明确射线、线段的表示方法,培养运用几何语言的能力.(五)针对训练按下列语句画出图形:(1)经过点O的三条线段a,b,c;(2)线段AB,CD相交于点B.参考答案:(1)经过点O的三条线段a,b,c;(2)线段AB,CD相交于点B.(六)当堂巩固1. 在同一平面内有三个点A,B,C,过其中任意两个点做直线,可以画出的直线的条数是( C )A. 1B. 2C. 1或3D. 无法确定2. 下列表示方法正确的是( C )A. 线段LB. 直线abC. 直线mD. 射线Oa3. 下列语句准确规范的是( B )A. 延长直线ABB. 直线AB,CD相交于点MC. 延长射线AO到点BD. 直线a,b相交于一点m4. 如图,A,B,C三点在一条直线上,(1)图中有几条直线,怎样表示它们?(2)图中有几条线段,怎样表示它们?(3)射线AB 和射线AC 是同一条射线吗?(4)图中有几条射线?写出以点B为端点的射线.解:(1)1条,直线AB或直线AC或直线BC;(2)3条,线段AB,线段BC,线段AC;(3)是;(4)6条.以B为端点的射线有射线BC、射线BA.5. 如图,在平面上有四个点A,B,C,D,根据下列语句画图:(1)做射线BC;(2)连接线段AC,BD交于点F;(3)画直线AB,交线段DC的延长线于点E;(4)连接线段AD,并将其反向延长.参考答案:【设计意图】通过综合练习,巩固学生对直线、射线、线段表示方法的掌握;着重练习文字语言向图形语言的转化,提高几何语言的理解与运用能力.(七)能力提升往返于A、B两地的客车,中途停靠三个站,每两站间的票价均不相同,问:(1)有多少种不同的票价?(2)要准备多少种车票?解:画出示意图如下:(1)图中一共有10条线段,故有10种不同的票价.(2)来回的车票不同,故有10×2=20(种)不同的车票.(八)感受中考(3分)(2021•河北1/26)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故答案为:a.故选:A.【设计意图】通过对最近几年的中考真题的训练,使学生提前感受中考考什么,进一步了解考点.(九)课堂小结回顾本节课的学习,回答下列问题:(1)你掌握了关于直线的哪一个基本事实?(2)简单陈述一下直线、射线、线段的表示方法.【设计意图】引导学生对本节课的重点和难点进行回顾,以突出重要的知识技能;帮助学生把握知识要点,理清知识脉络,以利于良好学习习惯的养成.(十)布置作业P129:习题4.2:第2、3、4题.五、教学反思对于直线的基本事实是这样突破的:①直线的基本事实:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.这个基本事实又被称为“直线公理”.②这个基本事实是对直线的一个重要刻画,对这个基本事实的表述方法,学生不太熟悉,要使学生清楚“确定”包含两层意思:一层意思是经过两点有一条直线(“有”──存在性),另一层意思是经过两点只有一条直线(“只有”──唯一性).教学中,学生通过动手实践自主探索得出直线的基本事实,理解“确定”的含义中的存在性与唯一性,并能举出一些实例,说明这一事实在生产生活中的应用.为进一步理解此基本事实,也可以与经过两点的曲线有无数条的事实作比较,在比较中加深对基本事实的认识.对于直线、射线、线段的联系与区别是这样突破的:直线、射线、线段是相近的概念,学生容易混淆,要在复习前面知识的基础上,说明射线和线段是直线的一部分,指出它们的联系;再从端点个数和延伸情况等方面来分析它们的区别.教学直线、射线、线段的画法时,要让学生掌握:在画线段时,不要向任何一边延伸;画射线时,要向一旁延伸;画直线时,要向两边延伸.对于图形与语句间的转换是这样突破的:图形与语句间的转换是学习几何知识的基本能力.要做到:能按给出的语句画出图形、能用适当的语句表述已给图形.本课时除了要掌握直线、射线、线段的表示外,还需要掌握点和直线的位置关系以及两条直线相交的表示等.。

4.2 直线射线线段(一)

4.2 直线射线线段(一)

4.2直线、射线、线段(一)一、教学目标(一)知识与能力1、在现实情境中理解线段、直线、射线等简单的平面图形。

2、理解两点确定一条直线的事实。

3、掌握直线、射线、线段的表示方法。

4、理解直线、射线、线段的联系和区别(二)过程与方法1、通过学习直线、射线、线段的表示方法,使学生建立初步的符号感。

2、通过对直线、射线、线段性质的研究,体会它所在解决实际问题中的作用,并能用它们解释生活中的一些现象。

3、运用对比法、归纳法总结差异。

(三)情感、态度、价值观通过对直线、射线、线段的性质的探究,使学生初步认识到数学与现实生活的密切联系,感受数学的严谨性以及数学结论的确性。

二、教学重难点重点:线段、射线与直线的概念及表示方法,两点确定一条直线的性质。

难点:直线性质的发现,理解及应用及不同几何语言的相互转化。

三、教学过程:活动1:(1)点、线、面、体是构成几何图形的元素。

从运动的观点来看,可以说是点动成线,线动成面,面动成体。

因此对几何图形的学习我们也可以按点、线、面、体的顺序展开。

(2)点是用来表示物体的位置的。

点无大小之分。

如何表一个点呢?图形语言文字语言活动2:(1)在以前的学习中我们学过哪些线?直线、射线、线段(2)生活中有哪些关于直线、射线、线段的形象,试举例说明?(3)请分别画出一条直线、射线、线段?学生画图,教师在黑板上示范,给出规范的表示方法.(教师关注:学生是否注意到用两个大写字母表示射线时,端点的字母写在前面)(4)如何表示一条直线、射线、线段? 图形语言 文字语言(教师关注:学生是否注意到直线、射线、线段都有两种表示方法.) 活动3:(1)你能结合自已所画图形寻找出直线、射线、线段的特征吗?你能发现它们之间的区别与联系吗?(2)已知线段AB ,你能由线段AB 得到直线AB 和射线AB 吗?(3)从一条直线上如何得到射线和线段?归纳:线段和射线都是直线的一部分 活动4:(1)过一点可画出多少条直线?让学生动手画,结合图形描述点和直线的位置关系 (2)过两点可画出多少条直线?结合图形得出两直线相交及交点的概念。

4.2 直线、射线、线段

4.2 直线、射线、线段

事例四 射击的时候,你知道 是如何瞄准目标的吗?
二 直线、射线、线段的表示方法
A•
• ι B
ι (1)直线AB(或直线BA)
(2)直线
射线、线段的表示方法
A•
B•
ι (1)直线AB(或直线BA)
ι (2)直线
O•
A•
m (1)射线OA
(2)射线m
• ●

A aB
(1)线段AB(或线段BA) (2)线段a
5、(1)如图,共有几条射线、几条线段?

A
2
0
(2)如图,共有几条射线、几条线段?


A
B
4
1
(3)如图,共有几条射线、几条线段?



A
B
C
6
3
课堂留白 答疑解惑
基本事实
两点确定一条直线
直线 、射 线、 线段
表示方法
用一个小写字母表示 用两个大写字母表示
联系与区别
射线OA与射线AO 是不同的两条射线
有始有终—— 有始无终—— 无始无终—— 打一线的名称 打一线的名称 打一线的名称
线段
射线
直线
导入新课
情境引入
伸向远方的火车铁轨
激光灯
我们在小学已经学过线段、
射线和直线,它们可以分别和图
中的哪个事物相对应?结合图片
你能回忆起线段、射线和直线的
铁棒
哪些特征?
合作探究 精讲点拨
一 直线
问题1 过一点O可以画几条直线?过两 点A,B可以画几条直线?
练一练
按下列语句画出图形: (1) 经过点 O 的三条线段 a,b,c; (2) 线段 AB,CD 相交于点 B.

人教版七年级数学上册:4.2《直线、射线、线段》表格式教案设计

人教版七年级数学上册:4.2《直线、射线、线段》表格式教案设计

4.2 直线、射线、线段(第一课时)教学目标:1、借助具体情境,了解“两点确定一条直线”的事实,理解直线、射线、线段概念及它们的区别和联系。

2、会表示线段、射线、直线,能根据几何语言画出简单图形。

3、让学生经历观察、想象、操作体验等数学活动,培养学生归纳、抽象及用语言表达结论的能力,培养学生学数学用数学的意识,增强对数学的好奇心和探究欲。

教学重点:教学难点两点确定一直线。

不同几何语言的相互转化。

环节教学过程设计意图导入课题:通过从熟悉的实物创设情境让学生们从实物中找出熟悉的平面图形,从中抽象出几何图形,让学而引出本节课题“直线、射线、线段”。

生直观地认识直线、射线、线段,导入新课设疑:从学生已有的生活建筑工人砌墙、木工师傅锯木板时,他们是经验出发,从学生熟悉和如何做的,为什么这样做?让学生大胆猜想他感兴趣的问题入手,诱发们这样做的依据其主动探索问题的欲望。

提出问题:结合具体情景,发现讨论实践要在墙上固定一根木条,至少需要几个钉并提出问题,让学生初步子?学会运用数学的思维方①在小组中动手试一试,并记录你们每一式去观察,并通过动手实步的结果。

践得到答案。

同时也为探探索新知②经过探索你能得到什么结论?索直线的性质作好了铺动画演示:一根木条钉一个钉子的情境演垫。

示,两个钉子的情境演示一下。

建立模型:画图:①如图,经过一点几条?②经过两点A、 B 呢?O 画直线,能画让学生经历了把钉子抽象成点把木条抽象成直线的过程,从而获得直线的性质。

让学生自己动手画一画,然后在小组中交流画图的结果。

模型解释:通过上述的活动,学通过实验和探索,得到:生经历了知识的发生、发①经过一点有无数条直线展过程,得出结论。

在这②经过两点有一条直线,并且只有一条直时师生共同归纳得到直线。

线的性质,实现概念理解注释:①中的“直线经过一点“是指这个和结论由来的从感性到点在直线上。

如图:理性的自然深化,培养了讨论实践直线 I 经过点 O 我们可以说点O在直线I上,学生的概括归纳能力。

武城县第九中学七年级数学上册 第4章 图形的认识4.2 线段、射线、直线第1课时 线段、射线、直线教

武城县第九中学七年级数学上册 第4章 图形的认识4.2 线段、射线、直线第1课时 线段、射线、直线教

4.2 线段、射线、直线第1课时线段、射线、直线【知识与技能】1.在现实情境中感受线段、射线、直线等简单平面图形的广泛应用.2.理解线段、射线、直线等概念的意义,掌握它们的表示方法.3.掌握并会应用“两点确定一条直线”这一定理.【过程与方法】通过操作,了解“两点确定一条直线”,积累操作活动经验,初步感受说理的过程.【情感态度】通过练习,使学生学会在活动中与人合作,并养成与他人交流思维的良好学习习惯.【教学重点】线段、射线、直线的意义及直线的性质及其应用.【教学难点】点与直线的位置关系、直线的性质.一、情景导入,初步认知观察下列图片,你们能在其中发现我们所熟知的几何图形吗?【教学说明】利用生活中熟知的情境,激发兴趣,使学生感受生活中所蕴含的图形.让学生感受从实际问题中抽象出所要了解的图形的过程,同时在解答问题中形成认知冲突,激发学生的学习热情.二、思考探究,获取新知1.下图中,可以近似的看做线段、射线、直线的分别有哪些?【归纳结论】笔直的路灯等实物都给我们以线段的形象,线段有两个端点.线段向一端无限延长形成了射线,射线有一个端点.线段向两端无限延长形成了直线,直线没有端点.2.线段、射线、直线有什么联系与区别呢?请相互交流,完成下表:3.动手画一画,点与直线有几种位置关系?【归纳结论】点在直线上或点在直线外.也可以说成直线经过这个点或直线不经过这个点.4.当两条不同的直线有一个公共点时,我们称这两条直线相交,这个公共点叫做它们的交点.5.探究:(1)如图,用尽可能少的钉子把木条固定在木板上,问至少要几颗?(2)过一个点可以画几条直线?过两个点呢?【归纳结论】过两点有且只有一条直线.简称两点确定一条直线.【教学说明】让学生自己在动手操作中去真实的感受“两点确定一条直线”的事实,并在探索中发现结论、说出发现,鼓励学生相互协作、猜想验证、反思生活.实际教学中学生纷纷想办法解决问题,老师适当激励,能极大地调动学生参与的热情和主观能动性,把课堂气氛推向一个高潮.这样符合学生的年龄特点和认知特点.三、运用新知,深化理解1.如果你想将一根细木条固定在墙上,至少需要几个钉子(B)A.一个B.两个C.三个D.无数个2.下列说法不正确的是(B)A.线段AB和线段BA是同一条线段B.射线AB和射线BA是同一条射线C.直线AB和直线BA是同一条直线3.下列说法正确的是(D)A.延长直线AB到C;B.延长射线OA到C;C.平角是一条直线;D.延长线段AB到C.4.下列四个图中的线段(或直线、射线)能相交的是(A)A.(1)B.(2)C.(3)D.(4)5.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点探出一条墨线.这个理由是_______________________________.答案:两点确定一条直线6.(1)如图(1)直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段,请写出来.(2)如图(2)直线l上有3个点,则图中有_____条可用图中字母表示的射线,有_____条线段.答案:(1)射线A1A2,射线A2A1,线段A1A2.(2)4 3.7.用恰当的几何语言描述图形,图(1)可描述为:_____________________图(2)可描述为____________________.答案:点A在直线l上;直线a与直线b相交于点O.8.如图,平面上有A、B、C、D4个点,根据下列语句画图.(1)画线段AC、BD交于点F;(2)连接AD,并将其反向延长;(3)取一点P,使点P既在直线AB上又在直线CD上.解:所画图形如下:9.如图,在已有的线段中,能用大写字母表示不同线段共有多少条.解:线段AC上有线段3条;AB上有线段3条;BC上有线段3条;AD上有线段3条;BE上有线段3条;CF上有线段3条;∴共有3×6=18条线段.【教学说明】检测学生的达标情况和巩固练习,同时为学有余力的学生设置了稍具难度和有创新思维的问题,以满足不同学生在数学发展方面的需要.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结,教师作以补充.布置作业:教材“习题4.2”中第1、2、7题.反思整节课的设计亮点,第一,不拘泥于教材,广泛挖掘生活背景素材,由“生活原型——提炼抽象出几何图形——明确性质——辨析理解——操作探究活动——解释运用”这条主线贯穿始终,过渡自然,衔接自如流畅.第二,问题设计合理,学生易上手,易调动学生.比如让学生广泛挖掘生活中蕴含基本图形的例子,让学生动手操作“钉木条”,让学生交流运用性质的例子以及练习题和反馈题组的设计,学生都能主动积极参与,自觉应用数学知识解决问题.第三,在设计中关注学生的人文价值和情感态度.强调知识的主动获得,鼓励学生的积极参与与探究信心的扶植,照顾到学生的年龄特点和经验水平.一元一次不等式组知识要点:1.一元一次不等式组和它的解法一般地,几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集2.解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集:②利用数轴求出这些不等式的解集的公共部分,即可求出这个不等式组的解集一、单选题1.不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为()A.B.C.D.2.若关于x的一元一次不等式组x2m<0x m>2-⎧⎨+⎩有解,则m的取值范围为A.2m>3-B.2m3≤C.2m>3D.2m3≤-3.把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人分到的本数不足3本,则共有学生( )人.A.4 B.5 C.6 D.5或64.不等式组9511x xx m+<+⎧⎨>+⎩的解集是x>2,则m的取值范围是( )A.m≤2B.m≥2C .m≤1D .m≥15.在平面直角坐标系中,点P 的坐标为(a -2,3 a )在第二象限,则字母a 的取值范围是( ) A .a >0B .a <2C .0<a <2D .a >26.如果不等式组1020x x m ->⎧⎨-≥⎩有解,那么m 的取值范围是( )A .5m >B .5m ≥C .5m <D .5m ≤7.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围是( )A .1162a -<<-B .1162a -<≤-C .1162a -≤<-D .1162a -≤≤-8.如果不等式组8{x x m<>无解,那么m 的取值范围是( ) A .B .C .D .二、填空题9.不等式组2x x a>⎧⎨<⎩无解,则a 的取值范围是_____.10.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是_____.11.不等式组()232236x x x --⎧⎨-≥-⎩>的解集是__________。

4.2直线射线线段第一课时课件

4.2直线射线线段第一课时课件

应大写英文字母表示,直线
AB(或直线BA)
l 表示:②也可以 用一个小
写英文字母表示 ,直线 l
判断下列语句是否正确,并把错 误改正过来:
• 1、一条直线可以表示为“直线A” • 2、一条直线可以表示为“直线ab ” • 3、一条直线既可以记为为“直线AB” 又
可以记为“直线BA” ,还可以记为“直 线l”
问题4
• 观察图形,然后选择适当的词语填空: ①点O在直线a_上_(上,外);直线a_经_过(经过,
不经过)点O ; ②点P在直线a_外_(上,外);直线a不_经_过(经过,
不经过)点P ;
O
P a
总结
点与直线的位置关 点B在直线a上 直线 a 不经过点 A 直线 a 经过点 B
延伸方向
可不可度量
有2个端点 不向任何一方延伸
可度量
有1个端点 向一个方向无限延伸
不可度量
无端点
向两个方向无限延伸
不可度量
问题2
(1)经过一点O可以画几条直线? (2)经过两点A、B可以画直线吗?可
以画几条?
·o
·A ·B
对比以上两个结果,你发现经 过两点画直线有什么现象?用 怎样简练的语言概括呢?
经过点O的三条直线a、b、c;
a
b
O
c
问题5
射线和线段都是直线的一部分,类比直线的表示 方法,想一想应怎样表示射线、线段?
线段、射线的表示方法。
A
B 表示:线段 AB(或线段BA)
a
表示:线段 a
O
A
表示:射线 OA
b
表示:射线b
线段: ①用两个端点的字母来表示,无先后顺序.
②用一个小写字母表示.

-4.2.1 直线、射线、线段

-4.2.1  直线、射线、线段

知2-讲
①象国旗的旗杆、绷紧的琴弦都可以近似地看作线段. ②将线段向一个方向无限延长就形成了射线. ③将线段向两个方向无限延长就形成了直线.
想一想:线段、射线、直线之间有何异同?
第十七页,编辑于星期五:十七点 二十分。
线段、射线、直线的区别与联系.
知2-讲
类型 线段 射线 直线
端点数
可否延伸
可否度量
2个 1个
无端点
不能延伸
可度量
向一个方向无限
延伸
不可度量
向两个方向无限 延伸
不可度量
第十八页,编辑于星期五:十七点 二十分。
知2-讲
例4 如图所示,A,B,C是同一直线上的三点,
下列说法正确的是( C)
A.射线AB与射线BA是同一条射线
B.射线AB与射线BC是同一条射线
C.射线AB与射线AC是同一条射线 D.射线BA与射线BC是同一条射线
C.只有一个错误
D.只有一个正确
知2-练
第二十四页,编辑于星期五:十七点 二十分。
3 下列说法正确的是( C ) A.射线可以延长
B.射线的长度可以是5 m C.射线可以反向延长
D.射线不可以反向延长
知2-练
第二十五页,编辑于星期五:十七点 二十分。
知2-练
4 将线段AB延长至C,再将线段AB反向延长至
第十九页,编辑于星期五:十七点 二十分。
知2-讲
导引:一条射线可用表示它的端点和射线上另一点
的两个大写字母来表示,表示端点的字母必
须写在前面,所以只有端点相同,并且延伸 方向也相同的射线才是同一条射线.选项A, B中的两条射线端点不同,所以A,B不正确; 选项D中射线BA与射线BC的延伸方向不同,

4.2 第1课时 直线、射线、线段

4.2 第1课时 直线、射线、线段

第四章几何图形初步4.2 直线、射线、线段第1课时直线、射线、线段1.手电筒射出的光线,给我们的形象是().A.直线B.射线C.线段D.折线2.下列各图中直线的表示法正确的是().3.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个4.如图中分别有直线、射线、线段,能相交的是().5.如图所示,点C、B在线段AD上,且AB=CD,则AC与BD的大小关系是A.AC>BD B.AC=BD C.AC<BD D.不能确定6.小红家分了一套新住房,她想在自己房间里的墙上钉上一根细木条,挂上自己喜欢的装饰物,那么小红至少需要钉几根钉子使细木条固定()A.1个B.2个C.3个D.4个7. 下图中,有条直线,条射线,条线段,这些线段的名称分别是:.8.(广西崇左)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.9. 如图所示,数一数,图中共有________条线段,________条射线,________条直线,其中以B为端点的线段是________;经过点D的直线是________,可以表示出来的射线有________条.参考答案1.B【解析】手电筒本身看作射线的端点,射出的光线看作向前方无限延伸. 2.C【解析】要牢记直线、射线、线段的表示方法.3.A【解析】点P是线段AB的中点,表示方法不唯一.4.B5.B【解析】由AB=CD,得AB+BC=CD+BC,故有AC=BD.6.B【解析】两点确定一条直线.7. 1,8,6,线段AC、线段AD、线段AB、线段CD、线段CB、线段DB【解析】一条直线上有n个点,则射线有:2n条;线段有:(1)2n n条.8. 两点之间线段最短.【解析】线段的性质:两点之间线段最短.9. 6 ,18,4,线段AB、线段BC、线段BD;直线AD、直线BD、直线CD,10【解析】注意利用线段、射线、直线的表示法进行区别.。

4.2 直线、射线、线段 第1课时 直线、射线、线段的概念

4.2 直线、射线、线段   第1课时 直线、射线、线段的概念

2.如图4-2-4,直线a与点P的位置关系是______________.
图4-2- 4 解:点P在直线a上. 上述答案是否正确?如果不正确,请说明理由并改正.
解:不正确.错误地认为点P在直线a的上面,故表述为点P在直线a上. 正解:点P在直线a外或直线a不经过点P.
谢 谢 观 看!
目标二 能正确理解直线、射线和线段三者之间的关系
例2 教材补充例题 如图4-2-1所示,下列说法正确的是( C ) A.直线AB和直线CD是不同的直线 B.射线AB和射线BA是同一条射线 C.线段AB和线段BA是同一条线段 D.以上说法均不正确
图4-2-1
[解析] C 在直线上表示任意两个点的大写字母都可以表示这条直线, 所以A选项错误;表示射线时,第一个字母表示射线的端点,端点字母不 同,射线必然不同,所以B选项错误;线段AB和线段BA是同一条线段, 所以C选项正确.故选C.
第四章 几何图形初步
4.2 直线、射线、线段
第四章 几何图形初步
第1课时 直线、射线、线段 的概念
目标突破 总结反思
目标突破
目标一 会用“两点确定一条直线”解决实际问题
例1 教材补充例题 在墙壁上固定一根横放的木条,则至少需要
钉子( B )
A.1枚
B.2枚
C.3枚
D.任意枚
[解析] B 因为两点确定一条直线,所以至少需要2枚钉子.
知识点二 直线、射线、线段的联系与区别
图形
端点 表示法 延伸性
个数
画图 描述
直线
直线AB 向两个
或直线 方向无 0
BA 限延伸
或直线l
画直 线AB
有无 长度

射线 线段
向一个

人教版数学七年级上册4.2《 直线、射线、线段(1)》教案

人教版数学七年级上册4.2《 直线、射线、线段(1)》教案

人教版数学七年级上册4.2《直线、射线、线段(1)》教案一. 教材分析《直线、射线、线段(1)》是人教版数学七年级上册第四章第二节的内容。

本节课主要让学生认识直线、射线和线段的特点,理解它们之间的联系和区别。

教材通过生活实例引入直线、射线和线段的概念,接着介绍它们的性质和表示方法,最后运用它们解决实际问题。

本节课的内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经掌握了实数的基础知识,具备了一定的逻辑思维能力和空间想象能力。

但学生在学习过程中,可能对直线、射线和线段的概念理解不深,容易混淆。

因此,在教学过程中,教师需要通过具体的生活实例和操作活动,帮助学生深入理解这些概念,并能够运用它们解决实际问题。

三. 教学目标1.了解直线、射线和线段的概念及特点。

2.掌握直线、射线和线段的性质和表示方法。

3.能够运用直线、射线和线段解决实际问题。

4.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.直线、射线和线段的概念及其特点。

2.直线、射线和线段的性质和表示方法。

五. 教学方法1.情境教学法:通过生活实例引入直线、射线和线段的概念,让学生在具体的情境中感受和理解这些概念。

2.动手操作法:让学生亲自动手画直线、射线和线段,观察和总结它们的性质,提高学生的实践能力。

3.小组合作学习:引导学生分组讨论和探究直线、射线和线段的特点,培养学生的团队协作能力。

4.归纳总结法:在教学过程中,引导学生总结直线、射线和线段的性质,加深学生对这些知识的理解。

六. 教学准备1.教学课件:制作精美的课件,展示直线、射线和线段的图片和实例。

2.教学道具:准备一些直线、射线和线段的模型,方便学生直观地观察和操作。

3.练习题:准备一些有关直线、射线和线段的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的直线、射线和线段的实例,如电线、射线等,引导学生思考:这些图形有什么共同的特点?怎样用数学语言来表示它们?2.呈现(10分钟)讲解直线、射线和线段的概念,让学生明确它们的定义和特点。

人教版数学七年级上册4.2《 直线、射线、线段(1)》教学设计

人教版数学七年级上册4.2《 直线、射线、线段(1)》教学设计

人教版数学七年级上册4.2《直线、射线、线段(1)》教学设计一. 教材分析人教版数学七年级上册4.2《直线、射线、线段(1)》是学生在学习了平面几何基本概念的基础上进一步深入学习直线、射线、线段的性质和特点。

本节内容通过实例让学生理解直线、射线、线段的定义,掌握它们之间的联系和区别,能够正确地识别和运用直线、射线、线段解决实际问题。

二. 学情分析学生在小学阶段已经接触过直线、射线、线段的概念,但对其本质特征和应用可能理解不深。

因此,在教学过程中,教师需要从学生的实际出发,通过生动形象的实例,引导学生深入理解直线、射线、线段的内涵和外延,提高他们的空间想象能力和解决问题的能力。

三. 教学目标1.了解直线、射线、线段的定义,掌握它们之间的联系和区别。

2.能够识别和运用直线、射线、线段解决实际问题。

3.培养学生的空间想象能力和解决问题的能力。

四. 教学重难点1.直线、射线、线段的定义及其特性。

2.直线、射线、线段在实际问题中的应用。

五. 教学方法1.采用实例教学法,通过生动的实例让学生理解直线、射线、线段的定义和特性。

2.采用问题驱动法,引导学生运用直线、射线、线段解决实际问题。

3.采用小组合作学习法,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的实例和图片,用于讲解直线、射线、线段的概念和特性。

2.准备一些实际问题,让学生练习运用直线、射线、线段解决。

3.准备黑板和粉笔,用于板书重点内容。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如交通指示灯、射线枪等,引导学生思考直线、射线、线段的概念和特点。

2.呈现(10分钟)讲解直线、射线、线段的定义和特性,用图片和实例进行说明,让学生清晰地理解它们之间的联系和区别。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用直线、射线、线段解决。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)选取一些实际问题,让学生独立解决,检验他们对直线、射线、线段的理解和运用能力。

4.2.1直线、射线、线段(1)

4.2.1直线、射线、线段(1)

1、当直线a上标出一个点时,可得到 2 条射线, 0 2、当直线a上标出二个点时,可得到 4 条射线, 1 3、当直线a上标出三个点时,可得到 6 条射线, 3 4、当直线a上标出四个点时,可得到 8 条射线, 6
条线段; 条线段;
条线段;
条线段;
n(n-1) 当直线a上标出n个点时,可得到 2n 条射线, 2
条线段。
知识迁移
教室里共有3位同学,如果每位同学都要和其他
3 次; 次; 次. 次; 若是 4 位同学,一共握手 若是 5 位同学,一共握手 若是 n 位同学,一共握手
的人握一次手,那么他们一共握手 6 10
n(n-1)
2
课堂小结 本节课你学到了哪些知识? 数学知识: • 两点确定一条直线. • 直线、射线、线段的联系与区别.
巩固练习 3、平面内有四个点,按下列语句画出图形: (1)画直线AB、CD交于点E; (2)画线段AC、BD交于点F; (3)画射线EF交BC于点G; (4)连接AD,并将其反向延长;
E
F
G
拓展延伸 一个点与其余三个点可组成三条线段
共有4×3条 这儿为什么 是“6”? a
· · A O
· B
· C
想一想:你还能举出一些实际生活中应用
“两点确定一条直线”的例子吗?
(三)自学展示
带着以下问题自学教材P125页“思考” 下面第5.6段。 1、我们可以如何表示一条直线?为什么 这样表示?还有其他方法吗? 2、试着表述图中的点、线关系和线、 线关系.
l
·
O· O
P
a b
(四)归纳新知
★点与直线的位置关系: 1.一个点在一条直线上,也称这条直 线经过这个点. 2.一个点在一条直线外,也称这条直 线不经过这个点. ★当两条不同的直线有一个公共点时,我 们就称两条直线相交,这个公共点叫做 它们的交点.

七年级数学上册(人教版)4.2直线、射线、线段(第1课时)认识直线、射线、线段优秀教学案例

七年级数学上册(人教版)4.2直线、射线、线段(第1课时)认识直线、射线、线段优秀教学案例
针对这一教学目标,我设计了以下教学案例:首先,通过生活实例引入直线、射线、线段的概念,让学生感知这些几何元素在现实生活中的应用;其次,利用教具和多媒体展示直线、射线、线段的图像,引导学生观察、讨论它们的特征和区别;然后,通过小组合作活动,让学生动手操作,进一步巩固对直线、射线、线段的理解;最后,进行课堂练习和总结,及时反馈学生的学习情况,提高学生的数学应用能力。
1.通过观察、操作、思考、交流等活动,让学生自主探究直线、射线、线段的特征。
2.利用教具、模型、多媒体等工具,帮助学生直观地理解直线、射线、线段的概念。
3.引导学生通过小组合作,共同探讨直线、射线、线段的表示方法,培养学生的团队协作能力。
4.设计具有层次性的练习题,让学生在解决实际问题的过程中,巩固对直线、射线、线段的理解。
七年级数学上册(人教版)4.2直线、射线、线段(第1课时)认识直线、射线、线段优秀教学案例
一、案例背景
本节课为人教版七年级数学上册第4.2节“直线、射线、线段”,是学生初步接触几何概念的重要一课。直线、射线、线段是基本的几何元素,对于学生理解几何图形、构建几何体系具有重要意义。然而,由于这些概念较为抽象,学生可能难以理解和掌握。因此,本节课的教学旨在让学生通过观察、操作、思考、交流等过程,深入理解直线、射线、线段的特征和区别,提高空间想象能力和逻辑思维能力。
2.问题导向:本节课通过设计具有挑战性和探究性的问题,引导学生主动思考、独立解决问题。这种教学策略能够培养学生的独立思考能力,提高他们的解决问题的能力。同时,教师在问题导向的过程中,能够及时发现学生的思考情况,针对性地进行引导和帮助,提高了教学效果。
3.小组合作:组织学生进行小组讨论和合作活动,让学生共同探讨直线、射线、线段的特征和表示方法。这种教学方式培养了学生的团队合作能力,提高了学生的沟通能力。同时,小组合作活动能够激发学生的学习积极性,提高学生的学习效果。

4.2.1直线、射线、线段(1)

4.2.1直线、射线、线段(1)

B
也可记作线段a。
a
4. 合作交流,再获新知
问题9:填写表格,归纳直线、射线、线段的 联系与区别.
名称 图形
表示
延伸 端点 度量
直线

B· l
1.直线AB (或直线BA) 2.直线l
向两端 无限延 伸
0个
不可 度量
射线 A·
B· l
1.射线AB 2.射线l
向一端 无限延 1个 伸
不可 度量
1.线段AB
义务第教育四教章科书图形数认学 识七初年步级 上册
4.2 直线、射线、线段 (第1课时)
1. 以旧悟新,探求新知
问题1:小学的时候我们已经学习过直线、 射线和线段,请同学们回忆一下他们的形 状并分别画出一条直线、射线和线段.
一、创设情境 引入新知
问题2:如图,经过一点O画直线,能画 几条?经过两点A、B呢?
线段
A· a
B·2(.线或段线a段BA)
不可延 伸
2个
可度 量
4. 合作交流,再获新知
问题10: (1)判断下列说法是否正确:
①线段AB与射线AB都是直线AB的一部分; ②直线AB与直线BA是同一条直线; ③射线AB和射线BA是同一条射线; ④把线段向一个方向无限延伸可得到射线, 把线段向两个方向无限延伸可得到直线.
4. 合作交流,再获新知
问题10:(2)按下列语句画出图形: ①点A在线段MN上; ③经过O点的三条线段a,b,c;
MA N
ab Oc
②射线AB不经过点P;④线段AB、CD相交于点B.
P ●
D
A
B
A
B
C
指出下列各组图中的线段、射线和直 线,哪些能够相交?哪些不能相交?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
● ● ●
2. 归纳完善,丰富新知 归纳: (1)点与直线的位置关系: 点在直线上(直线经过点); 点不在直线上(直线不经过点). (2)当两条不同的直线有一个公共点时, 我们就称这两条直线相交,这个公共点叫 做他们的交点.
3. 即时练习,巩固新知
问题6: (1)用恰当的语句描述图中点与直线, 直线与直线的关系. a l · A A · P
Q · B C b c
3. 即时练习,巩固新知
(2)按下列语句画出图形: ①直线EF经过点C; ②点A在直线 l 外; ③直线AB与直线CD相交于点A.
E· C· F A · l B·
·

D
·· A

C
·

4. 合作交流,再获新知
问题7:射线和线段都是直线的一部分,类 比直线的表示方法,你认为应怎样恰当的表 示射线和线段呢?请你举出一些生活中能看 成射线、线段的实例. 问题8: (1)已知线段AB,你能由线段AB得到直 线AB和射线AB吗? (2)能否用几何语言简单描述一下直线、 射线、线段?
4. 合作交流,再获新知 问题过O点的三条线段a, b,c; a b M A N O c
②射线AB不经过点P;④线段AB、CD相交于点 B. D P A B A B C

5.课堂小结,自我完善
问题11:通过本节课的学习,你知道了 什么?学会了什么?领悟了什么?
1. 生活体验,探求新知
问题1:学校总务处为解决下雨天学生雨 伞的存放问题,决定在每个班级教室外钉 一根2米长的装有挂钩的木条.本校三个年 级,每个年级10个班,问至少需要买几颗 钉子?你能帮总务处的老师算一算吗?
一、创设情境
引入新知
问题2:如图,经过一点O画直线,能画 几条?经过两点A、B呢? A·
直线有两种表示方法:
(1)可以用一个小写字母 表示直线; (2)因为“两点确定一条 直线”,所以也可以用直 线上的两点表示直线.

A
B

直线AB或直线m
2. 归纳完善,丰富新知
问题5:当点与直线、直线与直线同时在一 个图形中出现的时候,我们应怎样描述它们之 间的关系呢?如图试着描述图中点与直线、直 线与直线的关系. l 点O在直线l上, P b 点P在直线l外. 直线a和b相交于点O O O 直线l经过点O, a 直线l不经过点P.
作业:教科书习题4.2第1,2,3,4题.
义务教育教科书
第四章 图形认识初步
数学
七年级
上册
4.2 直线、射线、线段 (第1课时)
学习目标: 1.了解直线、射线、线段的联系和区别,掌 握它们的表示方法. 2.了解两点确定一条直线的性质,并能初步 应用. 3.会用几何语句描述几何图形,能根据几何 语句画出相应的几何图形. 学习重点: 1.直线、射线、线段的表示方法. 2.建立几何语句与几何图形之间的联系. 学习难点: 建立几何语句与几何图形之间的联系.
不可 不可 度量 度量 不可 不可 度量 度量
可度 可度 量量
4. 合作交流,再获新知 问题10: (1)判断下列说法是否正确: ①线段AB与射线AB都是直线AB的一部分; ②直线AB与直线BA是同一条直线; ③射线AB和射线BA是同一条射线; ④把线段向一个方向无限延伸可得到射线, 把线段向两个方向无限延伸可得到直线.
问题9:填写表格,归纳直线、射线、线段的 联系与区别. 名称 直线 图形 表示 延伸 端点 度量
A
射线
··
A
· ·
线段
· · A
1.直线AB 向两端 1.直线AB 向两端 l (或直线BA) 无限延 0个 (或直线BA) 无限延 0个 B 2.直线l 2.直线l 伸 伸 向一端 向一端 l 1.射线AB 1.射线AB 无限延 1个 无限延 1个 2.射线l B 2.射线l 伸 伸 1.线段AB 1.线段AB a 不可 不可延 2个 (或线段BA) 2个 (或线段BA) 伸 延伸 B 2.线段a 2.线段a
· O
· B
经过两点有一条直线,并且只有一条直线。 简单说成:两点确定一条直线。
一、创设情境
引入新知
问题3:你还能举出一些实际生活中应用 “两点确定一条直线”的实例吗?
植树时,只要定出两个树坑的位置 就能确定同一行的树坑所在的直线。
怎样才能射中?
2. 归纳完善,丰富新知 问题4:结合直线自身的特点,请同学们想 一想,我们该怎样表示一条直线呢?这样表 示有什么道理? m
相关文档
最新文档