八年级数学上学期单元综合评价检测16
华师大版八年级数学上册单元测试题全册及答案.doc
最新华师大版八年级数学上册单元测试题全册及答案检测内容:第十一章得分_______ 卷后分__________ 评价__________一、选择题(每小题3分,共30分)I.甫的值为(A)A - 2 B. -2 C. ±2 D.不存在2“(一8)$的立方根是(B )A ・一2 B. 2 C. 4 D. -43•下列各式中运算正确的是(C)A - ±V16=4 B,V9=±3 0^8=-2 D.p (_5)空=_54•下列命题中正确的是(C)A •有理数都是有限小数B.无限小数都是无理数C •实数与数轴上的点一一对应D.无理数包括正无理数、0和负无理数5•在实数3.14159,^/64,1.010010001,4.21,n,乍中,无理数有(A)A・1个B. 2个C. 3个D. 4个6•数a在数轴上的位置如图所示,则下列各数中有意义的是(B)1 1 丁a 0A.yfciB.yj _aC.y]—a27• -27的立方根与嗣的平方根的和是(C )A ・ 0 B. -6 C. 0 或一6 D. 68・估算回+3的值(C)A •在5和6之间B.在6和7之间C.在7和8之间D.在8和9乙'可9•比较两个数的大小,错误的是(B )A •一托>一& B.萌一1.74>0 C. 1.42一也>0 D.兀>3.1410•实数a,方在数轴上的位置如图所示,以下说法止确的是(D)a b--- 1_•_I ------- 1_•_I ---------■2-10 1 2A • a+b=0 B. b<a C. ab>0 D. |b|<|d|二、填空题(每小题3分,共24分)II.迈一曲的相反数是二迄_,迈一萌的绝对值是_迈二^/1_.12・一个正数的平方根为2°—3和3a-22,则这个数为塑.13・在数轴上离原点距离是2需的点表示的实数是二且.14-比较大小:(1朋一三_诟;(2)~\/亦—<_一—A/60;(3)朋3_二_么15•已知△ABC的三边长分别为a,b,c、且a,满足(a — 1 )2+y]b—2=0,则c的取值范围是_1 V c V3_.16• 一个正方体的体积变为原来的27倍,则它的棱长变为原来的_3_倍.17 •已知屮0404=102 ‘ 心=0.102 ‘贝Q x= 010 404 :已知^3/78 = 1.558 ‘ 飯=155.8 ‘贝】J y=19・(10分)计算:(1)22 + |-1|-^9;(2寸(~|) 2+^/-0.064.解,2解/ 1.120 • (12分)求下列各式中的兀:(1)*| =晶(2)8(兀一1)—一125;解,'±\[6解:一号(3)25(7—1)=24.解..421 - (10分)己知实数满足p兀一2y +1 + |x+2y—7|=0,求*的平方根.解:±323 • (10分)一个正数a 的算术平方根为2m~6,且a 的平方根为土(2—m). (1) 求m 的值;(2) 求d 的值及d 的平方根.解:(1)由己知得 2m-6>0 » .*.m>3 » .*.2 —m<0 » - (2 — m)>0 » .*.2m -6= — (2 -m) » 解得 m = 4(2) a = (2m - 6)2=4,±*\/a = ±224・(8分)将半径为12 cm 的铅球熔化,重新铸造出8个半径相同的小铅球,不计损耗,则小铅球的半也一4+04—兀 +4x~25求3x+4v 的值.径是多少?(V 球4-322・(8分)已知兀,y 为实数,y= 解:—1025 • (8分)己知5+V7的小数部分是a ,整数部分是m ,5—羽的小数部分是b ,整数部分是n ,求(a + b)2m>—mn 的值.解:甫V 羽V 的,/.m = 7,a = 5+V7-7= -2+^7,n = 2,b = 5—羽一2 = 3— 荷 > .-.(a + b)2015-mn = (-2 4-V7 + 3-V7)2015-7X2 = l-14= -13检测内容:第十二章得分 _______ 卷后分 __________ 评价 __________一、选择题(每小题3分,共30分)1 •计算:(加%尸的结果是(B) A • mn B. mn C.D. mn2 • (2014-丽水)下列式子运算正确的是(A)A • «84-«2=«6B. cr+c^=cPC. (a+l)2=/+lD. 3cT —2cf =1 3 • (2014•安徽)下列四个多项式屮,能因式分解的是(B) A • 672+1 B. 6G +9 C. X 2+5)J D. 5y4 •计算(|)20,5X(|)2016X(-l 严 了 的结果是(°)5 •把 A-2A+/分解因式正确的是(C )A •)心?一2xy+)Z )B . ^y —)\2x —y) C.),(兀一y),D. y (兀+y)“6 •若a m =2,a n=3,cf=5,则严「卩的值是(A ) A ・ 2.4 B. 2 C ・ 1 Dj7 •若 a+b=3,a —b=7,贝ab=( A ) A ・ 一10 B. -40 C. 10 D. 408 •若一多项式除以2? —3,得到的商式为7x-4,余式为一5兀+2,则此多项式是(A ) A • 14^3—8x 2—26x+14 B. 14x 3 — 8x 2—26x~ 10 C - -10X 3+4?-8X -10 D. -10X 3+4? + 22X -109 •因式分解x 2+cLx+b ,甲看错了 a 的值,分解的结果是(x+6)(x —l),乙看错了 b 的值,分解的结果 为(兀一2)(兀+1),那么x"+ax+b 分解因式正确的结果为(B )A •(兀一2)(兀+3) B.(兀+2)(x —3) C. (x —2)(%—3) D. (x+2)(x+3)10 •如图,甲、乙、丙、丁四位同学写出了四种表示该长方形面积的多项式:①(2a+Z?)・O+n);②+n)+b(m+n)\ ③ni(2a+/?)+n(2a+b);④lam+lan+bm+bn.你认为其中正确的有(D )A -①②B.③④C •①②③D.①②③④3--2B 2-3 A3-2 - 2-3二、填空题(每小题3分,共24分)11•计算:(2af ・(一36?)=「-24『_.12•分解因式:一兀\+2兀》一心=_-xy(x- l)2_ .13•二次三项式jC-kx+9是一个完全平方式,则k的值是丸.14•计算:20152 -4026 X 2015 + 20132 = 4 .15•若加=2门+1,则4/??/?+4/?2的值是_X_.16•若\m+6\与n2—2n+\互为相反数5则多项式^+nx+m分解因式为_(x十3)(x —2)_.17・若代数式X2+3X+2可以表示为(X-1)2+«(X-1)+/2的形式,则a+b的值是口 .111X/1 2 1X/13 3 1• • •18 • (2014-巴中)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得屮华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式屮a按次数从大到小排列的项的系数,例如,(a +b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2 +扌展开式中的系数1,3,3,1恰好对应图中第四行的数字•请认真观察此图,写出(a-b)4的展开式为一4a'b + 一4ab‘ + b;_・三、解答题(共66分)19・(8分)计算:(1 )3a3b2 4- a2+b^b - 3ab~5a2b)\(2)(2014-宁波)(a+b)2 + (a - b)(a+b) - 2ab.解:原式=3ab2 + a2b2一3ab2 - 5a2b2 = 一4a2b2解;廉式=a? + 2ab 4- b2 + a2 - b2一2ab = 2a220• (10分)先化简,再求值:(1 )(a2b—2ab2—b3)-i-h—(«+b)(a—b),其中G=*,b= —1;解:恳式=a? - 2ab - b2 - (a2 - b2)= 一2ab.占a=j » b= - 1 讨,斥式=1(2)(2兀+3)(2乂一3)—4兀(兀一1)+仗一2)2,其中7=9.解,,^=4X2-9-4X2+4X + X2-4X +4= X2-5.V X2=9> ^ = 9-5 = 421• (12分)因式分解:(1)(2014-莱芜)a‘ 一4ab2; (2)x2一4(x — 1);解:忌式=a(a + 2b)(a-2b)解:煉式= (x-2/(3)(x+2)(x+4)+?-4; (4)9<_y2_4y_4.解:恳式=(x + 2)(x + 4) + (x + 2)(x — 2) =2(x + 2)(x+l)解:原式=9x2-(y24-4y + 4) = (3x)2- (y + 2)2=(3X + y + 2)(3x -y-2)22・(8分)给出三个多项式,X=2a2+3ab+h2,Y=3a+3ab,Z=a2+ab.^你任选两个进行加(或减) 法运算,再将结果分解因式.解;Y - X = 3a2 + 3ab 一2a2一3ab - b2 = a2 - b2 = (a + b)(a - b); Y + Z = 3a2 + 3ab + a2 + ab = 4a2 + 4ab = 4a(a + b); X -Z=2a2 + 3ab + b2-a2-ab = a2 + 2ab + b2=(a + b)2(^案“一)23・(8分)阅读理解:用平方差公式计算:(2°+1)(2°—1)(4/+1)(16/+1).解决本题可采用逐步运用平方差公式计算来进行,答案如下:解:原式=[(2d +1 )(2°一1)](4/ + 1)(16/ +1) = (4a2一1 )(4/ +1)(16/ +1) = [(4a2 +1 )(4/ 一1)](16a4 +1) =(16『一1)(16/+1)=256/—1.拓广应用:计算(X-1 )(X+1)(X2+1)(/+ 1)(丿+ 1)・・・(严+ 1)(兀紈一J.解:^=X128-2X64+124・(10分)给你若干个长方形和正方形的卡片,如图所示,请你运用拼图的方法,选取相应种类和数量的卡片'拼成一个大长方形,使它的面积等于/+3〃+2沪,并根据你拼成的图形分解因式:a2 + 3aba 2 + 3ab + 2b 2 = (a + b)(a + 2b)25 • (10分)小红家有一块L 形的菜地,要把厶形的菜地按图那样分成面积相等的梯形,种上不同的蔬 菜,这两个梯形的上底都是,下底都是b m ,高都是(b-a )m.请你给小红家算一算,小红家的菜地的 面积共有多少?当10,b=30时,面积是多少?解,(b 2 - a 2) m 2 800 m 2检测内容:第十三章得分 _______ 卷后分 __________ 评价 __________一、选择题(每小题3分,共30分)1・下列语句不是命题的是(B ) A •对顶角相等B.连接A3并延长至C 点 C •内错角相等D.同角的余角相等2•根据下列条件画三角形,不能确定唯一三角形的是(A ) A •已知三个角 B.己知三边C •己知两角和夹边D.已知两边和夹角3 •如图,已知,ZMBA=ZNDC ,下列不能判定△ AEM 竺厶CDN 的条件是(C )A - ZM=ZNB ・ AB=CD C. AM=CN D. AM//CN 4•下列命题是假命题的有(D )①若cT=b 2,则a=b ;②一个角的余角大于这个角;③若a ,b 是有理数,则\a+b\ = \a\ + \b\;④如果 ZA=ZB+ 2员ab‘那ZA与ZB是对顶角.A ・1个 B. 2个 C. 3个 D. 4个5 •如图,已知AB=AC ,AD=AE ,则下列结论正确的是(D ) ①EB=DC;②5BPE 竺/\CPD;③点P 在ABAC 的平分线上. A •①B.②C.①②D.①②③6 •如图,在AABC 中,BC=8 cm ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,/XBCE 的周长等 于18 cm ,则AC 的长等于(C )A • 6 cm B. 8 cm C. 10 cm D.,第5题图)7.等樓△M3C 的•个外角为110° ,则比等腰三角形的顶角的度数为(C ) A ・40° B. 70° C ・40°或70° D.以上都不对8 •如图,在HABC 中,ZC=90。
人教版数学八年级上册《全等三角形》单元综合检测题含答案
人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。
人教版八年级上学期数学《全等三角形》单元检测卷含答案
22.如图,在 中, , 是 的平分线, 于点 ,点 在 上, ,求证: .
A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:5
[答案]C
[解析]
[分析]
直接根据角平分线的性质即可得出结论.
[详解]∵O是△A B C三条角平分线的交点,A B、B C、A C的长分别12,18,24,∴S△OA B:S△OB C:S△OA C=A B:OB:A C=12:18:24=2:3:4.
∴∠A′C B′=∠A C B=10k,
在△A B C中,∠B′C B=∠A+∠B=3k+5k=8k,
∴∠A′C B=∠A′C B′-∠B′C B′=10k-8k=2k,
∴∠B C A′:∠B C B′=2k:8k=1:4.
故选D.
6.如图,已知∠A B C=∠D C B,下列所给条件不能证明△A B C≌△D C B的是()
①是根据边边边(SSS);
②是根据两边夹一角(SAS);
③是根据两角夹一边(ASA)都成立.
根据三角形全等的判定,都可以确定唯一的三角形;
而④则不能.
故选A.
8.如图,在△A B C中,∠B=42°,A D⊥B C于点D,点E是B D上一点,EF⊥A B于点F,若ED=EF,则∠AEC的度数为( )
人教版八年级上册《全等三角形》单元测试卷
(时间:120分钟 满分:150分)
冀教版八年级数学上册第十六章达标测试卷附答案
冀教版八年级数学上册第十六章达标测试卷一、选择题(每小题2分,共28分)1.教育部门高度重视校园安全教育,要求各级各类学校从认识安全标志入手开展安全教育.下列图标不是轴对称图形的是()2.下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是()3.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称4.如图,C,E是直线l两侧的点,以点C为圆心,CE长为半径画弧交直线l于A,B两点,又分别以A,B为圆心,大于12AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥直线l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB(第4题)(第5题)5.如图,等腰三角形ABC的周长为21,BC=5,AB的垂直平分线DE交AB 于点D,交AC于点E,则三角形BEC的周长为()A.13 B.14 C.15 D.166.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.点M B.点N C.点P D.点Q(第6题)(第7题)7.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看成是△ABC经过怎样的图形变化得到的?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中正确结论的序号是()A.①④B.②③C.②④D.③④8.如图,DE是线段AC的垂直平分线,下列结论一定成立的是() A.DE=BD B.∠BCD=∠AC.∠B>2∠A D.2∠BAC=180°-2∠ADE(第8题)(第9题)9.如图,BD是∠ABC的平分线,DE⊥AB于点E,△ABC的面积是15 cm2,AB=9 cm,BC=6 cm,则DE的长为()A.1 cm B.2 cmC.3 cm D.4 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个(第10题)(第11题)11.如图,直线a,b互相垂直相交于点O,曲线C关于点O成中心对称,点A 的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为()A.3 B.4C.5 D.612.如图,以图①(点O为圆心,半径为1的半圆形)作为“基本图形”,分别经历如下变换,不能得到图②的是()A.绕着OB的中点旋转180°B.向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.先绕着点O旋转180°,再向右平移1个单位(第12题)(第13题)13.如图,在△ABC中,∠B=90°,点O是∠CAB,∠ACB的平分线的交点,且AB=3 cm,BC=4 cm,AC=5 cm,则点O到边AB的距离为()A.1 cm B.2 cmC.3 cm D.4 cm14.如图,将一个正方形纸片按图①、图②依次对折后,再按图③打出一个心形小孔,则展开铺平后的图案是()(第14题)二、填空题(每小题3分,共12分)15.在下面的数学符号:※,≌,≈,⊥,+,-,÷,∵,∴中,是中心对称图形的是____________.16.如图,在锐角三角形ABC中,O为三条边的垂直平分线的交点,I为三个角的平分线的交点,若∠BOC的度数为150°,则∠B I C的度数为________.(第16题)(第17题)17.如图,已知三角形纸片ABC,∠BCA=90°,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,若CE=3,AB=10,则△BDE的面积为________.18.如图,在△ABC中,∠BCA=90°,∠CBA=80°,作点B关于∠ACB的平分线CB1的对称点A1,点A1恰好落在AC上,则∠A1B1A=________°,作点B1关于∠AA1B1的平分线A1B2的对称点A2,点A2也恰好落在AC上,…,恰好与点A重合,则n=________.继续作下去,作n次对称,点B n-1(第18题)三、解答题(19小题9分,20~23小题各10分,24小题11分,共60分) 19.如图,四边形CDEF是一个长方形台球面,有A、B两球分别位于图中所示位置,试问怎样撞击球A,才能使球A先碰到边FC后再反弹击中球B?在图中画出球A的运动路线.(第19题)20.如图①,阴影部分是由5个大小完全相同的小正方形组成的,现移动其中一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形.(用阴影表示)(1)使图形既是轴对称图形,又是中心对称图形;(2)使图形是轴对称图形,而不是中心对称图形;(3)使图形是中心对称图形,而不是轴对称图形.(第20题)21.如图,AB=AD,BC=DC,E是AC上的点,求证:BE=DE.(第21题)22.如图,△ABO与△CDO关于O点成中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.(第22题)23.如图,在△ABC中,C,C′关于直线DE对称,判断∠1,∠2,∠C′的关系并证明.(第23题)24.如图,DE,MN分别垂直平分AB,AC.(1)若△ADM的周长是10,求BC的长;(2)若∠BAC=135°,猜想AD与AM的位置关系,并证明你的猜想.(第24题)答案一、1.D 2.A 3.A 4.C 5.A 6.A 7.D 8.D 【点拨】∵DE 是线段AC 的垂直平分线,∴∠BAC =∠DCA , ∴2∠BAC =180°-∠ADC . 由题易证∠ADE =∠CDE , ∴2∠BAC =180°-2∠ADE .9.B 【点拨】如图,过D 作DF ⊥BC ,DF 交BC 的延长线于点F .(第9题)∵BD 是∠ABC 的平分线,DE ⊥AB 于点E , ∴DE =DF .∵△ABC 的面积是15 cm 2,AB =9 cm ,BC =6 cm , ∴S △ABD +S △DCB =12×AB ×DE +12×BC ×DF =15 cm 2, ∴9DE +6DE =30 cm 2, 解得DE =2 cm ,故选B.10.C 【点拨】如图所示,符合题意的有3个三角形.(第10题)11.D 12.B 13.A 14.B 二、15.※,≈,+,-,÷16.127.5°17.1518.70;8【点拨】∵点B关于∠ACB的平分线CB1的对称点为A1,∴CB=CA1,B1B=B1A1.∵CB1=CB1,∴△CB1B≌△CB1A1,∴∠CA1B1=∠CBB1=80°.∵∠A=180°-∠BCA-∠CBA=10°,∠CA1B1=∠A1B1A+∠A,∴∠A1B1A=70°,同理可得,∠A2B2A=60°,…,B n-1A=80°-10°×(n-1),∠A n-1当∠A nB n-1A=∠A时,点B n-1与点A重合,-1∴80°-10°×(n-1)=10°,解得n=8.三、19.解:如图所示,运动路线是A→P→B.(第19题)20.解:(1)如图所示.[第20(1)题](2)如图所示.(答案不唯一)[第20(2)题](3)如图所示.[第20(3)题]21.证明:∵AB =AD ,∴点A 在线段BD 的垂直平分线上. ∵BC =DC ,∴点C 也在线段BD 的垂直平分线上. ∴AC 是线段BD 的垂直平分线. ∵E 是AC 上的点, ∴BE =DE .22.证明:∵△ABO 与△CDO 关于O 点成中心对称,∴BO =DO ,AO =CO . ∵AF =CE ,∴FO =EO .在△FOD 和△EOB 中,⎩⎨⎧FO =EO ,∠FOD =∠EOB ,DO =BO ,∴△FOD ≌△EOB . ∴FD =BE .23.解:2∠C ′=∠1+∠2.证明:∵∠CDE +∠C ′DE +∠C +∠C ′+∠CED +∠C ′ED =360°, ∠CDE +∠EDC ′+∠1+∠CED +∠C ′ED +∠2=360°, ∴∠1+∠2=∠C +∠C ′.∵在△ABC 中,C ,C ′关于直线DE 对称, ∴∠C =∠C ′, ∴2∠C ′=∠1+∠2.24.解:(1)∵DE ,MN 分别垂直平分AB ,AC ,∴DA =DB ,MA =MC .∵△ADM 的周长是10,即AD +AM +DM =10, ∴BD +MC +DM =10,即BC =10.(2)AD⊥AM.证明:∵∠BAC=135°,∴∠B+∠C=45°.∵DE垂直平分AB,∴DB=AD,∴∠B=∠BAD.同理可得∠CAM=∠C.∴∠DAM=∠BAC-(∠BAD+∠CAM)=∠BAC-(∠B+∠C)=135°-45°=90°.∴AD⊥AM.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.22.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,则可列方程为()A.300x=200x+30B.300x-30=200xC.300x+30=200x D.300x=200x-3010.如图,这是一个数值转换器,当输入的x为-512时,输出的y是()(第10题)A.-32 B.32 C.-2 D.211.如图,从①BC=EC;②AC=DC;③AB=DE;④∠ACD=∠BCE中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是()A.1 B.2 C.3 D.4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B .同位角相等,两直线平行C .若a =b ,则a 2=b 2D .若a >0,b >0,则a 2+b 2>015.x 2+x x 2-1÷x 2x 2-2x +1的值可以是下列选项中的( ) A .2B .1C .0D .-116.定义:对任意实数x ,[x ]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是( ) A .3B .4C .5D .6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A ,B 间的距离,先在AB 的垂线BF 上取两点C ,D ,使BC =CD ,再作出BF 的垂线DE ,使点A ,C ,E 在同一条直线上,可以证明△ABC ≌△EDC ,从而得到AB =DE ,因此测得DE 的长就是AB 的长,判定△ABC ≌△EDC ,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD 上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
2023年人教版初中八年级数学第十六章综合素质检测卷(三)含答案
2023年人教版初中八年级数学第十六章综合素质检测卷(三)含答案一、选择题(每题3分,共30分)1.【2023·北京十九中模拟】下列各式是二次根式的是( )A .-7B .mC .a 2+1D .332.【教材P 5习题T 1改编】【2022·绥化】若式子x +1+x -2在实数范围内有意义,则x 的取值范围是( )A .x >-1B .x ≥-1C .x ≥-1且x ≠0D .x ≤-13.下列二次根式中,是最简二次根式的是( )A . 2B .12C .12 D .9 4.若两个最简二次根式5b 与3+2b 能够合并,则b 的值为( )A .-1B .13C .0D .15.【2022·雅安】下列计算正确的是( )A .32=6B .⎝ ⎛⎭⎪⎫-253=-85C .(-2a 2)2=2a 4D .3+23=3 3 6.【教材P 19复习题T 8改编】若75n 是整数,则正整数n 的最小值是( )A .2B .3C .4D .57.已知x <2,化简x 2-10x +25的结果是( )A .x -5B .x +5C .-x -5D .5-x8.已知一等腰三角形的周长为125,其中一边长为25,则这个等腰三角形的腰长为( )A .2 5B .5 5C .25或5 5D .无法确定9.【教材P 15习题T 6变式】已知a =3+22,b =3-22,则a 2b -ab 2的值为( )A.1 B.17 C.4 2 D.-4 2 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A. 2 B.2C.2 2 D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.若y=2x-3+3-2x+1,则x-y=________.14.计算(5-2)2 024(5+2)2 025的结果是__________.15.在△ABC中,a,b,c为三角形的三边长,化简(a-b+c)2-2|c-a-b|=____________.16.实数a,b在数轴上对应点的位置如图所示,化简a2-b2+(a-b)2的结果是______.17.若xy>0,则式子x-yx2化简的结果为__________.18.【2022·舟山】某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (n >1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n ,k 的代数式表示).三、解答题(19题16分,其余每题10分,共66分)19.【教材P 19复习题T 3变式】计算: (1)(6+8)×3÷32; (2)⎝ ⎛⎭⎪⎫-12-1-12+(1-2)0-|3-2|;(3)(6-412+38)÷22; (4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-⎝ ⎛⎭⎪⎫x 21x -5x y x ,其中x =12,y =4.21.已知等式|a-2 023|+a-2 024=a成立,求a-2 0232的值.22.【阅读理解题】阅读材料:∵对于任意正实数a,b,(a-b)2≥0,∴a-2ab+b≥0.∴a+b≥2ab.∴当a=b时,a+b有最小值2ab.根据上述内容,回答下列问题(1)若m>0,只有当m=________时,m+1m有最小值________;若m>0,只有当m=______时,2m+8m有最小值________;(2)疫情期间为了解决临时隔离问题,高速公路检测站入口处,检测人员利用一面墙(墙的长度不限)和63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间隔离房的面积为S(米2).问:当每间隔离房的长、宽各为多少时,使每间隔离房的面积S最大?最大面积是多少?23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【规律探索题】阅读下列材料,解答后面的问题:在二次根式的学习中,我们不仅要关注二次根式本身的性质、运算,还要关注与分式、不等式相结合的一些运算.如:①要使二次根式a-2有意义,则需满足a-2≥0,解得a≥2.②化简1+1n 2+1(n +1)2(n >0),则需计算1+1n 2+1(n +1)2. ∵1+1n 2+1(n +1)2=n 2(n +1)2+(n +1)2+n 2n 2(n +1)2=n 2(n +1)2+n 2+2n +1+n 2n 2(n +1)2=n 2(n +1)2+2n 2+2n +1n 2(n +1)2=n 2(n +1)2+2n (n +1)+1n 2(n +1)2=[n (n +1)+1]2n 2(n +1)2, ∴1+1n 2+1(n +1)2=[n (n +1)+1]2n 2(n +1)2=n (n +1)+1n (n +1)=1+1n (n +1)=1+1n -1n +1. (1)根据二次根式的性质,要使a +23-a =a +23-a成立,求a 的取值范围. (2)利用①中的提示,请解答:已知b =a -2+2-a +1,求a +b 的值.(3)利用②中的结论,计算:1+112+122+1+122+132+1+132+142+…+1+12 0242+12 0252.答案一、1.C 2.C 3.A 4.D 5.D 6.B 7.D8.B 点拨:当腰长为25时,底边长为125-25-25=85,此时25+25<85,无法构成三角形;当底边长为25时,腰长为(125-25)÷2=55,此时55+55>25,55-55<25,能构成三角形.故选B .9.C 10.B二、11.> 12.6 13.23 14.5+215.-a -3b +3c 点拨:∵a ,b ,c 为三角形的三边长,∴a +c >b ,a +b >c ,即a -b +c >0,c -a -b <0. ∴(a -b +c )2-2|c -a -b |=(a -b +c )+2(c -a -b )=-a -3b +3c .16.-2a 点拨:由题中数轴可以看出,a <0,b >0,∴a -b <0. ∴a 2-b 2+(a -b )2=-a -b +[-(a -b )]=-a -b -a +b =-2a .17.--y 点拨:由题意知x <0,y <0,∴x -y x 2=--y .解此类题要注意二次根式的隐含条件:被开方数是非负数.18.k n三、19.解:(1)原式=(32+26)÷32=1+23 3;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;(3)原式=⎝ ⎛⎭⎪⎫6-412+38×24=32-1+3=32+2; (4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4 =24+62=2524.21.解:由题意得a -2 024≥0,∴a ≥2 024.原等式变形为a -2 023+a -2 024=a .整理,得a -2 024=2 023.两边平方,得a -2 024=2 0232,∴a -2 0232=2 024.22.解:(1)1;2;2;8(2)设每间隔离房与墙平行的边长为x 米,与墙垂直的边长为y 米, 依题意,得9x +12y =63,即3x +4y =21, ∴3x +4y ≥23x ·4y ,即21≥23x ·4y ,∴xy ≤14716,即S ≤14716.∴当3x =4y 时,S max =14716, 此时,x =72,y =218,即当每间隔离房长为72米,宽为218米时,使每间隔离房的面积S 最大,最大面积为14716米2.23.解:(1)S =12(8+32)×3=12(22+42)×3=12×62×3=36(m 2).答:横断面的面积为3 6 m 2. (2)3003 6=1006=100 66×6=100 66=50 63(m). 答:可修5063 m 长的拦河坝.24.解:(1)由题意,得⎩⎨⎧a +2≥0,3-a >0,∴-2≤a <3.(2)由题意,得⎩⎨⎧a -2≥0,2-a ≥0, ∴a =2,∴b =2-2+2-2+1=0+0+1=1,∴a +b =2+1=3.(3)原式=⎝ ⎛⎭⎪⎫1+11-12+⎝ ⎛⎭⎪⎫1+12-13+⎝ ⎛⎭⎪⎫1+13-14+…+⎝ ⎛⎭⎪⎫1+12 024-12 025 =1×2 024+1-12 025=2 0242 0242 025.。
数学八年级上学期《全等三角形》单元综合检测含答案
[答案]D
[解析]
[分析]
利用全等三角形对应边相等可知要想求得A B的长,只需求得其对应边C D的长,据此可以得到答案.
[详解]∵△C DO≌△B AO,∴A B=C D,要求得A B的长,只需求得线段D C的长,
[详解]∵∠B A D=∠B C D=90°,A B=C B,D B=D B,∴△B A D≌△B C D(HL).
故选A.
[点睛]解答本题需注意:当两个三角形有公共边时,公共边是常用的条件之一.
6.如图,在△A B C中,∠A B C=50°,∠A C B=60°,点E在B C的延长线上,∠A B C的平分线B D与∠A CE的平分线C D相交于点D,连接A D,下列结论中不正确的是( )
16.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.
17.如图,已知A B=A D,∠B AE=∠D A C,要使△A B C≌△A DE,若以”SAS”为依据,补充的条件是.
三、解答题
18.如图,C A=C D,CE=C B,求证:A B=DE.
19.已知,如图,B D是∠A B C的平分线,A B=B C,点P在B D上,PM⊥A D,PN⊥C D,垂足分别是M、N.试说明:PM=PN.
参考答案
一、选择题(每小题只有一个正确答案)
1.小林同学一不小心将厨房里的一块三角形玻璃摔成了如图所示的三部分,他想到玻璃店配一块完全相同的玻璃,那么他应该选择带哪个部分去玻璃店才能最快配得需要的玻璃( )
A. B. C. D.选择哪块都行
[答案]C
[解析]
分析]
本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.
八年级数学上学期单元综合评价检测16
一、平行四边形的性质与判定(第10周作业)基础知识训练:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB的周长为______cm.6.如下左图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD的面积为______.8.如下中图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,24BG,则△CEF的周长为______.9.如下右图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______知识改变命运S△BNC.(填“<”、“=”或“>”)综合运用训练一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠FAB.AB=a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.知识改变命运知识改变命运12.已知:如图,在□ABCD 中,E 为AD 的中点,CE 、BA 的延长线交于点F .若BC =2CD ,求证:∠F =∠BCF .13.如图,已知:在□ABCD 中,∠A =60°,E 、F 分别是AB 、CD的中点,且AB =2AD .求证:BF ∶BD =3∶3.14.已知:□ABCD 中,AB =5,AD =2,∠DAB =120°,若以点A 为原点,直线AB 为x 轴,如图所示建立直角坐标系,试分别知识改变命运求出B 、C 、D 三点的坐标.15若一次函数y =2x -1和反比例函数xk y 2的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.知识改变命运16.如图,点A (m , m +1),B (m +3,m -1)在反比例函数xk y 的图象上.(1)求m ,k 的值; (2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.二、三角形的中位线基础知识训练:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.知识改变命运(2)三角形的中位线定理是三角形的中位线______第三边,并且等于 .2.如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为_________.如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是__________________.3.△ABC 中,D 、E 分别为AB 、AC 的中点,若DE =4,AD =3, AE =2,则△ABC 的周长为______.4.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC的中点.求证:四边形DEFG是平行四边形.综合运用训练;6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.知识改变命运知识改变命运7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G 点.求证:∠AHF=∠BGF.拓展提高训练:9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?知识改变命运三、平行四边形判定练习1、已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形。
人教版八年级上册数学《三角形》单元综合检测卷带答案
人教版数学八年级上学期《三角形》单元测试(考试时间:60分钟试卷满分:120分)一.选择题(每题3分,共计30分)1.已知一个三角形中一个角是锐角,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.(2020•永城市期末)如图,已知BD=CD,则AD一定是△ABC的()A.角平分线 B.高线 C.中线 D.无法确定3.(2019•永城市期中)在三角形的①三条中线;②三条角平分线;③三条高中,一定相交于一点的是()A.①②③B.②C.①D.①②4.(2020•江岸区期末)下列各组线段,能构成三角形的是()A.1cm,3cm,5cm B.2cm,4cm,6cmC.4cm,4cm,1cm D.8cm,8cm,20cm5.(2020•河南二模)如图,直线a∥b,Rt△ABC的直角顶点C落在直线b上,若∠A=50°,∠1=110°,则∠2的度数为()A.40° B.50° C.60° D.70°6.(2019•浉河区期末)如图所示,在△ABC中,∠C=90°,EF∥AB,∠B=39°,则∠1的度数为()A.38° B.39° C.51° D.52°7.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()8.(2020•郑州期末)如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为()A.30° B.60° C.90° D.120°9.(2019•路北区一模)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少()A.30° B.15° C.18° D.20°10.(2019•川汇区期中)长为9,7,5,3的四根水条,选其中三根组成三角形,有几种选法?()A.1种B.2种C.3种D.4种二.填空题(每题3分,共计15分)11.(2020•周口期中)如图,伸缩晾衣架利用的几何原理是四边形的.12.(2020•中原区期末)∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=.13.(2019•金水区三模)如图,将三角尺ABC和三角尺DFF(其中∠A=∠E=90°,∠C=60°,∠F=45°)摆放在一起,使得点A、D、B、E在同一条直线上,BC交DF于点M,那么∠CMF度数等于.14.(2020•交城县期末)有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A点处行走的路程是.15.(2020•永城市期末)如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.在图2中,∠ACD的度数为.三.解答题(共75分)16.(8分)(2020 •洛龙区月考)一个多边形除了一个内角外,其余内角的和为2680度,则这个内角是多少度?17.(9分)(2020•禹州市期中)如图,△ABC中(AB>BC),AB=2AC,AC边上中线BD把△ABC 的周长分成30和20两部分,求AB和BC的长.18.(9分)(2020•滑县期末)如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.(9分)如图所示,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE ∥DF,求证:△DCF为直角三角形.20.(9分)(2020•洛阳期末)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)请你写出∠BAC、∠B、∠E三个角之间存在的等量关系,并写出证明过程.21.(10分)(2020•襄城县期末)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.22.(10分) 2019 •辉县市期末)(1)如图①,在△ABC中,∠C=90°,∠BAC的平分线与外角∠CBE的平分线相交于点D,求∠D的度数.(2)如图②,将(1)中的条件”∠C=90°”改为∠C=α,其它条件不变,请直接写出∠D与∠α的数量关系.23.(11分)(2020•瀍河区月考)在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E在AD的延长线上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系是(直接写出结论,不需证明).参考答案一.选择题(每题3分,共计30分)1.已知一个三角形中一个角是锐角,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【答案】D【解析】在锐角三角形中,三个角都是锐角,在直角三角形中,两个角是锐角,在钝角三角形中,两个角是锐角,∴一个三角形中一个角是锐角,那么这个三角形是三种情况都有可能,故选:D.2.(2020•永城市期末)如图,已知BD=CD,则AD一定是△ABC的()A.角平分线 B.高线 C.中线 D.无法确定【答案】C【解析】由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.3.(2019•永城市期中)在三角形的①三条中线;②三条角平分线;③三条高中,一定相交于一点的是()A.①②③B.②C.①D.①②【答案】D【解析】三角形的三条角平分线、三条中线分别交于一点是正确的;锐角三角形或直角三角形的三条高线交于一点,而钝角三角形的三条高所在的直线交于一点,高线指的是线段,故三角形的三条高,不一定相交于一点.故选:D.4.(2020•江岸区期末)下列各组线段,能构成三角形的是()A.1cm,3cm,5cm B.2cm,4cm,6cmC.4cm,4cm,1cm D.8cm,8cm,20cm【答案】C【解析】根据三角形的三边关系,得A、1+3=4<5,不能组成三角形,故此选项错误;B、2+4=6,不能组成三角形,故此选项错误;C、1+4=5>4,能够组成三角形,故此选项正确;D、8+8<20,不能组成三角形,故此选项错误.故选:C.5.(2020•河南二模)如图,直线a∥b,Rt△ABC的直角顶点C落在直线b上,若∠A=50°,∠1=110°,则∠2的度数为()A.40° B.50° C.60° D.70°【答案】D【解析】∵∠ACB=90°,∠A=50°,∴∠B=90°﹣∠A=40°,∵直线a∥b,∴∠3=∠1=110°,∴∠2=∠4=∠3﹣∠B=70°,故选:D.6.(2019•浉河区期末)如图所示,在△ABC中,∠C=90°,EF∥AB,∠B=39°,则∠1的度数为()A .38°B .39°C .51°D .52°【答案】C【解析】∵在△ABC 中,∠C =90°,∠B =39°,∴∠A =51°,∵EF ∥AB ,∴∠1=∠A ,∴∠1=51°,故选:C .7.(2020•仪征市模拟)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是() A .6 B .7 C .8 D .9【答案】C【解析】多边形的外角和是360°,根据题意得:180°•(n ﹣2)=3×360°解得n =8.故选:C .8.(2020•郑州期末)如图,BP 、CP 是△ABC 的外角角平分线,若∠P =60°,则∠A 的大小为()A .30°B .60°C .90°D .120°【答案】B【解析】证明:∵BP 、CP 是△ABC 的外角的平分线,∴∠PCB =12∠ECB ,∠PBC =12∠DBC ,∵∠ECB =∠A +∠ABC ,∠DBC =∠A +∠ACB ,∴∠PCB +∠PBC =12(∠A +∠ABC +∠A +∠ACB )=12(180°+∠A )=90°+12∠A ,∴∠P =180°﹣(∠PCB +∠PBC )=180°﹣(90°+12∠A )=90°−12∠A =60°,∴∠A =60°,故选:B .9.(2019•路北区一模)如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少( )A.30° B.15° C.18° D.20°【答案】C×(5﹣2)×180°=108°,正方形的内角是90°,【解析】∵正五边形的内角的度数是15∴∠1=108°﹣90°=18°.故选:C.10.(2019•川汇区期中)长为9,7,5,3的四根水条,选其中三根组成三角形,有几种选法?()A.1种B.2种C.3种D.4种【答案】C【解析】可以选:①9,7,5;②7,5,3;③9,7,3三种;故选:C.二.填空题(每题3分,共计15分)11.(2020•周口期中)如图,伸缩晾衣架利用的几何原理是四边形的.【答案】不稳定性【解析】伸缩晾衣架利用的几何原理是四边形的不稳定性,故答案为:不稳定性.12.(2020•中原区期末)∠ACD是△ABC的外角,若∠ACD=125°,∠A=75°,则∠B=.【答案】50°【解析】∵∠ACD=∠A+∠B,∠ACD=125°,∠A=75°,∴∠B=125°﹣75°=50°,故答案为.50°13.(2019•金水区三模)如图,将三角尺ABC和三角尺DFF(其中∠A=∠E=90°,∠C=60°,∠F=45°)摆放在一起,使得点A、D、B、E在同一条直线上,BC交DF于点M,那么∠CMF度数等于.【答案】105°【解析】∵直角△ABC中,∠ABC=90°﹣∠C=90°﹣60°=30°,同理,∠FDE=90°﹣∠F=90°﹣45°=45°,∴∠DMB=180°﹣∠ABC﹣∠FDE=180°﹣30°﹣45°=105°,∴∠CMF=∠DMB=105°.故答案为:105°.14.(2020•交城县期末)有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A点处行走的路程是.【答案】30米【解析】2×(360°÷24°)=30米.故答案为:30米.15.(2020•永城市期末)如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.在图2中,∠ACD的度数为.【答案】72°【解析】∵五边形ABCDE是正五边形,∴其每个内角为108°,且AB=BC,∴△ABC是等腰三角形,∴∠BCA=(180°﹣108°)÷2=36°,∴∠ACD=∠BCE﹣∠BCA=108°﹣36°=72°.故答案为:72°三.解答题(共75分)16.(8分)(2020 •洛龙区月考)一个多边形除了一个内角外,其余内角的和为2680度,则这个内角是多少度?【解析】设这个内角度数为x°,边数为n,则(n﹣2)×180﹣x=2680,180•n=3040+x,,∴n=3040+x180∵n为正整数,0°<x<180°,∴n=17,∴这个内角度数为180°×(17﹣2)﹣2680°=20°.故这个内角的度数是20°.17.(9分)(2020•禹州市期中)如图,△ABC中(AB>BC),AB=2AC,AC边上中线BD把△ABC 的周长分成30和20两部分,求AB和BC的长.【解析】设AC=x,则AB=2x,∵BD是中线,x,∴AD=DC=12x=30,由题意得,2x+12解得,x=12,则AC=12,AB=24,×12=14.BC=20−12答:AB=24,BC=14.18.(9分)(2020•滑县期末)如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.【解析】∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.19.(9分)如图所示,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE ∥DF,求证:△DCF为直角三角形.【解析】∵在四边形ABCD中,∠A与∠C互补,∴∠ABC+∠ADC=360°﹣180°=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠CDF+∠EBF=90°,∵BE∥DF,∴∠EBF=∠CFD,∴∠CDF+∠CFD=90°,故△DCF为直角三角形.20.(9分)(2020•洛阳期末)如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)若∠B=35°,∠E=25°,求∠BAC的度数;(2)请你写出∠BAC、∠B、∠E三个角之间存在的等量关系,并写出证明过程.【解析】(1)∵∠ECD=∠B+∠E,∠B=35°,∠E=25°,∴∠ECD=60°,∵EC平分∠ACD,∴∠ACE=∠ECD=60°,∴∠BAC=∠ACE+∠E=60°+25°=85°.(2)结论:∠BAC=∠B+2∠E.理由:∵∠BAC=∠ACE+∠E,∠ECD=∠ACE=∠B+∠E,∴∠BAC=∠B+∠E+∠E=∠B+2∠E.21.(10分)(2020•襄城县期末)将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE的度数;(2)如图②,若∠ACE=2∠BCD,请求出∠ACD的度数.【解析】(1)∵∠BAC=90°∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.22.(10分) 2019 •辉县市期末)(1)如图①,在△ABC中,∠C=90°,∠BAC的平分线与外角∠CBE的平分线相交于点D,求∠D的度数.(2)如图②,将(1)中的条件”∠C=90°”改为∠C=α,其它条件不变,请直接写出∠D与∠α的数量关系.【解析】(1)如图①,∵∠CBE是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=12∠CAB,∠2=12∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=12(∠CBE﹣∠CAB)=12∠C=12×90°=45°.(2)如图②,∵∠CBE是△ABC的外角,∴∠CBE=∠CAB+∠C,∴∠C=∠CBE﹣∠CAB,∵∠BAC的平分线与外角∠CBE的平分线相交于点D,∴∠1=12∠CAB,∠2=12∠CBE,∵∠2是△ABD的外角,∴∠2=∠1+∠D,∴∠D=∠2﹣∠1=12(∠CBE﹣∠CAB)=12∠C=12α.23.(11分)(2020•瀍河区月考)在△ABC中,AD是角平分线,∠B<∠C,(1)如图(1),AE是高,∠B=50°,∠C=70°,求∠DAE的度数;(2)如图(2),点E在AD上.EF⊥BC于F,试探究∠DEF与∠B、∠C的大小关系,并证明你的结论;(3)如图(3),点E 在AD 的延长线上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系是 (直接写出结论,不需证明).【解析】(1)如图1,∵AD 平分∠BAC ,∴∠CAD =12∠BAC ,∵AE ⊥BC ,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣(90°﹣∠C )=12∠C −12∠B=12(∠C ﹣∠B ),∵∠B =50°,∠C =70°,∴∠DAE =12(70°﹣50°)=10°.(2)结论:∠DEF =12(∠C ﹣∠B ).理由:如图2,过A 作AG ⊥BC 于G ,∵EF ⊥BC ,∴AG ∥EF ,∴∠DAG =∠DEF ,由(1)可得,∠DAG =12(∠C ﹣∠B ),∴∠DEF =12(∠C ﹣∠B ).(3)仍成立.如图3,过A 作AG ⊥BC 于G ,∵EF⊥BC,∴AG∥EF,∴∠DAG=∠DEF,(∠C﹣∠B),由(1)可得,∠DAG=12∴∠DEF=1(∠C﹣∠B),2故答案为∠DEF=1(∠C﹣∠B).2。
八年级上册数学《全等三角形》单元综合检测(含答案)
10.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()
A.AD+BC=ABB.与∠CBO互余的角有两个
C.∠AOB=90°D.点O是CD的中点
【答案】B
【解析】
故FH=FA+AG+GC+CH=3+6+4+3=16
故S= (6+4)×16−3×4−6×3=50.
故选A.
【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD.
9.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是()
①②④为条件,根据SSS,可判定 ;可得结论③;
①③④为条件,SSA不能证明 ,
②③④为条件,SSA不能证明 ,
最多可以构成正确结论2个,故选B.
【点睛】本题考查的是全等三角形的判定,可根据全等三角形的判定定理和性质进行求解.
6.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()
A.60°B.55°C.50°D. 无法计算
【答案】B
【解析】
试题解析:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠1=∠EAC,
在△BAD和△EAC中,
,
∴△BAD≌△EAC(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
B. 两个角是β,它们的夹边为4
人教版八年级上册数学《全等三角形》单元综合检测卷(含答案)
选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.
故选C.
考点:全等三角形的判定.
4.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为()
A 8B. 9C. 10D. 11
【答案】C
人教版数学八年级上学期
《全等三角形》单元测试
时间:90分钟总分:100
一.选择题(本大题共8小题,共24.0分)
1.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为( )
A.1个B.2个C.3个D.4个
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
根据周角 定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
【详解】根据题意, ,
∴∠A=∠2,故B正确;
∴∠A+∠D=90°,故A正确;
在△ABC和△CED中,
,
∴△ABC≌△CED(AAS),故C正确;
故选D.
【点睛】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.
6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为( )
人教版数学八年级上学期《三角形》单元综合检测题(含答案)
C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;
D.∵4A+4A=8A,∴三条线段不能构成三角形,故本选项错误.
故选B.
[点睛]本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
A. 8Cm和10CmB. 6Cm和10CmC. 6Cm和8CmD. 10Cm和12Cm
[答案]D
[解析]
根据平行四边形的对角线互相平分,所选择作为对角线长度的一半与已知边长需要构成三角形的边长,必须满足三角形的两边之和大于第三边,由此逐一排除;
A、取对角线的一半与已知边长,得4,5,10,不能构成三角形,舍去;
人教版八年级上册《三角形》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共30分)
1.下列长度的三条线段能组成三角形的是()
A.5,6,11B.5,6,10C.3,4,8D.4A,4A,8A(A>0)
2.一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是()
A B. C. D.
5.下列长度的四根木棒中,能与 长的两根木棒首尾相接成一个三角形的是()
A. B. C. D.
6.直角三角形两锐角 平分线相交所夹的钝角为()
A. 125°B. 135°C. 145°D. 150°
7.平行四边形中一边长为10Cm,那么它的两条对角线长度可以是
A. 8Cm和10CmB. 6Cm和10CmC. 6Cm和8CmD. 10Cm和12Cm
∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;
苏教版八年级数学上册第1章全等三角形单元检测(有答案)
苏教版八年级上册第一单元单元检测(有答案)数学考试一、单选题(共10题;共20分)1. ( 2分) 如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A. AB=ACB. BD=CDC. ∠B=∠CD. ∠BDA=∠CDA2. ( 2分) 下列判断中错误的是()A. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等3. ( 2分) 如图,△ABE≌△ACF.若AB=5,AE=2,BE=4,则CF的长度是()A. 4B. 3C. 5D. 64. ( 2分) 已知△ABC≌△DEF,BC= EF=6m,△A BC的面积为18㎡,则EF边上的高的长是( ).A. 3mB. 4m C .5mC. 6m5. ( 2分) .如图,已知≌,A和B,C和D分别是对应顶点.如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 4cmB. 5cmC. 6cmD. 7cm6. ( 2分) 如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A. 54°B. 60°C. 66°D. 76°7. ( 2分) 如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A. ∠DAE=∠CBEB. ΔDEA不全等于ΔCEBC. CE=DED. ΔEAB是等腰三角形8. ( 2分) 如图,在格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )A. 5个B. 6 个C. 7个D. 8 个9. ( 2分) 下列命题中,真命题是().A. 周长相等的锐角三角形都全等;B. 周长相等的直角三角形都全等;C. 周长相等的钝角三角形都全等;D. 周长相等的等腰直角三角形都全等.10. ( 2分) (2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCBC. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB二、填空题(共10题;共21分)11. ( 2分) 如图,∠ACB=∠DFE,BC=EF,可以补充一个直接条件________,就能使△ABC≌△DEF.12. ( 2分) 如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC≌△DEF,还需要的条件可以是________ ;(只填写一个条件)13. ( 2分) 如图所示,两个三角形全等,其中已知某些边的长度和某些角的度数,则x=________.14. ( 2分) 如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠AEB=________°.15. ( 2分) 如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为________.16. ( 2分) 如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB= ________17. ( 2分) 如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是________.(只需填一个即可)18. ( 4分) 如图所示,△ABD≌△ACE,∠B与∠C是对应角,若AE=5cm,BE=7cm,∠ADB=100°,则∠AEC=________,AC=________.19. ( 2分) 如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥CD,垂足为E,若线段AE=10,则S=________.四边形ABCD20. ( 1分) 如图,已知,添加下列条件中的一个:① ,② ,③,其中不能确定≌△的是________(只填序号).三、解答题(共4题;共17分)21. ( 4分) 如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.22. ( 4分) 如图:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AB∥DE.求证:△ABC≌△DEF.23. ( 4分) 如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.24. ( 5分) 如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA.四、作图题(共1题;共5分)25. ( 5分) 沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形五、综合题(共5题;共37分)26. ( 6分) 已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.27. ( 6分) 如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=65°,求∠EGC的大小.28. ( 8分) 如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.29. ( 8分) 在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.(1)若点D在线段BC上,如图1.①依题意补全图1;②判断BC与CG的数量关系与位置关系,并加以证明;(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB= ,则GE的长为,并简述求GE长的思路.30. ( 9分) 问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM 为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.答案解析部分一、单选题1.【答案】B【考点】三角形全等的判定【解析】【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故答案为:B.【分析】已经有一边一角对应相等,再添一个条件不能判断两个三角形全等的话,只能添加这个角的对边。
八年级上册数学评价检测试卷 全册
北师大版八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( )(A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( )(A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( )(A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( )(A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。
八年级数学上册第十六章单元试卷
八年级数学上册第十六章单元试卷做八年级数学章节题目,每道错题做三遍。
第一遍:讲评时;第二遍:一周后;第三遍:考试前。
下面由店铺为你整理的八年级数学上册第十六章单元试卷,希望对大家有帮助!八年级数学上册第十六章单元试卷一、选择题(每小题2分,共30分)1、25的平方根是( )A、5B、–5C、D、2、的算术平方根是( )A、9B、–3C、D、33、下列叙述正确的是( )A、0.4的平方根是B、的立方根不存在C、是36的算术平方根D、–27的立方根是–34、下列等式中,错误的是( )A、 B、 C、 D、5、下列各数中,无理数的个数有( )A、1B、2C、3D、46、如果有意义,则的取值范围是( )A、 B、 C、 D、7、化简的结果是( )A、 B、 C、2 D、8、下列各式比较大小正确的是( )A、 B、 C、 D、9、用计算器求得的结果(保留4个有效数字)是( )A、3.1742B、3.174C、3.175D、3.174310、如果成立,则实数的取值范围是( )A、 B、 C、 D、11、计算,所得结果正确的是( )A、5B、25C、1D、12、若,则的结果为( )A、2B、0C、0或–2D、–213、a、b为实数,在数轴上的位置如图所示,则的值是( )A.-bB.bC.b-2aD.2a-b0 b14、下列算式中正确的是( )A、 B、C、 D、15、在二次根式:① ;② ;③ ;④中,与是同类二次根式的是( )A、①和③B、②和③C、①和④D、③和④二、填空题(每小题2分,共20分)16、–125的立方根是_____.17、如果,那么x=________;如果,那么 ________.18、要使有意义,则x可以取的最小整数是 .19、平方根等于本身的数是________;立方根等于本身的数是_______20、是实数,且,则21、若是实数,,则22、计算:①②23、若,则 = .24、计算:25、已知正数a和b,有下列命题:(1)若,则≤(2)若,则≤(3)若,则≤根据以上三个命题所提供的规律猜想:若,则≤________.三、解答题(共50分)26、直接写出答案(10分)①②③④⑤⑥⑦⑧⑨⑩27、计算、化简:(要求有必要的解答过程)(18分)①②28、探究题(10分)=______, =______, =______, =______,=______, =______.根据计算结果,回答:1. 一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.2.利用你总结的规律,计算①若,则② =_____29、(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长。
八年级上册数学十六章试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共25分)1. 下列数中,属于无理数的是()A. √4B. √9C. √16D. √252. 已知方程2x - 3 = 7,则x的值为()A. 5B. 4C. 3D. 23. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)4. 下列图形中,具有轴对称性的是()A. 正方形B. 等边三角形C. 长方形D. 等腰梯形5. 已知三角形ABC中,∠A = 90°,AB = 6cm,BC = 8cm,则AC的长度为()A. 10cmB. 12cmC. 14cmD. 16cm二、填空题(每题5分,共25分)6. 若a + b = 7,且a - b = 3,则a的值为______,b的值为______。
7. 0.2的平方根是______,0.5的立方根是______。
8. 在直角坐标系中,点A(-2, 3)到原点O的距离是______。
9. 一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积为______cm²。
10. 已知一个数的平方根是±3,则该数是______。
三、解答题(共50分)11. (10分)解方程:3x - 5 = 2x + 1。
12. (10分)计算:√(25 - √(16 + 3√(9 - 4)))。
13. (10分)在直角坐标系中,点P(4, -1)关于y轴的对称点是______。
14. (10分)已知等腰三角形ABC中,AB = AC,且∠BAC = 50°,求∠ABC和∠ACB的度数。
15. (10分)一长方形的长是12cm,宽是8cm,求该长方形的对角线长度。
16. (10分)计算:3√(2 - √3) + 2√(3 - √2)。
四、应用题(共15分)17. (15分)某市计划修建一条高速公路,该高速公路全长120km,预计每千米投资500万元。
八年级数学上册第16章平行四边形的认识单元学习评价试题
创作;朱本晓2022年元月元日第16章 平行四边形的认识 班别 姓名 座号一、选择题〔每一小题4分,一共20分〕1.以下图形中,只是中心对称图形,不是轴对称图形的是〔 〕.A. 平行四边形B. 矩形C. 正方形D. 菱形2.一个平行四边形两邻边的长分别为10和6,那么它的周长为( ).A. 16B. 60C.32D. 303. 正方形具有而菱形不具有的性质是( ).A.对角线互相平分B. 对角线相等C.对角线平分一组对角D. 对角线互相垂直4.平行四边形ABCD 中, ∠A:∠B:∠C:∠D 的值可以是( ).A. 4:3:3:4B. 7:5:5:7C. 4:3:2:1D. 7:5:7:55. 菱形的两条对角线长分别为6㎝和8㎝,那么这个菱形的面积为( ).A .482cm B.224cm C.212cm 2cm二、填空题〔每一小题5分,一共25分〕6. 在平行四边形ABCD 中, ∠A=︒40,那么∠B= .7. 矩形的一边长是3.6㎝, 两条对角线夹角为︒60,那么矩形对角线长是 .8. 正方形边长为4㎝,那么这个正方形的面积是 .9. 如图,在平行四边形ABCD 中,BC AE ⊥于E,AC=AD, ∠CAE=︒56,那么∠D= .10.等腰梯形两条对角线互相垂直,一条对角线长为6㎝,那么这个梯形的面积为 .三、解答题〔每一小题9分,一共27分〕11.如图,正方形ABCD的两条对角线相交于点O, 求∠AOB和∠BAO的度数.12. 如图,菱形ABCD中,AB=AC=2㎝,求∠BCD的度数.13. 如图,矩形ABCD的周长为68,且恰好被分成7个完全一样的小矩形,试求矩形ABCD的创作;朱本晓2022年元月元日创作;朱本晓2022年元月元日面积.四、解答题〔每一小题9分,一共18分〕14. 如图,在梯形ABCD 中,AB//CD, ∠D=︒80,∠C=︒50,AB=4㎝,CD=7㎝,试求腰AD 的长.15. 如图,ABC ∆中,AB=AC,点P 是BC 上任一点,PE//AC,PF//AB,分别交AB 、AC 于E 、F,试问线段PE 、PF 、AB 之间有什么关系,并说明理由.创作;朱本晓2022年元月元日五、解答题〔一共10分〕16. 如图,把面积为1的正方形分成两个面积为21的矩形,接着把面积为21的矩形等分成面积为41的正方形,再把面积为41的正方形等分成面积为81的矩形,如此进展下去.试用图形提醒的规律计算:25611281641321161814121+++++++ 励志赠言经典语录精选句;挥动**,放飞梦想。
冀教版八年级数学上册第十六章达标测试卷附答案 (2)
冀教版八年级数学上册第十六章达标测试卷一、选择题(每题3分,共48分)1.下列“表情图”中,是轴对称图形的是()2.下列手机软件图标中,既是轴对称图形又是中心对称图形的是()3.到三角形各顶点距离相等的点是三角形()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边垂直平分线的交点4.下列四组图形中,不能由平移得到的一组是()5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.1处B.2处C.3处D.4处6.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,AC =3 cm,则AE+DE等于()A.2 cm B.3 cm C.4 cm D.5 cm7.根据如图所示的图形,可以作出线段MN的垂直平分线EF,其中ME,MF,NE,NF均为弧的半径,下列结论一定成立的是()A.ME=MF,NE=NF B.ME=NE,MF=NFC.ME=NF,NE=MF D.ME=MF=NE=NF8.下列说法中,正确的是()A.关于某直线对称的两个三角形是全等的B.全等三角形是关于某直线对称的C.有一条公共边的两个全等三角形关于公共边所在的直线对称D.在直线l同侧有两个点,那么这两个点与直线l组成的图形是轴对称图形9.下列基本图形中,经过平移、旋转或轴对称的变换后,不能得到如图所示图形的是()10.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5 cm,△ADC的周长为18 cm,则BC的长为()A.7 cm B.10 cm C.13 cm D.22 cm11.如图所示,六边形ABCDEO是以虚线l为对称轴的轴对称图形,连接AE,以下结论错误的是()A.AO=EO B.∠1=∠2 C.AB=ED D.AE垂直平分OC12.如图所示,已知△ABC与△CDA关于点O对称,过O作EF分别交AD,BC 于点E,F.下面的结论:①点E和点F,点B和点D是关于点O的对应点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的有()A.1个B.2个C.3个D.5个13.如图是一桌面示意图,①②③④⑤⑥处是球洞,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥14.如图所示,在△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交BC的延长线于点E,交AC于点F,连接BF,∠A=50°,AB+BC=16 cm,则△BCF的周长和∠EFC分别等于()A.16 cm,40°B.8 cm,50°C.16 cm,50°D.8 cm,40°15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C,D为圆心,大于12CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD,则下列说法错误的是() A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C,D两点关于OE所在直线对称D.O,E两点关于CD所在直线对称16.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD,BC于E,F两点,则阴影部分的面积是()A.1 B.2 C.3 D.4二、填空题(每题3分,共9分)17.如图,OE平分∠AOB,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE 对称的三角形共有________对.18.如图所示的是某煤气公司的商标图案,图案的外层可看成是利用图形的________设计而成的,内层的图形是________图形,既形象又美观.19.已知直线l是线段AB的垂直平分线,点M,N是直线l上的两点,如果∠NBA=15°,∠MBA=45°,则∠MAN=________.三、解答题(20题6分,26题12分,其余每题9分,共63分)20.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,当汽车行驶到哪个位置时,与村庄M,N的距离相等?在图中标出来.21.如图,MP,NQ分别垂直平分AB,AC,且BC=13 cm.求△APQ的周长.22.如图,AD是△ABC的边BC上的中线.(1)画出以点D为对称中心,与△ABD成中心对称的三角形;(2)若AB=10,AC=12,求AD长的取值范围.23.如图所示,BF是∠DBC的平分线,CF是∠ECB的平分线,则点F是否在∠BAC的平分线上?试说明理由.24.如图,D,E分别是AB,AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.25.如图所示,把一张长方形的纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′与BC交于点G,若∠EF G=55°,求∠1和∠2的度数.26.如图所示的是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所画图案用阴影标识,且阴影部分面积为4.答案一、1.D2.D点拨:选项A,是轴对称图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形.选项B,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形.又∵此图形中找不到一条直线,使其沿直线折叠后,直线两旁的部分完全重合,∴此图形也不是轴对称图形.选项C,是轴对称图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形.选项D,是轴对称图形,∵此图形旋转180°后能与原图形重合,∴此图形也是中心对称图形.故选D.3.D 4.A 5.D6.B点拨:因为角平分线上的点到这个角的两边的距离相等,所以EC=DE,故AE+DE=AE+EC=AC=3 cm.7.B8.A9.C10.C点拨:根据折叠可得AD=BD,∵△ADC的周长为18 cm,AC=5 cm,∴AD+DC=18-5=13(cm),∵AD=BD,∴BC=BD+CD=AD+CD=13 cm.11.D12.D点拨:△ABC与△CDA关于点O对称说的是两个图形的关系,但我们将这两个图形看成一个整体,那么它就是一个以O点为对称中心的中心对称图形,故③正确.E与F,B与D关于O点对称,图形上的两点的连线若经过对称中心,这两点就是对应点,同时对应点的连线必经过对称中心,所以①②都正确.四边形DEOC与四边形BFOA是四对对应点所围成的图形,面积必相等,△AOE与△COF也是对应点所围成的图形,所以它们成中心对称,故④和⑤都正确.13.A点拨:根据轴对称的知识可知,黑球的运动路线如图所示.14.A15.D16.A二、17.418.旋转(或中心对称);轴对称19.30°或60°点拨:根据线段垂直平分线的性质定理可知MA=MB,NA=NB,所以∠MAB=∠MBA=45°,∠NAB=∠NBA=15°.当点M,N在线段AB的同侧时,∠MAN=∠MAB-∠NAB=45°-15°=30°;当点M,N在线段AB 的异侧时,∠MAN=∠MAB+∠NAB=45°+15°=60°.三、20.解:作法:(1)连接MN;(2)作线段MN的垂直平分线l,交直线AB于C点,则C点即为所求.图略.21.解:∵MP,NQ分别垂直平分AB,AC,∴AP=BP,AQ=QC.∴△APQ的周长=AP+AQ+PQ=BP+QC+PQ=BC=13 cm.22.解:(1)如图,延长AD至E,使DE=AD,连接CE,则△ECD即为所求.(2)由(1)知AD=DE,EC=AB=10.在△ACE中,由AC-EC<AE<AC+EC,可得12-10<AE<12+10,即2<AE<22.又∵AE=2AD,∴2<2AD<22.∴1<AD<11.23.解:点F在∠BAC的平分线上.理由:如图所示,过点F作FM⊥AD于M,FN⊥BC于N,FP⊥AE于P.∵BF是∠DBC的平分线,且FM⊥AD,FN⊥BC,∴FM=FN.又∵CF是∠ECB的平分线,且FN⊥BC,FP⊥AE,∴FN=FP.∴FM=FP.∴点F在∠BAC的平分线上.24.证明:如图,连接BC.∵CD⊥AB于D,D是AB的中点,∴CD垂直平分AB,∴AC=BC,∵E为AC的中点,BE⊥AC,∴BC=AB,∴AC=AB.25.解:由题意,得四边形EDCF与四边形ED′C′F成轴对称,所以∠DEF=∠D′EF.又因为ED∥BC,所以∠DEF=∠EFG=55°,所以∠D′EF=55°,所以∠DED′=110°,所以∠1=180°-110°=70°,因为AE∥BC,所以∠1+∠2=180°,所以∠2=110°.即∠1=70°,∠2=110°.26.解:如图所示.(本题答案不唯一)八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x 2x -1+11-x的结果是( )A .x +1 B.1x +1C .x -1D.x x -18.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是( ) A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a+1a B.aa-1C.aa+1D.a-1a14.以下命题的逆命题为真命题的是() A.对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-116.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根,∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0.解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2.(1)x +y =6+(-2)=4,∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0, ∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的.23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO .在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA).(2)∵△ABO ≌△DCO ,∴BO =CO .∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC .在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
(16)人教版八年级数学上册测试题 附答案
(16)人教版八年级数学上册测试题附答案文章已经写好,标题是:人教版八年级数学上册测试题附答案。
一、选择题1. 已知直角三角形的斜边长为10,其中一个锐角的正弦值为0.6,则该锐角的角度为几度?A. 40°B. 45°C. 60°D. 75°答案:C2. 若一个三角形的三边长分别为3、4、5,则该三角形是什么三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B3. 已知正方形的边长为20cm,求其对角线的长。
A. 20cmB. 28cmC. 40cmD. 400cm答案:C二、填空题1. 两条互相垂直的直线,它们所成的角度为________度。
答案:902. 若两个角互不相等,则它们的和是________度。
答案:1803. 在一个等边三角形中,每个角的度数是________度。
答案:60三、解答题1. 已知平行四边形ABCD中,AB = 6cm,BC = 8cm,AD的延长线与BC的交点为E,连接AE相交CD于F,求EF的长度。
解:根据平行四边形的性质,AD ∥BC,所以∠FED = ∠DBA,又因为平行四边形的对角线互相平分,所以∠FED = ∠BDE。
又∠ABD = ∠AED(同位角),所以ΔBDE ∽ ΔABD。
根据相似三角形的性质,得到 BD/AD = DE/BD,即 BD² = AD × DE。
代入已知值,6² = 8 × DE,解得 DE = 9cm。
因为 AE ∥ CD,所以ΔAED 和ΔFED 是全等三角形,所以 EF = AD = 6cm。
2. 在直角三角形ABC中,∠BAC = 30°,BC = 4,求AB的长度。
解:首先,根据正弦定理,我们有sin∠BAC/BC = sin∠ABC/AC,代入已知值,sin30°/4 = sin90°/AC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形的性质与判定(第10周作业)
基础知识训练:
1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.
2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.
3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.
5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB的周长为______cm.
6.如下左图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.
7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD的面积为______.
8.如下中图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2
4
BG,则△CEF的周长为______.
9.如下右图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______
S△BNC.(填“<”、“=”或“>”)
综合运用训练
一、解答题
10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠FAB.AB=a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.
11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.
12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.
13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD 的中点,且AB=2AD.
求证:BF∶BD=3∶3.
14.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.
15若一次函数y =2x -1和反比例函数x
k y 2=
的图象都经过点(1,1).(1)求反比例函数的解析式;
(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;
(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.
16.如图,点A (m , m +1),B (m +3,m -1)在反比例函数x k y =的
图象上.
(1)求m ,k 的值; (2)如果M 为x 轴上一点,N 为y 轴上一点,以
点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
二、三角形的中位线
基础知识训练:
1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.
(2)三角形的中位线定理是三角形的中位线______第三边,并且等
于.
2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′
C′的周长为_________.如果△ABC、△EFG、
△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续
作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.
4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.
5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC 的中点.
求证:四边形DEFG是平行四边形.
综合运用训练;
6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.
7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.
8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G 点.
求证:∠AHF=∠BGF.
拓展提高训练:
9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.
10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交
AC于Q,线段AP、AQ相等吗?为什么?
三、平行四边形判定练习
1、已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形。
其中能判定平行四边形的命题的为。
2、下列条件中,能判定一个四边形是平行四边形的是( )
A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等
C.一组邻边相等,一组对角相等D.一组对边平行,一组对角互补
3、如果一个四边形的每对相邻内角都互补,那么这个四边形是。
4、如上图,E,F是□ABCD对角线BD上的两点,请你添加一个
条件,使四边形AECF•也是平行四边形.你添加的条件是:。
5、已知四边形ABCD,以下有四个条件.能判四边形ABCD是平行四边形的有。
(1)AB CD AB CD
=
∥,(2)AB AD AB BC
==
,
(3)A B C D
∠=∠∠=∠
,(4)AB CD AD BC
∥,∥
6、四边形ABCD中,已知AB CD
=,则可再添加一个条件可判定四边形ABCD为平行四边形。
7、如图,AD、BC垂直相交于点O,AB∥CD,又BC = 8,AD = 6,求:AB+CD的长.
8、如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF•∥AB,•通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.A
B
O
C
D
E
9、如图所示,□ABCD 中,AC BD 、相交于O ,且OE OF ,则四边形AECF 是平行四边形吗?请说明理由.
10、如图所示,在□ABCD 中,AM=CN ,试说明四边形MBND 是平行四边形.
A E
B
C F
D
O A M
D
C
N B
12、已知如图所示,在四边形ABCD 中,AB=CD,BC=AD,E 、F 是对角线AC 上两点,且AE=CF.求证:BE=DF .
13、如图,在□ABCD 中,E 、F 、G 、H 各点分别在AB 、BC 、CD 、DA 上,且AE=BF=CG=DH ,请说明:EG 与FH 互相平分.
A
E F
B
C
D
D A B
E
F C H G
14.如图,已知□ABCD 中,E 、F 分别是对角线AC 延长线上的点,且DE BF =,四边形BFDE 是平行四边形吗?说说你的理由.
15、如图所示,在□ABCD 中,AE CF 、分别是DAB BCD ∠∠,的平分线,试说明四边形AFCE 是平行四边形.
A
C F
D E
B
A
B
C
D
F
E
16、如图所示,四边形ABCD 中,AD BC CAD BCA E F =∠=∠,,、分别是
AD 、BC 的中点,试说明OE OF AF CE =,∥.
A E
D
C
F
B
O
17、已知如图所示,在□ABCD 中,BN DM =,BE DF =.求证:四边形MENF 是平行四边形.
18、如图,已知AC 是□ABCD 的一条对角线,BM ⊥AC 于M ,DN ⊥AC 于N ,求证:四边形BMDN 是平行四边形。
N A M
D
F C
B
E
19、如图,H,G是□ABCD对角线上的点,且AG=CH,E、F分别是AB,CD的中点.求证:四边形EHFG是平行四边形.
20、如图,等边三角形ABC的边长为a,P为△ABC内一点,且PD∥AB,PE∥BC,PF∥AC,那么,PD+PE+PF的值为一个定值.这个定值是多少?请你说出这个定值的来历.
21、已知:如图,四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.
中考链接
1、(长沙)如图所示,在四边形ABCD中,AB∥CD,要使四边形
ABCD•
为平行四边形,则应添加的条件是________.(添加一个即可)
2、(呼和浩特)如图所示,已知E,F,G,H是四边形ABCD各边的中点,
•则S四边形EFGH:S四边形ABCD的值是_________.。