八年级数学第二学期 第一次质量检测测试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第二学期第一次质量检测测试卷
一、选择题
1.5﹣x,则x的取值范围是()
A.为任意实数B.0≤x≤5C.x≥5D.x≤5
2.下列计算,正确的是()
A.=B.=C.0
=
=D.10
3.下列计算正确的是()
A=B=C=D=
4.下列二次根式中,是最简二次根式的是()
B C.D
A
5.下列运算正确的是()
A=B. 3 C=﹣2 D=
6.()
A.1 B.﹣1 C.D-
7.已知x1x2,则x₁²+x₂²等于( )
A.8 B.9 C.10 D.11
8.下列二次根式中,是最简二次根式的是()
A B C D
9.下列各式计算正确的是()
A=B6
=
C.3+=D2
=-
10.已知实数x,y满足(x y)=2008,则3x2-2y2+3x-3y-2007的值为()
A.-2008 B.2008 C.-1 D.1
11.下列说法中正确的是()
A±5 B.两个无理数的和仍是无理数
C.-3没有立方根. D.
12.下列计算正确的是()
A.=B C3
=
D3
=-
二、填空题
13.设42-的整数部分为 a,小数部分为 b.则1
a b
- = __________________________. 14.把1
m m
-
根号外的因式移到根号内,得_____________. 15.下面是一个按某种规律排列的数阵:
1
1第行
3
2
5 6
2第行
7
22
3
10 11 23
3第行 13
15
4
17
32 19
25
4第行
根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).
16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.
17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____. 18.函数y 4x
-中,自变量x 的取值范围是____________. 19.2m 1-1343m --mn =________. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记
2
a b c
p ++=
,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是
_______.
三、解答题
21.阅读下面问题: 阅读理解:
==1;
==
2
=
=-.
应用计算:(1
(21
(n 为正整数)的值.
归纳拓展:(3
98+
+
【答案】应用计算:(12 归纳拓展:(3)9. 【分析】
由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1
分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】
(1
(2
(3+
98+,
(
+
98+,
+
+99-
, =10-1, =9. 【点睛】
本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.
22.计算: 21)3)(3--
【答案】. 【解析】 【分析】
先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】
解:原式22]-3
22]-4
【点睛】
本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.
23.先观察下列等式,再回答问题:
=1+1=2;
12=2 12
;
=3+
13=31
3
;… (1)根据上面三个等式提供的信息,请猜想第四个等式;
(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.
【答案】(1=144+=144;(2=211n n n n
++=
,证明见解析. 【分析】
(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,
=414+
=414
;
(2=n 211
n n n
++=
”,再利用222
112n n n n
++=+()()开方即可证出结论成立.
【详解】
(1=1+1=2=212+
=212
;
=313+
=31
3;里面的数字分别为1、2、3,
= 144+
= 1
44
.
(2=1+1=2,
=212+=212=313+=313=414+=414
= 211
n n n n
++=
.
证明:等式左边==n 211
n n n
++==右边.
=n 211
n n n
++=
成立. 【点睛】
本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律
=n 211
n n n
++=
”.解决该题型题目时,根据数值的变化找出变化规律是关键.
24.先化简,再求值:a =1007. 如图是小亮和小芳的解答过程.