[高考总复习资料]数学二轮复习 不等式 基本不等式学案 理
高考数学二轮复习微专题13利用基本不等式求代数式的最值问题(含解析)
微专题13 利用基本不等式求代数式的最值问题基本不等式是高中数学的一个重要知识点,在全国各地的高考考纲中都属于C 级(熟例题:(2017·苏锡常镇二模)已知a ,b 均为正数,且ab -a -2b =0,求a24-2a +b2-1b 的最小值.变式1若x>0,y>0,且x2+y2=1,则x 1-x2+y1-y2的最小值是________________.变式2(2018·苏州调研三)设正实数x ,y 满足xy =x +9yy -x,则y 的最小值是________________.串讲1已知正实数x ,y 满足x +2x +3y +4y =10,则xy 的取值范围为________________.串讲2已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM 的值为________________.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________________.若正数a ,b 满足1a +1b =1,求4a -1+16b -1的最小值.答案:16.解析:因为a>0,b>0,1a +1b =1,所以a +b =ab ,2分则4a -1+16b -1=4(b -1)+16(a -1)(a -1) (b -1)=4b +16a -20ab -(a +b )+1又4b +16a =4(b +4a)⎝ ⎛⎭⎪⎫1a +1b =20+4×b a +4a b ≥20+4×2× b a ·4ab=36,6分 微专题13例题答案:7.解法1a 24-2a +b 2-1b =a 2+4b 24-1,下面只要求a 2+4b 2的最小值即可.因为a +2b =ab≥2ab ,所以ab≥8,当且仅当a =2b =4时取等号;又a 2+4b 2≥2(a·2b)≥32,当且仅当a =2b =4时取等号,则a 2+4b24-1≥7.解法2a 24-2a +b 2-1b =a 2+4b 24-1=(a +2b )2-4ab 4-1=a 2b 2-4ab 4-1=(ab -2)2-44-1;因为a +2b =ab≥2ab ,得ab≥8,当且仅当a =2b =4时取等号,所以(ab -2)2-44-1≥7.解法3因为ab -a -2b =0,所以a =2b b -1.那么a 2+4b 2=4b 2+4b 2(b -1)24⎣⎢⎡⎦⎥⎤(c +1)2+(c +1)2c 2= 4⎣⎢⎡⎦⎥⎤c 2+1c 2+2⎝ ⎛⎭⎪⎫c +1c +2=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫c +1c 2+2⎝ ⎛⎭⎪⎫c +1c≥4(22a 2+4b24-1≥7.解法4因为ab -a -2b =0,有2a +1b =1,则a 2+4b 2=(a 2+4b 2)⎝ ⎛⎭⎪⎫2a +1b 2≥4ab·⎝ ⎛⎭⎪⎫22ab 2=32.,则a 2+4b24-1≥7.解法5因为ab -a -2b =0,则2a +1b =1,则a 2+4b 2=(a 2+4b 2)⎝ ⎛⎭⎪⎫2a +1b 2=a 2b 2+16b 2a 2+4a b +16b a a 2+4b24-1≥7.解法6因为ab -a -2b =0,令a =m +n ,2b =m -n ,有m 2-n 2=4m ,n 2=m 22+4b 2=2(m 2+n 2)=2(2m 2-4m)=4(m -1)2-4≥4(4-1)2a 2+4b 24-1≥7.解法7因为ab -a -2b =0,则2a +1b =1,设a =2cos 2θ,b =1sin 2θ;那么a 2+4b 2=4cos 4θ+4sin 4θ=4·sin 4θ+cos 4θsin 4θcos 4θ= 4·1-2sin 2θcos 2θsin 4θcos 4θ=4⎝ ⎛⎭⎪⎫1t 2-2t ,其中t = sin 2θcos 2θ=sin 22θ4≤14,则4⎝ ⎛⎭⎪⎫1t 2-2t a 2+4b 24-1≥7. 解法8因为ab -a -2b =0,则2a +1b =1,设a =2cos 2θ,b =1sin 2θ,那么a 2+4b 2=4cos 4θ+4sin 4θ=4⎣⎢⎡(sin 2θ+cos 2θ)2sin 4θ+ ⎦⎥⎤(sin 2θ+cos 2θ)2cos 4θ=4 ⎣⎢⎡sin 4θ+cos 4θ+2sin 2θcos 2θsin 4θ+⎦⎥⎤sin 4θ+cos 4θ+2sin 2θcos 2θcos 4θ=4⎣⎢⎡⎦⎥⎤1+t 4+2t 2+2t 2+1t 4+1a 2+4b 24-1≥7. 说明:也可利用幂平均不等式得到如下结果:4cos 4θ+4sin 4θ= 4⎣⎢⎡⎦⎥⎤13(sin 2θ)2+13(cos 2θ)2≥4(1+1)3(sin 2θ+cos 2θ)2=32. 变式联想变式1答案:2 2.解析:x 1-x 2+y 1-y 2=x y 2+yx 2≥21xy =2xy≥2x 2+y 22= 2 2. 变式2答案:3+10.解析:由题意可知y -x =1y +9x ,即y -1y =x +9x ≥6,当且仅当x =3时,取等号;由y>0,y -1y ≥6可知y 2-6y -1≥0,解得y≥3+10. 串讲激活串讲1答案:⎣⎢⎡⎦⎥⎤1,83.解析:设xy =k ,代入整理得10=⎝ ⎛⎭⎪⎫1+4k x +3k +2x ≥2⎝ ⎛⎭⎪⎫1+4k (3k +2),解得1≤k≤83.串讲2 答案:22. 解法1令a =1-x ,b =x +3,则a 2+b 2=4.又由-1≤x≤3可知a ,b ∈[0,2].由(a +b )24=a 2+2ab +b 2a 2+b 2=1+2ab a 2+b 2,当ab =0时,a +b =2;当ab≠0,(a +b )24=1+2aba 2+b 2=1+2b a +a b,由b a +a b ≥2得1<(a +b )24≤2,即2<a +b≤2 2.综上可知,a +b∈[2,22],m M =22.解法2y 2=4+24-(x +1)2∈[4,8],∵y ≥0,∴y ∈[2,22]∴m=α,M =22,∴m M =22. 解法3设1-x =2cos α,3+x =2sin α,α∈[0,π2],∴y =22sin ⎝⎛⎭⎪⎫α+π4α+π4∈⎣⎢⎡⎦⎥⎤π4,3π4,∴y ∈[2,22],下面同解法2. 新题在线答案:14.解析:由a -3b +6=0可知a -3b =-6,且2a +18b =2a +2-3b ,因为对于任意x ,2x>0恒成立,结合均值不等式的结论可得2a+2-3b≥2×2a ×2-3b=2×2-6=14,当且仅当⎩⎪⎨⎪⎧2a =2-3b,a -3b =6,即⎩⎪⎨⎪⎧a =3,b =-1,时等号成立.综上可得2a +18b 的最小值为14.。
高考数学二轮复习不等式
(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,
高考数学《基本不等式》专题复习教学案
高考数学《基本不等(Deng)式》专题复习教学案a +b 2≤ab 本不等式(Ji)一、基【知(Zhi)识梳理】 .>0b >0,a 1.基本不等式成立(Li)的条件: 时取等号.b =a 2.等号(Hao)成立的条件:当且仅当 二、几个重要的不等式).R ∈b ,a (a2+b22≤2⎝ ⎛⎭⎪⎫a +b 2);R ∈b ,a (2⎝ ⎛⎭⎪⎫a +b 2≤ab 同号).b ,a (2≥a b+b a );R ∈b ,a (ab 2≥2b +2a 三、算术平均数与几何平均数两个正数的算,基本不等式可叙述为:ab ,几何平均数为a +b2的算术平均数为b ,a >0,则b >0,a 设术平均数不小于它们的几何平均数. 四、利用基本不等式求最值问题 已知x >0,y >0,则:.(简记:积定和最小)p 有最小值是2y +x 时,y =x ,那么当且仅当p 是定值xy (1)如果积 .(简记:和定积最大)p24有最大值是xy 时,y =x ,那么当且仅当p 是定值y +x (2)如果和 【基础自测】1.函数y =x +1x(x >0)的值域为________解析: ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.答案:[2,+∞)2.已知m >0,n >0,且mn =81,则m +n 的最小值为_______解析: ∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立. 3.已知0<x <1,则x (3-3x )取得最大值时x 的值为_______解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10. 则(Ze)2x +5y≥210xy =2,故(Gu)⎝ ⎛⎭⎪⎫2x +5y min =2,当(Dang)且仅当(Dang)2y =5x 时(Shi)取等号.又xy =10,即x =2,y =5时等号成立. 答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎪⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a2+b22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.【考点探究】考点一利用基本不等式求最值【例1】 (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是_______ [解] (1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15·(3x +4y )·⎝ ⎛⎭⎪⎫1y +3x =15⎝ ⎛⎭⎪⎫3x y +4+9+12y x =135+15⎝ ⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.【一题多变】本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x·3y,∴xy ≥1225,当且仅当x =3y 时取等号.【由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.【以题试(Shi)法】1.(1)当(Dang)x >0时(Shi),则(Ze)f (x )=2xx2+1的最大(Da)值为________. (2)(2011·天津高考)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x2+1=2x +1x ≤22=1,当且仅当x =1x,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a +9b ≥2×32=18. 即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.考点二 多元均值不等式问题【例2】设x ,y ,z 为正实数,满足x -2y +3z =0,则y2xz 的最小值是________.解析:由已知条件可得y =x +3z2,所以y2xz =x2+9z2+6xz 4xz =14⎝ ⎛⎭⎪⎫x z +9z x +6≥14⎝ ⎛⎭⎪⎫2x z ×9z x +6=3, 当且仅当x =y =3z 时,y2xz取得最小值3.【以题试法】若且,求的最小值 .考点三 基本不等式的实际应用 【例3】 (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设(She)在第一象限有一飞行物(忽略其(Qi)大小),其(Qi)飞行高度为(Wei)3.2千(Qian)米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[解] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k ≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6. 所以当a 不超过6千米时,可击中目标.【由题悟法】 利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【以题试法】2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2 150x ·16x =10(当且(Qie)仅当x =30时,等(Deng)号成立),∴a ≥10.2. 因此当(Dang)该商品明年的销售量a 至少(Shao)应达到(Dao)10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.【巩固练习】1.函数y =x2+2x -1(x >1)的最小值是_______解析:∵x >1,∴x -1>0.∴y =x2+2x -1=x2-2x +2x +2x -1=x2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2x -13x -1+2=23+2. 当且仅当x -1=3x -1,即x =1+3时,取等号.2.设a >0,b >0,且不等式1a +1b +ka +b≥0恒成立,则实数k 的最小值等于_______解析:由1a +1b +k a +b ≥0得k ≥-a +b 2ab ,而a +b 2ab =b a +ab +2≥4(a =b 时取等号),所以-a +b 2ab ≤-4,因此要使k ≥-a +b 2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4. 3.求函数的值域. 解:令,则2254x y x +=+因,但解得不在区间,故等号不成立,考虑单调性.因为在区间单调递增,所以在其子区间[)2,+∞为单调递增函数,故.所以,所求函数的值域为.4、求函数的最小值.解析:21(1)2(1)y x x x =+>-,当且(Qie)仅当即(Ji)时(Shi),“=”号成立,故此函数最小(Xiao)值是. 5.求(Qiu)函数的最大值 解:,∴,当且仅当即时,“=”号成立,故此函数最大值是16.已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. 解:x ·12 +y 22≤x 2+(12 +y 22 )22 =x 2+y 22 +122 =34即x 1+y 2 = 2 ·x12 +y 22 ≤ 342 7.已知a>b>0,求a+的最小值.8.已知函数f (x )=x +px -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.9.已知x >0,a 为大于2x 的常数,(1)求函数y =x (a -2x )的最大值; (2)求y =1a -2x -x 的最小值.解:(1)∵x >0,a >2x , ∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a28,当且仅当x =a 4时取等号,故函数的最大值为a28. (2)y =1a -2x +a -2x 2-a 2≥212-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2.10.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值.解:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由(You)题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+2 2y x ·9xy=19+62,当(Dang)且仅当2y x =9xy,即(Ji)9x 2=2y 2时取等(Deng)号,故x +2y 的(De)最小值为19+62. 11.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围;(2)求x +y 的取值范围. 解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x>0,0<x <30.(1)xy =-x2+30x x +2=-x2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18].(2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。
2019-2020年高考数学二轮复习 专题4 不等式 第二讲 线性规划、基本不等式与不等式的证明 理
2019-2020年高考数学二轮复习 专题4 不等式 第二讲 线性规划、基本不等式与不等式的证明 理线性规划问题的解题步骤为:1.设出变量x ,y ,列出变量x ,y 的线性约束条件,确定目标函数. 2.作出可行域和目标函数值为0的直线l .3.利用直线l 确定最优解对应的点,从而求出最优解.1.基本不等式:a +b2≥ ab .(1)基本不等式成立的条件:a ,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值.两个正数的和为常数时,它们的积有最大值.2.几个重要的不等式. (1)a 2+b 2≥2ab (a ,b ∈R). (2)b a +a b ≥2(a 与b 同号).(3)a +1a≥2(a >0),a +1a≤-2(a <0).(4)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R).判断下面结论是否正确(请在括号中打“√”或“×”).(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.(×)(2)不等式x2-y2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y轴的两块区域.(√)(3)不等式组表示的平面区域是如图所示的阴影部分.(×)(4)线性目标函数取得最值的点一定在可行域的顶点或边界上.(√)(5)若a>0,则a3+1a2的最小值为2a.(×)(6)a2+b2+c2≥ab+bc+ca(a,b,c∈R).(√)1.设x,y满足则z=x+y(B)A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值解析:画出不等式表示的平面区域,如图,由z=x+y,得y=-x+z,令z=0,画出y=-x的图象,当它的平行线经过A(2,0)时,z取得最小值,最小值为z=2,无最大值.故选B.2.(xx·天津卷)设变量x ,y 满足约束条件 则目标函数z =x +6y的最大值为(C )A .3B .4C .18D .40解析:由题意作出不等式组表示的平面区域如图阴影部分所示.作直线x +6y =0并向右上平移,由图可知,过点A (0,3)时z =x +6y 取得最大值,最大值为18.3.若x >0,则x +2x 的最小值为22.解析:∵x >0⇒x +2x≥22,当且仅当x =2x⇒x =2时取等号.4.(xx·天津卷)已知a >0,b >0,ab =8,则当a 的值为4时,log 2a ·log 2(2b )取得最大值.解析:由于a >0,b >0,ab =8,所以b =8a.所以log 2a ·log 2(2b )=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a )=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b )取得最大值4.一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则有(A ) A .f (x )>g (x ) B .f (x )=g (x ) C .f (x )<g (x )D .不能确定f (x )与g (x )的大小关系解析:∵f (x )-g (x )=x 2-2x +2=(x -1)2+1>0. ∴f (x )>g (x ).2.(xx·福建卷)若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于(C ) A .2 B .3 C .4 D .5解析:将(1,1)代入直线x a +y b=1,得1a +1b=1,a >0,b >0,故a +b =(a +b )(1a +1b )=2+b a +ab≥2+2=4,等号当且仅当a =b 时取到,故选C.3.若a >b >0,c <d <0,则一定有(B ) A.a d >b c B.a d <b c C.a c >b dD.a c <b d解析:∵c <d <0,∴-c >-d >0,-1d >-1c >0.又a >b >0,∴-a d >-b c >0,∴ad<bc.故选B. 4.不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为(A )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)解析:因为-4≤|x +3|-|x -1|≤4,对|x +3|-|x -1|≤a 2-3a 对任意x 恒成立,所以a 2-3a ≥4,解得a ≥4或a ≤-1.5.(xx·北京卷)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为(D )A .0B .1 C.32D .2解析:作出不等式组所表示的平面区域,如下图.作直线x +2y =0,向右上平移,当直线过点A (0,1)时,z =x +2y 取最大值,即z max=0+2×1=2.6. (xx·福建卷)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是(C )A .80元B .120元C .160元D .240元解析:设长方体底面边长分别为x ,y ,则y =4x,所以容器总造价为z =2(x +y )×10+20xy =20⎝⎛⎭⎪⎫x +4x +80,由基本不等式得,z =20⎝ ⎛⎭⎪⎫x +4x +80≥160,当且仅当底面为边长为2的正方形时,总造价最低.故选C.二、填空题7.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为22.解析:x 2+2y 2≥2x 2·2y 2=22·(xy )2=2 2.当且仅当x 2=2y 2时等号成立.8.(xx·新课标Ⅰ卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为3.解析:画出可行域如图阴影所示,∵ y x表示过点(x ,y )与原点(0,0)的直线的斜率,∴ 点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴ A (1,3). ∴ y x的最大值为3. 三、解答题9.若对一切x >2均有不等式x 2-2x -8≥(m +2)x -m -15成立,求实数m 的取值范围. 解析:由x 2-2x -8≥(m +2)x -m -15, 得x 2-4x +7≥m (x -1),∴对一切x >2均有不等式x 2-4x +7x -1≥m 成立.∴m 应小于或等于f (x )=x 2-4x +7x -1(x >2)的最小值.又f (x )=x 2-4x +7x -1=(x -1)+4x -1-2≥2(x -1)·4x -1-2=2, 当且仅当x -1=4x -1,即x =3时等号成立. ∴f (x )min =f (3)=2.故m 的取值范围为(-∞,2].10.某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的,是面积为200平方米的十字形地带.计划在正方MNPQ 上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.(1)设总造价是S 元,AD 长为x 米,试建立S 关于x 的函数关系式; (2)当x 为何值时,S 最小?并求出最小值.解析:(1)设AM =y ,则x 2+4xy =200. ∴y =50x -x 4.∴S =4 200x 2+210×4×xy +80×4×12y 2=4 000x 2+4×105×1x 2+38 000(x >0).(2)S =4 000x 2+4×105×1x2+38 000≥24 000x 2×400 000x2+38 000=118 000, 当且仅当x =10时等号成立,即x =10米时,S 有最小值118 000元.。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三
第四讲不等式年份卷别考查角度及命题位置命题分析2018Ⅰ卷线性规划求最值·T131.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查.2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查.3.不等式的解法多与集合、函数、解析几何、导数交汇考查.Ⅱ卷线性规划求最值·T142017Ⅰ卷线性规划求最值·T14Ⅱ卷线性规划求最值·T5Ⅲ卷线性规划求最值·T132016Ⅰ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T8线性规划的实际应用·T16Ⅱ卷一元二次不等式的解法、集合的并集运算·T2Ⅲ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T6线性规划求最值·T13不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,那么其解集在两根之外;如果a与ax2+bx+c异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·某某一模)a >b >0,c <0,以下不等关系中正确的是( ) A .ac >bcB .a c>b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,假设a =12,b =14,c =-12,那么log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 那么A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·某某四校联考)不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,那么m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,那么实数a 的取值X 围为( ) A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),那么可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+tt2,故只要求解h (t)=-1+tt 2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值X 围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,那么使得f (x )≤1成立的x 的取值X 围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值X 围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的X 围,谁就是变量,求谁的X 围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正〞“二定〞“三相等〞.所谓“一正〞指正数,“二定〞是指应用定理求最值时,和或积为定值,“三相等〞是指等号成立.[全练——快速解答]1.(2018·某某模拟)x >0,y >0,且4x +y =xy ,那么x +y 的最小值为( ) A .8B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,那么x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=〞,应选B.答案:B2.(2017·高考某某卷)假设a ,b ∈R ,ab >0,那么a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考某某卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购买600x 次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:假设无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,那么z =x -y 的取值X 围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值X 围是[-3,2].答案:B2.平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12B. 3C.32D.34解析:建立如下图的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,应选D. 答案:D3.(2018·某某模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.生产一把椅子需要木工4个工作时,漆工2个工作时;生产一X 桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一X 桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y X 桌子,利润为z 元,那么得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,那么(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y ⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.应选A. 答案:A2.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,那么a =________.解析:如下图,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)假设x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,那么z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,那么以下等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:假设a >b >0,那么a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.应选B. 答案:B2.b >a >0,a +b =1,那么以下不等式中正确的是() A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝ ⎛⎭⎪⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,应选C. 答案:C3.在R 上定义运算:x y =x (1-y ).假设不等式(x -a )(x -b )>0的解集是(2,3),那么a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C 4.a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,那么a 的取值X 围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,那么z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.应选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,那么不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (xx <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,那么实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝ ⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.假设对任意正实数x ,不等式1x 2+1≤ax恒成立,那么实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·某某一模)实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,那么z =x 2+y 2的取值X围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,应选C.答案:C10.(2018·某某二模)假设关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),那么x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,那么租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,那么约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·某某模拟)点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),那么OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,应选C.答案:C二、填空题13.(2018·某某模拟)假设a >0,b >0,那么(a +b )·⎝ ⎛⎭⎪⎫2a +1b 的最小值是________.解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,那么z =x +y的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·某某模拟)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,那么z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,那么有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12516.a >b >1,且2log a b +3log b a =7,那么a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。
高考数学第二轮专题复习教案基本不等式
第22课时 基本不等式一、基础练习1、下列结论正确的有__________(填序号)(1)当x>0且x ≠1时log 2x+log x 2有最小值为2(22+≥(3)0<x<2π时,sinx+1sin x最小为2 (4)当x>0时,x+2214x x x ++有最小值6 2、当x 、y 、z ∈R +时,x-2y+3z=0,则2y xz 最小值是_________ 3、x>0,y>0,且x+y=5,则lgx+lgy 最大为_________,11x y+最小为_________ 4、0<y 2x π≤<且tanx=3tany ,则x-y 最大为__________5、a>0,b>0且a+b=1,则2211()()a b a b +++最小为__________6、m 2+n 2=1,x 2+y 2=9,mx+ny 最大为_________二、典型例题例1:对一切实数x ,若二次函数f(x)=ax 2+bx+c (a<b )的值恒为非负数,求M=a b c b a++-的最小值。
例2:某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元。
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不小于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
例3:设计一幅宣传画,要求画面面积为4840cm 2,画面的宽与高的比为λ(0<λ<1),画的上下各留8cm 的空白,左右各留5cm 的空白,怎样确定高与宽的尺寸,能使宣传画所用纸张面积最小?如果要求λ∈23[,]34,那么λ为何值时,能使宣传画所用纸张面积最小?三、巩固练习:1、若a ,b ,c>0且2a+b+c 最小值为___________2、若a>0,b>0,c>0,且a(a+b+c)+bc ≥16,2a+b+c ≤8,则a+b=_________3、若0<x<2π时,函数f(x)=21cos 28sin sin 2x x x ++最小值是________ 4、直角三角形ABC 斜边长为1,则其内切圆半径最大为________5、f(x)=log a (x+a x-4)(a>0且a ≠1)值域为R ,则a 的取值范围是__________ 6、设F 1、F 2分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上任一点,若212||||PFPF最小为8a,则该双曲线离心率e的取值范围是_____________。
不等式恒成立或有解问题——高三二轮数学复习
数学(理)
第 15 页
∴h(x)>h(1)=0,即a≤0时不满足题意.
当a>0时,由h′(x)=0,得x=1a.
①若a∈(0,1),则
1a ∈(1,+∞),令h′(x)>0得1<x<
1a ,令h′(x)<0得x>
1 a
,故h(x)
在1a,+∞上为减函数,在1,1a上为增函数. ∴存在x0∈1,+∞,使得h(x0)>h(1)=0,
数学(理)
∴g(x)min=g(e)=ae-6a-3,g(x)max=max{g(1),g(e2)}=-6a-3. ∴2ae-12a-6<-6a-3,则a>2e-3 6. 又a<0,从而2e-3 6<a<0, 即a的取值范围是2e-3 6,0.
第9 页
数学(理)
因为h(1)=e-3<0,h(2)=e2-4>0, 所以存在唯一一个x0使得h(x0)=0,且1<x0<2. 所以当x∈(0,x0)时,h(x)<0,g′(x)<0; 当x∈(x0,+∞)时,h(x)>0,g′(x)>0. 所以g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
第4 页
数学(理)
第5 页
令h(x)=ex-12x2-x-1(x>0),则h′(x)=ex-x-1, 令H(x)=ex-x-1(x>0),则H′(x)=ex-1>0, 所以H(x)在(0,+∞)上是增函数,且H(0)=1-0-1=0,所以h′(x)>0, 故函数h(x)在(0,+∞)上单调递增, ∴h(x)>h(0)=0,即ex-12x2-x-1>0恒成立, 故当x∈(0,2)时,g′(x)>0,g(x)单调递增; 当x∈(2,+∞)时,g′(x)<0,g(x)单调递减.
2023年人教版高考数学总复习第一部分考点指导第二章不等式第一节不等式性质与基本不等式
a+b 3.基本不等式 ab ≤ 2 【1】 (1)基本不等式成立的条件:a>0,b>0.
y-9
y-9
y-9
y-9
以 y-9>0,
所以 y-9+y-9 9 ≥2 (y-9)·y-9 9 =6. 当且仅当 y-9= 9 ,即 y=12 时等号成立,此时 x=4,所以当 x=4,y=12
y-9
时,x+y 取得最小值 16.
方法三:(配凑法)由1x +9y =1,得 y+9x=xy, 所以(x-1)(y-9)=9.所以 x+y=10+(x-1)+
A.若 a>b,则a1 <1b
B.若 a>b,则 ac2≥bc2
C.若 a>0>b,则 a2<-ab
D.若 c>a>b>0,则 a > b c-a c-b
【解析】选 BD.A.根据 a>b,取 a=1,b=-1,则1a <1b 不成立,故 A 错误;
B.因为 a>b,所以由不等式的基本性质知 ac2≥bc2 成立,故 B 正确;
配凑法就是将相关代数式进行适当的变形,通过_添__项__、___拆__项____等方法凑成_和__ 为定值或_积___为定值的形式,然后利用基本不等式求解最值的方法.配凑法的实
质是代数式的灵活变形,拼系数、凑常数是关键.
2.常数代换法求最值的步骤 (1)根据已知条件或其变形确定定值(常数).
m+n=3
3α-β=(m+n)α+(n-m)β.所以
高考数学复习专题 基本不等式
高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。
2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。
3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。
2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。
4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。
2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。
3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。
4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。
5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。
6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。
7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。
二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。
题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。
2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。
高三数学总复习 不等式基本性质教案
城东蜊市阳光实验学校师范大学附属中学高三数学总复习教案:不等式根本性质教材:不等式根本性质〔续完〕目的:继续学习不等式的根本性质,并能用前面的性质进展论证,从而让学生清楚事物内部是具有固有规律的。
过程:一、复习:不等式的根本概念,充要条件,根本性质1、2二、1.性质3:假设b a >,那么c b c a +>+〔加法单调性〕反之亦然证:∵0)()(>-=+-+b a c b c a ∴c b c a +>+ 从而可得移项法那么:b c a b c b b a c ba ->⇒-+>-++⇒>+)()( 推论:假设b a >且dc >,那么d b c a +>+〔相加法那么〕证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒> 推论:假设b a>且d c <,那么d b c a ->-〔相减法那么〕 证:∵d c <∴d c ->-d b c a d c b a ->-⇒⎩⎨⎧->-> 或者者证:)()()()(d c b a d b c a ---=--- d c b a <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0……… 2.性质4:假设b a >且0>c ,那么bc ac >;假设b a >且0<c 那么bc ac <〔乘法单调性〕证:c b a bcac )(-=-∵b a >∴0>-b a 根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a 即:bc ac >0<c 时0)(<-c b a 即:bc ac <推论1假设0>>b a 且0>>d c ,那么bd ac >〔相乘法那么〕 证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0, 推论1’〔补充〕假设0>>b a 且d c <<0,那么d b c a >〔相除法那么〕证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a d c d b c a > 推论2假设0>>b a ,那么n n b a >)1(>∈n N n 且3.性质5:假设0>>b a ,那么n n b a >)1(>∈n N n 且 证:〔反证法〕假设n n b a ≤ 那么:假设ba b a b a b a n n n n =⇒=<⇒<这都与b a >矛盾∴n n b a > 三、小结:五个性质及其推论口答P8练习1、2习题4四、作业P8练习3习题5、6五、供选用的例题〔或者者作业〕1.0>>b a ,0<<d c ,0<e ,求证:db ec a e ->- 证:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000ed b c a d b c a d c b a d be c a e ->-2.假设R b a ∈,,求不等式b a b a 11,>>同时成立的条件 解:00011<⇒⎪⎭⎪⎬⎫<-⇒>>-=-ab a b b a ab a b b a 3.设R c b a ∈,,,0,0<=++abc c b a 求证0111>++c b a 证:∵0=++c b a ∴222c b a ++0222=+++bc ac ab又∵0≠abc ∴222c b a++>0∴0<++bc ac ab ∵abcca bc ab c b a ++=++1110<abc ∴0<++bc ac ab ∴0111>++cb a 4.||||,0b a ab >>比较a 1与b1的大小 解:a 1b 1aba b -=当0,0>>b a 时∵||||b a >即b a > 0<-a b 0>ab ∴0<-ab a b ∴a 1<b1 当0,0<<b a 时∵||||b a >即b a <0>-a b 0>ab ∴0>-ab a b ∴a 1>b 1 5.假设0,>b a 求证:a b ab >⇔>1 解:01>-=-aa b a b ∵0>a ∴0>-a b ∴b a < 0>-⇒>a b a b ∵0>a ∴01>-=-a b a a b ∴1>ab 6.假设0,0<<>>dc b a 求证:d b c a ->-ππααsin sin log log 证:∵1sin 0<<α>1∴0log sin <πα 又∵0,0>->->>d c b a ∴d b c a ->-∴d b c a -<-11∴原式成立。
2023高考数学二轮复习专题复习03 等式与不等式的性质 (解析版)
专题03等式与不等式的性质【考点预测】1.比较大小基本方法(1)基本性质bc【方法技巧与总结】1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.【题型归纳目录】 题型一:不等式性质的应用题型二:比较数(式)的大小与比较法证明不等式 题型三:已知不等式的关系,求目标式的取值范围 题型四:不等式的综合问题【典例例题】题型一:不等式性质的应用例1.(2022·北京海淀·二模)已知,x y ∈R ,且0x y +>,则( )A .110x y +>B .330x y +>C .lg()0x y +>D .sin()0x y +>【答案】B 【解析】 【分析】取特殊值即可判断A 、C 、D 选项,因式分解即可判断B 选项. 【详解】对于A ,令11,2x y ==-,显然01112yx +=-<,错误;对于B ,()()()23322213024x y x y x xy y x y x y y ⎡⎤⎛⎫+=+-+=+-+≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,又1,02x y y ==不能同时成立,故()2213024x y x y y ⎡⎤⎛⎫+-+>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,正确;对于C ,取1,0x y ==,则lg()0x y +=,错误; 对于D ,取1,3x y ==,则sin()sin 40x y +=<,错误. 故选:B.例2.(2022·山东日照·二模)若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是( ) A .a c b c +<+ B .11a b< C .ac bc > D .b a c ->【答案】A【解析】 【分析】由不等式的基本性质和特值法即可求解. 【详解】对于A 选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a b a c b c <⇒+<+,A 选项正确;对于B 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若2a =-,1b =-,则11a b>,B 选项错误; 对于C 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,0c >,0a b ac bc <<⇒<,C 选项错误;对于D 选项,因为0a b b a <⇒->,0c >,所以无法判断b a -与c 大小,D 选项错误. 例3.(2022·山西·模拟预测(文))若0αβ<<,则下列结论中正确的是( ) A .22αβ< B .2βααβ+>C .1122αβ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .sin sin αβ<【答案】B 【解析】 【分析】对于A ,利用不等式的性质判断,对于B ,利用基本不等式判断,对于C ,利用指数函数的性质判断,对于D ,举例判断 【详解】∵0αβ<<,∴0αβ->->,∴22αβ>,故A 错误;∵0αβ<<,∴0,0αββα>>,∴2βαααββ+≥=. ∵αβ≠,∴2βααβ+>,故B 正确; ∵101,2αβ<<<,∴1122αβ>⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.故C 错误;令,2παπβ=-=-,此时sin 0,sin 1,sin sin αβαβ==->.故D 错误.故选:B .(多选题)例4.(2022·辽宁·二模)己知非零实数a ,b 满足||1a b >+,则下列不等关系一定成立的是( ) A .221a b >+B .122a b +>C .24a b >D .1ab b>+ 【答案】ABC 【解析】 【分析】利用不等式的性质及特殊值法判断即可. 【详解】解:对于非零实数a ,b 满足||1a b >+,则()22||1a b >+,即2222||11a b b b >++>+,故A 一定成立; 因为1||1122a b a b b +>+≥+⇒>,故B 一定成立;又()2||10b -≥,即212||b b +≥,所以24||4a b b >≥,故C 一定成立; 对于D :令5a =,3b =,满足||1a b >+,此时5143a b b =<+=,故D 不一定成立. 故选:ABC(多选题)例5.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤ B .2a b +≥ C .1a b -> D .3a b -<【答案】ABD 【解析】 【分析】利用基本不等式以及适当的代数式变形即可判断. 【详解】对于A ,由3ab a b ++= ,a b +≥,当且仅当a b = 时等号成立,3ab ∴+≤ ,)310≤ ,1ab ∴≤ ,当且仅当1a b == 时等号成立,故A 正确; 对于B ,由3ab a b ++=,得()()4114,11a b b a ++=∴+=+ , 由基本不等式得)44(1)(1)2122211a b a b a a a +=+++-=++-≥-=++ ,当且仅当a=b =1时成立;故B 正确;对于C ,若1,1,a b == 满足3ab a b ++=,01a b -=<,故C 错误; 对于D ,∵3ab a b ++=,∴3ab a b a b =+++> ,由B 的结论得23a b ≤+< ,()()()()222949439a b a b ab a b a b --=+--=+--+-⎡⎤⎣⎦()()()()2421730a b a b a b a b =+++-=+++-< ,()29,3a b a b ∴--<< ,故D 正确; 故选:ABD.(多选题)例6.(2022·广东汕头·二模)已知a ,b ,c 满足c <a <b ,且ac <0,那么下列各式中一定成立的是( ) A .ac (a -c )>0 B .c (b -a )<0 C .22cb ab < D .ab ac >【答案】BCD 【解析】 【分析】利用不等式的基本性质求解. 【详解】解:因为a ,b ,c 满足c <a <b ,且ac <0, 所以0,0,0,0,0c a b a c b a <>>->->,所以ac (a -c )<0 ,c (b -a )<0,22cb ab <,ab ac >, 故选:BCD(多选题)例7.(2022·福建三明·模拟预测)设a b c <<,且0a b c ++=,则( ) A .2ab b < B .ac bc < C .11a c< D .1c ac b-<- 【答案】BC 【解析】 【分析】根据条件可得0<<a c ,b 的符号不能确定,然后依次判断即可. 【详解】因为a b c <<,0a b c ++=,所以0<<a c ,b 的符号不能确定, 当0b =时,2ab b =,故A 错误,因为a b <,0c >,所以ac bc <,故B 正确, 因为0<<a c ,所以11a c<,故C 正确, 因为a b <,所以a b ->-,所以0c a c b ->->,所以1c ac b->-,故D 错误, 故选:BC【方法技巧与总结】1.判断不等式是否恒成立,需要给出推理或者反例说明. 2.充分利用基本初等函数性质进行判断.3.小题可以用特殊值法做快速判断.题型二:比较数(式)的大小与比较法证明不等式例8.(2022·全国·高三专题练习(文))设2312m ⎛⎫= ⎪⎝⎭,1312n ⎛⎫= ⎪⎝⎭,2315p ⎛⎫= ⎪⎝⎭,则( ) A .m p n << B .p m n <<C .n m p <<D .p n m <<【答案】B 【解析】 【分析】根据指数函数12xy ⎛⎫= ⎪⎝⎭的单调性判断n m >,再由作商法判断m p >.【详解】因为函数12xy ⎛⎫= ⎪⎝⎭是减函数,所以12331122⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以n m > 2320323155212215⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=>= ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭,所以m p >, 所以n m p >> 故选:B 【点睛】本题主要考查了利用指数函数的单调性比较大小,属于中档题. 例9.(2022·全国·高三专题练习)若a =ln 22,b =ln 33,则a ____b (填“>”或“<”). 【答案】< 【解析】 【分析】作商法比较大小,结合对数的运算律和性质,即得解 【详解】易知a ,b 都是正数,b a =232ln 3ln 3ln 93ln 2ln 2ln8===log 89>1,所以b >a .故答案为:<例10.(2022·全国·高一)(1)试比较()()15x x ++与()23x +的大小;(2)已知a b >,11a b<,求证:0ab >.【答案】(1)()()()2153x x x ++<+;(2)证明见解析. 【解析】 【分析】(1)()()15x x ++与()23x +作差,判断差的正负即可得出结论;(2)结合不等式的性质分析即可证出结论. 【详解】(1)由题意,()()()2153x x x ++-+ 22656940x x x x =++---=-<,所以()()()2153x x x ++<+. (2)证明:因为11a b<,所以110a b -<,即0b aab -<, 而a b >,所以0b a -<,则0ab >.得证.例11.(2022·湖南·高一课时练习)比较()()213a a +-与()()62745a a -++的大小. 【答案】()()213a a +-<()()62745a a -++ 【解析】 【分析】做差比较大小即可. 【详解】()()()()2221362745(253)(253)60a a a a a a a a +---++=----+=-<⎡⎤⎣⎦,∴()()213a a +-<()()62745a a -++.例12.(2022·湖南·高一课时练习)比较下列各题中两个代数式值的大小:(1))21与)21;(2)()()2211xx ++与()()2211xx x x ++-+.【答案】(1)221)1)≤(2)()()2211x x ++()()2211x x x x ≤++-+【解析】 【分析】利用作差法得出大小关系. (1)))()()221111m m -=--+=-因为0m ≥,所以221)1)0-≤,当且仅当0m =时,取等号.即221)1)≤ (2)()()2211xx ++()()2211x x x x -++-+()()2222222121x x x x x ⎡⎤⎡⎤=+--+-=-⎢⎥⎢⎥⎣⎦⎣⎦因为0x ≥,所以()()2222221210x x x x ⎡⎤⎡⎤+--+-≤⎢⎥⎢⎥⎣⎦⎣⎦,当且仅当0x =时,取等号.故()()2211x x ++()()2211x x x x ≤++-+.【方法技巧与总结】比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性. 比较法又分为作差比较法和作商比较法. 作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论. 作商比较大小(一般用来比较两个正数的大小)的步骤是: (1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法,作商法比较大小的原理是:若0,0a b >>,则1b b a a >⇔>;1b b a a <⇔<;1bb a a =⇔=;若0,0a b <<,则1b b a a >⇔<;1b b a a <⇔>;1bb a a=⇔=. 题型三:已知不等式的关系,求目标式的取值范围例13.(2022·浙江·模拟预测)若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围( )A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞【答案】A 【解析】 【分析】设2()(52)x y m x y n x y +=+++,求出,m n ,再根据不等式的性质即可得出答案. 【详解】解:设2()(52)x y m x y n x y +=+++,则5221m n m n +=⎧⎨+=⎩,解得13m n ==,故112()(52)33x y x y x y +=+++,又因1522x y x y +≥⎧⎨+≥⎩,所以()()1112,523333x y x y +≥+≥, 所以21x y +≥. 故选:A.例14.(2022·全国·高三专题练习)已知12a ≤≤,14b -≤≤,则2a b -的取值范围是( ) A .724a b -≤-≤ B .629a b -≤-≤ C .629a b ≤-≤ D .228a b -≤-≤【答案】A 【解析】 【分析】先求2b -的范围,再根据不等式的性质,求2a b -的范围. 【详解】因为14b -≤≤,所以822b -≤-≤, 由12a ≤≤,得724a b -≤-≤. 故选:A.例15.(2022·全国·高三专题练习)若,x y 满足44x y ππ-<<<,则x y -的取值范围是( )A .(,0)2π-B .(,)22ππ-C .(,0)4π-D .(),44ππ-【答案】A 【解析】 【分析】根据不等式的性质,求得0x y -<,且22x y ππ-<-<,即可求解.【详解】由x y <,可得0x y -<, 又由44y ππ-<<,可得44y ππ-<-<,因为44x ππ-<<,可得22x y ππ-<-<,所以02x y π-<-<,即x y -的取值范围是(,0)2π-.故选:A.例16.(2022·全国·高三专题练习(文))已知-3<a <-2,3<b <4,则2a b的取值范围为( )A .(1,3)B .4934⎛⎫ ⎪⎝⎭,C .2334⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 【答案】A 【解析】 【分析】先求出a 2的范围,利用不等式的性质即可求出2a b的范围.【详解】因为-3<a <-2,所以a 2∈(4,9),而3<b <4,故2a b的取值范围为(1,3),故选:A .例17.(2022·江西·二模(文))已知122x y ≤-≤,1231x y -≤+≤,则6x +5y 的取值范围为______. 【答案】[]1,4- 【解析】 【分析】由()652223x y x y x y +=-++结合不等式的性质得出答案. 【详解】解:()652223x y x y x y +=-++,即()()1212223221x y x y +⨯-≤-++≤+⨯ 故6x +5y 的取值范围为[]1,4-. 故答案为:[]1,4-例18.(2022·全国·高三专题练习)设二次函数()()22,f x mx x n m n =-+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________. 【答案】[1,13] 【解析】 【分析】根据二次函数的性质和已知条件得到m 与n 的关系,化简222211m n n m +++后利用不等式即可求出其范围. 【详解】二次函数f (x )对称轴为1x m=, ∵f (x )值域为[]0,∞+,∴0m >且21121001f m n n mn m m mm ⎛⎫⎛⎫=⇒⋅-+=⇒=⇒= ⎪ ⎪⎝⎭⎝⎭,n >0.()12224f m n m n ≤⇒-+≤⇒+≤,∵()()()()2222224422222222221111111m m n n m n m n m n n m m n m n m n +++++++==+++++++ =()22222222222m n m n m n m n +-++++=()()222222222m n mn m n +++-++=()()222222212m n m n m n +++-++=221mn +-∴221211m n mn +-≥-=,22221()34313m n m n +-=+-≤-=, ∴222211m n n m +++∈[1,13]. 故答案为:[1,13].例19.(2022·全国·高三专题练习)已知有理数a ,b ,c ,满足a b c >>,且0a b c ++=,那么ca的取值范围是_________. 【答案】122c a -<<- 【解析】 【分析】根据不等式的性质求得ca的取值范围.【详解】由于a b c >>,且0a b c ++=,所以0,0a c ><,,,2,2cb ac a c a a c a=----<>->-, 1,2,2c a c c a c a -->-><-, 所以122c a -<<-. 故答案为:122c a -<<-例20.(2022·全国·高三专题练习)已知函数()34f x x ax b =++,当[]1,1x ∈-时,()1f x ≤恒成立,则a b +=____________. 【答案】-3 【解析】 【分析】可以取特殊值112x x =±=±,时,()11f x -≤≤恒成立,从而求出a 和b ﹒【详解】当[]1,1x ∈-时,()1f x ≤恒成立,则()11f x -≤≤对任意[]1,1x ∈-恒成立, 则112x x =±=±,时,()11f x -≤≤恒成立1141x a b =-≤++≤,①1141141x a b a b =--≤--+≤⇒-≤+-≤,②1111222a xb =-≤++≤,③111111122222a a xb b =--≤--+≤⇒-≤+-≤,④①+②282253a a -≤+≤⇒-≤≤-:③+④21231a a -≤+≤⇒-≤≤: 3a ∴=-,代入①20b -≤≤: 代入③02b ≤≤: 0b ∴=,30a b ∴=-=,,3a b ∴+=-﹒证明()343f x x x =-满足题意:()343f x x x =-,则()()2112302f x x f x x ''=-=⇒=±,,由表可知,|f (x )|≤1在[-1,1]上恒成立满足题意﹒故答案为:-3. 【点睛】本题考察恒成立问题,根据函数和区间的特殊性,可取特殊值得到关于a 和b 的不等式组,求出a 和b 的范围,从而确定a 和b 的取值﹒例21.(2022·全国·高三专题练习)已知正数a ,b 满足5﹣3a ≤b ≤4﹣a ,ln b ≥a ,则ba的取值范围是___.【答案】[e ,7] 【解析】 【分析】 由题意可求得b a≤7;由ln b ≥a 可得b ba lnb ≥(b 12e ≥),设函数f (x )x lnx =(x 12e ≥),利用其导数可求得f (x )的极小值,也就是ba的最小值.【详解】∵正数a ,b 满足5﹣3a ≤b ≤4﹣a , ∴5﹣3a ≤4﹣a , ∴a 12≥. ∵5﹣3a ≤b ≤4﹣a , ∴5a -34b a a ≤≤-1.从而ba≤7, ∵ln b ≥a ,∴b ba lnb≥(b 12e ≥), 设f (x )x lnx =(x 12e ≥),则f ′(x )21lnx lnx -=(), 当0<x <e 时,f ′(x )<0,当x >e 时,f ′(x )>0,当x =e 时,f ′(x )=0, ∴当x =e 时,f (x )取到极小值,也是最小值. ∴f (x )min =f (e )=e . ∴ba≥e , ∴ba的取值范围是[e ,7]. 故答案为:[e ,7].例22.(2022·全国·高三专题练习)已知,,a b c 均为正实数,且111,,232425abbc ca a bb cc a+++,那么111a b c ++的大值为__________.【答案】4 【解析】 【分析】本题目主要考察不等式的简单性质,将已知条件进行简单变形即可 【详解】因为,,a b c 均为正实数,所以由题可得:22203,04,05a b b c a c b bc ac a +++<≤<≤<≤,即1203b a<+≤,1204c b <+≤,1205a c <+≤,三式相加得:1110312a b c ⎛⎫<++≤ ⎪⎝⎭,所以11104a b c <++≤所以111a b c++的最大值为4故答案为:4【方法技巧与总结】在约束条件下求多变量函数式的范围时,不能脱离变量之间的约束关系而独立分析每个变量的范围,否则会导致范围扩大,而只能建立已知与未知的直接关系.题型四:不等式的综合问题例23.(2022·江西鹰潭·二模(理))已知0,0a b >>,且2e1b aa b -+=+则下列不等式中恒成立的个数是( )①1122b a --< ②11b a a b -<- ③e e b a b a -<- ④5ln 5a b +<+A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】①,分析得到,a b <所以1122b a --<正确;②,构造函数举反例判断得解;③,构造函数利用函数单调性判断得解;④,转化为判断2ln(5)2ln(5)a b +<+再构造函数利用导数判断函数的单调性即得解. 【详解】解:①,若02,e e 1,11b aa ab b -+≥∴≤=∴>+,所以矛盾,所以,a b <所以1122b a --<正确; ②,1111b a a b a b a b -<-∴+<+,,设21(1)(1)(),(0),()x x f x x x f x x x +-'=+>∴=, 所以当(0,1)x ∈时,函数()f x 单调递减,当(1,+)x ∈∞时,函数()f x 单调递增,因为a b <,所以11a b ab+<+不恒成立,如1151,(),1,(1)2()2222a fb f f ====<,所以该命题错误;③,e e a b a b -<-,设()e ,()e 10,()x x g x x g x g x '=-∴=->∴在(0,)+∞单调递增,因为a b <,所以e e a b a b -<-恒成立,所以该命题正确;④,5ln2ln(5)2ln(5)5a a b b +<⇔+<++设()2ln(5)h x x =+所以2()h x '==所以函数()h x 在(0,1)单调递增,在(1,)+∞单调递减. 取131,e,(1)e 3e,1b b a b b -==∴+=+ 设()(1)e ,()(2)e 0x x k x x k x x '=+∴=+>,所以()k x 在(0,)+∞单调递增, (1)2e 3e k =<,2(2)3e 3e k =>,所以存在(1,2),(1)e 3e b b b ∈+>,此时2ln(5)2ln(5)a b +>+ 所以该命题错误. 故选:B例24.(2022·江西·临川一中高三期中(文))若实数a ,b 满足65a a b <,则下列选项中一定成立的有( ) A .a b < B .33a b <C .e 1a b ->D .ln 0a b ⎛⎫< ⎪⎝⎭【答案】D 【解析】 【分析】先由65a a b <得到0a b <<或0b a <<,再利用不等式的性质、函数的单调性进行判定. 【详解】因为65a a b <,所以655()0a a b a a b --=<, 显然0a ≠,所以()0a a b -<,所以00a a b >⎧⎨-<⎩或00a a b <⎧⎨->⎩,即0a b <<或0b a <<;若0a b <<,则a b <,33a b <,0e e 1a b -<=,ln ln10a b ⎛⎫<= ⎪⎝⎭;若0b a <<,则a b >,33a b >,0>e e 1a b -=,ln ln10a b ⎛⎫<= ⎪⎝⎭;即一定成立的是选项D. 故选:D.例25.(2022·湖南·长沙一中高三阶段练习)若m ,n ∈+N ,则下列选项中正确的是( ) A .()()1log 1log 2m m m m ++<+ B .(n m m n mn ⋅≥C .()()22sin 1sin 31n n n n n ππ⋅<+⋅>+ D .1121111n n n n n n n n +++++<++ 【答案】C 【解析】 【分析】对于A ,作商比较,对于B ,令1,2m n ==判断,对于C ,利用在单位圆中,内接正n 边形的面积小于内接正()1n +边形的面积判断,对于D ,利用放缩法判断 【详解】解:对于A 选项,由于m ,n ∈+N ,故由对数的定义得2,N m m +≥∈,()()1log 10,log 20m m m m ++>+>, 所以()()()()211111log 2log 2log log 2log log 12m m m m m m m m m m m m ++++++++⎛⎫=+⋅≤ ⎪+⎝⎭()()()22211log 1log2144m m m m m ++⎡⎤++⎣⎦=<=,所以()()1log 1log 2m m m m ++>+,故A 错误; 对于B 选项,令1,2m n ==,则(21122,n m m n mn =⨯==⋅(n m m n mn <⋅B 错误;对于C 选项,因为,在单位圆中,内接正n 边形的面积小于内接正()1n +边形的面积, 所以()112π12π11sin 111sin 221n n S n S n n n +=⋅⋅⋅⋅<=+⋅⋅⋅⋅+,故C 正确;对于D 选项,由于112111,111n n n n n n n n n +++++===++,故D 错误. 故选:C(多选题)例26.(2022·江苏连云港·模拟预测)已知0,0a b >>,直线2y x a =+与曲线1e 1x y b -=-+相切,则下列不等式一定成立的是( ) A .19ab ≤B .219a b+≥CD【答案】BCD 【解析】【分析】根据导数的几何意义得21a b +=,再根据基本不等式与柯西不等式可判断出答案. 【详解】设切点为00(,)x y ,因为1e x y -'=,所以01e 1x -=,得01x =, 所以122a b +=-,所以21a b +=, 对于 A,12a b =+≥18ab ≤,当且仅当11,42a b 时,等号成立,故A 不正确; 对于B,212122()(2)55b a a b a b a b a b+=++=++≥+9=,当且仅当13a b ==时,等号成立,故B 正确;对于C=25a =,15b =时,等号成立,故C 正确;对于D,22222(12⎡⎤⎡⎤≤+⋅+⎢⎥⎣⎦⎣⎦33(2)22a b =+⋅=, 所以,又21a b +=,即12,63a b ==时,等号成立. 故选:BCD(多选题)例27.(2022·辽宁辽阳·二模)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤ C≥D .412528a b +≥ 【答案】BD 【解析】 【分析】由不等式的性质与基本不等式对选项逐一判断 【详解】对于A ,02a <<,()()42344,2a b a a a -=--=-∈-,所以12416a b -<<,故A 错误,对于B ,420a b =+≥>,即0<02ab ,()222log log log 1a b ab +=≤,故B 正确,对于C,228a b =++≤C 错误,对于D,4122171725288488a b a b b a a b a b a b ++⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当825a b ==时,等号成立,故D 正确. 故选:BD(多选题)例28.(2022·重庆八中模拟预测)已知0a >,0b >,且3ab a b ++=,则下列不等关系成立的是( ) A .1ab ≤ B .2a b +≥ C .1a b -> D .3a b -<【答案】ABD 【解析】 【分析】利用基本不等式以及适当的代数式变形即可判断. 【详解】对于A ,由3ab a b ++= ,a b +≥,当且仅当a b = 时等号成立,3ab ∴+≤ ,)310≤ ,1ab ∴≤ ,当且仅当1a b == 时等号成立,故A 正确; 对于B ,由3ab a b ++=,得()()4114,11a b b a ++=∴+=+ , 由基本不等式得)44(1)(1)2122211a b a b a a a +=+++-=++-≥-=++ ,当且仅当a=b =1时成立;故B 正确;对于C ,若1,1,a b == 满足3ab a b ++=,01a b -=<,故C 错误; 对于D ,∵3ab a b ++=,∴3ab a b a b =+++> ,由B 的结论得23a b ≤+< ,()()()()222949439a b a b ab a b a b --=+--=+--+-⎡⎤⎣⎦()()()()2421730a b a b a b a b =+++-=+++-< ,()29,3a b a b ∴--<< ,故D 正确; 故选:ABD.例29.(2022·全国·高三专题练习)若x ,y R ∈,设2223M x xy y x y =-+-+,则M 的最小值为__. 【答案】14-##0.25-【解析】 【分析】将M 化简可得2211224M x y y ⎛⎫=--+- ⎪⎝⎭,由此即可求出结果.【详解】因为()()2222221121321344M x y x y y x y x y y y y y y ⎡⎤=-+++=-++++++---⎢⎥⎣⎦221112244x y y ⎛⎫=--+-≥- ⎪⎝⎭.当且仅当0y =,12x =时取等号. 所以M 的最小值为14-.故答案为:14-.例30.(2022·四川泸州·三模(理))已知x 、y ∈R ,且224x y +=,给出下列四个结论: ①2x y +≤;②1xy ≥;③23x y +≤;④448x y +≥. 其中一定成立的结论是______(写出所有成立结论的编号). 【答案】①④ 【解析】 【分析】利用基本不等式可判断①和④,取特殊值x =0、y =2log 3可判断②,取特殊值y =12可判断③. 【详解】对于①,∵20,20x y >>,∴由224x y +=得,422x y =+≥即4≥,解得2x y +≤(当且仅当1x y ==时取等号),故①一定成立; 对于②,当20,log x y ==3时,224x y +=成立,但1xy ≥不成立,故②不一定成立;对于③,当12y =时,由224x y +=得24x =则132343022xy +-=-=>,即23x y +>,故③不一定成立;④将224x y +=两边平方得144216x y x y ++++=, ∴144162x y x y +++=-,由①可知:131********x y x y x y x y +++++≤⇒++≤⇒≤=⇒-≥-11621688x y ++⇒-≥-=,∴448x y +≥,当且仅当1x y ==时取等号,因此④一定成立﹒ 故答案为:①④﹒ 【点睛】本题①和④利用基本不等式即可求解,需要熟练运用基本不等式求范围.对于②和③,取特殊值验算即可快速求解﹒【过关测试】一、单选题 1.(2022·湖南·宁乡市教育研究中心模拟预测)小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为(0)b a b >>,他往返甲乙两地的平均速度为v ,则( ) A .2a bv +=B.v =C2a bv +< D.b v <<【答案】D 【解析】 【分析】平均速度等于总路程除以总时间 【详解】设从甲地到乙地的的路程为s ,从甲地到乙地的时间为t 1,从乙地到甲地的时间为t 2,则 1s t a=,2s t b =,1222211s s v s s t t a b a b===+++,∴221111v ba bb b=>=++,2211ab v a b a b==<=++ 故选:D.2.(2022·甘肃省武威第一中学模拟预测(文))已知0a b <<,则( ) A .110->a bB .sin sin 0a b ->C .0a b -<D .ln()ln()0a b -+->【答案】A 【解析】 【分析】利用特殊值法,结合已知逐一判断即可. 【详解】因为0a b <<,所以110b aa b ab--=>,选项A 正确; 当2π,πa b =-=-时,显然满足0a b <<,但sin sin 0a b -=,选项B 不正确; 当2π,πa b =-=-时,显然满足0a b <<,但0a b ->,选项C 不正确; 当1,123a b =-=-时,显然满足0a b <<,但是ln()ln()0a b -+-<,选项D 不正确, 故选:A3.(2022·陕西宝鸡·三模(理))若a b <,则下列结论正确的是( ) A .330a b -> B .22a b < C .()ln 0a b -> D .a b <【答案】B 【解析】 【分析】对于A 、B ,构造函数,借助函数单调性比大小; 对于C , ()ln a b -没有意义; 对于D ,取特值判断. 【详解】对于A ,构造函数3()f x x =,因为3()f x x =单调递增,又a b <,所以()()f a f b <,33a b ∴<,330a b ∴-<,故A 答案不对;对于B ,构造函数()2x f x =,因为()2x f x =单调递增,又a b <,所以()()f a f b <,22a b ∴<,故B 答案正确;对于C ,a b <,()ln a b ∴-没有意义,故C 答案不对;对于D ,取=11a b ,-=时,=a b ,故D 答案不对; 故选:B.4.(2022·重庆·二模)若非零实数a ,b 满足a b >,则下列不等式一定成立的是( )A .11a b< B .a b +>C .22lg lg a b > D .33a b >【答案】D 【解析】 【分析】根据不等式的基本性质、基本不等式的条件和对数的运算,逐项判定,即可求解. 【详解】对于A 中,由11b aa b ab--=,因为a b >,可得0b a -<,当ab 不确定,所以A 错误;对于B 中,只有当0,0,a b a b >>,不相等时,才有a b +>B 错误; 对于C 中,例如1,2a b ==-,此时满足a b >,但22lg lg a b <,所以C 错误; 对于D 中,由不等式的基本性质,当a b >时,可得33a b >成立,所以D 正确. 故选:D.5.(2022·安徽黄山·二模(文))设实数a 、b 满足a b >,则下列不等式一定成立的是( )A .22a b >B .11b b a a +<+ C .22ac bc > D .332a b -+>【答案】D 【解析】 【分析】对于A ,B ,C 可以取特殊值验证,对于D ,根据题意得330a b >>,3333a b b b --+>+,利用基本不等式求解即可. 【详解】对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2b a =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332b a b b --≥+>+=(等号成立的条件是0b =),故D 正确. 故选:D.6.(2022·安徽·芜湖一中高三阶段练习(理))已知0a >,0b >,22a b m +=,则以下正确的是( ) A .若1m =,则1a b + B .若1m =,则331a b + C .若2m =,则2a b +> D .若2m =,则332a b +【答案】D 【解析】 【分析】A :取特例a b ==B :求出01a <<,01b <<,根据幂函数在(0,1)之间的性质即可判断;C :根据不等关系2222a b a b ++ D :构造33222()(())a b a b a b ++-+并判断其范围,表示出33+a b ,结合C 项范围即可判断. 【详解】A :若221a b +=,取a b ==1a b +,故A 错误; B :若221a b +=,则01a <<,01b <<,∴33221a b a b +<+=,故B 错误; C :当222a b +=时,∵222a bab +,∴()222222a ba b ab +++,∴222()24a b a b ++,∴221222a b a b a b ++=⇒+,故C 错误;D :当222a b +=时,3322233222()(()2()0)a b a b a b a b b a a b ab a b ++-+=+-=-, 22233()4a b a ba b a b+∴+=++,由C 知,2a b +,42a b∴+,332a b ∴+,故D 正确. 故选:D.7.(2022·全国·高三专题练习(理))已知32a =,53b =,则下列结论正确的有( ) ①a b < ②11a b a b+<+ ③2a b ab +< ④b a a a b b +<+ A .1个 B .2个 C .3个 D .4个【答案】B 【解析】 【分析】求出a 、b 的值,比较a 、b 的大小,利用指数函数的单调性、导数法、不等式的基本性质以及基本不等式逐项判断可得出合适的选项. 【详解】因为32a =,53b =,则3log 2a =,5log 3b =.对于①,3223<,则2323<,从而2333320log 1log 2log 33a =<=<=,3235>,则2335>,则235552log 5log 3log 513b =<=<=,即2013a b <<<<,①对;对于②,()()()11111a b ab a b a b a b a b ab --⎛⎫⎛⎫⎛⎫+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为2013a b <<<<,则0a b -<,01ab <<,所以,11a b a b+>+,②错; 对于③,355522log 2log 32log 2log 4ab =⋅==,所以,355353542log 2log 3log 4log 2log log log 03a b ab +-=+-=->, 所以,2a b ab +>,③错; 对于④,构造函数()ln x f x x =,其中0e x <<,则()21ln xf x x -'=. 当0e x <<时,()0f x '>,则函数()f x 在()0,e 上单调递增, 因为01a b <<<,则()()f a f b <,即ln ln a ba b<,可得b a a b <,所以,b a a a b b +<+,④对. 故选:B.8.(2022·安徽省舒城中学模拟预测(理))若数列{}n a 为等差数列,数列{}n b为等比数列,则下列不等式一定成立的是( ) A .1423b b b b +≤+ B .4132b b b b ≤-- C .3124a a a a ≥ D .3124a a a a ≤【答案】D 【解析】 【分析】对选项A ,令112n n b -⎛⎫=- ⎪⎝⎭即可检验;对选项B ,令2nn b =即可检验;对选项C ,令n a n =即可检验;对选项D ,设出等差数列的首项和公比,然后作差即可. 【详解】 若112n n b -⎛⎫=- ⎪⎝⎭,则12341111,,,248b b b b ==-==-可得:14237184b b b b +=>=-+,故选项A 错误; 若2nn b =,则12342,4,8,16b b b b ====可得:4132144b b b b -=>-=,故选项B 错误; 若n a n =,则12341,2,3,4a a a a ==== 可得:124346a a a a =<=,故选项C 错误; 不妨设{}n a 的首项为1a ,公差为d ,则有:()112411133a a a a d a a d =+=+()()22311121223a d a d a d a a d a =++=++则有:4223120a a a a d -=≥,故选项D 正确故选:D 二、多选题9.(2022·辽宁·一模)已知不相等的两个正实数a 和b ,满足1ab >,下列不等式正确的是( ) A .1ab a b +>+ B .()2log 1a b +> C .11a b ab+<+ D .11a b a b+>+ 【答案】BD 【解析】 【分析】A 选项,利用()()1110a b ab a b --=+--<作出判断;B 选项,利用基本不等式即函数单调性求解;CD 选项,用作差法求解.由于两个不相等的正实数a 和b ,满足1ab >,所以a 和b 可取一个比1大,一个比1小,即()()1110a b ab a b --=+--<,故1ab a b +<+,A 错误;由题意得:2a b +>>,所以()2log 1a b +>,B 正确;()111111a b a b a b a b a b ab ⎛⎫⎛⎫+-+=-+-=-- ⎪ ⎪⎝⎭⎝⎭,其中110ab ->,但不知道a 和b 的大小关系,故当a b >时,11a b a b+>+,当a b <时,11a b a b +<+,C 错误;()1111a b a b a b ab ⎛⎫⎛⎫+-+=+- ⎪ ⎪⎝⎭⎝⎭,其中110ab ->,0a b +>,所以()11110a b a b a b ab ⎛⎫⎛⎫+-+=+-> ⎪ ⎪⎝⎭⎝⎭,即11a b a b+>+,D 正确. 故选:BD10.(2022·湖南省隆回县第二中学高三阶段练习)已知a b c >>,且0a b c ++=,则下列结论正确的是( ) A .2ab b > B .ac bc <C .11a c> D .1a cb c->- 【答案】BCD 【解析】 【分析】根据不等式的基本性质依次判断选项即可. 【详解】A :由a b c >>且0a b c ++=,可知a >0,c <0,b 的值不确定, 故由a b >,不能推出2ab b >,故A 错误;B :由0a b c ><,,得ac bc <,故B 正确;C :由于0a >,0c <,得11a c>,故C 正确; D :由a b c >>得0a c b c ->->.所以1a cb c->-,故D 正确, 故选:BCD.11.(2022·广东·广州市第四中学高三阶段练习)已知实数a ,b ,c 满足1,01a b c >><<,则下列不等式一定成立的有( ) A .()()c c a c b c -<- B .log (1)log (1)a b c c +<+ C .log log 2a c c a +≥ D .22224a c b c c >>【答案】BD 【解析】对于A ,利用幂函数的性质判断,对于BC ,利用对数函数的性质判断,对于D ,利用不等式的性质分析判断 【详解】对于A ,因为01c <<,所以c y x =在(0,)+∞上单调递增,因为,01a b c c >><<,所以0a c b c ->->,所以()()cca cbc ->-,所以A 错误,对于B ,因为1a b >>,所以当1x >时,log log a b x x <,因为01c <<,所以11c +>,所以log (1)log (1)a b c c +<+,所以B 正确,对于C ,因为1,01a b c >><<,所以log 0,log 0a c c a <<,所以log log 0a c c a +<,所以C 错误, 对于D ,因为1,01a b c >><<,所以22210a b c >>>>,所以22224a c b c c >>,所以D 正确, 故选:BD12.(2022·河北保定·一模)已知a 、b 分别是方程20x x +=,30x x +=的两个实数根,则下列选项中正确的是( ). A .10b a -<<< B .10a b -<<< C .33a b b a ⋅<⋅ D .22b a a b ⋅<⋅【答案】BD 【解析】 【分析】在同一直角坐标系中画出2,3,x x y y y x ===-的图象,可判断AB ,然后结合不等式的性质可判断CD. 【详解】函数2,3,x x y y y x ===-在同一坐标系中的图象如下:所以10a b -<<<,所以22,33,0a b a b b a<<<-<-所以()()22,33a b a bb a b a -⋅<-⋅-⋅<-⋅所以22b a a b ⋅<⋅,33a b b a ⋅⋅> 故选:BD 三、填空题13.(2022·四川泸州·三模(文))已知x ,R y ∈,满足224x y +=,给出下列四个结论:①2x y +≤;②1xy ≥;③23x y +<;④448x y +≥.其中一定成立的结论是______(写出所有成立结论的编号). 【答案】①④ 【解析】 【分析】根据基本不等式,结合特殊值法逐一判断即可. 【详解】①:因为224x y +=,所以有4222422x y x y x y +=+≥≥≥⇒+≤,故本结论一定成立; ②:当20,log 3x y ==时,显然224x y +=成立,但是1xy ≥不成立,故本结论不一定成立; ③:当1x y ==时,显然224x y +=成立,但是23x y +<不成立,故本结论不一定成立; ④:因为224x y +=,所以114421644162x y x y x y x y ++++++=⇒+=-,由①可知: 1311213228281621688x y x y x y x y x y +++++++≤⇒++≤⇒≤=⇒-≥-⇒-≥-=,所以448x y +≥,因此本结论一定成立, 故答案为:①④14.(2022·全国·江西科技学院附属中学模拟预测(文))已知实数x 、y 满足223x y -≤+≤,220x y -≤-≤,则34x y -的取值范围为______. 【答案】[7,2]- 【解析】 【分析】设34(2)(2)x y m x y n x y -=++-,利用待定系数法求出,m n 的值,然后根据不等式的性质即可求解. 【详解】解:设34(2)(2)x y m x y n x y -=++-,则2324m n m n +=⎧⎨-=-⎩,解得12m n =-⎧⎨=⎩,所以34(2)x y x y -=-++2(2)x y -, 因为223x y -≤+≤,220x y -≤-≤, 所以3(2)2x y -≤-+≤,42(2)0x y -≤-≤, 所以7342x y -≤-≤, 故答案为:[7,2]-.15.(2022·全国·高三专题练习)如果a >b ,给出下列不等式:①11a b<;②a 3>b 32ac 2>2bc 2;⑤ab >1;⑥a 2+b 2+1>ab +a +b .其中一定成立的不等式的序号是________. 【答案】②⑥ 【解析】 【分析】对,a b 分别赋值,然后对各个不等式进行排除,对于无法排除的选项利用函数的单调性和差比较法证明成立. 【详解】令1,1a b ==-,11a b>=11a b =-<,排除⑤.当0c 时,排除④.由于幂函数3y x =为R 上的递增函数,故33a b >,②是一定成立的.由于()()()()22222111102a b ab a b a b a b ⎡⎤++-++=-+-+->⎣⎦,故221a b ab a b ++>++.故⑥正确.所以一定成立的是②⑥. 【点睛】本小题主要考查实数比较大小,使用的方法较多,一个是特殊值比较法,也就是对问题中的,a b 举出一些具体的数值,然后对不等式的正确与否进行判断.第二个是用函数的单调性的方法来比较,即是如果要比较的两个数和某个函数有点接近,如本题中②,用幂函数的单调性来判断.第三个是用差比较法来判断,如本题中的⑥.16.(2022·全国·高三专题练习)设x ,y 为实数,满足238xy ≤≤,249x y≤≤,则3x y 的最小值是______.【答案】12 【解析】利用方程组形式,可得()223nm x x xy y y ⎛⎫=⋅ ⎪⎝⎭,求得,m n 后结合不等式性质即可求得3x y 的最小值. 【详解】设()223nm x x xy y y ⎛⎫=⋅ ⎪⎝⎭即322m n m n xy x y -+-=⋅所以2123m n m n +=⎧⎨-=-⎩,解得11m n =-⎧⎨=⎩所以()2123x x xy y y -⎛⎫=⋅ ⎪⎝⎭因为238xy ≤≤,249x y≤≤, 所以()121183xy-≤≤ 由不等式性质可知()212132x xy y -⎛⎫≤⋅≤ ⎪⎝⎭即3132x y ≤≤,当且仅当()212418x yxy -⎧=⎪⎪⎨⎪=⎪⎩时取等号,解得74552,2x y ==. 综上可知,3x y的最小值为12. 故答案为:12. 【点睛】本题考查了不等式的化简变形应用,不等式性质求最值,关键是要求出两个不等式间的关系,属于中档题. 四、解答题17.(2022·全国·高三专题练习)已知1a >,1b >,2222,1111a b b a M N a b a b =+=+----. (1)试比较M 与N 的大小,并证明; (2)分别求M ,N 的最小值.【答案】(1)M N ≤;证明见解析 ;(2) M ,N 的最小值都是8. 【解析】 【分析】(1)利用作差比较法,得到2()()0(1)(1)a b a b M N a b -+-=-≤--,即可求解; (2)化简1111411a b a M b =-++-++--,结合基本不等式,即可求解. 【详解】(1)M 与N 的大小为M N ≤,证明:由22222()()1111(1)(1)a b b a a b a b M N a a b b a b -+-=-+-=-------, 因为1a >,1b >,所以0a b +>,10a ->,10b ->,2()0a b -≥,所以2()()0(1)(1)a b a b a b -+-≤--,所以M N ≤. (2)因为2222[(1)1][(1)1]1111a b a b M a b a b -+-+=+=+----111144811a b a b =-++-++≥=--, 当2a b ==时取等号,又由(1)N M ≥,所以M ,N 的最小值都是8.18.(2022·全国·高三专题练习)(1)已知a ,b 均为正实数.试比较33+a b 与22a b ab +的大小; (2)已知a ≠1且a ∈R ,试比较11a-与1a +的大小. 【答案】(1)33+a b ≥22a b ab +;(2)答案见解析. 【解析】 【分析】(1)将目标代数式作差得2()()a b a b -+,即可知大小关系;(2)利用“作差法”有21(1)11a a a a-+=--,对a 分类讨论即可判断大小. 【详解】(1)∵a ,b 均为正实数,∴332222222()()()()()()()0a b a b ab a a b b a b a b a b a b a b +-+=---=--=-+≥,即33+a b ≥22a b ab +. (2)由21(1)11a a a a-+=--. ①当a =0时,21a a=-0,则11a =-1a +; ②当a <1且a ≠0时,21a a >-0,则11a >-1a +; ③当a >1时,21a a<-0,则11a <-1a +. 综上,当a =0时,11a =-1a +;当a <1且a ≠0时,11a >-1a +;当a >1时,11a<-1a +. 19.(2022·全国·高三专题练习)已知下列三个不等式:①0ab >;②c da b>;③bc ad >,以其中两个作为条件,余下一个作为结论,则可组成几个正确命题?并选取一个结论证明. 【答案】可组成3个正确命题,证明见解析. 【解析】 【分析】根据不等式的性质逐个分析每个命题的真假即可. 【详解】 (1)对②变形:0c d bc ad a b ab->⇔>,由0,ab bc ad >>得②成立,∴①③⇒②.。
高三数学二轮复习教学案——基本不等式(1)(2)
高三数学二轮复习教学案——基本不等式(1)班级 学号 姓名【基础训练】1.设R y x ∈,,且0≠xy ,则⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+2222411y x y x 的最小值为_____________。
2.若实数y x ,满足122=++xy y x ,则y x +的最大值是_____________。
3.己知0>b ,直线012=++y x b 与02)4(2=++-y b ax 互相垂直,则ab 的最小值为______________。
4.若实数b a ,满足)1(014>=+--a b a ab ,则)2)(1(++b a 的最小值为_____________。
5.若不等式ax x x x ≥-++2222对)4,0(∈x 恒成立,则实数a 的取值范围是_________。
6.不等式011≥-+-+-ac c b b a λ,对满足c b a >>恒成立,则λ的取值范围是________。
7.己知0,,>c b a 且94222=+++bc ac ab a ,则c b a ++的最小值为______________。
【典型例题】8.某厂家拟在2012年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元)0(≥m 满足13+-=m k x (k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。
己知2007年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金)。
(1)将2012年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2012年的促销费用投入多少万元时,厂家的利润最大?9.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热屋建造成本为6万元。
高考数学总复习:基本不等式与不等式的证明
基本不等式与不等式的证明知识网络考试大纲要求:1. 了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)值问题;2.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:①;②;3.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.会用数学归纳法证明贝努利不等式:为大于1的正整数);了解当n为实数时贝努利不等式也成立.5.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法等.重点:会用基本不等式、柯西不等式等解决简单的最大(小)值问题;了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法等.难点:利用基本不等式、柯西不等式求最大值、最小值,特别注意等号成立条件;不等式的证明。
知识点一:绝对值不等式的性质1.;2.;知识点二:基本不等式1、如果那么当且仅当时取“=”号).2、如果那么(当且仅当时取“=”号).3、如果,那么(当且仅当时取“=”号)4、如果,那么(当且仅当时取“=”号)5、若a1,a2,...., a n∈R+,则:≥ (n∈N)当且仅当a1=a2=.......=a n时,取等号。
知识点三:柯西不等式 1. 二维形式的柯西不等式:(1)向量形式:设是两个向量,则,当且仅当是零向量或存在实数k,使时,等号成立。
(2)代数形式:①若a、b、c、d都是实数,则,当且仅当ac=bd时,等号成立;②若a、b、c、d都是正实数,则,当且仅当ac=bd时,等号成立;③若a、b、c、d都是实数,则,当且仅当ac=bd 时,等号成立;注意:柯西不等式的代数形式可以看作是向量形式的坐标化表示;(3)三角形式:设,则。
2. 一般形式的柯西不等式(代数形式):若都是实数,则,当且仅当或存在实数k,使得时,等号成立。
知识点四:不等式的证明1.不等式证明的理论依据:不等式的概念和性质,实数的性质,以及一些基本的不等式: (1)若a ∈R,则|a|≥0,a 2≥0. (2)若a,b ∈R,则a 2+b 2≥2ab.(3)若a,b ∈R +,则≥(4)若a,b 同号,则+≥2.(5)若a,b,c ∈R +,则≥(6)若a,b ∈R,则||a|-|b||≤|a+b|≤|a|+|b|2.证明不等式的基本方法: 比较法(作差、作商),综合法,分析法,数学归纳法及反证法;另外还有如换元法、放缩法等。
2022年高考数学二轮考点复习专题二 不等式部分 第2课时 基本不等式与绝对值不等式
答案:4
利用基本不等式求最值的类型及方法 (1)若已经满足基本不等式的条件,则直接应用基本不等式求解. (2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条 件的形式,常用的方法有“1”的代换,对不等式进行分拆、组合、添加项等. (3)多次使用基本不等式求最值,此时要注意只有同时满足等号成立的条件才能取得 等号,若等号不成立,一般利用函数单调性求解.
3.不等式|2x-a-1|>|2a-1|-2|x|对一切实数恒成立,则实数 a 的取值范围是( )
A.(13 ,1)
B.(1,3)
C.(0,21 )
D.(0,2)
【解析】选 D.因为|2x-a-1|>|2a-1|-2|x|,所以|2x-a-1|+|2x|>|2a-1|,
因为|2x-a-1|+|2x|≥|2x-a-1-2x|=|a+1|,所以|a+1|>|2a-1|,所以 a2+2a+1>4a2
2y 2x x ·y
=5+4=9,
当且仅当2xy =2yx ,即 x=y=13 时,等号成立,所以2x +1y 的最小值为 9.
2.不等式x+2 +x-1 ≤5 的解集为( ) A.[-3,2] B.[3,2] C.(-3,2) D.无法确定 【解析】选 A.当 x<-2 时,x+2 +x-1 ≤5⇔-2x-1≤5, 解得-3≤x<-2;当-2≤x≤1 时,x+2 +x-1 ≤5⇔3≤5 恒成立,所以-2≤x≤1; 当 x>1 时,|x+2|+|x-1|≤5⇔2x+1≤5,解得:1<x≤2.综上所述,不等式|x+2|+ |x-1|≤5 的解集为[-3,2].
A.(2,+∞)
B.(-2,4)
C.(-4,2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式
【复习目标】
1. 理解并掌握基本不等式的最值条件,会利用基本不等式求简单的最大(小)值问题。
2. 能利用基本不等式解决一些简单的实际问题.
【基础知识】
1. 当a,b 是任意实数时, 有,222ab b a ≥+当且仅当a=b 时,等式成立.
(公式中,a ,b 的取值是任意的,a ,b 代表实数)
2. 当a ,b 均为正数时,把ab 叫作a ,b 的几何平均数,把
2b a +叫作正数a ,b 的算术平均数.
3. 基本不等式
当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即,2
b a ab +≤当且仅当a=b 时,等号成立.
4. 利用基本不等式求函数的最值
(1) 已知x ,y 都是正数,则
①若xy=P (积定值),则当x=y 时,x+y 有最小值P 2. ②若x+y=S (和为定值),则当x=y 时,xy 有最大值.4
2
S ③利用,2
b a ab +≤必须满足三个条件:一正,二定,三等. 5. 利用基本不等式解决实际应用题的步骤.
1) 审清题意.
2)适当地设未知数.
3 ) 建立数学模型,即从实际问题中抽象出函数的关系式,并指明函数的定义域.
4) 利用基本不等式求最值.
5) 根据实际问题写出答案.
【典型例题】
例1 已知,,41,x y R x y xy +
∈+=且求的最大值。
变式1:已知,x y R +∈, xy=1,求x+y 的最小值。
例2 已知函数 )0(2)(>+
=x x x x f ,求函数的最小值和此时x 的取值.
变式2:(1) 2()(0)g x x x x =+
<的最值。
(2)求2()h x x x =+的值域
例3 求)1(1
2)(>-+
=x x x x f 的最小值
变式:(1) 求222()(1)1
x x f x x x ++=>-+的最小值。
例4、求函数2710()(1)1
x x f x x x ++=≠-+的值域
变式:若对任意20,
31x x a x x >≤++恒成立,则a 的取值范围是
例5、已知0,0,2a b a b >>+=, 求14y a b =
+的最小值。
变式:若直线1ax by +=(,0a b >),过圆228210x y x y ++++=的圆心,则14a b
+的最小值为
例6、已知0,0x y >>,且280x y xy +-=
求(1)xy 的最小值
(2)x y +的最小值。