【图解】烟气脱硫脱硝、有机废气吸收及吸附技术
4种干法烟气脱硫技术、工艺原理及其优缺点图文并茂详解
4种干法烟气脱硫技术、工艺原理及其优缺点图文并茂详解优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。
缺点:但反应速度慢,脱硫率低,先进的可达60-80%。
但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比较严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。
分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。
典型的干法脱硫系统是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。
以石灰石为例,在高温下煅烧时,脱硫剂煅烧后形成多孔的氧化钙颗粒,它和烟气中的SO2反应生成硫酸钙,达到脱硫的目的。
干法烟气脱硫技术在钢铁行业中已经有应用于于大型转炉和高炉的例子,对于中小型高炉该方法则不太适用。
优点:是工艺过程简单,无污水、污酸处理问题,能耗低,特别是净化后烟气温度较高,有利于烟囱排气扩散,不会产生“白烟”现象,净化后的烟气不需要二次加热,腐蚀性小;缺点:是脱硫效率较低,设备庞大、投资大、占地面积大,操作技术要求高。
常见的干法脱硫技术有。
A 、活性炭吸附法:原理:SO2被活性碳吸附并被催化氧化为三氧化硫(SO3),再与水反应生成H2SO4,饱和后的活性碳可通过水洗或加热再生,同时生成稀H2SO4或高浓度SO2。
可获得副产品H2SO4,液态SO2和单质硫,即可以有效地控制SO2的排放,又可以回收硫资源。
该技术开发出成本低、选择吸附性能强的ZL30,ZIA0,进一步完善了活性炭的工艺,使烟气中SO2吸附率达到95.8%,达到国家排放标准。
B 、电子束辐射法:原理:用高能电子束照射烟气,生成大量的活性物质,将烟气中的SO2和氮氧化物氧化为SO3和二氧化氮(NO2),进一步生成H2SO4和硝酸(NaNO3),并被氨(NH3)或石灰石(CaCO3)吸收剂吸收C 、荷电干式吸收剂喷射脱硫法(CD.SI):原理:吸收剂以高速流过喷射单元产生的高压静电电晕充电区,使吸收剂带有静电荷,当吸收剂被喷射到烟气流中,吸收剂因带同种电荷而互相排斥,表面充分暴露,使脱硫效率大幅度提高。
常见的十七种脱硫工艺原理及工艺图
常见的十七种脱硫工艺原理及工艺图石灰石/石灰-石膏法烟气脱硫01工作原理石灰石/石灰-石膏法烟气脱硫采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。
02反应过程(1)吸收SO2 + H2O—> H2SO3SO3 + H2O—> H2SO4(2)中和CaCO3 + H2SO3 —> CaSO3+CO2 + H2OCaCO3 + H2SO4 —> CaSO4+CO2 + H2OCaCO3 +2HCl—> CaCl2+CO2 + H2OCaCO3 +2HF —>CaF2+CO2 + H2O(3)氧化2CaSO3+O2—>2CaSO4(4)结晶CaSO4+ 2H2O —>CaSO4 ·2H2O03系统组成脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。
04工艺流程锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。
系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。
当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。
吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/N m3。
吸收SO2后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。
图文并茂详解脱硝技术
图文并茂详解脱硝技术脱硝技术简介燃烧烟气中去除氮氧化物的过程,防止环境污染的重要性,已作为世界范围的问题而被尖锐地提了出来。
世界上比较主流的工艺分为:SCR和SNCR。
这两种工艺除了由于SCR使用催化剂导致反应温度比SNCR低外,其他并无太大区别,但如果从建设成本和运行成本两个角度来看,SCR的投入至少是SNCR投入的数倍,甚至10倍不止。
为防止锅炉内煤燃烧后产生过多的NOx 污染环境,应对煤进行脱硝处理。
分为燃烧前脱硝、燃烧过程脱硝、燃烧后脱硝。
高粉尘布置SCR系统工艺流程图选择性非催化还原脱硝技术(SNCR)工艺流程图SCR烟气脱硝工艺流程图SCR烟气脱硝工艺流程图选择性非催化还原(SNCR)烟气脱硫技术选择性非催化还原(SNCR)烟气脱硫技术脱硝工艺流程图水泥工艺脱硝工艺流程图臭氧脱硝系统流程图高粉尘布置SCR系统工艺流程图高粉尘布置SCR系统工艺流程图高粉尘布置SCR系统工艺流程图SNCR与SCR联合脱硝工艺流程图SCR脱硝技术工艺流程图SCR脱硝技术工艺流程图1 氮氧化物的的危害有哪些?答:(1)、NO能使人中枢神经麻痹并导致死亡,NO2会造成哮喘和肺气肿,破坏人的心、肺,肝、肾及造血组织的功能丧失,其毒性比NO更强。
无论是NO、NO2或N2O,在空气中的最高允许浓度为5mg/m3(以NO2计)。
(2)、NOx与SO2一样,在大气中会通过干沉降和湿沉降两种方式降落到地面,最终的归宿是硝酸盐或是硝酸。
硝酸型酸雨的危害程度比硫酸型酸雨的更强,因为它在对水体的酸化、对土壤的淋溶贫化、对农作物和森林的灼伤毁坏、对建筑物和文物的腐蚀损伤等方面丝毫不不逊于硫酸型酸雨。
所不同的是,它给土壤带来一定的有益氮分,但这种“利”远小于“弊”,因为它可能带来地表水富营养化,并对水生和陆地的生态系统造成破坏。
(3)、大气中的NOx有一部分进入同温层对臭氧层造成破坏,使臭氧层减薄甚至形成空洞,对人类生活带来不利影响;同对NOx中的N2O也是引起全球气候变暖的因素之一,虽然其数量极少,但其温室效应的能力是CO2的200-300倍。
脱硫脱硝工艺流程图
脱硫脱硝工艺流程图
脱硫脱硝是用于降低煤燃烧过程中产生的二氧化硫和氮氧化物排放的一种重要工艺。
下面是一份脱硫脱硝工艺的流程图:
一、脱硫步骤:
1. 输入煤燃烧废气至脱硫车间;
2. 煤燃烧废气首先经过预处理设备,去除其中的颗粒物;
3. 经过预处理后的废气进入石灰石石膏吸收塔;
4. 石膏与煤燃烧废气中的二氧化硫发生反应,生成硫酸钙,同时废气中的颗粒物也被捕集;
5. 反应后的废气进入除尘器,进一步除去颗粒物;
6. 清洗液将吸收后的硫酸钙溶液送入脱硫除尘系统;
7. 脱硫废液处理,生成石膏石和废水;
8. 废水经过处理后排放。
二、脱硝步骤:
1. 输入煤燃烧废气至脱硝车间;
2. 煤燃烧废气进入脱硝催化剂层,催化剂使废气中的氮氧化物发生催化还原反应;
3. 催化还原后的废气进入脱硝吸收塔;
4. 吸收塔中的吸收液与废气中的氮氧化物发生吸收反应,生成硝酸盐;
5. 吸收后的废气进入除尘器,进一步除去颗粒物;
6. 清洗液将吸收后的硝酸盐溶液送入脱硝除尘系统;
7. 脱硝废液处理,生成硝酸盐和废水;
8. 废水经过处理后排放。
以上是一份基本的脱硫脱硝工艺流程图。
不同工厂和设备可能会有一些细微的差别,但整体流程和步骤大致相同。
通过脱硫脱硝工艺,可以有效降低煤燃烧过程中产生的二氧化硫和氮氧化物的排放,减少对环境的污染,保护大气质量。
第一章 脱硫脱硝除尘概述(共36张PPT)
人体主要经呼吸道吸收大气中的SO2,引起不同程度的
呼吸道及眼黏膜的刺激症状;
SO2常常跟大气中的飘尘结合在一起被吸入,飘尘 气溶胶微粒可把SO2带到肺部使毒性增加3~4倍;
如果SO2遇到水蒸气,形成硫酸雾,就可以长期滞留 在大气中,毒性比SO2大10倍左右,同时对金属及农作
物有着严重的腐蚀与伤害作用。
侵入肺部没有被溶解的沉积物会被细胞所吸收,损伤并破坏 细胞,最终侵入肺组织而引起尘肺,如吸入煤灰形成的煤肺, 吸入金属粉尘形成的铁肺、铝肺等。如果沉积物被溶解,则 会侵入血液,并送至全身,造成血液系统中毒。例如妨碍血 红蛋白生成的铅烟尘可以引起急性中毒或慢性中毒,其症状 是精神迟钝、大脑麻痹、癫痫,甚至死亡。
云南、广西、湖北、陕西、河南、湖南、四川、辽宁和重庆等省(自
治区、直辖市)。
煤炭消耗高的地区和机动车量多的大城市NOx污染严重。2005年,
国家环保总局在所有统计城市中,广州、北京、宁波、上海、杭州、哈 尔滨、乌鲁木齐、南京、成都、武汉等大城市NOx浓度相对较高。
在80年代,我国的酸雨主要发生在重庆、贵阳和柳州为代表的西南地区,
电力环境保护概述
电力环境保护内容主要有:
①火电厂尤其是燃煤电厂污染物控制; ②水电厂建设和运行期的生态保护;
③核电厂的放射性处理; ④输变电过程电场、磁场、电磁场的影响; ⑤可再生能源环境保护问题等。
重点是燃煤电厂的污染物控制
电力环境保护概述
燃煤电厂对环境造成的影响主要有:
⑴ 排放烟尘造成污染; ⑵ 排放硫氧化物、氮氧化物、二氧化碳造成污染; ⑶ 排放固体废弃物(粉煤灰、渣)而造成污染; ⑷ 排放污水造成污染;
SO2产污系数: G=2000SrP SO2排污系数:G’=G×(1-η) 式中 G──SO2产污系数,kg/t煤;Sr ──为燃煤中含硫量,%; P──燃煤中硫的转化率(经实测为80%~85%),%; η──脱硫设施的脱硫率,%。
脱硝示意图讲解
降低硫酸氢氨沉积的措施
1、减少未参加反应的NH3; 2、提高锅炉的燃尽度; 3、选择合适的催化剂,降低SO3的转化率;
SCR运行前检查事项
储罐中液氨充足; 蒸发槽水位正常,工艺水及消防喷淋水压力表显示正确,
水源充足; 氨区照明电系统能正常投用; 氨泄漏报警仪数字显示正确; 各气动阀门、调节门动作正常,都处于“关”位; 喷氨格栅手动门都处于已调整位置;
还原剂NH3性质
氨; 液氨; Ammonia; CAS: 7664-41-7;《危险化学品 名录》(2002版)中被分为:第2类 压缩气体和 液化气体、第3项 有毒气体;中国危险货物编号: CN No. 23003;联合国危险货物编号:UN No. 1005。 理化性质:无色气体,有刺激性恶臭味。分子式 NH3。分子量17.03。相对密度0.7714g/l。熔点77.7℃。沸点-33.35℃。自燃点651.11℃。氨气与空气 混合物爆炸极限13~27%(最易引燃浓度17%)。水溶 液呈碱性。
高含尘布置
低含尘布置
影响SCR性能的两个重要因素
1、催化剂设计 催化剂的选取是根据锅炉设计与燃用煤种、SCR反
应器的布置、SCR入口烟气温度、烟气流速及设计脱硝 效率、允许SO2/SO3转化率与催化剂使用寿命保证值 来确定。
2、CFD模型模拟 为了更好了解烟道及反应器内的烟气流场分布,以
便于能够优化的设计烟道及AIG(喷氨)系统,利用 CFD数学模拟烟道及反应器内的流场的一种手段。
催化剂的几何结构
1、正方形单孔蜂窝结构; 2、带涂层的板式结构;
反应器内部的催化剂
催化剂的装填
催化剂堵塞与磨损
影响催化剂活性的因素
催பைடு நூலகம்剂的失效
烟气脱硫、脱硝、脱汞技术
烟气脱硫、脱硝、脱汞技术烟气脱硫技术烟气脱硫(Flue Gas Desulphurization简称FGD)技术的分类FGD技术按种类划分,主要可以分为以下几种方法:(1)湿法。
石灰石/石膏、石灰/石膏、Na2SO3、(NH4)2SO4、海水法等(2)干法。
循环流化床、炉内喷钙法(在空气预热器和电袋除尘器之间增加一个活化反应器)等(3)半干法。
喷雾干燥法、活性炭吸附法等湿法烟气脱硫技术的分类在湿法FGD技术中,按脱硫剂的种类划分,主要可以分为以下几种方法:(1)钙法CaCO3、CaO(2)钠法NaOH、Na2CO3(3)氨法NH3(4)镁法MgO以上方法在国内外均由工程实例,但世界上普遍使用的商业化技术是钙法,所占比例在90%以上。
我国的石灰石储量大,矿石品位较高,CaCO3含量一般大于93%。
石灰石用作脱硫剂时必须磨成粉末。
石灰石无毒无害,在处置和使用过程中十分安全,是烟气脱硫的理想吸收剂。
但是,在选择石灰石作为吸收剂时必须考虑石灰石的纯度和活性,即石灰石与SO2的反应速度,取决于石灰石粉的粒度和颗粒比表面积。
该吸收剂的主要优点是资源丰富,成本低廉,经过脱硫后的废渣可以抛弃也可以作为石膏回收。
烟气脱硫主塔干法:1、文丘里棒塔特点:(1)在文丘里棒层上部形成了一个气流湍流层,在这一湍流层中,气流的传质反应非常激烈;(2)改善了脱硫塔内部的气流分布状态,把原烟气充分打破,形成多股分流烟气与液体接触,增加了脱硫率;(3)在脱硫的同时还具有除尘功能;(4)适用于各种工业锅炉及大型电厂、钢厂的烟气脱硫、除尘。
湿法2、喷淋塔特点:(1)结构简单、运行稳定;(2)有效的避免了常见脱硫塔的结垢、堵塞等问题;(3)在脱硫的同时还具有除尘功能;(4)适用于各种工业锅炉及大型电厂、钢厂的烟气脱硫、除尘。
烟气脱硫工艺技术介绍:根据脱硫后的产物,主要有氨法、简易氨法、氨酸法。
氨的水溶液呈碱性,也是SO2的吸收剂,能够吸收烟气中的SO2,而达到烟气脱硫的目的,吸收过程中是利用(NH4)2SO3-NH4HSO3溶液对SO2的循环吸收、净化烟气,然后以不同的方式处理吸收液的过程。
现运行的各种脱硫工艺流程图汇总
现运行的各种脱硫工艺流程图汇总1. 烟气脱硫工艺流程图烟气脱硫是通过将烟气中的二氧化硫进行吸收除去的过程。
流程图中通常包括吸收塔、循环泵、再循环塔、氧化风机等设备,并通过往吸收塔中喷洒脱硫剂来实现脱硫的目的。
2. 石灰石脱硫工艺流程图石灰石脱硫是利用石灰石和水反应生成石灰浆,再通过与烟气接触,从而达到脱硫的效果。
流程图中通常包括石灰石仓、石灰石浆液制备系统、反应器、除尘器等设备。
3. 氨法脱硫工艺流程图氨法脱硫是利用氨水与烟气中的二氧化硫进行化学反应,生成硫酸铵,从而实现脱硫的目的。
流程图中通常包括氨液制备系统、氨喷射系统、除尘器、脱硫塔等设备。
4. 活性炭吸附脱硫工艺流程图活性炭吸附脱硫是通过将活性炭颗粒放置在烟气中,利用活性炭对烟气中的二氧化硫进行吸附,从而实现脱硫的目的。
流程图中通常包括活性炭吸附装置、再生系统、除尘器等设备。
以上为目前运行的几种常见脱硫工艺流程图的汇总,不同的工业生产场景可能会选择不同的脱硫工艺方案来满足排放标准和生产需求。
在工业生产中,二氧化硫是一种常见的排放物质,对环境和人体健康带来严重影响。
因此,脱硫工艺的实施是必不可少的。
脱硫工艺的选择通常取决于生产过程中产生的二氧化硫的量、浓度、烟气温度、湿度以及其他一些特殊的操作要求。
烟气脱硫工艺是应用较为广泛的一种脱硫方法。
其工艺流程图中通常包含吸收塔、循环泵、再循环塔、氧化风机等关键设备。
该工艺的关键在于将烟气中的二氧化硫进行吸收,以便将其除去。
通常会向吸收塔中喷洒脱硫剂,使得二氧化硫与脱硫剂发生化学反应,从而减少烟气中的污染物含量。
另一种常见的脱硫工艺是石灰石脱硫。
在该工艺中,石灰石和水发生反应生成石灰浆,然后通过与烟气接触,达到脱硫的效果。
流程图中主要包括石灰石仓、石灰石浆液制备系统、反应器、除尘器等关键设备。
石灰石脱硫工艺具有操作简单、成本较低、脱硫效率高的特点,因此在一些工业生产中得到了广泛应用。
氨法脱硫是另一种常用的脱硫工艺。
有机催化烟气脱硫脱硝PPT课件
4. 对燃料含硫量无限制,允许并鼓励用户使用高硫燃料以降低生产成本; 5. “变废为宝”,将二氧化硫等污染物转变为有销售价值的硫铵化肥。 6. 催化剂循环使用,降低运行成本,符合国家节能政策。
第11页/共24页
有机催化工艺系统特点
相对简单 无
复合化肥 (易销售,农用化肥) 可以,同一系统中完成
2021/5/29
18
第18页/共24页
氨/化肥法(FGD)工艺原理介绍
净烟气
防止氨 逃逸系统
SO2 NH3
NH3 HN2HO3
原烟气 SO2
NHH24SHOSO3 3
氧化系统
NNHH44HHSSOO44
(NH4)2 SO4 O2
氨水储罐
有机催化法: 1. SO2+H2O → H2SO3 2. H2SO3+LPC → LPC.H2SO3 3. LPC.H2SO3+O2 → LPC+H2SO4 4. H2SO4+NH3 → (NH4)2SO4
有机催化法的工艺反应塔来源于石灰石/石膏法,塔型与其基本一致—— 空塔。但有机催化法克服了结垢、堵塞、磨损、CO2减排等弊端,副产品拥 有更高的品质和附加值。
NH4HSO4含氮量约为12%,(NH4)2SO4含氮量约为21%氨法 的化肥普遍含有1/3的NH4HSO4,导致其含氮量一般在18%左右, 能达到DL/T808-2002火电厂氨法烟气脱硫副产物化肥的标准。
其生产化肥的工艺与工业生产化肥不同,因此达不到GB5351995《硫酸铵》标准,容易造成土壤板结。
2021/5/29
17
第17页/共24页
烟气脱硫脱硝演示文稿
2.工业应用:
工业应用的Ca/S为2.0~2.5,环保部认可的脱硫率50%左右。 实际上通过技术改造后脱硫效率可达到90%以上。
3. CFB锅炉炉内脱硫特点:
a、系统简单、运行可靠 b、 脱硫成本低,初投资、运行维护成本低 c、脱硫产物在飞灰和底渣中,不产生带水石膏等副产物, 没有二次污染问题 d、我国炉内脱硫系统不被用户重视,不注重维护,没有考 核指标 e、世界普遍采用,但我国大部分CFB锅炉的炉内脱硫SO2排 放不达标,脱硫不被国家相关部门所认可
24
钠基脱硫剂
◦ 用作脱硫剂的钠基化合物包括Na2SO3,Na2CO3、 NaHCO3等 ◦ 应用于湿法洗涤烟气脱硫工艺和用于炉内喷射与管道 喷射等工艺的脱硫吸收剂,脱硫效果好,并且兼有一 定的脱氮作用。 ◦ 钠基脱硫剂可以再生,以循环利用。 ◦ 使用钠基脱硫剂的主要问题是脱硫剂的来源困难,价 格相对较高;另外,脱硫产物中钠盐易溶于水,造成 灰场水体的污染。
烟气中的硫以SO2为主
烟气中SO3通常较少,0.5~5%
过量空气系数1.15,含硫量1~4%时,标准状况下烟气中SO2 的含量约为2000~10000mg/m3。
二氧化硫的控制技术可分为燃烧前脱硫、燃 烧中脱硫和燃烧后脱硫(亦称烟气脱硫)三 种。
由于烟气中的硫以SO2的形态存在,脱除较易, 烟气脱硫(Flue Gas Desulfrization,FGD)是 目前应用最广泛、效率最高的脱硫技术,也 是控制二氧化硫排放的主要手段。
过热器 过热器 烟囱
稀相区
高温旋风分离
省煤器 省煤器 空预器 空预器 尾部 受热面
CFBB 炉膛
料腿
除尘器 引风机
煤石 灰 石
二次风
密相区