初二下学期数学期末复习测试卷(反比例函数)

合集下载

2021年浙教版数学八年级下册6.1《反比例函数》精选练习 (含答案)

2021年浙教版数学八年级下册6.1《反比例函数》精选练习 (含答案)

浙教版数学八年级下册6.1《反比例函数》精选练习一、选择题1.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A.一条直角边与斜边成反比例B.一条直角边与斜边成正比例C.两条直角边成反比例D.两条直角边成正比例2.下列函数中,y 是x 的反比例函数的是( )A.y=3xB.错误!未找到引用源。

C.3xy=1D.错误!未找到引用源。

3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数关系式为( ) A.y=400x B.y=14x C.y=100x D.y=1400x4.下列关系中的两个量,成反比例的是( )A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重5.若反比例函数错误!未找到引用源。

,当x=2时,y= -6,则k 的值为( )A.-12B.12C.-3D.36.已知反比例函数y=k x的图象过点(2,3),那么下列四个点中,也在这个函数上的是( ) A.(-6,1) B.(1,6) C.(2,-3) D.(3,-2)7.在函数y=错误!未找到引用源。

中,自变量x 的取值范围是( )A.x ≠0B.x>0C.x<0D.一切实数8.下列函数表达式中,y 不是x 的反比例函数的是( )A.y=3xB.y=x 3C.y=12xD.xy=129.小华以每分钟x 个字的速度书写,y 分钟写了300个字,则y 与x 的函数关系式为( )A.y=x 300B.y=300xC.y=300-xD.y=300-x x10.下列函数中,是反比例函数的为( )A.7y=xB.C.D.y=5x+411.已知y 与x -1成反比例,那么它的解析式为( )A.y=k x-1(k ≠0) B.y=k(x -1)(k ≠0) C.y=k x -1(k ≠0) D.y=x -1k(k ≠0) 12.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例二、填空题13.已知函数y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x=1时,y=4;当x=2时,y=5;则当x=-2时,函数y 的值是 。

2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)

2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)

2022-2023学年华东师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.关于反比例函数y=的图象,下列说法错误的是( )A.经过点(2,3)B.分布在第一、三象限C.关于原点对称D.x的值越大越靠近x轴2.若横坐标为3的点一定在( )A.与y轴平行,且与y轴的距离为3的直线上B.与x轴平行,且与x轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上D.与y轴正半轴相交,且与x轴的距离为3的直线上3.据科学研究表明,新型冠状病毒体直径的大小约为125纳米,1纳米就是0.000000001米.那么125纳米用科学记数法表示为( )A.125×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖.视力 4.6以下 4.6 4.7 4.8 4.9 4.9以上人数■■791411下列关于视力的统计量中,与被遮盖的数据均无关的是( )A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.如图,正方形ABCD的边长为2,点E;F分别为边AD,BC上的点,点G,H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,GH=,则EF的长为( )A.B.C.D.6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB =30°,则∠BCF的度数为( )A.150°B.40°C.80°D.70°7.直线y=ax+b经过第一、二、四象限,则直线y=bx+a的图象只能是图中的( )A.B.C.D.8.如图,四边形ABCD、CEFG均为正方形,其中正方形CEFG面积为36cm2,若图中阴影部分面积为10cm2,则正方形ABCD面积为( )A.6B.16C.26D.469.如图,点A在双曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,AB∥x轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值( )A.﹣6B.﹣8C.﹣10D.﹣1210.如图,正方形ABCD的边长为2,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,给出下列五个结论:①PB=AB;②AP=EF且AP⊥EF;③∠PFE=∠BAP;④EF的最小值为;⑤PB2+PD2=2PA2,其中正确的结论是( )A.①②③④B.②③④C.③④⑤D.②③④⑤二.填空题(共6小题,满分24分,每小题4分)11.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 .12.如图所示,在▱ABCD中,∠BAD的平分线AE交BC于E,且AD=a,AB=b,用含a,b的代数式表示EC,则EC= .13.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,求乙队单独施工完成次工程需要几个月?设乙队单独施工需要x个月,则列方程为: .14.已知关于x的分式方程的解是负数,则m的取值范围是 .15.已知直线y1=x+与y2=﹣4x﹣1相交于点P,则满足y1>y2的x的取值范围是 .16.写出一个与y=﹣x图象平行的一次函数: .三.解答题(共9小题,满分86分)17.(8分)解方程:.18.(8分)化简求值:(﹣),其中a满足a2+2a=2021.19.(8分)一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式;(2)若点C(a,8)也在直线AB上,求a的值;(3)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.20.(8分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是 .21.(8分)如图,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=mx+n交于点A (1,2),直线l2与y轴交于点B(0,3),直线l1与x轴交于点C(﹣1,0).(1)求直线l1、l2的函数表达式;(2)连接BC,直接写出△ABC的面积.22.(10分)我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83 90八(2)班 85 (2)已知八(1)班参赛选手成绩的方差为56分2,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23.(10分)如图,反比例函数y=(k≠0)与一次函数y=﹣x+b的图象交于点A(1,5)和点B(m,1).(1)求m,b的值.(2)结合图象,直接写出不等式<﹣x+b成立时x的取值范围.(3)若Q为y轴上的一点,使QA+QB最小,求点Q的坐标.24.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(14分)综合与实践【问题背景】矩形纸片ABCD中,AB=6,BC=10,点P在AB边上,点Q在BC边上,将纸片沿PQ 折叠,使顶点B落在点E处.【初步认识】(1)如图1,折痕的端点P与点A重合.①当∠CQE=50°时,∠AQB= °;②若点E恰好在线段QD上,则BQ的长为 ;【深入思考】(2)若点E恰好落在边AD上.①请在图2中用无刻度的直尺和圆规作出折痕PQ(不写作法,保留作图痕迹);②如图3,过点E作EF∥AB交PQ于点F,连接BF.请根据题意,补全图3并证明四边形PBFE是菱形;③在②的条件下,当AE=3时,菱形PBFE的边长为 ,BQ的长为 ;【拓展提升】(3)如图4,若DQ⊥PQ,连接DE,若△DEQ是以DQ为腰的等腰三角形,则BQ的长为 .参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、反比例函数y=,当x=2时y=3,故本选项不符合题意;B、反比例函数y=中的6>0,则该函数图象经过第一、三象限,故本选项不符合题意;C、反比例函数y=的图象关于原点对称,故本选项不符合题意;D、反比例函数y=,不是单调函数,当x<0时,x的值越大越远离x轴,故错误,故本选项符合题意.故选:D.2.解:A.与y轴平行,且距离为3的直线上的点的横坐标为3或﹣3,故原说法不对;B.与x轴平行,且距离为3的直线上的点的纵坐标为3或﹣3,故原说法不对;C.与x轴正半轴相交,与y轴平行,且距离为3的直线上,说法正确;D.与y轴正半轴相交,与x轴平行,且距离为3的直线上的点的纵坐标为3,故原说法不对.故选:C.3.解:∵1纳米=1×10﹣9米.∴125纳米=125×10﹣9米=1.25×102×10﹣9米=1.25×10﹣7米.故选:C.4.解:由表格数据可知,成绩为4.6、4.6以下的人数为50﹣(7+9+14+11)=19(人),视力为4.9出现次数最多,因此视力的众数是4.9,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH=,∵线段GH与EF的夹角为45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,∴∠ABN=∠CBM,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,过点K作KP⊥BN于P,∵∠KBN=45°,∴△BKP是等腰直角三角形,设EF=BK=x,则BP=KP=BK=x,∵tan N==,∴=,解得x=,所以EF=.解法二:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,∴DM=1,在△KBN和△KBM中,,∴△KBN≌△KBM(SAS),∴KM=KN设AK为x,则KM=KN=x+1,KD=2﹣x,连接KM,在Rt△KDM中,DK2+DM2=KM2,∴(2﹣x)2+12=(x+1)2,∴x=,∴AK=,∴BK===,∴EF=BK=,故选:B.6.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠BCF=∠DAE,∵∠DAE=∠AEB﹣∠ADE=100°﹣30°=70°,∴∠BCF=70°.故选:D.7.解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴直线y=bx+a的图象经过第一、三、四象限,故选:D.8.解:∵阴影部分面积=DE×(BC+CG),∴阴影部分面积=×(CE﹣DC)(BC+CG)=(CE2﹣BC2),∵正方形CEFG面积为36cm2,图中阴影部分面积为10cm2,∴10=×(36﹣S正方形ABCD),∴S正方形ABCD=16,故选:B.9.解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A双在曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.10.解:连接PC,延长AP交EF于点H,如图所示:∵点P是对角线BD上一点,∴PB和AB的大小不能确定,故①选项不符合题意;在正方形ABCD中,AD=CD,∠ADP=∠CDP=45°,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∠PAD=∠PCD,∵PE⊥BC,PF⊥CD,∴∠PFC=∠PEC=90°,∵∠C=90°,∴四边形PECF是矩形,∴EF=PC,∴AP=EF,∵∠ADC=∠PFC=90°,∴AD∥PF,∴∠DAP=∠FPH,在矩形PECF中,∠PCD=∠EFC,∴∠FPH=∠EFC,∵∠EFC+∠EFP=90°,∴∠FPH+∠EFP=90°,∴AP⊥EF,故②选项符合题意;在矩形PECF中,∠PFE=∠PCE,∵△ADP≌△CDP,∴∠DAP=∠DCP,∴∠BAP=∠PCB,∴∠BAP=∠PFE,故③选项符合题意;∵AB=AD=2,根据勾股定理得BD=2,当AP⊥BD时,AP最小,此时AP最小值为BD=,∵AP=EF,∴EF的最小值为,故④选项符合题意;根据勾股定理,得PB2=2PE2,PD2=2PF2,∴PB2+PD2=2(PE2+PF2)=2EF2=2PA2,故⑤选项符合题意;综上,正确的选项有②③④⑤,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:甲的平均成绩为=87(分),故答案为:87分.12.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=b,∵BC=AD=a,∴EC=BC﹣BE=a﹣b.故填空答案:a﹣b.13.解:由题意可得,+()×=1,故答案为:+()×=1.14.解:,m﹣3=x+1,∴x=m﹣4.∵关于x的分式方程的解是负数,∴m﹣4<0且m﹣4+1≠0.∴m<4且m≠3.故答案为:m<4且m≠3.15.解:∵y1>y2,∴x+>﹣4x﹣1,解得:x>﹣,故答案为:x>﹣.16.解:由题意得,k=﹣1,则可出一次函数y=﹣x+1,答案不唯一.三.解答题(共9小题,满分86分)17.解:方程两边同乘(x﹣3),得:2x﹣1=x﹣3+1,整理解得:x=﹣1,经检验:x=﹣1是原方程的解.18.解:原式====,∵a2+2a=2021,则原式=.19.解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4),∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点C(a,8)在直线AB上,∴﹣3a﹣1=8,解得a=﹣3;(3)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.21.解:(1)根据题意得,,解得,∴直线l1:y=x+1,解得,∴直线l2:y=﹣x+3;(2)设直线l1与y轴的交点为D,则D(0,1),∴BD=3﹣1=2,∴S△ABC=S△ABD+S△BCD=+×1=2.22.解:(1)八(1)班的成绩从大到小排列为70,80,85,90,90,处于第三位的是85,因此中位数为85,八(2)班平均数为(70+85+85+90+95)÷5=85,出现次数最多的数是85,所以表格中依次填写85,85,85.(2)八(2)班的方差:S2=[(95﹣85)2+(70﹣85)2+(90﹣85)2+(85﹣85)2+(85﹣85)2]=70,∵56<70,∴八(1)班成绩比较稳定,答:八(1)班成绩比较稳定.23.解:(1)将点A的坐标代入y=(k≠0)得:5=,解得:k=5,∴反比例函数为y=,将点B的坐标代入y=得1=,解得:m=5,∴点B(5,1),∵一次函数y=﹣x+b的图象过点A(1,5),∴5=﹣1+b,解得b=6;(2)从函数图象看,不等式<﹣x+b成立时x的取值范围是1<x<5或x<0;(3)作A关于y轴的对称点A′,连接A′B,与y轴的交点即为Q点,此时AQ+BQ 的和最小,∵A(1,5),∴A关于y轴的对称点A′的坐标为(﹣1,5),设直线A′B的解析式为y=mx+n,∴,解得,∴直线A′B的解析式为y=﹣x+,令x=0,则y=,∴Q(0,).24.解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.25.(1)解:①∵∠CQE=50°,∴∠BQE=130°,由折叠可知,∠AQB=∠BQE=65°,故答案为:65;②解:由折叠可知,AB=AE,∠ABE=∠AEQ=90°,BQ=QE,∵AB=6,BC=10,∴AE=6,∴DE=8,在Rt△CDQ中,(8+QE)2=62+(10﹣QE)2,∴QE=2,∴BQ=2,故答案为:2;(2)解:①连接BE,作BE的垂直平分线交AB于P,交BC于Q,则PQ为所求;②证明:∵EF∥AB,∴∠BPF=∠EFP,由折叠可知,PB=PE,∠BPF=∠EPF,∴∠EFP=∠EPF,∴PE=EF,∴PB=EF,∴四边形PBFE是平行四边形,∵PE=EF,∴四边形PBFE是菱形;③解:由折叠可知PB=PE,∵AB=6,∴AP=6﹣PE,在Rt△APE中,PE2=(6﹣PE)2+32,∴PE=,∴菱形PBFE的边长为,由折叠可知,EQ=BQ,∵AE=3,∴BG=3,在Rt△EGQ中,BQ2=62+(BQ﹣3)2,∴BQ=,故答案为:,;(3)解:由折叠可知BQ=EQ,设BQ=m,则EQ=m,CQ=10﹣m,①当DQ=EQ时,在Rt△CDQ中,62+(10﹣m)2=m2,∴m=,∴BQ=;②当DE=DQ时,过点D作DF⊥EQ交于F,∴FQ=EQ=m,由折叠可知∠PQB=∠PQE,∵DQ⊥PQ,∴∠PQB+∠CQD=90°=∠PQE+∠FQD,∴∠CQD=∠FQD,∴△CDQ≌△FDQ(AAS),∴CQ=FQ,∴10﹣m=m,∴m=,∴BQ=;综上所述:BQ的长为或,故答案为:或.。

初二八年级下册数学反比例函数测试题及试卷答案

初二八年级下册数学反比例函数测试题及试卷答案

....................................................................................................................................................................................................................................八年级数学《反比例函数》测试题一、选择题:(每小题3分,共24分)1、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( )。

A 、(2,-1)B 、(-21,2) C 、(-2,-1) D 、(21,2) 2.函数y =4x的图象与x 轴的交点的个数是 ( )。

A .零个B .一个C .两个D .不能确定3.反比例函数y =4x的图象在 ( )。

A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )。

5.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象在 ( )。

A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限6.下列函数中 y 是x 的反比例函数的是( )。

A 21xy =B xy=8C 52+=x yD 53+=x y 7.若反比例函数y =xk 3-的图像在每一个象限内,y 随x 的增大而增大,则有( )。

A K 0≠B K 3≠C K<3D K>3、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( )。

A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2班级 : 考号: 姓名:……………………………………装……………………………………订……………………………………线………………………二、填空题:(每小题3分,共30分)9.直线b x y +-=5与双曲线x y 2-= 相交于点p (—2 ,m ) 则 b=____________ 10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________.11.反比例函数xy 3=的图象在第一象限与第 象限.12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.写出一个具有性质“在每个象限内y 随x 的增大而减小”的反比例函数的表达式为_______ 15.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______。

八年级数学下期期末复习专题2(反比例函数2)

八年级数学下期期末复习专题2(反比例函数2)

教师姓名学生姓名填写时间学科数学年级八年级教材版本新人教版课题名称期末复习专题二(反比例函数2)本人课时统计共(2)课时上课时间18:20 一、精心选一选(每题3分,共30分)1.下列函数,①y=2x,②y=x,③y=x-1,④y=11x是反比例函数的个数有().A.0个 B.1个 C.2个 D.3个2.反比例函数y=2x的图象位于() A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.已知矩形的面积为10,则它的长y与宽x之间的关系用图象表示大致为()4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• ).5.已知点(3,1)是双曲线y=kx(k≠0)上一点,则下列各点中在该图象上的点是().A.(13,-9) B.(3,1) C.(-1,3) D.(6,-12)6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图1所示,当气球内的气压大于140kPa时,•气球将爆炸,为了安全起见,气体体积应().A.不大于2435m3 B.不小于2435m3 C.不大于2437m3 D.不小于2437m3图1 图27.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例,如图2所表示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I•的函数解析式为().A.I=6RB.I=-6RC.I=3RD.I=2R8.函数y=1x与函数y=x 的图象在同一平面直角坐标系内的交点个数是( ). A .1个 B .2个 C .3个 D .0个9.若函数y=(m+2)|m|-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×2 10.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y=4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 二、细心填一填(每题3分,共30分)11.一个反比例函数y=kx(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 12.已知关于x 的一次函数y=kx+1和反比例函数y=6x的图象都经过点(2,m ),则一次函数的解析式是________.13.一批零件300个,一个工人每小时做15个,用关系式表示人数x•与完成任务所需的时间y 之间的函数关系式为________. 14.正比例函数y=x 与反比例函数y=1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD•⊥x 轴于D ,如图3所示,则四边形ABCD 的为_______.图3 图4 图5 15.如图4,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________. 16.反比例函数y=21039n n x--的图象每一象限内,y 随x 的增大而增大,则n=_______.17.已知一次函数y=3x+m 与反比例函数y=3m x-的图象有两个交点,当m=_____时,有一个交点的纵坐标为6. 18.若一次函数y=x+b 与反比例函数y=kx图象,在第二象限内有两个交点,•则k______0,b_______0,(用“>”、“<”、“=”填空)19. 若函数y x =4与y x=1的图象有一个交点是(12,2),则另一个交点坐标是_________。

凤山中学八年级下数学期末复习测试题2(反比例函数基础测试题)

凤山中学八年级下数学期末复习测试题2(反比例函数基础测试题)

八年级数学期末复习测试题2(反比例函数基础测试题)姓名: 学号: 评分: 一、填空题:每空1分,共25分。

1、反比例函数xy 23-=中,相应的k= ;2、三角形面积为6,它的底边a 与这条底边上的高h 的函数关系式是 ; 3、反比例函数经过点(2,-3),则这个反比例函数关系式是 ; 4、已知变量y 、x 成反比例,且当x =2时y=6,则这个函数关系式是 ; 5、反比例函数x y 3-=的图像在第 象限,在它的图像上y 随x 的减小而 ;反比例函数xy 2=的图像在第 象限,在它的图像上y 随x 的增大而 ;6、 已知反比例函数经过点A (2,1)和B (m ,-1),则m= ;7、如图(1):则这个函数的表达式是 ;8、如图(2):则这个函数的表达式是 ;图(1) 图(2)9、若反比例函数x ky =图像的一支在第二象限,则k 的取值范围是 ; 10、若反比例函数x k y 1-=图像的一支在第三象限,则k 的取值范围是 ;11、若反比例函数x ky -=2的图像在第一、三象限,则k 的取值范围是 ;12、对于函数x y 1=的图像关于 对称;13、对于函数x y 3=,当x>0时y 0,这部分图像在第 象限;14、对于函数xy 3-=,当x<0时y 0,这部分图像在第 象限;15、正比例函数与反比例函数经过点(1,2),则这个正比例函数是 ,反比例函数是 ; 16、若函数12)1(-+=m x m y 是反比例函数,则m= ,它的图像在第 象限;17、已知22)1(--=a xa y 是反比例函数,则a=____ ;18、函数xy 32=图像上的点)3,(),1,(),2,(321x C x B x A --,则321,,x x x 之间的大小关系是 ;(用大于号连接)二、选择题(每空3分,共15分): 19、下列各点中,在函数xy 2-=的图像上的是( )A 、(2,1) B 、(-2,1) C 、(2,-2) D 、(1,2) 20、函数xy 1-=与x y =的图像在同一直角坐标系中交点的个数是( )A 、0个B 、1个 C 、2个 D 、3个 21、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )22、如图 :点A 为双曲线上一点A B ⊥x 轴,2=∆aABO S ,则双曲线的解析式是( ) A 、x y 2=B 、4x y -=C 、xy 4= D 、x y 4-=23、已知y 与x-1成反比例函数,当x=2时y=1,则这个函数的表达式是( )A 、11-=x y B 、1-=x ky C 、11+=x y D 、11-=xy 三.解答题(每小题10分,共60分)24、已知正比例函数y=kx 与反比例函数y= 5x-的图象都过A(m ,1)点,求此正比例函数解析式.25、已知点A(2,-k+2)在双曲线y=kx上.求常数k 的值.26、已知y 与x+1成反比例函数,当x=2时y=3,求当x=-3时,y 的值?27、一定质量的氧气,它的密度ρ(kg /m 3)是它的体积V(m 3)的反比例函数,当V=10 m 3时,ρ=1.43 kg /m 3. (1)求ρ与V 的函数关系式;(2)求当V=2 m 3时,求氧气的密度ρ.28、若反比例函数y 1=6x与一次函数y 2=mx -4的图象都经过点A (a ,2)、B(-1,b). (1)求一次函数y 2=mx -4的解析式;(2)直接写出当y 2<y 1时,自变量x 的取值范围。

八年级下《反比例函数》检测题含答案

八年级下《反比例函数》检测题含答案

八年级下《反比例函数》检测题含答案反比例函数 检测题(满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列函数是反比例函数的是( )A.y x =B.1y kx -=C.8y x =-D.28y x= 2.若反比例函数8y x=的图象经过点(2,)m -,则m 的值是( ) A.14 B.14- C.-4 D.4 3.在同一坐标系中,函数ky x=和3y kx =+的图象大致是( )4.当k >0,x <0时,反比例函数ky x=错误!未找到引用源。

的图象在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若函数错误!未找到引用源。

的图象经过点(3,-7),则它一定还经过点( ) A.(3,7) B.(-3,-7) C.(-3,7) D.(2,-7)6.如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数(0)ky x x=>的图象经过顶点B ,则k 的值为( )A.12B.20C.24D.32第6题图第7题图7.如图,A 为反比例函数ky x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A.6B.3C.23D.不能确定 8.已知点1(2,)A y -、2(1,)B y -、3(3,)C y 都在反比例函数4y x=的图象上,则1y 、2y 、3y 错误!未找到引用源。

的大小关系是( )A.123y y y <<错误!未找到引用源。

B.321y y y <<错误!未找到引用源。

C.312y y y <<错误!未找到引用源。

D.213y y y <<错误!未找到引用源。

9.在反比例函数1ky x-=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以第19题图是( )A.-1B.0C.1D.2 10.已知1(1,)A y -,2(2,)B y 两点在双曲线32my x+=上,且12y y >,则m 的取值范围是( ) A.0m < B.0m > C.32m >- D.32m <-二、填空题(每小题3分,共24分)11.已知y 错误!未找到引用源。

〖人教版〗八年级数学下册期末复习试卷反比例函数测试题

〖人教版〗八年级数学下册期末复习试卷反比例函数测试题

〖人教版〗八年级数学下册期末复习试卷反比例函数测试题创作人:百里灵明 创作日期:2021.04.01 审核人: 北堂正中 创作单位: 北京市智语学校 一、填空题:(分数3分×12=36分,并把答案填在第12题后的方框内)1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为;2、函数2x y -=和函数xy 2=的图像有个交点;3、反比例函数x k y =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k =,a =,b =;4、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过象限;5、若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______6、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为;7、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m =,正比例函数与反比例函数的解析式分别是、; 8、设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________9、右图3是反比例函数xk y =的图象,则k 与0的大小关系是k 0.10、函数xy 2-=的图像,在每一个象限内,y 随x 的增大而; 11、反比例函数()0>=k xk y 在第一象限内的图象如图,点M 是图像上一点, MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是;12、()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为; 题号 1 2 3 4 5 6 答案 题号 7 8 9 10 11 12 答案二、选择题: (分数3分×14=42分,并把答案填在第12题后的方框内) 1、下列函数中,反比例函数是( )yxO PMA 、 1)1(=-y xB 、 11+=x yC 、 21xy = D 、 x y 31=2、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( )A 、 (-a ,-b )B 、 (a ,-b )C 、 (-a ,b )D 、 (0,0) 3、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、 第一、三象限 B 、 第一、二象限 C 、 第二、四象限 D 、 第三、四象限 4、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、 正比例函数 B 、 反比例函数 C 、 一次函数 D 、 不能确定 5、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )A 、 -1或1B 、小于21的任意实数 C 、 -1 D、 不能确定 6、函数x k y =的图象经过点(-4,6),则下列各点中不在xky =图象上的是( )A 、 (3,8)B 、 (3,-8)C 、 (-8,-3)D 、 (-4,-6)7、正比例函数kx y =和反比例函数ky =在同一坐标系内的图象为( )BCAy =的值为( )A 、6B 、3C 、23D 、不能确定9、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )Dy 1xk y 2=1k 和2k 的关系一定是( )A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号11、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是( ) A 6 B ―6 C 9 D ―912、当路程s 一定时,速度v 与时间t 之间的函数关系是( )A 正比例函数B 反比例函数C 一次函数D 二次函数13、(北京西城)在同一坐标系中,函数xky =和3+=kx y 的图像大致是 ( )141y )21x x <,则21、三、解答题:(第1、2小题各7分、第3小题8分,共22分)1、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

第11章反比例函数(1)(解析版)苏科版八年级数学下册期末复习提升训练

第11章反比例函数(1)(解析版)苏科版八年级数学下册期末复习提升训练

第11章 反比例函数(1)-2020-2021学年八年级数学下册期末复习提升训练(苏科版)一、选择题1、下列函数:①2y x =-,②3x y =,③1y x -=,④21y x =+,y 是x 的反比例函数的个数有( ) A .0个B .1个C .2个D .3个2、在反比例函数3my x-=的图象在某象限内,y 随着x 的增大而减小,则m 的取值范围是( ) A .3m >-B .3m <-C .3m >D .3m <3、如图,函数y =(x >0),y =(x >0)的图象将第一象限分成了A ,B ,C 三个部分.下列各点中,在B 部分的是( )A .(1,1)B .(3,4)C .(3,1)D .(4,2)4、反比例函数y xky =与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为( ) A .B . C .D .5、若(﹣1,y 1),(2,y 2),(3,y 3)三点均在反比例函数xm y 12+=的图象上,则下列结论中正确的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 16、随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x (辆)的关系如图所示,当x ≥8时,y 与x 成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x 应该满足的范围是( )A .x <32B .x ≤32C .x >32D .x ≥327、如图,在平面直角坐标系中,点A 是函数(0)ky x x=<图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若ABC ∆的面积为1,则k 的值为( ) A .1 B .2 C .1-D .2-8、在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),点B 在第一象限,BD ∥x 轴,若函数)0,0(>>=x k xky 的图象经过矩形ABCD 的对角线的交点,则k 的值为( )A .4B .5C .8D .109、如图,两个反比例函数y=x 4和y=x2在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算10、如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3二、填空题11、已知函数y =(m +1)22-m x是反比例函数,则m 的值为 .12、反比例函数y =18x的比例系数为_____. 13、已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是_____. 14、已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x=的图象上.若124x x =-,则12y y 的值为___.15、已知反比例函数12y x =-,当43y ≤,且0y ≠时,自变量x 的取值范围为_____________.16、如图,等腰直角△ABC 位于第二象限,BC =AC =2,直角顶点C 在直线y =﹣x 上,且点C 的横坐标为﹣3,边BC ,AC 分别平行于x 轴、y 轴.若双曲线y=xk与△ABC 的边AB 有2个公共点,则k 的取值范围为 .17、已知A 、B 两点分别在反比例函数2332m y m x -⎛⎫=≠ ⎪⎝⎭和3223m y m x -⎛⎫=≠ ⎪⎝⎭的图象上,且点A 与点B 关于y 轴对称,则m 的值为____. 18、如图,是反比例函数y=x k 1和y=xk2(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值为 .19、如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.20、如图,矩形AOCB 的两边OC 、OA 分别位x 轴、y 轴上,点B 的坐标为B (203-,5),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是_____.三、解答题21、已知y 与x ﹣1成反比例,且当x =4时,y =1. (1)求y 与x 的函数关系式;(2)判断点(﹣2,﹣1)是否在该函数图象上.22、如图,一次函数y =kx +b 的图象与反比例函数y=xm的图象交于点A (1,4)、B (4,n ). (1)求这两个函数的表达式; (2)请结合图象直接写出不等式kx +b ≤xm的解集; (3)若点P 为x 轴上一点,△ABP 的面积为6,求点P 的坐标.23、如图,已知A (-4,n ),B (2,-4)是一次函数y 1=kx+b 的图像和反比例函数2ky x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线与x 轴的交点C 的坐标及△AOB 的面积; (3)当x 取何值时,y 1=y 2;当x 取何值时,y 1>y 2.24、如图,周长为20的菱形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标是(6,0). (1)求点C 的坐标; (2)若反比例函数xk y 3+=的图象经过点C ,求k 的值.25、菱形ABCD 的顶点C 与原点O 重合,点B 落在y 轴正半轴上,点A 、D 落在第一象限内,且D 点坐标为(4,3). (1)如图1,若反比例函数y =(x >0)的图象经过点A ,求k 的值;(2)菱形ABCD 向右平移t 个单位得到菱形A 1B 1C 1D 1,如图2.①请直接写出点B 1、D 1的坐标(用含t 的代数式表示):B 1 、D 1 ;②是否存在反比例函数y =(x >0),使得点B 1、D 1同时落在y =(x >0)的图象上?若存在,求n 的值;若不存在,请说明理由.26、某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降,水温(C)y ︒与通电时间x (分)的关系如下图所示,回答下列问题: (1)当0≤x ≤8时,求y 与x 之间的函数关系式;(2)求出图中a 的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40C ︒的温开水,问:他应在什么时间段内接水?第11章 反比例函数(1)(解析)-2020-2021学年八年级数学下册期末复习提升训练(苏科版)一、选择题1、下列函数:①2y x =-,②3x y =,③1y x -=,④21y x =+,y 是x 的反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据题意写出函数表达式再判断它们的关系则可. 【答案】解:①y =x ﹣2,y 是x 的一次函数,故错误; ②y =,y 是x 的正比例函数,故错误; ③y =x ﹣1,y 是x 的反比例函数,故正确;④y =,y 是x +2的反比例函数,故错误.综上所述,正确的结论只有1个. 故选:B .2、在反比例函数3my x-=的图象在某象限内,y 随着x 的增大而减小,则m 的取值范围是( ) B .3m >- B .3m <- C .3m > D .3m <【分析】根据反比例函数的性质可得3﹣m >0,再解不等式即可. 【答案】解:∵反比例函数y =的图象在每个象限内,y 随着x 的增大而减小,∴3﹣m >0, 解得,m <3. 故选:D .3、如图,函数y =(x >0),y =(x >0)的图象将第一象限分成了A ,B ,C 三个部分.下列各点中,在B 部分的是( )A .(1,1)B .(3,4)C .(3,1)D .(4,2)【分析】分别将x =1、x =3、x =4代入两个反比例函数的解析式求得y 的值,即可确定在B 部分的点. 【答案】解:把x =1代入y =(x >0),y =(x >0)中,得:y =2和y =6,把x =3代入y =(x >0),y =(x >0)中,得:y =和y =2,把x =4代入y =(x >0),y =(x >0)中,得:y =和y =,∴点(3,1)在B 部分, 故选:C .4、反比例函数y xky与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为( ) A .B . C .D .【分析】分别根据反比例函数与一次函数的性质对各选项进行逐一分析即可.【解答】解:A 、由反比例函数的图象可知,k >0,一次函数图象呈上升趋势且交与y 轴的正半轴,﹣k >0,即k <0,故本选项错误;B 、由反比例函数的图象可知,k >0,一次函数图象呈下降趋势且交与y 轴的正半轴,﹣k <0,即k >0,故本选项正确;C 、由反比例函数的图象可知,k <0,一次函数图象呈上升趋势且交与y 轴的负半轴(不合题意),故本选项错误;D 、由反比例函数的图象可知,k <0,一次函数图象呈下降趋势且交与y 轴的正半轴,﹣k <0,即k >0,故本选项错误. 故选:B .5、若(﹣1,y 1),(2,y 2),(3,y 3)三点均在反比例函数xm y 12+=的图象上,则下列结论中正确的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 1【分析】先判断出反比例函数xm y 12+=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特点进行判断即可.【答案】解:∵m 2+1>0,∴反比例函数xm y 12+=的图象在一、三象限,∵点(﹣1,y 1)的横坐标为﹣1<0,∴此点在第三象限,y 1<0;∵(2,y 2),(3,y 3)的横坐标3>2>0,∴两点均在第一象限y 2>0,y 3>0, ∵在第一象限内y 随x 的增大而减小, ∴y 2>y 3>0,∴y 2>y 3>y 1. 故选:D .6、随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x (辆)的关系如图所示,当x ≥8时,y 与x 成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x 应该满足的范围是( )A .x <32B .x ≤32C .x >32D .x ≥32【分析】利用已知反比例函数图象过(8,80),得出其函数解析式,再利用y =20时,求出x 的最值,进而求出x 的取值范围.【答案】解:设反比例函数的解析式为:y =(x ≥8),则将(8,80),代入得:y =,故当车速度为20千米/时,则20=,解得:x =32,故高架桥上每百米拥有车的数量x 应该满足的范围是:x ≤32. 故选:B .7、如图,在平面直角坐标系中,点A 是函数(0)ky x x=<图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若ABC ∆的面积为1,则k 的值为( ) A .1B .2C .1-D .2-【答案】D【分析】根据已知条件得到三角形ABO 的面积=12AB•OB ,由于三角形ABC 的面积=12AB•OB=1,得到|k|=2,即可得到结论.【解析】解:连接AO ∵AB ⊥y 轴,∴AB ∥CO ,∴S △AOB =12AB•OB=12k , ∵S △ABC =12AB•OB=1,∵S △AOB = S △ABC ∴112k =∴|k|=2,∵k <0,∴k=-2,故选:D .8、在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),点B 在第一象限,BD ∥x 轴,若函数)0,0(>>=x k xk y 的图象经过矩形ABCD 的对角线的交点,则k 的值为( )A .4B .5C .8D .10【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设B (x ,2).利用矩形的性质得出E 为BD 中点,∠DAB =90°.根据线段中点坐标公式得出E (21x ,2).由勾股定理得出求出x ,得到E 点坐标,代入y=xk ,利用待定系数法求出k . 【答案】解:∵BD ∥x 轴,D (0,2),∴B 、D 两点纵坐标相同,都为2,∴可设B (x ,2),∵矩形ABCD 的对角线的交点为E ,∴E 为BD 中点,∠DAB =90°.∴E (21x ,2), ∵∠DAB =90°,∴AD 2+AB 2=BD 2, ∵A (1,0),D (0,2),B (x ,2),∴12+22+(x ﹣1)2+22=x 2,解得x =5,∴E (25,2).∵反比例函数)0,0(>>=x k xk y 的图象经过点E , ∴k =⨯252=5, 故选:B . 9、如图,两个反比例函数y=x 4和y=x2在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算【分析】根据反比例函数y=x k (k ≠0)系数k 的几何意义得到S △POA =⨯214=2,S △BOA =⨯212=1,然后利用S △POB =S △POA ﹣S △BOA 进行计算即可.【答案】解:∵P A ⊥x 轴于点A ,交C 2于点B ,∴S △POA =⨯214=2,S △BOA =⨯212=1, ∴S △POB =2﹣1=1.故选:A .10、如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .3【答案】D 【解析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标, 根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b , 则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数6y x=的第一象限图象上, ∴(a +b )×(a ﹣b )=a 2﹣b 2=6. ∴S △OAC ﹣S △BAD =12a 2﹣12b 2=12(a 2﹣b 2)=12×6=3. 故选D .二、填空题 11、已知函数y =(m +1)22-m x 是反比例函数,则m 的值为 .【分析】根据反比例函数的定义知m 2﹣2=﹣1,且m +1≠0,据此可以求得m 的值.【答案】解:∵y =(m +1)22-m x是反比例函数,∴m 2﹣2=﹣1,且m +1≠0,∴m =±1,且m ≠﹣1,∴m =1;故答案是:1.12、反比例函数y =18x的比例系数为_____. 【答案】18【分析】将函数解析式变形为y =18x,依据反比例函数定义即可得出答案.【详解】解:∵y =18x ﹣18x,∴反比例函数y =18x 的比例系数是18,故答案为:18.13、已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是_____. 【答案】2k >. 分析:根据“反比例函数k y x=的图象所处象限与k 的关系”进行解答即可. 【解析】∵反比例函数2k y x-=的图象在第一、三象限内, ∴20k ->,解得:2k >.故答案为2k >.14、已知1(A x ,1)y ,2(B x ,2)y 都在反比例函数6y x=的图象上.若124x x =-,则12y y 的值为___. 【答案】-9.【分析】根据反比例函数上点的特征得到1y 、2y 分别与1x 、2x 的关系,再把它们相乘,最后把12=4x x -代入即可. 【详解】将点A 和B 代入反比例函数得:116y x =,226y x =, 所以12121266363694y y x x x x ====--.故答案为-915、已知反比例函数12y x =-,当43y ≤,且0y ≠时,自变量x 的取值范围为_____________. 【答案】x <-9或x >0 【分析】求出y =43时x 的值,再根据反比例函数的性质求解即可. 【详解】解:在12y x =-中,-12<0,∴反比例函数经过第二、四象限, 令1243x -=,得:x =-9,当x >0时,y <0<43,当x <0时,若43y ≤,则x <-9, ∴x 的取值范围是:x <-9或x >0,故答案为:x <-9或x >0.16、如图,等腰直角△ABC 位于第二象限,BC =AC =2,直角顶点C 在直线y =﹣x 上,且点C 的横坐标为﹣3,边BC ,AC 分别平行于x 轴、y 轴.若双曲线y=xk 与△ABC 的边AB 有2个公共点,则k 的取值范围为 .【分析】由题意C (﹣3,3),A (﹣3,1),B (﹣1,3),直线OC 与AB 的交点坐标为E (﹣2,2),反比例函数图象经过A 或B 时,k =﹣3,反比例函数图象经过点E 时,k =﹣4,观察图象即可解决问题.【答案】解:由题意C (﹣3,3),A (﹣3,1),B (﹣1,3),直线OC 与AB 的交点坐标为E (﹣2,2),反比例函数图象经过A 或B 时,k =﹣3,反比例函数图象经过点E 时,k =﹣4,观察图象可知,双曲线y=x k 与△ABC 的边AB 有2个公共点,则k的取值范围为﹣4<k ≤﹣3. 故答案为﹣4<k ≤﹣3.17、已知A 、B 两点分别在反比例函数2332m y m x -⎛⎫=≠ ⎪⎝⎭和3223m y m x -⎛⎫=≠ ⎪⎝⎭的图象上,且点A 与点B 关于y 轴对称,则m 的值为____.【答案】1【分析】根据题意,设出点A 和点B 的坐标,再根据点A 与点B 关于y 轴对称,即可求得m 的值.【详解】解:设点A 的坐标(a ,23m a -),点B 的坐标为(b ,32m b-), ∵点A 与点B 关于y 轴对称,∴2332a b m m ab =-⎧⎪--⎨=⎪⎩ ,解得,m=1,故答案为:1.18、如图,是反比例函数y=x k 1和y=xk 2(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2﹣k 1的值为 .【分析】设A (a ,b ),B (c ,d ),代入双曲线得到k 1=ab ,k 2=cd ,根据三角形的面积公式求出cd ﹣ab =4,即可得出答案.【答案】解:设A (a ,b ),B (c ,d ),代入得:k 1=ab ,k 2=cd ,∵S △AOB =2,∴21cd-21ab =2,∴cd ﹣ab =4,∴k 2﹣k 1=4,故答案为:4.19、如图,点A为函数y=9 x (x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC 的面积为______.【分析】作辅助线,根据反比例函数关系式得:S△AOD=92, S△BOE=12,再证明△BOE∽△AOD,由性质得OB 与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,∴BE∥AD,∴△BOE∽△AOD,∴22BOEAODS OBS OA=,∵OA=AC,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==,∴13OBOA=,∴23ABOA=,∴23ABCAOCSS=,∴2963ABCS⨯==,故答案为6.20、如图,矩形AOCB的两边OC、OA分别位x轴、y轴上,点B的坐标为B(203-,5),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是_____.【详解】解:过E 点作EF ⊥OC 于F由条件可知:OE=OA=5,EF OF =tan ∠BOC=BC OC =5203=34 所以EF=3,OF=4,则E 点坐标为(-4,3)设反比例函数的解析式是y= k x,则有k=-4×3=-12 ∴反比例函数的解析式是y=12x -三、解答题 21、已知y 与x ﹣1成反比例,且当x =4时,y =1. (1)求y 与x 的函数关系式;(2)判断点(﹣2,﹣1)是否在该函数图象上.【分析】(1)根据题意可以设出函数关系式,把x 和y 的对应值代入函数解析式,通过方程即可求得k 的值;(2)然后把x =﹣2代入所求得的函数解析式,得到相应的y 的值即可判断.【答案】解:(1)设y =1-x k , 把x =4,y =1代入y =1-x k 得141-=k ,解得k =3,∴y 与x 的函数关系式13-=x y ; (2)把 x =﹣2代入13-=x y 得,y =﹣1, ∴点(﹣2,﹣1)在该函数的图象上.22、如图,一次函数y =kx +b 的图象与反比例函数y=x m 的图象交于点A (1,4)、B (4,n ). (1)求这两个函数的表达式; (2)请结合图象直接写出不等式kx +b ≤xm 的解集; (3)若点P 为x 轴上一点,△ABP 的面积为6,求点P 的坐标.【分析】(1)将点A (1,4)代入y=xm 可得m 的值,求得反比例函数的解析式;根据反比例函数解析式求得点B 坐标,再由A 、B 两点的坐标可得一次函数的解析式;(2)根据图象得出不等式kx +b ≤xm 的解集即可; (3)利用面积的和差关系可求解.【答案】解:(1)把A (1,4)代入y=xm ,得:m =4, ∴反比例函数的解析式为y=x4; 把B (4,n )代入y=x4,得:n =1,∴B (4,1),把A (1,4)、(4,1)代入y =kx +b ,∴一次函数的解析式为y =﹣x +5;(2)根据图象得:当0<x ≤1或x ≥4时,kx +b ≤x m ; ∴不等式kx +b ≤xm 的解集为0<x ≤1或x ≥4; (3)如图,设直线AB 与x 轴交于点C ,∵直线AB 与x 轴交于点C ,∴点C 坐标为(5,0),∵△ABP 的面积为6,∴21×PC ×4-21PC ×1=6, ∴PC =4, ∴点P 的坐标为(1,0)或(9,0).23、如图,已知A (-4,n ),B (2,-4)是一次函数y 1=kx+b 的图像和反比例函数2k y x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线与x 轴的交点C 的坐标及△AOB 的面积; (3)当x 取何值时,y 1=y 2;当x 取何值时,y 1>y 2.【答案】(1)y 2=8x-,y 1=-x-2;(2)6;(3)x=-4或x=2;x <-4或0<x <2 【分析】(1)根据题意,点A 、B 在一次函数及反比例函数图象上,则点A 、B 的坐标均符合两个解析式,将点B 、A 分别代入反比例函数求k 、n 的值,再将点A 、B 分别代入一次函数解析式中即可解题; (2)令直线10y =,解得直线与x 轴的交点坐标C ,根据AOB ACO BCO S S S =+及三角形面积公式解题即可;(3)观察图象,图象的公共点即为解析式的公共解,两个交点将图象分成四个区域,找到12y y >的区域,写出其x 的取值范围即可.【解析】(1)(2-4)B ,在反比例函数2k y x =的图象上,2(4)8k ∴=⨯-=-28y x∴=- (4)A -,n 在28y x∴=-上,2n ∴=(42)A ∴-,1y kx b ∴=+经过点A 、B 4224k b k b -+=⎧∴⎨+=-⎩解得:12k b =-⎧⎨=-⎩12y x ∴=-- (2)直线与x 轴的交点:02y x =∴=-,, 即()20C -,2OC ∴= 112422622AOB ACO BCO S S S ∴=+=⨯⨯+⨯⨯= (3)由图象知,(42)A -,,(2-4)B ,是一次函数12y x =--的图像和反比例函数28y x=-的图像的两个交点124x y y ∴=-=,,或122x y y ==,;当图象在点A 的左侧,或图象在点B 的左侧且在y 轴的右侧时,12y y >4x ∴<-,或02x <<时,12y y >.24、如图,周长为20的菱形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标是(6,0).(1)求点C 的坐标;(2)若反比例函数x k y 3+=的图象经过点C ,求k 的值.【分析】(1)利用菱形的性质得出H 点坐标,再利用勾股定理得出C 点坐标;(2)利用反比例函数图象上点的坐标性质得出答案.【答案】解:(1)连接AC 交OB 于H ,∵四边形OABC 为菱形,∴OB 垂直平分AC ,∵B 的坐标是(6,0),∴H (3,0),∵菱形OABC 的周长为20,∴OC =5,∴HC ===4,∴点C 的坐标为:(3,﹣4);(2)∵反比例函数的图象经过点C ,∴﹣4=,解得:k =﹣15.25、菱形ABCD 的顶点C 与原点O 重合,点B 落在y 轴正半轴上,点A 、D 落在第一象限内,且D 点坐标为(4,3).(1)如图1,若反比例函数y=(x>0)的图象经过点A,求k的值;(2)菱形ABCD向右平移t个单位得到菱形A1B1C1D1,如图2.①请直接写出点B1、D1的坐标(用含t的代数式表示):B1、D1;②是否存在反比例函数y=(x>0),使得点B1、D1同时落在y=(x>0)的图象上?若存在,求n的值;若不存在,请说明理由.解:(1)如图,作DF⊥x轴于点F,∵点D的坐标为(4,3),∴FO=4,DF=3,∴DO=5,∴AD=5.∴A点坐标为(4,8),∴xy=4×8=32,∴k=32;(2)①平移后B1、D1的坐标分别为:(t,5),(t+4,3),故答案为:(t,5),(t+4,3);②存在,理由如下:∵点B1、D1同时落在(x>0)的图象上B1(t,5),D1(t+4,3),∴5t=n,3(t+4)=n,解得:t=6,n=30所以,存在,此时n =30.26、某小学为每个班级配备了一种可加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降,水温(C)y ︒与通电时间x (分)的关系如下图所示,回答下列问题:(1)当0≤x ≤8时,求y 与x 之间的函数关系式;(2)求出图中a 的值;(3)某天早上7:20,李优老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40C ︒的温开水,问:他应在什么时间段内接水?【分析】(1)由函数图象可设函数解析式,再将图中坐标代入解析式,利用待定系数法即可求得y 与x 的关系式;(2)将y =20代入y =,即可得到a 的值;(3)要想喝到不超过40℃的开水,7:30加20分钟即可接水,一直到8:10;【答案】解:(1)当0≤x ≤8时,设y 与x 之间的函数关系式为y =kx +b (k ≠0),将(0,20),(8,100)代入y =kx +b ,得:,解得:,∴当0≤x ≤8时,y 与x 之间的函数关系式为y =10x +20;(2)当8≤x ≤a 时,设y 与x 之间的函数关系式为:y =(k 2≠0),将(8,100)代入y =,得:100=解得:k2=800,∴当8≤x≤a时,y与x之间的函数关系式为:y=;将(a,20)代入y=,得:a=40;(3)依题意,得:≤40,解得:x≥20.∵x≤40,∴20≤x≤40.∴他应在7:40~8:00时间段内接水.。

八年级下册反比例函数测试题

八年级下册反比例函数测试题

反比例函数练习1、下列函数中,反比例函数是( ) A 、y=x+1 B 、21x y =C 、1=xyD 、3xy=12、函数y 1=kx 和xky =2的图象如图,自变量x 的取值范围相同的是( )3、函数xm y =与)0(≠-=m m mx y 在同一平面直角坐标系中的图像可能是( )。

4、反比例函数xk y 2=(k ≠0)的图象的两个分支分别位于( )象限。

A 、一、二 B 、一、三 C 、二、四 D 、一、四5、当三角形的面积一定时,三角形的底和底边上的高成( )A 、正比例函数 B 、反比例函数 C 、一次函数 D 、二次函数6、若点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线xy 1-=上,则( ) A 、x 1>x 2>x 3 B 、x 1>x 3>x 2 C 、x 3>x 2>x 1 D 、x 3>x 1>x 27、如图1:是三个反比例函数xk y 1=,xk y 2=,xk y 3=在x 轴上的图像,由此观察得到k 1、k 2、k 3的大小关系为( ) A 、k 1>k 2>k 3 B 、k 1>k 3>k 2 C 、k 3>k 2>k 1 D 、k 3>k 1>k 28、如图2,正比例函数y=x 与反比例xy 1=的图象相交于A 、C 两点,AB ⊥x 轴B ,CD ⊥x 轴于D ,则四边形ABCD 的面积为( )A 、1B 、23C 、2D 、259、如图3,已知点A 是一次函数y =x 的图象与反比例函数xy 2=的图象在 第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB ,那么△AOB 的面积为A 、2B 、22 C 、 D 、1、已知y 与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________2、如果反比例函数xky =的图象经过点(3,1),那么k=_______。

初二数学人教版(下册)反比例函数综合练习(附答案)

初二数学人教版(下册)反比例函数综合练习(附答案)

反比例函数综合练习一、选择题1.反比例函数y= -2/x的图象位于()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限2.已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为()、. 若双曲线y=6/x 经过点A(m,3),则m的值为()A.2 B.-2 C.3 D.-33. 如图,过原点的一条直线与反比例函数y=k/x(k<0)的图像分别交于A、B两点,若A、、点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(-b,-a) D.(-a,-b)4、下列关系中,两个量之间为反比例函数关系的是()A 、 正方形的面积S 与边长a 的关系B 、 正方形的周长L 与边长a 的关系C 、 长方形的长为a ,宽为20,其面积S 与a 的关系D 、 长方形的面积为40,长为a ,宽为b ,a 与b 之间的关系 5、在同一直角坐标系中,函数x y 3=与xy 1-=的图象大致是( )6、设()()2211,,,y x B y x A 是反比例函数xy 2-=图象上和两点,若1x <2x <0则1y 与2y 之间的关系是( )A 、2y <1y <0B 、1y <2y <0C 、2y >1y >0D 、1y >2y >0 7、函数k kx y +=与xky =在同一坐标系中的图象如图所示,则k 的取值范围为( ) A 、k >0 B 、k <0 C 、-1<k <0 D 、k <-18、(2006年兰州市)如图1所示,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形△P 1A 1O 、△P 2A 2O 、△P 3A 2O ,设它们的面积分别是S 1、S 2、S 3,则( ) A 、S 1<S 2<S 3 B 、S 2<S 1<S 3 C 、S 1<S 3<S 2 D 、S 1=S 2=S 3yOxyOxyOxO xyx二、填空题9.在函数xky =中,当2=x 时,3-=y 。

八年级数学下期期末复习专题2(反比例函数1)

八年级数学下期期末复习专题2(反比例函数1)

2A B 1 xy O 图4教师姓名 学生姓名 填写时间 学科数学年级八年级 教材版本 新人教版课题名称 期末复习专题二(反比例函数1)本人课时统计共(2)课时上课时间18:20一、选一选,牛刀初试露锋芒!(每小题3分,共30分)1.函数121y x =-的自变量的取值范围是( ). A .12x > B .12x < C .12x = D .12x ≠的全体实数2.已知反比例函数ky x=的图象经过点(3)m m ,,则此反比例函数的图象在( ). A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 3.关于函数1y x=-的图象,下列说法错误..的是( ). A .图象经过点(1,-1) B .在第二象限内,y 随x 的增大而增大C .是轴对称图形,且对称轴是y 轴D .是中心对称图形,且对称中心是坐标原点 4.若反比例函数22(21)m ym x-=-的图像在第二、四象限,则m 的值是( ).A .1-B .小于21的任意实数 C .1-或1 D.不能确定 5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,其图象如图1所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 36.如图2,一次函数y x b =+与反比例函数ky x=的图象相交于A ,B 两点,若已知一个交点为A (2,1),则另一个交点B 的坐标为( ).A .(12)--, B .(21)--, C .(21)-, D .(12), 7.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c = B .b c > C .b c < D .无法判断8.如图3,边长为4的正方形ABCD 的对称中心是坐标原点O ,AB∥x 轴,BC∥y 轴,反比例函数2y x =与2y x=-的图象均与正方形ABCD 的边相交,则图中阴影部分的面积之和是( ).A .2B .4C .6D .8. 9.如图4,A B ,是双曲线ky x=的一个分支上的两点,且点()B a b ,在点A 的右侧,则b 的取值范围是( ). A .1b > B .2b < C .01b << D .02b <<图1x ODCBAy3图2图510.如图5,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE的延长线交CB 的延长线于F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( ).二、填一填,狭路相逢勇者胜(共有10个小题,每小题3分,共30分) 11.下列函数:①22y x =;②2y x =-+;③6y x -=;④22y x =;⑤a y x =;⑥y xπ=.其中y 是x 的反比例函数的是__________(填写序号).12.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是________(填写一个即可). 13.在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则反比例函数的关系式为 .14.在平面直角坐标系中,O 是坐标原点.点()P m n ,在反比例函数ky x=的图象上.若m k =,2n k =-,则点P 的坐标为;15.平面直角坐标系中有六个点(15)A ,,533B ⎛⎫-- ⎪⎝⎭,,(51)C --,,522D ⎛⎫- ⎪⎝⎭,, 533E ⎛⎫ ⎪⎝⎭,,522F ⎛⎫ ⎪⎝⎭,,其中有五个点在同一反比例函数图象上,则不在这个反比例函数图象上的点是________. 16.已知一次函数25y x =-的图象与反比例函数()0≠=k xky 的图象交于第四象限 的一点P (a ,-3a ),则这个反比例函数的解析式为_____________. 17.如图6,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k 的值和Q 点的坐标分别为________.18.老师给出了一个函数,甲、乙、丙三位学生分别指出了这个函数的一个性质. 甲:第一象限内有它的图象;乙:第三象限内有它的图象;丙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的函数解析式______________.19. 若直线6y x =-与函数4(0)y x x=>的图象相交与A 、B 两点,设A 点的坐标为()11,x y ,那么长为1x ,宽为1y 的矩形的面积和周长分别是______________.20.两个反比例函数k y x =和1y x =在第一象限内的图象如图7所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x=的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在k y x =的图象上运动时,以下结论:①△ODB与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;其中一定正确的是 .图6三、想一想,百尺竿头再进步!(共60分)21.(8分)在某一电路中,保持电压不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R =5欧姆时,电流I =2安培.(1)求I 与R 之间的函数关系式;(2)当电流I =0.5安培时,求电阻R 的值.22.(8分)已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,并且当1x =时,4y =;当3x =时,5y =. 当4x =时,求y 的值. 小亮是这样解答的:解:由1y 与x 成正比例,2y 与x 成反比例,可设1y kx =,2ky x=. 又12y y y =+,所以ky kx x=+. 把1x =,4y =代入上式,解得2k =. 所以22y x x =+. 所以当4x =时,2124842y =⨯+=. 阅读上述解答过程,你认为小亮的解答过程是否正确,若不正确,请说明理由,并给出正确的解题过程.23.(10分)如图8,ABC ∆是边长为23的等边三角形,点E 、F 分别在CB 和BC 的延长线上,且120EAF ∠=︒,设,BE x CF y ==.求y 与x 的函数关系式,并写出自变量x 的取值范围.图8图7图924.(10分)如图9,11POA ∆,212P A A ∆,323P A A ∆,……,1n n n P A A -∆都是等腰直角三角形,点123,,,P P P …,n P 都在函数()40y x x=>的图象上,斜边11223,,,OA A A A A …,1n n A A -都在x 轴上. (1)求1A 、2A 点的坐标;(2)猜想n A 点的坐标(直接写出结果即可).25.(12分)已知一次函数与反比例函数的图象交于点(3)(23)P m Q --,,,. (1)求这两个函数的函数关系式;(2)在给定的直角坐标系(如图10)中,画出这两个函数的大致图象; (3)当x 为何值时,一次函数的值大于反比例函数的值?当x 为何值时,一次函数的值小于反比例函数的值?26.(12分)如图11,在直角坐标系xOy 中,一次函数y =k 1x +b 的图象与反比例函数xk y 2=的图象交于A (1,4)、B (3,m )两点.(1)求一次函数的解析式; (2)求△AOB 的面积.图11A (1,B (3,m) xy图10参考答案一、选一选,牛刀初试露锋芒 1. D .点拨:210x -≠.2. B .点拨:2330k m m m =⋅=>.3. C .点拨:反比例函数1y x=-图象的对称轴是直线y x =或y x =-.4. A .点拨:由题意知,221m -=-且210m -<. 解得1m =-.5. D .点拨:由图象得,反比例函数解析式为10V ρ=,当310m V =时,1ρ=(kg/m 3). 6. A .点拨:一次函数为1y x =-,反比例函数为2y x=.7. C .点拨:利用特殊值,可取1a =-.8. D .点拨:把图象关于y 轴对称,则阴影部分的面积之和为正方形面积的一半. 9. D .点拨:本题隐含着0b >这个条件.10. B .点拨:由△ADE ∽△CFD ,得y 与x 的关系式为8y x=,自变量x 的范围是04x <≤. 二、填一填,狭路相逢勇者胜 11.③⑥.12.答案不唯一,如2. 点拨:由题意得,10k ->,即1k >.13.2y x=. 点拨:直线y x =向上平移1个单位长度得到1y x =+,故点A 的坐标(1,2).14.(3,1).点拨:把m k =,2n k =-代入到ky x=中,得k =3. 15.D 点.点拨:若各点在同一图象上,则k 值相同,即各点的横、纵坐标之积的值不变.16.3y x-=.点拨:把(,3)a a -代入一次函数表达式,得1a =.则P 点坐标为(1,3)-.17.3,32,2⎛⎫⎪⎝⎭.点拨:由OQC S ∆1322k ==,得3k =;由A (4,0),得C (2,0),故2Q x =.18.答案不唯一,如1y x =. 点拨:只要反比例函数ky x=中的0k >即可. 19.4和12. 点拨:由点A ()11,x y ,得116y x =-,114(0)y x x =>,故有116x y +=, 114x y =. 所以矩形的面积为114x y =,矩形的周长为112()12x y +=. 20.①②. 点拨:由函数1y x =,得12ODB OCA S S ∆∆==;由函数ky x=,得PDOC S k =四边形. 所以1PAOB S k =-四边形.三、想一想,百尺竿头再进步21.(1)因电流I 与电阻R 成反比例,设I 与R 的函数表达式是U I R=, 把R =5,I =2代入到U I R =中,得u =10.所以I 与R 的函数关系式是10I R =. (2)当I =0.5时,则1020I R==.22.小亮的解答过程不正确. 错解的原因是:1y 与x 成正比例,应设其比例系数为1k ,2y 与x 成反比例,应设其比例系数为2k ,因为这两个比例系数不一定相等. 正解:根据题意,可设11y k x =,22k y x =. 又12y y y =+,所以21k y k x x=+. 把1x =,4y =;3x =,5y =分别代入上式,得12214353k k k k +=⎧⎪⎨+=⎪⎩,解得1118k =,2218k =.所以112188x y x =+. 故当4x =时,1121197488432y =⨯+=⨯.23.∵120EAF ∠=︒,60BAC ∠=︒,∴60EAB CAF ∠+∠=︒.又∵60EAB E ABC ∠+∠=∠=︒,∴E CAF ∠=∠.又120ABE ACF ∠=∠=︒,∴EBA ∆∽ACF ∆,∴EB BAAC CF=, 即2323x y=. ∴12y x =,自变量x 的取值范围是0x >.24.(1)设1A 的坐标为()1,0x ,则11OA x =,由11POA ∆是等腰直角三角形,可得111,22x x P ⎛⎫⎪⎝⎭,所以11422x x ⋅=,解得14x =,故1A 点的坐标为()4,0;同样可设2A 的坐标为()2,0x ,则22OA x =,1224A A x =-,由212P A A ∆是等腰直角三角形,可得22244,22x x P +-⎛⎫⎪⎝⎭,所以2244422x x +-⋅=,解得242x =. 故2A 点的坐标为()42,0.(2)仿照(1)探究规律可猜想n A 点的坐标()4,0n .25.(1)设一次函数的关系式为y kx b =+,反比例函数的关系式为n y x=. 反比例函数的图象经过点(23)Q -,,362nn ∴-==-,. 所以反比例函数的关系式为6y x=-.将点(3)P m -,的坐标代入上式,得2m =,∴点P (32)-,. 由于一次函数y kx b =+的图象过点(32)P -,和(23)Q -,,答图1 322 3.k b k b -+=⎧∴⎨+=-⎩, 解得11.k b =-⎧⎨=-⎩,所以一次函数的关系式为1y x =--.(2)两个函数的大致图象如答图1所示. (3)由两个函数的图象可以看出:当3x <-和02x <<时,一次函数的值大于反比例函数的值;当30x -<<和2x >时,一次函数的值小于反比例函数的值.26.(1)∵点A (1,4)在反比例函数2ky x =的图象上,∴24k xy ==,故有4y x=. 又∵B (3,m )也在4y x =的图象上,∴43m =,故点B 的坐标为(3,43).∵一次函数1y k x b =+过A (1,4)、B (3,43)两点, ∴114433k b k b +=⎧⎪⎨+=⎪⎩.解得1416,33k b =-=,所以一次函数得解析式为41633y x =-+.(2)设直线41633y x =-+与y 轴交于点C ,与x 轴交于点D.则点C 的坐标为(0,163),点D 的坐标为(4,0).∴11163242233COD S OD OC ∆=⋅⋅=⨯⨯=;1116812233AOC A S OC x ∆=⋅⋅=⨯⨯=;114842233BOD B S OD y ∆=⋅⋅=⨯⨯=. ∴163AOB COD AOC BOD S S S S ∆∆∆∆=--=.。

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析

初二数学反比例函数试题答案及解析1.如图,在平面直角坐标系中,双曲线经过点B,连结OB.将OB绕点O按顺时针方向旋转90°并延长至A,使OA=2OB,且点A的坐标为(4,2).(1)求过点B的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y的取值范围;(3)连接AB,在该双曲线上是否存在一点P,使得S△ABP =S△ABO,若存在,求出点P坐标;若不存在,请说明理由.【答案】(1)双曲线的函数关系式为y=﹣;(2)当x<﹣1时,0<y<2;(3)存在;点P坐标为(﹣,4).【解析】(1)作AM⊥x轴于点M,BN⊥x轴于点N,由相似三角形的判定定理得出△AOM∽△OBN,OA=2OB,再根据OA=2OB,点A的坐标为(4,2)可得出B点坐标,进而得出反比例函数的关系式;(2)由函数图象可直接得出结论;(3)根据AB两点的坐标可知AB∥x轴,S△ABP =S△ABO=5,再分当点P在AB的下方与当点P在x轴上方两种情况即可得出结论.试题解析:(1)作AM⊥x轴于点M,BN⊥x轴于点N,∵OB⊥OA,∠AMO=∠BNO=90°,∴∠AOM=∠NBO,∴△AOM∽△OBN.∵OA=2OB,∴,∵点A的坐标为(4,2),∴BN=2,ON=1,∴B(﹣1,2).∴双曲线的函数关系式为y=﹣;(2)由函数图象可知,当x<﹣1时,0<y<2;(3)存在.∵yA =yB,∴AB∥x轴,∴S△ABP =S△ABO=5,∴当点P在AB的下方时,点P恰好在x轴上,不合题意舍去;当点P在x轴上方时,点P在第二象限,得AB•(yP ﹣2)=5,即×5×(yP﹣2)=5,解得yP=4,∴点P坐标为(﹣,4).【考点】1、相似三角形的判定与性质;2、待定系数法;3、函数大小的比较;4、反比例函数2.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是____________________.【答案】y3<y2<y1.【解析】∵k=6>0,∴图象在一、三象限,且在每一象限内y随x的增大而减小.∵x1<x2,∴y1>y2>0,∵x3<0,∴y3<0,∴y3<y2<y1.故答案是y3<y2<y1.【考点】反比例函数图象上点的坐标特征.3.已知反比例函数y=的图象上有三个点(2,),(3,),(,),则,,的大小关系是()A.>>B.>>C.>>D.>>【答案】A.【解析】试题解析:∵-k2-1<0∴反比例函数y=的图象在第二、四象限∴>>故选A.【考点】反比例函数图象上点的坐标特征.4.已知长方形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为图中的()A.B.C.D.【答案】A【解析】由长方形的面积公式得y=,且x>0,y>0,而B中有x<0,y<0的情况,C,D中有x=0或y=0的情况,据此即可得出结果.解:∵xy=10∴y=,(x>0,y>0)故选A.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.5.已知反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为12,求此函数的解析式.【答案】(1)k<0 (2)y=﹣【解析】(1)直接根据反比例函数的性质求解即可,k<0;(2)直接根据k的几何意义可知:过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,所以|k|=12,而k<0,则k=﹣12.解:(1)∵反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,∴k<0;(2)设A(x,y),由已知得,|xy|=|k|=12,∵k<0,∴k=﹣12,所以,反比例函数的解析式为y=﹣.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.在同一平面直角坐标系中,正比例函数y=(m﹣1)x与反比例函数y=的图象的大体位置不可能是()A.B.C.D.【答案】D【解析】根据题意,依次分析选项中的图象,根据图象,求出其参数的范围,并解看有无公共解,若有,则可能是它们的图象,若无解,则不可能是它们的图象;即可得答案.解:依次分析选项可得:A、4m>0,m﹣1>0;解可得m>1;故可能是它们的图象.B、4m>0,m﹣1<0;解可得0<m<1;故可能是它们的图象.C、4m<0,m﹣1<0;解可得m<1;故可能是它们的图象.D、4m<0,m﹣1>0;无解;故不可能是它们的图象.故选D.点评:本题考查正比例函数与反比例函数的图象性质,注意①正比例函数与反比例函数的图象与k的关系,②两个函数中参数的关系.7.若A(,b)、B(-1,c)是函数的图象上的两点,且<0,则b与c的大小关系为()A.b<c B.b>c C.b=c D.无法判断【答案】B【解析】反比例函数的性质:当时,图象在第一、三象限,在每一象限内,y随x的增大而减小;当时,图象在第二、四象限,在每一象限内,y随x的增大而增大.解:∵,∴故选B.【考点】反比例函数的性质点评:反比例函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.如图,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1,过点B作轴垂线,垂足为C,连接AC、AB.(1)m= ;(2)若△ABC的面积为4,则点B的坐标为【答案】(1)4;(2)【解析】(1)把A的坐标代入反比例函数的解析式,即可求出m和得出反比例函数的解析式;(2)设B的坐标是(a,b),根据B在反比例函数上得出ab的值,再根据△ABC的面积为4求解即可.(1)把A(1,4)代入得;(2)设B的坐标是(a,b),∵B在反比例函数上,∴ab=4∵△ABC的面积为4,∴×a×(4-b)=4,∴2a ab=4,∴2a-2=4,a=3,∵ab=4,∴b=.则点B的坐标为(3,).【考点】反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,三角形的面积点评:待定系数法求函数的解析式是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9.如图,双曲线在第一象限内如图所示作一条平行y轴的直线分别交双曲线于A、B两点,连OA、OB,则S=。

苏科版八年级下数学期末复习试卷(3)反比例函数

苏科版八年级下数学期末复习试卷(3)反比例函数

徐州十中八年级数学期末复习(3)反比例函数班级: 姓名: 评价: 一、填空题:(每空4分,共16分) 1、若反比例函数ky x=的图象经过点()1,3-,则,k =图像经过第 象限2、已知一个函数具有以下条件:⑴该图象经过第四象限;⑵当0x >时, y 随x 的增大而增大;⑶该函数图象不经过原点。

请写出一个符合上述条件的函数关系式: 。

3. 已知反比例函数xm y 23-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大。

4. 如图,△P 1OA 1、△P 2A 1P 2是等腰直角三角形,点1P 、2P 在函数4(0)y x x=>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是___________.二、选择题:(每题4分,共24分)1.在同一平面直角坐标系中,函数,(0)ky kx k y k x=+=>的图像大致是( )2、如图,点P 是x 轴上的一个动点,过点P 作x 轴的垂线PQ 交双曲线于 点Q,连结OQ, 当点P 沿x 轴正半方向运动时,Rt △QOP 面积( ) A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 3. 已知点A (-2,y 1)、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则( ) (A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2 (D) y 2<y 1<y 34、如图,过双曲线y =kx (k 是常数,k >0,x >0)的图象上两点A 、8分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则△AOC 的面积S 1和△BOD 的面积S 2的大小关系为( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .S 1和S 2的大小无法确定 5. 若点M (2,2)和N (b ,-1-n 2)是反比例函数xky =的图象上的两个 点,则一次函数b kx y +=的图象经过 ( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四O P Qxy6、正比例函数y x =与反比例函数1y x=的图象相交于A,C B,CD ⊥X 轴于 于D,( 如图3)则四边形ABCD 的面积是A 、1 B 、32C 、2D 、52三、解答题:(共60分)1、:如图,已知一次函数y=kx+b 的图象与反比例函数y=8x-的图象交于A 、B 两点, 且点A 的横坐标和点B 的纵坐标都是-2, 求:(1)一次函数的解析式;(2)△AOB 的面积.2、若反比例函数xy 6=与一次函数4-=mx y 的图象都经过点A (a ,2)。

苏科版八年级下册 第十一章《反比例函数》练习题(含解析)

苏科版八年级下册 第十一章《反比例函数》练习题(含解析)

《反比例函数》试题集锦一.选择题(共8小题)1.(2017春•泰兴市期末)如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D 在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4 B.6 C.7 D.8(第1题图)(第2题图)(第3题图)2.(2019春•常熟市期中)如图,在平面直角坐标系中,等腰△ABC的顶点A在y轴上,顶点B、C在函数y=(x>0)的图象上,底边AB∥x轴.若AC=,AO=2,则k的值为()A.6 B.6C.8D.123.(2019春•相城区期中)如图,已知双曲线经过直角三角形OAB直角边AB上的一点C,且AC=2BC,连接OC,△AOC的面积为()A.2 B.3 C.4 D.64.(2019春•相城区期中)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB =90°,反比例函数y=的图象经过点B,若△OAC与△BAD的面积之差S△OAC﹣S△BAD=2,则k的值为()A.2 B.4 C.6 D.8(第4题图)(第5题图)(第6题图)(第7题图)(第8题图)5.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.126.(2018春•相城区期中)如图,双曲线y=(k≠0,x<0)经过平行四边形ABCO的对角线交点D,已知边OC在y轴上,且AC⊥OC于点C,若平行四边形OABC的面积是3,则k的值是()A.B.C.﹣3 D.﹣67.(2018春•相城区期中)如图,A、C两点在反比例函数y=的图象上,B、D两点在反比例函数y=的图象上,AB⊥x轴于点E,CD⊥x轴于点F,AB=3,CD=2,EF =,则k1﹣k2的值为()A.﹣3 B.﹣2 C.D.﹣18.(2018春•太仓市期中)如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36二.填空题(共10小题)9.(2019春•太仓市期中)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=(x>0)和y=(x>0)的图象交于P,Q两点,若S△POQ=12,则k的值为.(第10题图)(第11题图)(第12题图)10.(2019春•工业园区期中)如图,两个反比例函数y=和y=在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为.11.(2019春•常熟市期中)如图,在平面直角坐标系中,点A是反比例函数y=的图象上的一点,AC⊥y轴,垂足为C,点B在x轴的负半轴上,则△ABC的面积为.12.(2019•防城港模拟)如图,在平面直角坐标系中,平行四边形ABCD的边AD经过O点,A、C、D三点都在反比例函数y=的图象上,B点在x轴的负半轴上,延长CD交x轴于点E,连接CO.若S平行四边形ABCD=6,则k的值为.(第13题图)(第14题图)(第15题图)(第16题图)13.(2019春•相城区期中)如图,反比例函数的图象与矩形OABC的边AB,BC分别交于点E,F,且AE=BE,若△OEF的面积为,则k的值为.14.(2019春•相城区期中)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(2,0),顶点A的坐标为(0,4),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为.15.(2019春•相城区期中)如图,在平面直角坐标系中,函数y=kx与y=的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为.(第17题图)(第18题图)(第19题图)(第26题图)16.(2019•济宁模拟)如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x 轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为8,则△ABC的面积是.17.(2019春•东台市期中)如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x >0)交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式﹣kx+m>的解集为.18.(2017•济南)如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A (2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC的面积为.三.解答题(共24小题)19.(2018秋•永登县期末)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范为;药物燃烧后,y关于x的函数关系式为.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?20.(2019春•太仓市期中)如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限内的图象交于A(1,n)和B(4,m)两点;(1)求反比例函数的表达式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围;(3)求△AOB面积.21.(2017春•张家港市期末)如图,▱ABCD的顶点A、B在x轴上,顶点D在y轴上,已知OA=3,OB=5,OD=4.(1)▱ABCD的面积为;(2)如图1,点E是BC边上的一点,若△ABE的面积是▱ABCD的,求点E的坐标;(3)如图2,将△AOD绕点O顺时针旋转,旋转得△A1OD1,在整个旋转过程中,能否使以点O、A1、D1、B为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由.22.(2019春•工业园区期中)如图,直线y=2x与双曲线交于点A、E,直线AB交双曲线于另一点B(2m,m),连接EB并延长交x轴于点F.(1)m=;(2)求直线AB的解析式;(3)求△EOF的面积;(4)若点P为坐标平面内一点,且以A,B,E,P为顶点的四边形是平行四边形,请直接写出所有满足条件的点P的坐标.23.(2019春•常熟市期中)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(2,4)和点(n,﹣2),与y轴交于点C.(1)求m,n的值;(2)当y1>y2时,请直接写出x的取值范围;(3)点B关于y轴的对称点是B′,连接AB′,CB′,求△AB′C的面积.24.(2019•苏州一模)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.25.(2019春•常熟市期中)如图,平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=﹣在第二象限内的图象相交于点A,与x轴的负半轴交于点B,与y轴的负半轴交于点C.(1)求∠BCO的度数;(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.26.(2019春•吴中区期中)如图所示,矩形ABCO的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(8,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且OA=2AB.(1)AB的长是;(2)求反比例函数的表达式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.27.(2019春•相城区期中)如图,在平面直角坐标系中,一次函数y=﹣2x的图象与反比例函数的图象交于点A(﹣2,n).(1)求反比例函数的解析式;(2)若P是x轴上一点,且△AOP是以OA为腰的等腰三角形,求点P的坐标.(3)结合图象直接写出不等式的解集为.28.(2019春•相城区期中)泡茶需要将电热水壶中的水先烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围:(2)从水壶中的水烧开(100℃)降到90℃就可以泡茶,问从水烧开到泡茶需要等待多长时间?29.(2019春•相城区期中)如图,在平面直角坐标系xOy中,▱ABCO绕点O旋转,BC边交x轴于点D,反比例函数y=(k>0,x>0)经过点A和点B.(1)如图①,连接AD,若OA=OD=5,且△OAD的面积为10,求反比例函数的解析式;(2)如图②,连接OB,当∠AOD=60°时,点D恰好是BC的中点,并且△OBD的面积为6,求OA的长.30.(2019春•相城区期中)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(3,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b>的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A'B、A'C,求△A'BC的面积.31.(2019春•相城区期中)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k≠0)的第一象限内的图象上,OA=3,OC=5,动点P在x轴的上方,且满足S△P AO=S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、P A,求PO+P A的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.32.(2018春•苏州期中)已知反比例函数y1=图象与一次函数y2=ax+b图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的关系式;(2)观察图象,写出使得y1≥y2成立的自变量x的取值范围;(3)连结OA,OB,求△AOB的面积.33.(2018春•苏州期中)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1)、C(m,n).(1)求C点坐标.(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得P、G、M、C′四个点构成的四边形是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.34.(2019春•定安县期中)已知,在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若P是x轴上一点,且满足△P AB的面积是6,求点P的坐标.35.(2018春•相城区期中)如图,在同一平面直角坐标系中,将x轴所在的直线绕着原点O 逆时针旋转α度角后,与反比例函数y=的图象分别交于第一、二象限的点B、D,已知点A(﹣m,0)和C(m,0).(1)不论α取何值,四边形ABCD的形状一定是(2)当点B为时,四边形ABCD是矩形,试求p,α和m的值;(3)对(2)中的m值扩大倍,是否能使四边形ABCD为矩形?若能请求出D点坐标,若不能请说明理由.36.(2018春•吴中区期中)如图,在平面直角坐标系xOy中,直线y=x﹣2与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2).(1)求该反比例函数关系式;(2)当1≤x≤4时,求y=的函数值的取值范围;(3)将直线y=x﹣2向上平移后与反比例函数在第一象限内的图象相交于点C,且△ABC 的面积为18,求平移后的直线的函数关系式.37.(2018春•吴中区期中)如图1,已知直线y=2x分别与双曲线y=,y=交于第一象限内P,Q两点,且OQ=PQ.(1)则P点坐标是;k=.(2)如图2,若点A是双曲线y=在第一象限图象上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=于点B,C;①连接BC,请你探索在点A运动过程中,△ABC的面积是否变化,若不变,请求出△ABC的面积;若改变,请说明理由;②若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A,B,C,D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.38.(2018春•太仓市期中)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数y=(k≠0)在第一象限内的图象经过点D (m,2)和AB边上的点E(n,).(1)求m、n的值和反比例函数的表达式.(2)求四边形OEBD的面积.39.(2018春•太仓市期中)如图,函数y=x与y=图象的交于点A,B.若点A的坐标为(﹣k,﹣1).(1)点B的坐标为;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线P A交x轴于点M,直线PB交x轴于点N,求证PM=PN;②当P的坐标为(1,k)(k≠1)时,连结PO延长交y=于C,求证四边形P ACB为矩形.40.(2017春•常熟市期中)平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为2的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于3的任意实数a,CD边与函数y1=(x>0)的图象都有交点,请说明理由.答案与解析一.选择题(共8小题)1.(2017春•泰兴市期末)如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D 在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE 面积的3倍,则k的值为()A.4 B.6 C.7 D.8【解答】解:如图,连结BD,∵四边形EBCD的面积是△ABE面积的3倍,∴平行四边形ABCD的面积是△ABE面积的4倍,∴S△ABD=2S△ABE,∴AD=2AE,即点E为AD的中点,∵E点坐标为(0,2),A点坐标为(﹣,0),∴D点坐标为(,4),∵顶点D在双曲线y=(x>0)上,∴k=×4=6,故选:B.2.(2019春•常熟市期中)如图,在平面直角坐标系中,等腰△ABC的顶点A在y轴上,顶点B、C在函数y=(x>0)的图象上,底边AB∥x轴.若AC=,AO=2,则k 的值为()A.6 B.6C.8D.12【解答】解:如图所示,过C作CD⊥x轴,过B作BE⊥x轴于E,∵AB∥x轴,AO=2,∴点B的纵坐标为2,设点B的坐标为(k,2),则点C的坐标为(k,4),∴AF=k,CF=4﹣2=2,又∵AC=,∠AFC=90°,∴(k)2+22=()2,解得k=±12,又∵k>0,∴k=12,故选:D..(2019春•相城区期中)如图,已知双曲线经过直角三角形OAB直角边AB 上的一点C,且AC=2BC,连接OC,△AOC的面积为()A.2 B.3 C.4 D.6【解答】解:设点C的坐标为(m,)(m>0),则点A的坐标为(m,).S△AOC=S△ABO﹣S△BOC=×m×﹣×2|=2.故选:A.4.(2019春•相城区期中)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB =90°,反比例函数y=的图象经过点B,若△OAC与△BAD的面积之差S△OAC﹣S△BAD=2,则k的值为()A.2 B.4 C.6 D.8【解答】解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴S△OAC=AC2,S△BAD=AD2,∵S△OAC﹣S△BAD=2,∴AC2﹣AD2=4,∴(AC+AD)(AC﹣AD)=4∴(OC+BD)•CD=4,∴a•b=4,∴k=4.故选:B.5.(2019•伊金霍洛旗一模)如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC 相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选:C.6.(2018春•相城区期中)如图,双曲线y=(k≠0,x<0)经过平行四边形ABCO的对角线交点D,已知边OC在y轴上,且AC⊥OC于点C,若平行四边形OABC的面积是3,则k的值是()A.B.C.﹣3 D.﹣6【解答】解:∵四边形OABC是平行四边形,面积为3,∴△DCO的面积=,∵AC⊥OC,∴S△DCO==,∵k<0,∴k=﹣,故选:B.7.(2018春•相城区期中)如图,A、C两点在反比例函数y=的图象上,B、D两点在反比例函数y=的图象上,AB⊥x轴于点E,CD⊥x轴于点F,AB=3,CD=2,EF=,则k1﹣k2的值为()A.﹣3 B.﹣2 C.D.﹣1【解答】解:过点A作AM⊥y轴,BN⊥y轴,DQ⊥y轴,CN⊥y轴垂足分别为M,N,Q,R,由题意可得:S矩形AMEQ=S矩形FCRO=﹣k1,S矩形EBNO=S矩形QDFO=k2,则S矩形AMEQ+S矩形EBNO=S矩形FCRO+S矩形QDFO=﹣k1+k2,∵AB=3,CD=2,∴设EO=2x,则FO=3x,∵EF=,∴EO=1,FO=1.5,∴S矩形ABNM=1×3=3,则﹣k1+k2=3,故k1﹣k2=﹣3.故选:A.8.(2018春•太仓市期中)如图,O为坐标原点,菱形OABC的顶点A的坐标为(﹣4,3),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【解答】解:∵A(﹣4,3),∴OA==5,∵菱形OABC,∴AO=OC=5,则点B的横坐标为﹣3﹣4=﹣9,故B的坐标为:(﹣9,3),将点B的坐标代入y=得,3=,解得:k=﹣27.故选:B.二.填空题(共10小题)9.(2019春•太仓市期中)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M 的直线l∥y轴,且直线l分别与反比例函数y=(x>0)和y=(x>0)的图象交于P,Q两点,若S△POQ=12,则k的值为﹣16.【解答】解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=12,∴|k|=16,而k<0,∴k=﹣16.故答案为:﹣16.10.(2019春•工业园区期中)如图,两个反比例函数y=和y=在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为2.【解答】解:∵两个反比例函数y=和y=在第一象限内的图象依次是C1和C2,∴正方形PCOD的面积为:xy=4,△ODB的面积与△OCA的面积为xy=1,∴四边形P AOB的面积为:4﹣1﹣1=2.故答案为:2.11.(2019春•常熟市期中)如图,在平面直角坐标系中,点A是反比例函数y=的图象上的一点,AC⊥y轴,垂足为C,点B在x轴的负半轴上,则△ABC的面积为6.【解答】解:如图,连接AO,∵AC⊥y轴于点C,∴AC∥BO,∴△AOC的面积=△ABC的面积=|k|=6,故答案为:6.12.(2019•防城港模拟)如图,在平面直角坐标系中,平行四边形ABCD的边AD经过O 点,A、C、D三点都在反比例函数y=的图象上,B点在x轴的负半轴上,延长CD交x轴于点E,连接CO.若S平行四边形ABCD=6,则k的值为2.【解答】解:作AH⊥OB于H,DG⊥y轴于G,CF⊥DG于F.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AH∥y轴∥CF,∴∠BAH=∠DCF,∵∠DFC=∠AHB,∴△CFD≌△AHB(AAS),∴AH=CF,DF=BH,设A(m,),则D(﹣m,﹣),∵S▱ABCD=6,OA=OD,∴S△AOB=,∴•OB•=,∴OB=,∴CF=AH=,∴C(﹣,﹣),∵DF=BH,∴﹣﹣(﹣m)=﹣m,∴k=2.故答案为2.13.(2019春•相城区期中)如图,反比例函数的图象与矩形OABC的边AB,BC分别交于点E,F,且AE=BE,若△OEF的面积为,则k的值为3.【解答】解:连接OB.∵E、F是反比例函数y=(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=k.∵AE=BE,∴S△BOE=S△AOE=k,S△BOC=S△AOB=k,∴S△BOF=S△BOC﹣S△COF=k﹣k=k,∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=2k﹣﹣﹣×k=,解得k=3.故答案是:3.14.(2019春•相城区期中)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(2,0),顶点A的坐标为(0,4),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(5,0).【解答】解:如图,过点B作BD⊥x轴,垂足为D,∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠OAC=∠BCD,∴△AOC≌△CDB(AAS)∴OA=CD=4,OC=BD=2,∴B(6,2)点B在反比例函数y=的图象上,∴k=12,∴反比例函数的关系式为:y=,当y=4时,即:4=,解得:x=3,因此点A向右平移3个单位,落在反比例函数的图象上,故点C也相应向右平移3个单位,∴点C′(5,0)故答案为:(5,0)15.(2019春•相城区期中)如图,在平面直角坐标系中,函数y=kx与y=的图象交于A,B两点,过A作y轴的垂线,交函数y=的图象于点C,连接BC,则△ABC的面积为6.【解答】解:∵正比例函数y=kx与反比例函数y=﹣的图象交点关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),∴S△ABC=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.故答案为6.16.(2019•济宁模拟)如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x 轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为8,则△ABC的面积是.【解答】解:如图,过C作CD⊥y轴于D,交AB于E.∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,x),则B(x,x+2a),C(x+a,x+a),∵B,C在反比例函数的图象上,∴x(x+2a)=(x+a)(x+a),解得x=a,∵S△OAB=AB•DE=•2a•x=8,∴ax=8,∴a2=8,∴a2=,∵S△ABC=AB•CE=•2a•a=a2=.故答案为:.17.(2019春•东台市期中)如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式﹣kx+m>的解集为1<x<4.【解答】解:由函数图象知,当1<x<4时,一次函数图象在反比例函数图象上方,即不等式﹣kx+m>的解集为1<x<4,故答案为:1<x<4.18.(2017•济南)如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A (2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC的面积为8.【解答】解:∵A(2,1)在反比例函数y=的图象上,∴k=2×1=2,∴两个反比例函数分别为y=,y=,设AB的解析式为y=k′x,把A(2,1)代入得,k′=,∴y=x,解方程组得:,,∴B(﹣2,﹣1),∵BC∥y轴,∴C点的横坐标为﹣2,∴C点的纵坐标为=3,∴BC=3﹣(﹣1)=4,∴△ABC的面积为×4×4=8,故答案为:8.三.解答题(共22小题)19.(2018秋•永登县期末)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为y=x,自变量x的取值范为0≤x≤8;药物燃烧后,y关于x的函数关系式为y=(x>8).(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过30分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【解答】解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1∴k1=设药物燃烧后y关于x的函数关系式为y=k2>0)代入(8,6)为6=∴k2=48∴药物燃烧时y关于x的函数关系式为y=x(0≤x≤8)药物燃烧后y关于x的函数关系式为y=(x>8)(2)结合实际,令y=中y≤1.6得x≥30即从消毒开始,至少需要30分钟后学生才能进入教室.(3)把y=3代入y=x,得:x=4把y=3代入y=,得:x=16∵16﹣4=12所以这次消毒是有效的.20.(2019春•太仓市期中)如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限内的图象交于A(1,n)和B(4,m)两点;(1)求反比例函数的表达式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围;(3)求△AOB面积.【解答】解:(1)∵点A、点B在一次函数图象上,∴n=﹣1+5=4,m=﹣4+5=1,∴A(1,4),B(4,1),∵点A在反比例函数图象上,∴k=4×1=4,∴反比例函数解析式为y=;(2)结合图象可知当一次函数值大于反比例函数值时,x的取值范围为1<x<4;(3)如图,设一次函数与x轴交于点C,在y=﹣x+5中,令y=0可求得x=5,∴C(5,0),即OC=5,∴S△AOB=S△AOC﹣S△BOC=×5×4﹣×5×1=.21.(2017春•张家港市期末)如图,▱ABCD的顶点A、B在x轴上,顶点D在y轴上,已知OA=3,OB=5,OD=4.(1)▱ABCD的面积为32;(2)如图1,点E是BC边上的一点,若△ABE的面积是▱ABCD的,求点E的坐标;(3)如图2,将△AOD绕点O顺时针旋转,旋转得△A1OD1,在整个旋转过程中,能否使以点O、A1、D1、B为顶点的四边形是平行四边形?若能,求点A1的坐标;若不能,请说明理由.【解答】解:(1)∵OA=3,OB=5,OD=4.∴AB=8∴▱ABCD的面积=4×8=32,故答案为:32;(2)过点E作EF⊥AB于F,∵S△ABE=S▱ABCD,∴×AB×EF=×AB×OD∴EF=2∵OA=3,OB=5,OD=4∴点B(5,0),点C(8,4)设BC解析式:y=kx+b∴∴k=,b=﹣∴解析式:y=x﹣当y=2时,x=∴E(,2)(3)∵OA=3,OD=4,∴AD=5,如图,若四边形OA1D1B是平行四边形,A1D1交y轴于点F,∵将△AOD绕点O顺时针旋转,旋转得△A1OD1,∴A1O=AO=3,∠OAD=∠A1,∵四边形OA1D1B是平行四边形∴A1D1∥AB∴∠A1FD=∠A1FO=∠AOF=90°,且∠A1=∠OAD∴△A1FO∽△AOD∴∴∴A1F=,FO=∵点A1在第二象限,∴A1(﹣,)如图,若四边形A1D1OB是平行四边形,A1D1交y轴于点F,∵将△AOD绕点O顺时针旋转,旋转得△A1OD1,∴A1O=AO=3,∠OAD=∠D1A1O,∵四边形OBA1D1是平行四边形∴A1D1∥AB∴∠A1FO=∠AOF=∠AOD=90°,且∠OAD=∠D1A1O,∴△A1FO∽△AOD∴∴==∴A1F=,OF=∵点A1在第四象限,∴A1(,﹣)如图,若OA1BD1是平行四边形,过点A1作A1E⊥BA于点E,∵OA1BD1是平行四边形,且∠A1OD1=90°∴OA1BD1是矩形,∴OD1=A1B=4,∠OA1B=90°,∵S△A1OB=×OB×A1E=×A1O×A1B,∴3×4=5×A1E∴A1E=∴OE===∴A1坐标(,).22.(2019春•工业园区期中)如图,直线y=2x与双曲线交于点A、E,直线AB交双曲线于另一点B(2m,m),连接EB并延长交x轴于点F.(1)m=2;(2)求直线AB的解析式;(3)求△EOF的面积;(4)若点P为坐标平面内一点,且以A,B,E,P为顶点的四边形是平行四边形,请直接写出所有满足条件的点P的坐标.【解答】解:(1)∵点B(2m,m)在双曲线上,∴2m•m=8,解得m=±2,而m>0,∴m=2.故答案为2;(2)m=2,则B点坐标为(4,2),解方程组得或,∴A点坐标为(﹣2,﹣4),E点坐标为(2,4),设直线AB的解析式为y=kx+b,把A(﹣2,﹣4),B(4,2)代入得:﹣2k+b=﹣4,4k+b=2,解方程组得k=1,b=﹣2,∴直线AB的解析式为y=x﹣2;(3)设直线EB的解析式为y=kx+b,把E(2,4),B(4,2)代入得:2k+b=4,4k+b=2,解方程组得k=﹣1,b=6,∴直线EB的解析式为y=﹣x+6,令y=0,则﹣x+6=0,得x=6,即F点的坐标为(6,0),∴△EOF的面积=×6×4=12;(4)满足条件的点P的坐标为(﹣4,﹣2)、(0,﹣6)、(8,10).23.(2019春•常熟市期中)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(2,4)和点(n,﹣2),与y轴交于点C.(1)求m,n的值;(2)当y1>y2时,请直接写出x的取值范围;(3)点B关于y轴的对称点是B′,连接AB′,CB′,求△AB′C的面积.【解答】解:(1)由反比例函数y2=的图象经过点A(2,4),得m=xy=2×4=8,故反比例函数解析式为y=,点B在反比例函数图象上,得n==﹣4,∴B点坐标是(﹣4,﹣2),一次函数图象经过A、B点,得,解得.故一次函数的解析式为y=x+2;(2)由反比例函数图象在一次函数图象下方,得﹣4<x<0或x>2.(3)在y=x+2中,令x=0,得y=2,∴C(0,2),∵点B关于y轴的对称点是B′,∴B′(4,﹣2),∴BB′=4+4=8,∴S△ACB′=S△ABB′﹣S△CBB′=.24.(2019•苏州一模)如图,四边形ABCD是菱形,对角线AC⊥x轴,垂足为A.反比例函数y=的图象经过点B,交AC于点E.已知菱形的边长为,AC=4.(1)若OA=4,求k的值;(2)连接OD,若AE=AB,求OD的长.【解答】解:(1)连接BD交AC于点H,∵四边形ABCD是菱形,AC=4,∴BD⊥AC,AH=2,∵对角线AC⊥x轴,∴BD∥x轴,∴B、D的纵坐标均为2,在Rt△ABH中,AH=2,AB=,∴BH=,∵OA=4,∴B点的坐标为:(,2),∵点B在反比例函数y=的图象上,∴k=11;(2)设A点的坐标为(m,0),∵AE=AB=,CE=,∴B,E两点的坐标分别为:(m+,2),(m,).∵点B,E都在反比例函数y=的图象上,∴(m+)×2=m,∴m=6,作DF⊥x轴,垂足为F,∴OF=,DF=2,D点的坐标为(,2),在Rt△OFD中,OD2=OF2+DF2,∴OD=.25.(2019春•常熟市期中)如图,平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=﹣在第二象限内的图象相交于点A,与x轴的负半轴交于点B,与y轴的负半轴交于点C.(1)求∠BCO的度数;(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.【解答】解:(1)∵一次函数y=﹣x+b的图象交x轴于B,交y轴于C,则B(b,0),C(0,b),∴OB=OC=﹣b,∵∠BOC=90°∴△OBC是等腰直角三角形,∴∠BCO=45°.(2)如图1中,作MN⊥AB于N.∵M(0,4),MN⊥AC,直线AC的解析式为y=﹣x+b,∴直线MN的解析式为y=x+4,由,解得,∴N(,),∵MA=MB,MN⊥AB,∴NA=BN,设A(m,n),则有,解得,∴A(﹣4,b+4),∵点A在y=﹣上,∴﹣4(b+4)=﹣4,∴b=﹣3,∴A(﹣4,1).(3)如图2中,由(2)可知A(﹣4,1),M(0,4),∴AM==5,当菱形以AM为边时,AQ=AQ′=5,AQ∥OM,可得Q(﹣4,﹣4),Q′(﹣4,6),当A,Q关于y轴对称时,也满足条件,此时Q(4,1)当AM为菱形的对角线时,设P″(0,b),则有(4﹣b)2=42+(b﹣1)2,∴b=﹣.∴AQ″=MP″=,∴Q″(﹣4,),综上所述,满足条件的点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).26.(2019春•吴中区期中)如图所示,矩形ABCO的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(8,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且OA=2AB.(1)AB的长是4;(2)求反比例函数的表达式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.【解答】解:(1)∵四边形OABC是矩形,且点E(8,n)在边AB上,∴OA=8,∵OA=2AB,∴AB=4,故答案为4;(2)由(1)知,OA=8,AB=4,∴B(8,4),∵点D是OB的中点,∴D(4,2),∵点D在反比例函数y=的图象上,∴k=4×2=8,∴反比例函数的解析式为y=,∵点E(8,n)在反比例函数图上∴8n=8,∴n=1;(3)如图,连接FG,由(2)知,反比例函数解析式为y=,∴点F(2,4),∴CF=2,设点G的坐标为(0,m),∴OG=m,∴CG=OC﹣OG=AB﹣OG=4﹣m,由折叠知,CF=OG=m在Rt△FCG中,CG2+CF2=FG2,∴(4﹣m)2+4=m2,∴m=,∴OG=.27.(2019春•相城区期中)如图,在平面直角坐标系中,一次函数y=﹣2x的图象与反比例函数的图象交于点A(﹣2,n).(1)求反比例函数的解析式;(2)若P是x轴上一点,且△AOP是以OA为腰的等腰三角形,求点P的坐标.(3)结合图象直接写出不等式的解集为x<﹣2或0<x<2.【解答】解:(1)∵点A(﹣2,n)在直线y=﹣2x上,∴n=﹣2×(﹣2)=4,∴A(﹣2,4),∵点A(﹣2,4)在反比例函数y=的图象上,∴k=﹣2×4=﹣8,∴反比例函数解析式为y=﹣;(2)由(1)知,A(﹣2,4),∴OA=2,∵△AOP是以OA为腰的等腰三角形,∴①当OP=OA时,OP=2,∴P(2,0)或(﹣2,0),②当AP=OA时,点A是OP的垂直平分线上,。

初二数学八年级下反比例函数复习题

初二数学八年级下反比例函数复习题

数学八年级下《反比例函数》复习题一、知识回顾知识点一、反比例函数的概念及其几种关系式1.反比例函数的概念:一般地,形如 的函数,其中x 是自变量,y 是x 的函数;2.反比例函数的三种表示形式: ;3.易错提示:遇到反比例函数形式首先考虑 。

知识点二、确定反比例函数关系式1.确定反比函数关系式只需 个点;2.待定系数法求反比例函数关系式的步骤:(1)设出反比例函数关系式: ;(2)把已知点代入关系式,求出 ;(3)把 代入原所设函数关系式中。

知识点三、确定实际问题中的反比例函数关系式解题一般步骤:(1)判定实际问题中两个变量是否成反比例函数关系;(2)若符合则可设反比例函数关系式;(3)一定要注意自变量的取值范围符合实际意义。

二、知识学习类型一:反比例函数的概念例1.下列等式中,哪些是y 是x 的反比例函数?(1)3xy =; (2)x y 2-=;(3)xy =21;(4)25+=x y ;(5)x y 23-=;(6)31+=x y ;(7)y =x -4;例2.对于函数y=x m 1-,当m 时,y 是x 的反比例函数,比例系数是________.例3.当m 取什么值时,函数23)2(m xm y --=是反比例函数?举一反三 1.下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1) y=x 4-(2) y=-x 21 (3)y=1-x(4) xy=1 (5) y=2x (6)y x 32=2.若函数 52)2(--=m x m y 是反比例函数,求出m 的值并写出解析式.3.给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例类型二、确定反比函数关系式例3.已知y 与x 成反比例,当x=-1时,y=2,求其表达式和自变量x 的取值范围?例4.已知y与2x成反比例,并且当x=3时,y=4,求x=1时,y的值.例5.已知 y+2与x-1成反比例,且当x=2时,y=-5,求y与x间的函数关系式;并求出当x=5时y的值。

八年级数学下册 第11章 反比例函数测试卷2 苏科版(2021年整理)

八年级数学下册 第11章 反比例函数测试卷2 苏科版(2021年整理)

八年级数学下册第11章反比例函数测试卷2 (新版)苏科版八年级数学下册第11章反比例函数测试卷2 (新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第11章反比例函数测试卷2 (新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第11章反比例函数测试卷2 (新版)苏科版的全部内容。

12第十一章《反比例函数》一、选择题1、函数ky x =的图象经过点(12)A -,,则k 的值为( ) A .12B .12- C .2 D .2-2、已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <3、用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( )A .P 为定值,I 与R 成反比例B .P 为定值,2I 与RC .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 4、如图,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( )A .2y x= B .2y x =- C .12y x=D .12y x=-5、若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图 象在( )A .第一、二象限;B .第一、三象限 ;C .第二、6、已知三角形的面积一定,则它底边a 上的高h 与底边致是( )A .B .C .7、如图,一次函数11y x =-与反比例函数22y x=的图像交使12y y > 的x 的取值范围是( )A .2x >B .2x >或10x -<<C .12x -<<8、已知120k k <<,则函数1yk x =和2ky x=的图象大致是39、已知函数5y x =-+,4y x=,它们的共同点是:①在每一个象限内,都是函数y 随x 的增大而 增大;②都有部分图象在第一象限;③都经过点(14),,其中错误..的有( ) A.0个 B.1个 C.2个 D.3个 10、平面直角坐标系中有六个点(15)A ,,533B ⎛⎫-- ⎪⎝⎭,,(51)C --,,522D ⎛⎫- ⎪⎝⎭,,533E ⎛⎫⎪⎝⎭,,522F ⎛⎫⎪⎝⎭,,其中有五个点在同一反比例函数图象上,不在这个反比例函数图象上的点是( ) A .点C B .点DC .点ED .点F二、填空题11、已知广州市的土地总面积约为7 434 km 2,人均占有随全市人口n (单位:人)的变化而变化,则S 与n12、一个反比例函数的图象经过点(15)P -,,则这个函数13、反比例函数k y x=的图象经过点(-2,1),则k 的值14、已知反比例函数的图象经过点(2)m ,和(23)-,,则m 的15、在平面直角坐标系xoy 中,直线y x =向上平移1个单反比例函数 ky x=的图象的一个交点为(2)A a ,,则16、蓄电池电压为定值,使用此电源时,电流I (安)与象如图所示,若点P 在图象上,则I 与R (R >0)的函17、一个函数具有下列性质:①它的图像经过点(-1,1内; ③在每个象限内,函数值y 随自变量x 的增大式可以为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学期末复习测试卷(反比例函数)
一、选择题(每题3分,共24分)
1.下列函数中,y 是x 的反比例函数的是 ( )
A ..2y x =-
B .1y x =-
C .3y x =+
D .23y x =- 2.函数23k y kx -=是反比例函数,则k 的值是 ( )
A .一1
B .2
C .±2
D .
3.反比例函数3y x
= (x>0)的图像位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.在反比例函数 2y=
k x -图像的每个象限内,y 随x 的增大而减少, 则k 值可以是 ( )
A .3
B .2
C .1
D .一1
5.对于反比例函数(k y k x
=
< 0),下列说法中正确的是 ( ) A .图像经过点(1,k -) B .图像位于第一、三象限
C .图像是中心对称图形
D .当x <0时,y 随x 的增大而减小
6.若mn >0,则一次函数 y mx n =+与反比例函数mn y x =在同一坐标系中 的大致图像是 ( )
7.如图,反比例函数1m y x
=
和正比例函数2y nx = 的图像交于A(一1,一3)、B 两点,则m nx x
-≥0的解集是 ( ) A .一1<x <0 B .x <一1或0<x <1
C . x ≤一1或0<x ≤l
D .一l≤x <0或x ≥1
8.教室的饮水机接通电源就进入自动程序,
开机加热时每分钟上升10℃,加热到100℃后停止加热.水温开
始下降,此时水温(℃)与开机后用时(min )成反比例关系.直到水
温降至20℃,饮水机关机.饮水机关机后即刻自动开机.重复上
述自动程序,若在水温为20℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所
示,为了在上午第一节课下课时(8:45)能喝到不超过40℃的水,则接通电源的时间可以
是当天上午的 ( )
A .7:10
B .7:15
C .7:20
D .7:25
二、填空题(每题3分,共27分)
9.一个反比例函数(0)k y k x
=≠的图像经过点P(一2,一1),则 该反比例函数的解析式是 .
10.某函数具有下列性质:①图像在二、四象限内;②在每个象限内,
函数值.y 随自变量x 的增大而增大.则其函数解析式可以为 .
11.画两条对角线长分别为a cm 和b 6cm 的菱形,使其面积为
12 cm ,则a 与b 的函数关系式是 .
12.如图,已知正比例函数1y x =与反比例函数29y x
=的图像交于 A 、C 两点,AB ⊥x 轴,垂足为B ,CD ⊥x 轴,垂足为D .给出下列结论:
①四边形ABCD 是平行四边形,其面积为18.②当一3≤x <0或x ≥3 时,1y ≥2y ;④当x 逐渐增大时,1y 随x 的增大而增大,2y 随x 的增大而减小.
其中,正确的结论有 .(把你认为正确的结论的序号都填上)
13.已知点12(,2)(,3)P x Q x -3、、H(x ,1)在双曲线2(1)a y x
-+=上,那么123x x x 、、的大小关系是 .
14.已知反比例函数1(>0)k y x x
-=图像上有两点11(,)A x y 、 22(,)B x y ,且1212()()<0x x y y --,则k 的取值范围是 .
15.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),
点B 与点D 在反比例函数6(>0)y x x =
的图像上,则点C 的坐标为 . 16.函数1(y x x =≥0),29y x
= (x >o)的图像如图所示,则结论:①两函数图像的交点A 的坐标为(3,3);②当x >3时,2y >1y ;③当x =1时,BC=8;④当x 逐渐增大时,1y 随
着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 .
17.如图,已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上,
双曲线k y x
=y 与边BC 交于点D 、与对角线OB 交于点E ,且OE :EB=1:2,若△OBD 的面积为8,则k = .
三、解答题(共49分)
18.(本题8分)已知121,y y y y =-与x 成反比例,2y 与(2)x -成正
比例,并且当x =3时,y =5,当x =l 时,y =-1.
(1)求y 关于x 的函数关系式;
(2)当14
x =时,求y 的值
19.(本题8分)某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总
产量要达到36万斤.
(1)列出原计划种植亩数y (亩)与平均每亩产量x (万斤)之间的函数关系式,并写出自
变量x 的取值范围;(总产量=亩数×平均每亩产量)
(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,
总产量比原计划增加了8万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产
量各是多少万斤?
20.(本题10分)正比例函数3y x =的图像与反比例函数k y x
=的图像有一个交点的纵坐标为一3.
(1)求k 的值,并画出这个反比例函数的图像;
(2)根据反比例函数图像可知:当一3<x <一1时,y 的取值范围是 .
(3)根据图像,可知不等式3x>
k x
的解是 .
21.(本题10分)已知反比例函数1k y x
=
的图像与一次函数2y ax b =+的图像交于点A(1,4)和点B(m ,--2),
(1)求这两个函数的关系式; (2)观察图像,写出使得12y >y 成立的自变量x 的取值范围;
(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积
22.(本题13分)如图,点A(1,6)是反比例函数(>0)k y x x
=图像上一个点,点B(m ,n )(m >1)是该函数图像上一个动点,过A 点分别作AD ⊥x 轴,AC ⊥y 轴,垂足分别为D 、C ,
过B 点分别作BF ⊥x 轴,BE ⊥y 轴,垂足分别为F 、E ,设AD 交BE 于G 点,连接
AB .
(1)求此反比例函数的表达式;
(2)证明点B 在运动过程中,四边形ACEG 的面积与四边形.BGDF 、的面积相等;
(3)若三角形AGB 的面积等于四边形ODGE 面积的一半,求B 点的坐标.
参考答案
一、1.B 2.D 3.A 4.A 5.C 6.A 7.C 8.D
二、9.2y x = 10.1y x =- (答案不唯一) 11·a 24b
= 12.①③ 13.123x x x >> 14.k >1 15.(3,6) 16.①③④ 17.2
三、18.(1)设12,(2)a y y b x x =
=-,则(2a y b x x
=--),把3,5x y ==和1,1x y ==-代 入,得:3,4a b ==-,代人得:44(2)y x x
=+-;(2)当14x =时,5y =. 19.36(0.30.4)y x x
=≤≤;(2)设原计划平均亩产量x 万斤,改良后平均亩产量1.5x 万 斤,根据题意得:36368201.5x x +-=,解得:13x =,经检验13x =是原方程的根. 答:略.
20.(1)∵交点纵坐标为一3,代入3y x =,得交点横坐标为-1,把(一1,一3)代入k y x
= 中,得3k =;画图像略;(2)一3<y<一1; (3)一1<x <0或x >1. 21.(1) 124,22y y x x
==+;(2) x <一2或0<x <1;(3)由图形及颢煮得:AC=8.BD=3, ∴△ABC 的面积11831222
ABC S AC BD =⨯=⨯⨯= 22·(1) 6y x =;(2)证明:∵点B 在函数6y x
=上,∴6mn =∴AD ⊥x 轴,AC ⊥y 轴,x 轴⊥Y 轴,∴四边形ACOD 为矩形,OD= 1,AD=6,同理四边形BEOF 为矩形,OF=m ,BF=n ,∴166ACOD S OD AD ==⨯=矩形,S 矩形BEOF =OF BF=mn=6∴ACOD BEOF S S =矩形矩形
∴=ACOD BEOF DO S S S S --矩形四边形EGDO 矩形四边形EG , 即 S S =四边形ACED 四边形BGDF ;
(3)由(2)得:AG ⊥x 轴,BE ∥x 轴,∴AG ⊥BE ,∠AGB=90,AG=6一n ,BG m =一1, ∴11(6)1)22AGB S
AG BG n m =
=⨯-⨯-(;又1ODEG S OD OE n n =∙=⨯=四边形 ∵12AGB ODGE S S =四边形∴11(6)(1)22n m n ⨯-⨯-=,∴解得:2m =, 则3n =,∴B(2,3).。

相关文档
最新文档