奥数小测验

合集下载

数学奥数测试题

数学奥数测试题

数学奥数测试题数学奥数测试题1、学校买来两种粉笔共240盒,已知白色粉笔的盒数是彩色粉笔的5倍。

两种粉笔各买了多少盒?_______________________________2、师傅和徒弟3小时共生产零件90个,已知师傅每小时做的零件个数是徒弟的2倍,师傅和徒弟每小时各做多少个零件?_______________________________3、哥哥和弟弟共有48本书,弟弟给哥哥5本后,哥哥的书就是弟弟的3倍,哥哥、弟弟原来各有几本书?_______________________________4、甲乙两个粮仓共有粮食230吨,后来从甲仓运出50吨,乙仓运进20吨,这时乙仓的粮食是甲仓的3倍,甲乙两仓原来各有粮食多少吨?_______________________________5、某校三年级和四年级共有学生372人,三年级的人数比四年级人数的2倍多36人,该校三、四年级各有学生多少人?_______________________________6、动物园的猴山上共有180只猴。

大猴子的只数比小猴子的3倍少8只。

猴山上大小猴子各有多少只?_______________________________7、有红、黄、蓝三种颜色的玻璃球共270个,黄球的`个数是红球的2倍,蓝球的个数是黄球的3倍,三种颜色的玻璃球各有多少个?_______________________________8、书架上层有46本书,下层有22本书,要使上层的书是下层书的3倍,那么必须从下层拿几本书放到上层去?_______________________________9、两个数相除,商3余10,被除数、除数、商与余数的和是163,求被除数和除数分别是多少?_______________________________篇2:二年级数学奥数测试题二年级数学奥数测试题1. 妹妹今年6岁,哥哥今年11岁,当哥哥16岁时,妹妹几岁?2. 小明从学校步行到少年宫要25分钟,如果每人的步行速度相同,那么小明、小丽、小刚、小红4个人一起从学校步行到少年宫,需要多少分钟?3. 一张长方形彩纸有四个角,沿直线剪去一个角后,还剩几个角?(画图表示)4.晚上停电,小文在家点了8支蜡烛,先被风吹灭了1支蜡烛,后来又被风吹灭了2支。

小学奥数竞赛试卷(含答案)

小学奥数竞赛试卷(含答案)

小学奥数竞赛试卷一、填空题。

1.(3分)果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价元;其次是二等苹果.每千克售价元;最次的是三等苹果每千克售价元.这三种苹果的数量之比为2:3:1.若将这三种苹果混在一起出售,每千克定价元比较适宜.2.(3分)某班学生不超过60,在一次数学测验中,分数不低于90分的人数占,得80﹣﹣﹣﹣89分的人数占,得70﹣﹣﹣﹣﹣79分的人数占,那么得70分以下的有人.3.(3分)有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,…这列数的第200个数是.@4.(3分)某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是.5.(3分)从3、13、17、29、31这五个自然数中,每次取两个数分别作一个分数的分子和分母,一共可组成个最简分数.6.(3分)北京一零一中学由于近年生源质量不断提高,特别是师生们的共同努力,使得高考成绩逐年上升.在2001年高考中有59%的考生考上重点大学;2002年高考中有68%的考生考上重点大学;2003年预计将有74%的考生考上重点大学,这三年一零一中学考上重点大学的年平均增长率是.二、解答题。

-7.如图,过平行四边形ABCD内一点P画一条直线,将平行四边形分成面积相等的两部分(画图并说明方法).8.某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小船需45元可积坐4人,请设计一种租船方案,使租金最省.{9.一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度.10.有一个六位数,它的二倍、三倍、四倍、五倍、六倍还是六位数,并且它们的数字和原来的六位数的数字完全相同只是排列的顺序不一样,求这个六位数.~11.50枚棋子围成圆圈,编上号码1、2、3、4、…50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢12.计算(﹣+8)÷37+×!13.1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是亿元(精确到亿元).三、填空题。

04小学奥数练习卷(知识点:抽屉原理)后附答案解析

04小学奥数练习卷(知识点:抽屉原理)后附答案解析

04小学奥数练习卷(知识点:抽屉原理)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共5小题)1.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.282.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.73.一个盒子里装有标号为1﹣24的24张卡片,要从盒子里任意抽取卡片,至少要抽出()张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.154.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.295.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个第Ⅱ卷(非选择题)二.填空题(共39小题)6.某人把一副围棋混装在一个盒子里,然后每次从盒子中模出3枚棋子,他至少摸次,才能保证其中有2次取出的棋子是相同的.7.一个袋子里装有大小相同的200只红球,100只黑球,10只白球,小丽蒙着眼去摸球,若要保证摸出的球中至少有100只球的颜色相同,那么至少应摸出只球.8.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要个杯子.9.有5种颜色的小球各20个混装在暗箱内,要给7个同学每人发3个相同颜色的球(不管球是什么颜色),那么从暗箱中摸出的球至多个.10.将1只白袜子,2只黑袜子,3只红袜子,8只黄袜子,9只蓝袜子和10只绿袜子放入一个布袋里,一次至少要摸出只袜子,才能保证一定有颜色不同的两双袜子.11.现有3个抽屉,每个抽屉中都放置3个玻璃球(形状大小相同),分别为蓝色、红色与黄色.如果分别从这3个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的3个玻璃球共有种不同情况.12.将1~25分别填入如图所示的5×5表格中.在每一行中选出最大数,在每一列中选出最小数,这样我们一共选择了10次.这10次选出的数中至少有个不相同的数.13.把61本书分给某个班级的学生,如果其中至少有1人能分到至少3本书,你们这个班最多有人.14.一个袋中有9个黄球、8个红球、7个白球和10个篮球,那么一次最多从袋中取出个球,才能保证袋中剩下的必有一种颜色的球至少有6个.15.小泡泡要给一些美丽的花朵涂颜色.他有5种颜色的蜡笔,一朵花只可以使用一种颜色,那么如图中这些花朵中至少有朵花的颜色相同.16.某校有47个同学参加数学竞赛,将参赛者任意分成五组,必有一组的女生多于2人,参赛者中任意选取12人必有男生,参赛的男生有人.17.2016名运动员的号码依次为1至2016的自然数,现在要从中选出若干名运动员参加仪仗队,使得剩下的运动员中没有一个人的号码等于另外两人的号码的乘积.那么.选为仪仗队的运动员最少有人.18.从一副扑克牌拿走大王和小王,在剩下的52张牌中至少取出张才可以保证其中必定有3张牌点数相邻(不计颜色)19.有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.20.一个袋子里有一些球,这些球仅只有颜色不同,其中红球12个,白球8个,黄球2个,篮球1个.某人闭着眼睛从中取出若干个.试问他至少要取多少个球,才能保证至少有4个球颜色相同.21.希望小学六年级一班,每位同学至少选一门兴趣课,22位同学选机器人,9位同学选单片机,15位同学选无线电,16位同学选信息学,每位选择单片机的同学都选择且只能选择机器人或无线电中的一种,每位选择无线电的同学都选择且只能选择机器人或信息学中的一种,那么,这个班最少有名同学.22.一次中环杯比赛,满分为100分,参赛学生中,最高分为83分,最低分为30分(所有的分数都是整数),一共有8000个学生参加,那么至少有个学生的分数相同.23.三年级有50名学生,他们都选择订阅甲、乙、丙三种杂志中的一种、二种或三种,则至少有名学生订阅的杂志种类相同.24.袋子里有红、黄、黑、白珠子各15粒,闭上眼睛要想摸出颜色相同的五粒珠子,至少要摸出粒珠子,才能保证达到目的.25.一副扑克牌有4种花色,每种花色有13张,从中任意抽牌,最少抽出张牌,才能保证有4张是同一花色.26.某公司的工作人员每周都工作5天休息2天,而公司要求每周从周一至周日,每天至少要有45人上班,那么该公司至少需要名工作人员.27.我们在玩扑克牌时,当拿到2张大小相同的牌时(如2个5),我们会说拿到了“一对5”,当拿到了三张大小相同的牌时(如3个K),我们会说拿到了“俘虏K”,当拿到4张大小相同的牌时,我们就会说拿到了“一个炸弹”.在一副扑克牌中,至少拿出张牌就能保证有“一个炸弹”.28.一个不透明的布袋中有黑、白、黄三种颜色的筷子各10根,最少拿出根筷子就能保证有一双是同样颜色的筷子.29.参加体操、武术、钢琴、书法四个兴趣小组的学生中,每人最多可以参加两个兴趣小组.为了保证所选兴趣小组的情况完全相同的学生不少于6人,则参加小组的学生至少有人.30.有4袋糖果,它们中任意3袋糖果的总和都超过60粒,那么这4袋糖果的总数至少有粒.31.黑箱中有60块大小、形状都相同的木块,每15块涂上相同的颜色,一次至少取出块才能保证期中至少有2块木块颜色相同.32.有黑、白、黄三种颜色的袜子各若干只,在黑暗处至少拿出只袜子,才能保证能凑出两双相同颜色的袜子(比如:一双黑色、一双黄色不满足要求).33.一个黑口袋中有2个红球,4个黄球和6个白球,如果小明希望能保证从中拿出2个白球,他至少需要拿出个球.34.1,2,3,4,5,6,11,12,13,14,15,16共12个整数,至少从中取个数,才能确保有两个数,其中一个是另一个的3倍.35.某商场在春节有促销抽奖活动,规则如下:在暗箱内有四种颜色的小球若干个,购物每满100元可摸一次球.如果消费者能凑齐同样颜色的小球两个就可以参加一次抽奖,若参加抽奖5次都没有中奖则可获得安慰奖一份.如果消费者想百分之百获奖,至少需要在该商场购买元的商品.36.有形状、长短都完全一样的红筷子、黑筷子、白筷子各25根.在黑暗中,至少应摸出根筷子,才能保证摸出的筷子至少有8双(每两根同色的筷子视为1双).37.布袋中有60个彩球,每种颜色的球都有6个.蒙眼取球,要保证取出的球中有三个同色的球,至少要取出个球.38.从1至16共16个整数中,至少取个数,才能确保有两个数,其中一个是另一个的2倍.39.某公司的工作人员每周都工作5天休息2天,而公司要求每周从周一至周日,每天都至少有32人上班,那么该公司至少需要名工作人员.40.一个口袋中有51个编上号码的相同的小球,其中编号为1,2,3,4,5的小球分别有3,6,10,12,20个.任意从口袋中取球,至少要取出个小球,才能保证其中至少有7个号码相同的小球.41.一个布袋中装有规格相同的黑球、红球、蓝球、黄球各10个.最少取出个球,才能保证其中一定有3个球的颜色一样.42.一个盒子里有100张卡,每张上面写有一个数,已知写“1”的有1张,写“2”的有2张,写“3”的有3张,…写“9”的有9张,剩下的全写“0”,那么在盒子中至少拿出张卡片才能保证一定有5张卡片上面写的数相同.43.一个袋子里放着很多大小完全相同的红球、黄球、白球和黑球(每种球的量足够多).现在大家轮流从袋中摸球,都不能用眼睛看,每人一次性摸出3个球.那么最少有个人摸球,才能保证有两个人摸出的球完全一样.44.箱子中有红、黄、绿三种颜色的球.已知除了7个球外其余球均为红色,除了12个球外其余球均为黄色,除了13个球外其余球均为绿色,那么至少任意从箱子中取出个球,能保证取出的球中三种颜色都有.三.解答题(共6小题)45.从 1 到 200 这 200 个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的和是5的倍数?46.在1到200这200个自然数中任意选数,至少要选出多少个才能确保其中必有2个数的乘积等于238?47.数学竞赛,填空题8道,答对1题,得4分,未答对,得0分;问答题6道,答对1道,得7分,未答对,得0分,参赛人数400人,至少有多少人的总分相同?48.将530本书分给48名学生,至少有几名学生分到的数量相同?49.影院正在放映《玩具总动员》、《冰河世纪》、《怪物史莱克》、《齐天大圣》四部动漫电影,票价分别为50元、55元、60元、65元.来影院的观众至少看一场,至多看两场.因时间关系《冰河世纪》与《怪物史莱克》不能都观看,若今天必有200人看电影所花的钱一样多,则影院今天至少接待观众多少人?50.一副扑克牌一共有54张,黑桃、红桃、梅花、方块各有13张,还有2张王牌.至少从中取出张牌,才能保证4种花色的牌都有2张.参考答案与试题解析一.选择题(共5小题)1.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.28【分析】要先求出3道题中,只选对1道题的选项组合情况数(根据计数原理求得),再把这些选项的组合情况构造为抽屉,情况数就是抽屉数,学生为抽屉要放的物件.最后根据抽屉原理二求得参加测验的学生数即可.【解答】解:(1)在3道题中,每道都有4个选项,其中有且仅有1个选项是正确的,只选对其中一道,这样的选项组合情况为:①第一道选对,第二、三道全选错的情况数位1×3×3=9.②第二道选对,第一、三道全选错的情况数为3×1×3=9.③第三道选对,第一、二道全选错的情况数为3×3×1=9总计9+9+9=27(2)将这27种情况看做是27个抽屉,学生看做是放到抽屉的物体,至少有1抽屉放了2个物体.根据抽屉原理二得:物体数=27×(2﹣1)+1=28.所以参加这次测验的同学至少有28人.故选:D.【点评】构造好抽屉是本题的解题关键,只有抽屉构造好了,题目就迎刃而解了.2.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.7【分析】10个自然数有:1、2、3、4、5、6、7、8、9、10;和是10的有(1,9)、(2、8);(3、7);(4、6);这四组数据中的两个数相加的和是10,根据抽屉原理,考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,据此即可解答.【解答】解:从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即6+1=7(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.【点评】完成本题首先要确定在前10个自然数中,相加为10的两个数有几组.3.一个盒子里装有标号为1﹣24的24张卡片,要从盒子里任意抽取卡片,至少要抽出()张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.15【分析】将这24张卡片分成这样的两组:第一组1、2、3、4、9、10、11、12、17、18、19、20;第二组:5、6、7、8、13、14、15、16、21、22、23、24,从这任意一种,无论怎么抽出,都不可能有相差为4的两个标号.【解答】解:将这24张卡片分成这样的两组:第一组:1、2、3、4、9、10、11、12、17、18、19、20;第二组:5、6、7、8、13、14、15、16、21、22、23、24,只要在第一组中加入一个第二组的数,或在第二组中加入第一组的一个数,都能保证有两张卡片的标号之差为4.【点评】抽屉原理的关键是如何去分组,如这题中分成的两组,在任意一组中都没有两张差为4的标号.4.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.29【分析】54张牌按照下面的分成四个部分:大王和小王、1﹣6、7、8﹣13,考虑最差情况:怎么取得最多的牌而没有任何两张牌之和等于14呢?在这四个部分里,当取到1﹣6区间的时候,就不能取8﹣13区间的牌,反之一样;而且7只能取一个,大小王必取.这样我们就可以这样取牌:大小王、1﹣6全取、1个7(或大小王、1个7、8﹣13全取)总共27张牌,再随便取一张牌就必定有2张牌的和等于14了.所以要满足题目至少要取27+1=28张.【解答】解:根据题干分析可得,可以这样取牌:大小王、1﹣6全取、1个7(或大小王、1个7、8﹣13全取)总共27张牌,再随便取一张牌就必定有2张牌的和等于14了.所以要满足题目至少要取27+1=28张.故选:C.【点评】此题考查抽屉原理解决实际问题的灵活应用,要注意考虑最差情况.5.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个【分析】把一年12个月看作12个抽屉,18个小朋友看作18个元素,把18个元素放到12个抽屉里平均每个抽屉里放18÷12=1…6,所以余的6个无论放的那个抽屉里总有一个抽屉里至少有2个,据此解答.【解答】解:18÷12=1…6,1+1=2(个),答:18个小朋友中,至少有2个小朋友在一个月出生.故选:B.【点评】解答本题的关键是建立抽屉数和元素数,即把一年12个月看作12个抽屉,18个小朋友看作18个元素;知识点:至少数=平均数+1(在有余数的情况下).二.填空题(共39小题)6.某人把一副围棋混装在一个盒子里,然后每次从盒子中模出3枚棋子,他至少摸 5 次,才能保证其中有2次取出的棋子是相同的.【分析】摸出棋子的情况有:3黑、3白、2黑1白、1黑2白,共有四种情况,把这四种情况看作四个抽屉,假设摸出4次:分别摸出3黑、3白、2黑1白、1黑2白,此时,再摸一次,必定与前面四次取出的情况相同,据此即可解答.【解答】解:摸出棋子的情况有:3黑、3白、2黑1白、1黑2白,共有四种情况,把这四种情况看作四个抽屉,则根据题干分析可得:4+1=5(次),答:至少摸5次,才能保证其中有2次取出的棋子是相同的.故答案为:5.【点评】根据抽屉原理中的最差原理进行分析即可解答,正确建立抽屉是完成本题的关键.7.一个袋子里装有大小相同的200只红球,100只黑球,10只白球,小丽蒙着眼去摸球,若要保证摸出的球中至少有100只球的颜色相同,那么至少应摸出209 只球.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.这里要考虑最差情况.【解答】解:从最坏的情况考虑:摸出10个白球,摸出另两色的99个球,最后再摸出最后一色的100个球,这时可以保证至少有100只球的颜色相同,至少应摸出10+99+100=209(只)答:至少应摸出209只球.故答案为:209.【点评】此题考查了利用抽屉原理解决实际问题的方法的灵活应用,此题要考虑最差情况.8.用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,那么至少要5050 个杯子.【分析】用100个盒子装杯子,每盒装的个数都不相同,并且盒盒不空,所以又100种不同的装法,要求至少需要多少个杯子,那么可以从最少的个数装起:即每个盒子里的杯子数分别为1、2、3、4、5、6…100,由此可得出所需要的杯子数为:1+2+3+4+5+…+100,利用高斯求和的方法即可解决问题.【解答】解:因为每个盒子装的个数都不相同,并且盒子不空,要想让杯子数量最少,那么只能是第一个盒子放一个被子,第二个放2个,第三个放3个,以此类推,第100个盒子放100个,1+2+3+4+…+100=(1+100)×100÷2=101×50=5050(个)答:那么至少有5050个杯子.故答案为:5050.【点评】解答本题,首先根据题意判断出每个盒子里的被子的数量,然后利用对称加法求和即可.9.有5种颜色的小球各20个混装在暗箱内,要给7个同学每人发3个相同颜色的球(不管球是什么颜色),那么从暗箱中摸出的球至多29 个.【分析】用5种颜色构造5个抽屉,先是用7个同学到抽屉拿球,从而得出“至少有一抽屉有6球”,然后根据此结论求得由暗箱拿到抽屉中的球数及5个抽屉球的存在情况.最后分情况讨论7个同学的得球,进而计算出在暗箱中共拿球数.【解答】解:(1)将5种颜色看做是5个抽屉,因为是7个同学得球(同色),意味着至少有两个同学要进同一抽屉拿球,这个抽屉的球必须的够2个同学拿的,即至少有2×3=6个球.(2)为保证至少有一抽屉有6个球,根据抽屉原理二,那么在暗箱中得拿(6﹣1)×5+1=26个球.5个抽屉中球的最差分配情况是:6、5、5、5、5.这情况下保证了6个同学得了3个相同颜色的球,最后一个同学怎样得3个相同颜色的球,分两种情况:①若得与抽屉有6球同色的球,那还需要3个,共计3+26=29个;②若得与抽屉有5球同色的球,那只需要1个,共计1+26=29个.故:从暗箱中摸出的球至多是29个.【点评】注意:解题中两次用到抽屉原理和7个同学得球情况进行分类,这增加了解题难度.10.将1只白袜子,2只黑袜子,3只红袜子,8只黄袜子,9只蓝袜子和10只绿袜子放入一个布袋里,一次至少要摸出16 只袜子,才能保证一定有颜色不同的两双袜子.【分析】从最不利的情况考虑,要先把最多的10只绿袜子全部取出,再白色、黑色、红色、黄色袜子各取1只,此时再任意多取1只,必有颜色不同的两双袜子;据此解答即可.【解答】解:根据分析可得,10+5+1=16(只)答:一次至少要摸出 16只袜子,才能保证一定有颜色不同的两双袜子.故答案为:16.【点评】此题属于抽屉原理应用题,解答此题应从最极端情况进行分析.11.现有3个抽屉,每个抽屉中都放置3个玻璃球(形状大小相同),分别为蓝色、红色与黄色.如果分别从这3个抽屉中各取出一个玻璃球放在一个布袋中,则布袋中的3个玻璃球共有10 种不同情况.【分析】布袋中的球可根据球的颜色进行分类列举,3个玻璃球颜色都相同,都不相同,有2个相同这三种情况进行加和可得结果.【解答】解:若布袋中的3个玻璃球颜色都相同,则有3种情况,都为蓝色、红色与黄色;若布袋中的3个玻璃球颜色都不相同,有1种情况;若布袋中的3个玻璃球有2个球颜色相同,则有×=6种,共有3+1+6=10种不同情况.故答案为:10.【点评】本题的突破口是能根据布袋中的3个球的颜色情况进行分类统计.12.将1~25分别填入如图所示的5×5表格中.在每一行中选出最大数,在每一列中选出最小数,这样我们一共选择了10次.这10次选出的数中至少有9 个不相同的数.【分析】首先根据题意,判断出一定存在一个数,它既是所在行的最大数,又是所在列的最小数;然后应用假设法,判断出:不存在两个既是所在行的最大数,又是所在列的最小数的数,推得这10次选出的数中至少有9个不相同的数即可.【解答】解:(1)一定存在一个数,它既是所在行的最大数,又是所在列的最小数,例如:图1中的数字10既是第5行的最大数,又是第1列的最小数,.(2)若存在两个这样的数,则这两个数必不在同一行也不在同一列,如图2中的A与B,由题意,可得:B>C>A>D>B,这是不可能的,所以不存在两个既是所在行的最大数,又是所在列的最小数的数,所以这10次选出的数中至少有:10﹣1=9个不相同的数,.故答案为:9.【点评】此题主要考查了抽屉原理的应用,考查了假设法的应用,要熟练掌握,解答此题的关键是判断出:不存在两个既是所在行的最大数,又是所在列的最小数的数.13.把61本书分给某个班级的学生,如果其中至少有1人能分到至少3本书,你们这个班最多有30 人.【分析】根据抽屉原理可得这个班最多有(61﹣1)÷2=30人.【解答】解:根据抽屉原理可得这个班最多有(61﹣1)÷2=30人,故答案为30.【点评】本题考查抽屉原理,考查学生分析解决问题的能力,正确运用抽屉原理是关键.14.一个袋中有9个黄球、8个红球、7个白球和10个篮球,那么一次最多从袋中取出13 个球,才能保证袋中剩下的必有一种颜色的球至少有6个.【分析】设置四个抽屉,第一个抽屉中放黄球,第二个抽屉中放红球,第三个抽屉中放白球,第四个抽屉中放蓝球.要保证至少有一个抽屉中有6个,那么就必须至少有4×(6﹣1)+1=21个球.根据这个思路去思考解答.【解答】解:4×(6﹣1)+1=21(个)9+8+7+10=34(个)34﹣21=13(个)故填13【点评】抽屉原理在运用时,要注意如何去设置抽屉,要从最不利的情况出发思考解决问题.15.小泡泡要给一些美丽的花朵涂颜色.他有5种颜色的蜡笔,一朵花只可以使用一种颜色,那么如图中这些花朵中至少有3朵花的颜色相同.【分析】把5种颜色的蜡笔看作5个抽屉,11朵花看作11个元素,根据最不利原理,要使花的颜色相同的最少,只要使每个抽屉的元素数尽量平均,即11÷5,然后解答即可.【解答】解:11÷5=2(朵)…1(朵)2+1=3(朵)答:这些花朵中至少有 3朵花的颜色相同.故答案为:3.【点评】此题考查了利用抽屉原理解决实际问题的灵活应用,关键是从最差情况考虑.16.某校有47个同学参加数学竞赛,将参赛者任意分成五组,必有一组的女生多于2人,参赛者中任意选取12人必有男生,参赛的男生有36 人.【分析】首先分析分成5组一定有一组多于2人,那么女生人数至少有一组有3人,其他为2人.任选12人一定有男生说明女生人数少于12人.【解答】解:依题意可知:将人数分成5组,必有一组女生人数多于2人,说明女生人数至少为:2×5+1=11人.参赛中任选12人必有男生,说明女生人数少于12人,所以女生人数为11人.47﹣11=36(人)故答案为:36【点评】本题考查对抽屉原理的理解和运用,关键理解题中的必有和任选词汇,从而确定女生人数的至多和至少,问题解决.17.2016名运动员的号码依次为1至2016的自然数,现在要从中选出若干名运动员参加仪仗队,使得剩下的运动员中没有一个人的号码等于另外两人的号码的乘积.那么.选为仪仗队的运动员最少有43 人.【分析】首先分析乘积没有那么就需要找到最小的乘积也不在这个范围就可以,然后再逐个分析特殊的保留即可.【解答】解:依题意可知:首先分析去掉用的比较多的数字,因为它们的乘数比较多,比较小的数字是用的最多的,因为他的倍数多,所以把它们去掉.关键的问题是去掉到何处.分析可知44×45=1980,小于2016;45×46=2070大于2016满足.所在在数字45﹣2016中的最小乘积都是大于2016的,同时1对这些数字没有影响,可以保留,去掉的数字为2﹣44共43个数字.。

100道小学有趣的奥数题及答案

100道小学有趣的奥数题及答案

100道小学有趣的奥数题及答案1.把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。

把A、B两组分别放在天平的两个盘上去称,则(1)若A=B,则A、B中都是正品,再称B、C。

如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。

如B<C,仿照B>C的情况也可得出结论。

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C 不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。

(3)若A<B,类似于A>B的情况,可分析得出结论。

2.鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析:假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:鸡与兔分别有80只和20只。

3.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?6×18=108(条)②有蜘蛛多少只?(118-108)÷(8-6)=5(只)③蜻蜒、蝉共有多少只?18-5=13(只)④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)⑤蜻蜒多少只?(20-13)÷2-1)= 7(只)答:蜻蜒有7只.4.一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?【分析与解】从最“不利”的取出情况入手。

小学数学奥数题100题(附答案)

小学数学奥数题100题(附答案)

小学数学奥数题100题(附答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

小学数学奥数测试题以及解析

小学数学奥数测试题以及解析

∙ 小学数学奥数测试题以及解析∙1. 计算69÷54×0.36÷23÷0.7×0.35=________。

2. 已知(1070+□×289)÷18=509,则□=__________。

3. 某班有30名同学,数学测验有22名得优秀,语文测验有25名得优秀,英语测验有20名得优秀,这三科全部优秀的学生至少有________名。

4. 在下面的表格中缺损的两个数字(即■所示),分别是__________和_________.5. 在下面的□内填入适当的数字,使算式成立。

当算式成立时,乘积是________。

6. 一个三位数是5的倍数,且各个数位上的和是9,这样的三位数有______个。

7. 用一台天平和重1克、3克、9克的砝码各一个,可称量的不同的重量有_______种。

8. 小刚在纸条上写了一个四位数,让小明猜。

问:“是6031吗?”答:“1个数字对,且位置正确。

”问:“是5672吗?”答:“2个数字对,但位置都不对。

”问:“4796吗?”答:“数字都对,但位置不对。

”小刚写的四位数是________。

9. 有7堆棋子,分别有14、20、22、25、35、43、58个。

甲拿走了一堆,其余各堆被乙、丙、丁三人拿走。

已知乙、丙拿的棋子个数相同且均为丁的2倍,则甲拿走的一堆有棋子_______个。

10. 下图中给出4×4=16个点,请一笔画出一条折线,使得这条折线通过16个给定点中的每点至少一次,则组成这条折线的直线段的条数最少是_______条。

11. 将123456789重复50次得到450位数123456789123456789…,删去这个数中从左至右数所有位于奇数位的数字; 再删去所得的数中所有位于奇数位上的数字; …并依此类推。

那么最后删去的数字是_______。

12. 如图所示,BE=EC, CA=AD, 的面积是5, 的面积是______。

小升初典型奥数题及详细答案解析

小升初典型奥数题及详细答案解析
分后,第二堆剩下的是笫一堆的3/4,每堆用多
13、幼儿园买来的苹果是梨的3倍,吃掉10个梨和6个苹果后,还有节果
正好是梨的5倍。原来买来苹果和梨共多少个?
14、在一个圆里画一个最大的正方形,已知圆的面积是628平方厘米,求正方形的面积。
15、一个时钟的时针长20厘米,如果走一昼夜,那么它的尖端所走过的路程有多长?时针所扫过的面积有多大 ?
33、圆锥形容器中装有2升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?
34、六年级(1)班原来有学生54人,男生占全班人数的5/9,后来男生转走了几人,这时男生占全班的13/25,问 男生转走了几人?
35、某船在睁水中的速度是每小时15千米,它从上游甲地开往下游乙是共用8小时,水速每小时3千米,它从乙 地返回甲地用。小时?
8×9=72,
20×3+12=72
正符合题中条件。
答:甲、乙、丙三个数分别是8、9、20。
8、在800米环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动 ,重新插后发现,一共有四面彩旗没动问现在的彩旗间隔多少米?
【答案解析】:800米环岛每隔50米插一面彩旗,共插800÷50=16根,重新插完后,有4根没动,而这4根中的 任意相邻的两根间的距离为50×(16÷4)=200米,重新插完后每相邻的两根彩旗间的距离与50的最小公倍数是200,并 且这个距离一定小于50米.现在间隔为40米。
10、一块正方体木块,体积是1331立方厘米。这块正方体木块的棱长是多少厘米?(适于六年级)
11、李明是个集邮爱好者。他收集的小型张是邮票总数的十一分之一,后来他又收集到十五张小型张,这时小 型张是邮票总数的九分之一,李明一共收集邮票多少张

奥数

奥数

和差问题1、园子里有两棵梨树,平均每棵收梨260千克,已知甲树比乙树少40千克,求甲、乙两棵树各收梨多少千克?2、姐、弟两人共有铅笔8支,如果姐姐给弟弟1支铅笔,则两人的铅笔就一样多,姐姐和弟弟原来各有几支铅笔?3、甲、乙两桶共有油60千克,如果甲桶用去5千克,而乙桶油增加3千克,则甲、乙两桶油重量相等,甲、乙两桶油各重多少千克?4、一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上、下层各放书多少本?5、两筐苹果共重130千克,先从甲筐取出30千克放入乙筐,又从甲筐取走20千克,这时乙筐比甲筐多50千克,问两筐原来各有多少千克苹果?6、甲、乙、丙3个数,甲、乙之和比丙多59,乙、丙之和比甲多49,甲、丙之和比乙多85。

求这3个数。

7、上下两层书架共有70本书,从下层借走28本后,再从上层拿走15本放入下层,这时两层书的本数相同。

上、下层书架原来各有多少本书?8、一个三位数,百位与十位数字的和是4,十位数字与个位数字的和为6,百位数字与个位数字的和为10,这个三位数是多少?和倍问题1、小林和小军下棋,两人共下了24盘,小林赢的盘数是小军的2倍,小林和小军各赢了几盘棋?2、一个长方形的周长是108厘米,长是宽的2倍,这个长方形的长和宽各是多少厘米?3、小燕买了一套衣服用去185元,已知上衣的价钱比裤子的2倍多5元,问上衣和裤子各多少元?4、小明和小丁一起练了48个字,小明练的字数比小丁的2倍多6个。

小明和小丁各练了几个字?5、王刚家养了公鸡和母鸡一共35只,公鸡的只数是母鸡的4倍。

王刚家养的公鸡和母鸡各有多少只?6、明明共有3个国家的邮票54张,其中中国邮票张数是日本邮票张数的3倍,美国邮票比日本邮票多4张,3个国家的邮票各有多少张?7、某个体饲养户养鸡、鸭共5000只,鸡的3只数比鸭多3倍。

饲养户养鸡、鸭各多少只?8、有3堆煤,甲堆比乙堆的3倍多30千克,丙堆比乙堆少15千克,3堆煤共重240千克,那么甲堆煤重多少千克?9、甲、乙、丙3个数的和是360,甲数是乙数的3倍,乙数又是丙数的2倍。

小学生奥数经典练习题(三篇)

小学生奥数经典练习题(三篇)

小学生奥数经典练习题(三篇)导读:本文小学生奥数经典练习题(三篇),仅供参考,如果觉得很不错,欢迎点评和分享。

【篇一】1、一天一小伙子拿一百元假钱去买东西。

东西原价十八元,售价二十一元,王老板找不开去和邻居换了找给小伙子。

过了几天邻居找老板,老板又赔了邻居一百元。

问老板赔了多少钱?2、“小明钓鱼回来,小玲问他钓了几条鱼,小明答:‘6条没头,9条没尾,8条只有半个身躯。

’你知道小明到底钓了几条鱼?”3、“有五个数字A、B、C、D、E,ABCDE×A=EEEEEE,求这几个数字是什么?”(根据验证,发现题目少打了一个E,故更正,谢谢网友的提醒!)4、一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块钱卖给另外一个,问他赚了多少?5、A城一个商人有一头驴子和3000根胡萝卜。

要将萝卜拉到1000公里外的B城去卖,只能用驴子驮。

已知驴子一次性可驮1000根胡萝卜,但每走一公里要吃掉一根胡萝卜。

问商人共可卖出多少胡萝卜?(驴吃萝卜吗?不知道,这可是一道韩国智力题)6、有一个岔路口,有两条路。

一条是活路,而另一条是死路。

路口上有两个人一个说真话,另一个说假话。

你可以问他们一人一个问题,但他们的回答只能是"是"或者"不是"。

从而你自己判断出哪条是活路来。

7、有4个小孩看见一块石头正沿着山坡滚下来,便议论开了。

“我看这块石头有17公斤重,”第一个孩子说。

“我说它有26公斤,”第二个孩子不同意地说。

“我看它重21公斤”,第三个孩子说。

“你们都说得不对,我看它的正确重量是20公斤,”第四个孩子争着说。

他们四人争得面红耳赤,谁也不服谁。

最后他们把石头拿去称了一下,结果谁也没猜准。

其中一个人所猜的重量与石头的正确重量相差2公斤,另外两个人所猜的重量与石头的正确重量之差相同。

当然,这里所指的差,不考虑正负号,取绝对值。

请问这块石头究竟有多重?8、1,3,12,40,(?)猜猜第5个数是几?9、某班30名同学,数学测验22人优秀,语文25人优秀,英语20人优秀,三科全优的至少多少人?10、现在有12袋硬币(每袋硬币数量为100),但已知其中有一袋是假币,请问:需要称量多少次方可找出这袋假币?(已知真币:10g/枚;假币9g/枚)【篇二】1、学生排成一队,在小进的前面有6人,后面有8人,问这队共有多少人?2、12辆汽车组成一列车队向前行进。

小学生100道奥数题

小学生100道奥数题

小学生112道奥数题1、大勺子一次能装5两油,小勺子一次能装3两油,你能用这两把勺子量出7两油吗?2、白母鸡生3个蛋歇1天,黑母鸡生1个蛋歇3天,两只鸡一共生了100个蛋,需用多少天?3、用一只平底锅煎饼,每次只能放两只饼,煎1只需要2分钟(正、反面各需要1分钟),问煎3只饼至少需要几分钟?4、口袋里混合放着红、黄两种玻璃球各4粒。

它们的形状大小完全一样,如果不用眼睛看,要保证一次拿出两粒颜色不相同的玻璃球,至少必须摸出几粒玻璃球?5、有两个砝码,一个重5克,一个重7克,你能用这两个砝码称出9克沙子吗?怎样称出19克的沙子?6、一杯牛奶,小明先喝了半杯,然后加满水,又喝了半杯,再加满水,最后全部喝完,小明牛奶喝得多还是水喝得多?7、小红妈妈用平底锅烙饼,这只锅每次只能放4个饼,烙熟一个饼要2分钟,烙6个饼要用几分钟?8、一只西瓜,竖直切4刀,要使切得的块数最多,可以切几块?竖直切10切呢?9、一块圆形塑料板,要切成11块,最少要切几刀?10、一幢6层楼房,每层楼有14级楼梯,小明从底楼走到6楼,共走了多少级楼梯?11、学校操场有条200米长的环形跑道,为了长期使用,每隔2米埋1根小木桩,请问这个跑道需要埋多少根小木桩?12、今天是星期三,从今天算起,到第50天是星期几?13、7×7×7×7×……20个7连乘的积的个位数是几?14、今天是星期二,从今天起,到第100天是星期几?15、42个8连乘的积的个位数是几?16、小熊猫抱着一堆玩具玩,丢掉的比抱着的多4个,走在路上又丢掉2个,这时丢掉的是抱着的3倍。

问这堆玩具是多少个?17、奶奶从北京回来给孙女和孙子带来同样多的皮球,因为孙子爱踢球,奶奶让孙女给孙子一个皮球。

外孙女来后也要皮球,奶奶就让孙子、孙女每人各给外孙女一个皮球,这时孙子的皮球数是孙女的2倍。

问奶奶买回多少个皮球?18、有甲、乙两桶水,如果甲桶倒入6千克水,两桶水就一样重,如果乙桶倒入10千克水,乙桶的水就是甲桶的5倍。

奥数小测验

奥数小测验

奥数小测验(2)1、111111 762353235376532376⎛⎫⎛⎫⎛⎫⨯-+⨯+-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2、1111 1232343458910 ++++⨯⨯⨯⨯⨯⨯⨯⨯3、1+1111 1212312341234 (100)+++++++++++++++4、22221232343458910++++⨯⨯⨯⨯⨯⨯⨯⨯5、1511192941556326122030425664+++++++6、1111135925588111114+++⨯⨯⨯⨯7、157911132612203042-+-+-8、11111112483264128256++++++9、1111355779911+++⨯⨯⨯⨯+11113⨯10、2222213355779911++++⨯⨯⨯⨯⨯11 、加工一批零件,甲先加工了这批零件的52,接着乙加工了余下的94。

已知乙加工的个数比甲少200个,这批零件共有多少个?12、学校合唱团比舞蹈队多24人,合唱团人数的52等于舞蹈队人数的76。

合唱团和舞蹈队各有多少人?13、某中学初中部三个年级中,初一的学生数是初二学生数的109,初二的学生数是初三学生数的411倍,这个学校里初三的学生数占初中部学生数的几分之几?14、有三堆棋子,毎堆棋子一样多,并且都只有黑白两色棋子。

第一堆中的黑子和第二堆中的白子一样多,第三堆中的黑子占全部黑子的52。

把这三堆棋子集中在一起。

白子总数占全部棋子总数的几分之几?15、甲、乙、丙三人共同购买一艘游艇,甲支付的钱是其余两人的 21,乙支付的钱是其余两人的31,丙支付的钱恰好是5000元。

这 艘游艇的单价是多少元?16、某班共有学生51人,男生人数的43等于女生人数的32。

这个班男、女生各有多少人?。

四年级奥数1

四年级奥数1

四年级奥数题(1)1、兄弟二人去同一学校,弟弟先出发,每小时行10千米,弟弟行了半小时后,哥哥才出发,哥哥每小时行15千米,结果,兄弟二人同时到达学校,问他们的家离学校多少千米2、有一个数列,4、10、16、22、……52,这个数列有多少项他们的和是多少3、一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米4、甲、乙二人同时从A地去B地,甲每分钟走60米,乙每分钟走90米,乙到达B地后立即返回,在离B地180 米处相遇。

A、B两地相距多少米5、加工一批零件,甲工人要15小时完成,乙工人要20小时完成, 丙工人要10小时完成.现在甲和乙先同时加工5小时,然后由丙单独做,还要多少小时完成6、王师傅加工一批零件,如果每天做50个,要比原计划晚8天完成;如果每天做60个,可以提前5天完成。

这批零件共有多少个四年级奥数题(2)1、四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图),大正方形的面积是64平方米,小正方形的面积是4平方米,长方形的短边是多少米(p76)2、一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出了故障修车2小时。

因为要按时到达乙地,修好车后必须每小时多行30千米。

问:汽车是在离甲地多远处修车的3、一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是每秒多少米4、有一根长为180厘米的绳子,从一端开始每隔3厘米作一个记号,每隔4厘米也作一个记号,然后将标有记号的地方剪断。

问绳子共被剪成了多少段。

5、一项工程,甲独做要10天,乙独做要15天,丙独做要20天。

三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假奥数题(3)1、一位旅客乘火车以每秒15米的速度前进,他看见对面开来的火车只用2秒钟就从他身边驶过。

如果知道迎面来的火车长70米,求它每小时行驶多少千米2、一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形,求原来长方形的面积.3、小华和小明同时从A、B两城出发,相向而行,在离甲城85千米处相遇,到达对方城市后立即沿途返回,又在离甲城35千米处相遇,两城相距多少千米4、一段公路,甲队单独修需要12天,乙队单独修需要10天,甲乙两队合修3天后还剩2700米,这段公路有多少米5、一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。

小学数学小学奥数趣味40题

小学数学小学奥数趣味40题

小学数学小学奥数趣味40题姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、小学奥数趣味40题 (共40题;共262分)1. (5分)学校新来了一位老师,五个学生分别听到如下的情况:⑴是一位姓王的中年女老师,教语文课;⑵是一位姓丁的中年男老师,教数学课;⑶是一位姓刘的青年男老师,教外语课;⑷是一位姓李的青年男老师,教数学课;⑸是一位姓王的老年男老师,教外语课.他们每人听到的四项情况中各有一项正确.问:真实情况如何?2. (5分)在神话王国内,居民不是骑士就是骗子,骑士不说谎,骗子永远说谎,有一天国王遇到该国的居民小白、小黑、小蓝,小白说:“小蓝是骑士,小黑是骗子.”,小蓝说:“小白和我不同,一个是骑士,一个是骗子.”国王很快判断出谁是骑士,谁是骗子.你能判断出吗?3. (5分)从A,B,C,D,E,F六种产品中挑选出部分产品去参加博览会。

根据挑选规则,参展产品满足下列要求:(1)A,B两种产品中至少选一种;(2)A,D两种产品不能同时入选;(3)A,E,F三种产品中要选两种;(4)B,C两种产品都入选或都不能入选;(5)C,D两种产品中选一种;(6)若D种产品不入选,则E种也不能入选。

问:哪几种产品被选中参展?4. (5分)小明、小勇、小军三个小朋友,小明比小勇轻,小军是最轻的。

请写出他们的名字。

5. (5分)(2011·广州模拟) 某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?6. (5分)某地质学院的学生对一种矿石进行观察和鉴别。

甲判断:不是铁,也不是铜。

乙判断:不是铁,而是锡。

丙判断:不是锡,而是铁。

经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。

小学六年级 奥数题及答案100道

小学六年级 奥数题及答案100道

小学六年级奥数竞赛100道测试题!附答案解析1、有28位小朋友排成一行.从左边开始数第10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?6、在1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.□+□□=□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数.11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给A, B, C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

小学奥数精选500题

小学奥数精选500题
7
47.假设地球上新生成的资源的增长速度是一定的,照此测算,地球的资源可供110亿人生活90年,或可供90亿人生活210年,为使人类能够不断繁衍,那么地球最多能养活多少亿人?
48.画展9点开门,但早就有人排队等候入场了,从第一个观众来到时起,每分钟来的观众人数一样多。如果开3个入场口,则9点9分就不再有人排队了;如果开5个入场口,则9点5分就没有人排队了。那么第一个观众到达的时间是8点几分?
15.我们明代数学家徐光启逝世时的年龄是他出生年份的1/22,1607年他完成了《原本》前6卷的翻译工作。1629年主持编写了“新历法”,但未完成就去世了,1634年由李天经最后完成。请问1607年徐光启多大岁数?
16.哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥和弟弟现在的年龄和是30岁。请问哥哥现在多少岁?
2
06.有若干个苹果和梨。若按照每1个苹果2个梨分堆,则梨分完后还剩5个苹果,若按每3个苹果5个梨分堆,那么苹果分完后还剩5个梨,请问苹果和梨各多少个?
07.修一条水渠,若每天多修6米,则可提前10天完成;若每天少修2米,则要推迟6天完成。那么这条水渠长多少米?
08.巧克力糖每盒9块,软糖每盒11块。要把这两种糖分发给一些小朋友,每样糖每人一块。由于又来了一位小朋友,软糖就要增加一盒,两种糖法的盒数就一样多。现在又来了一个小朋友,巧克力还有增加一盒,则最后共有小朋友多少人?
52.某海港不断有外洋轮船卸下货来,又不断用车将货物运走,如果用9辆车,12小时可以清场,如果用8辆车,16小时可以清场,该货物开始只用3辆车,10小时后增加了若干辆车,再过4小时就可以清场。请问后来增加了多少辆车?
53.12头牛4周吃完6公顷牧草,20头牛6周吃完12公顷牧草。假设每公顷原有草量相等,草的生长速度不变,请问几头牛8周吃完16公顷的牧草?

小学数学奥数题及答案110道(完整版)

小学数学奥数题及答案110道(完整版)

小学数学奥数题及答案110道(完整版)题目1:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 120,所以被减数= 60。

又因为减数是差的3 倍,设差为x,则减数为3x,可得4x = 60,x = 15,所以差等于15。

题目2:两个数的和是682,其中一个加数的个位是0,若把0 去掉则与另一个加数相同,这两个数分别是多少?答案:一个加数个位是0,去掉0 与另一个加数相同,说明一个加数是另一个加数的10 倍。

较小的加数为682÷(10 + 1) = 62,较大的加数为62×10 = 620。

题目3:鸡兔同笼,共有30 个头,88 只脚。

求笼中鸡兔各有多少只?答案:假设全是鸡,共有脚30×2 = 60 只,比实际少88 - 60 = 28 只。

因为每只兔比鸡多4 - 2 = 2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。

题目4:小明在计算除法时,把除数72 写成27,结果得到的商是26 还余18,正确的商应该是多少?答案:先求出被除数:27×26 + 18 = 702 + 18 = 720,正确的商为720÷72 = 10。

题目5:一条公路长1800 米,在公路的两侧从头到尾每隔9 米栽一棵杨树,一共栽多少棵杨树?答案:一侧栽树:(1800÷9 + 1) = 201 棵,两侧共栽树201×2 = 402 棵。

题目6:甲、乙两数的平均数是40,乙、丙两数的平均数是45,甲、丙两数的平均数是53,求甲、乙、丙三个数的平均数。

答案:甲+ 乙= 80,乙+ 丙= 90,甲+ 丙= 106,三式相加得2×(甲+ 乙+ 丙) = 276,甲+ 乙+ 丙= 138,平均数为138÷3 = 46。

小学生奥数题5篇

小学生奥数题5篇

小学生奥数题5篇某次选拔考试,共有1123名同学参加,小明说:"至少有10名同学来自同一个学校."如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?答案与解析:本题需要求抽屉的数量,反用抽屉原理和最"坏"情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)小学生奥数题2A、B两人买了相同张数的信纸.A在每个信封里装1张信纸,最后用完所有的信封还剩40张信纸:B在每个信封里装3张信纸,最后用完所有的信纸还剩40个信封.他们都买了多少张信纸?答案与解析:每个信封先放一张纸,就多出40张纸.再将40个信封中的纸拿出来,就会有80张纸,此时再将这80张纸放入还有着一张纸的信封,每封放2张,由题意,恰好放完,所以这样的信封有80÷2=40个。

所以信纸有80+40=120张.小学生奥数题3蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现有这三种昆虫共17只,有120条腿和11对翅膀。

求每种昆虫各几只?搂抱:这个问题有三种昆虫,有腿和翅膀的比较,比前面的鸡和兔子同笼的问题复杂。

仔细分析后我们会发现,如果把昆虫的腿数分类的话,可以分为8腿和6腿两大类。

但只有六足昆虫有翅膀,所以我们知道八足和六足昆虫的总腿数和总腿数。

根据鸡兔同笼的基本公式,可以得出8条腿的蜘蛛数和6条腿的蜻蜓蝉之和。

这样,再利用鸡兔同笼问题的基本公式,就知道了蜻蜓和蝉的总翅数和各自的翅数,就可以得到蜻蜓和蝉各自的翅数。

解:蜘蛛数:(120-17×6)÷(8-6)=9(只)6条腿的昆虫数:17-9=8(只)蝉的只数:(8×2-11)÷(2-1)=5(只)蜻蜓的只数:8-5=3(只)答:有9只蜘蛛、5只蝉和3只蜻蜓小学生奥数题4牛过河奥数题及答案小明要赶四头牛过河,这四头牛分别所用的时间是2分钟,4分钟,6钟,8分钟,可是一条河同一时间只能容两头牛,请问至少能用多少时间把四头牛都赶过河?答案与解析:最新的的小学三年级牛过河奥数题及答案:方法有多种,首先确定用8分钟和6分钟的那两头牛过河时一定可以同时安排用2分钟和4分钟过河的牛;至少需要10分钟四头牛都能赶过河。

小学数学五年级奥数测试题及答案

小学数学五年级奥数测试题及答案

五年级奥数一、填空(每题2分)1、某数分别与两个相邻整数相乘,所得的积相差150,这个数是()2、每张方桌上放有12个盘子,每张圆桌上放有13个盘子。

若共有109个盘子,则圆桌有()张,方桌有()张。

3、在1至1000这1000个整数中,既能被3整除有是7的倍数的整数有()个。

4、三个连续自然数的积是120,这三个数分别是( )、( )、( )。

5、40人参加测验,答对第一题的有30人,答对第二题的有21人,两题都答对的有15人。

两题都答错的有()人。

6、今年八月一日是星期五,八月二十日是星期()。

7、有一排算式:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,2+19,3+21,…,那么()+()= 19948、节日之夜,广场上挂起了一排彩灯,共1999盏,排列的规律是:从头起每八盏为一组,每组的八盏灯依次为三盏红灯,二盏黄灯,三盏绿灯,那么最后一盏灯的颜色是()。

9、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,再自右至左每隔5厘米染一个红点,然后沿红点将木棍逐段锯开,那么长度是1厘米的木棍有()条。

10、A、B、C、D四个数,每次去掉一个数,将其余3个数求平均数,这样算了4次,得到以下4个数:45、60、65、70,问原来四个数的平均数是()。

11、妈妈买3千克苹果2千克梨,共付款12元;李奶奶买同样价格的苹果3千克,梨5千克,共付款21元。

买1千克苹果付款()元和1千克梨付款()元。

12、有10枚伍分硬币,“伍分”的面朝上放在桌子上。

现在每次翻动其中的9枚,翻动()次,使“国徽”面全部朝上。

13、每张方桌上放有12个盘子,每张圆桌上放有13个盘子。

若共有109个盘子,则圆桌有()张,方桌有()张。

14、一座大桥长6700米,一列火车以每分钟1000米的速度通过大桥,从车头上桥到车尾离桥共用了7分钟,这列火车长()米。

15、小明把节省下来的硬币按四个1分、三个2分、两个5分的顺序排列,那么他排的第111个是()分的硬币,这111个硬币共()元。

3.4年级奥数

3.4年级奥数

1、有四箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个。

苹果和梨平均每箱37个。

求一箱苹果多少个?一箱桃多少个?(92-91.2)*21=16.8(分)16.8/(91.2-90.5)=24(人)答:这个班男生有24人。

2、一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?答案:1、37*2=74(个)42*3-36*3=18(个)(74-18)/2=28(个)28+18=46(个)答:一箱苹果46个,一箱桃28个。

3一辆汽车甲地从到已地,如果把车速提高20%,可比原来时间提前一小时到达,如果以原速行驶1200千米,再将车速提高25%,则可提前40分钟到达,问甲乙两地的距离相距多少千米?1)由车速提高20%,可比原来时间提前一小时到达;假设现在的速度与原来计划的速度比=(1+20%):1=6:5现在的时间与原来计划时间的比是5:6.计划的时间=1÷(6-5)×6=6(小时)(2)40分钟=2/3小时如果以原速行驶1200千米,将车速提高25%,则可提前40分钟到达。

这40分钟的时间是剩下的路程节省下来的。

这段路车速与原来计划的速度比=(1+25%):1=5:4这段路用时与原来计划这段路用时的比=4:5原来行驶剩下的路程计划用时=2/3÷(5-4)×5=10/3(小时)原计划速度=1200÷(6-10/3)=450(千米/小时)甲、乙两地距离=450×6=2700(千米)小学三年级奥数题及答案1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?路分成100÷10=10段,共栽树10+1=11棵。

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3×(12-1)=33棵。

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?200÷10=20段,20-1=19次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数小测验(2)
1、甲、乙两车同时从A, B 两地出发,相向而行,经过4小时相遇.相遇后两车仍按原速前进、又经过5小时,乙车到达A 地,这时甲车已超过B 地90千米.A, B 两她讲目距多少千米?
2、今年父亲的年龄是小明的6倍,几年后,祖父的年龄将是小明的5倍,又过几年以后,组父的年龄是小明年龄的4倍。

问父亲今年多少岁?
3、若干人共同做一项工作,后来有5人因工作需要不参加,这样余下的人就得每人各做1天,临开工时,又有8人退出,于是最后余下的人又多做2天。

问原来每人做多少天?
4、食堂运来一批大米,第一天吃了全部的52,第二天吃了余下的31,第三天吃了又余下的
43
,这时还剩下15千克。

食堂运来大米多少千克?
5、水果店运进了桃子和西瓜共96个,卖了桃于的3与西瓜的85,还剩下29个水果,水
果店进了多少个桃子?
6、甲、乙两个仓库,乙仓库原有存货1200吨,当甲仓库的货物运走157,乙仓库的货物运走31后,再从甲仓库取出剩下货物的101放入乙仓库,这时甲、乙两仓库中的货物重量恰好相等,那么甲仓库原有货物多少吨?
7、六(1)班男生人数的31与女生人数的41共16人,女生人数的31和男生人数的41共19人,六(1)班共有多少人?
8、耕一块地,第一天耕的比这块地的31多2亩,第二天耕的比剩下的21少1亩。

这时还剩下38亩没有耕,则这块地有多少亩?
9、甲、乙两个工程队合做一件工作,7天能完成,两队先合做5天后,甲工程队的全部人员和乙工程队人员的51,调到其他工地,剩下的工作由乙工程队留下的人做,又过了6天刚好完成。

那么甲工程队单独完成这项工程要多少天?
10、一根铁丝,第一次截去它的41又41米, 第二次截去剩下的31又31米,第三次再截去剩下21又21米,最后还剩21米,这根铁丝原长多少米?
11、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时,有同样的仓库A 和B ,甲在A 仓库,乙在B 仓库,同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完。

问丙帮助甲、乙各多少时间?
12、一辆小汽车从甲地开往乙地,如果把车速提高51,可以比原来的时间提前1小时到达; 如果以原速行驶120千米后,再将速度提高41,则可提前40分钟到达.那么甲、乙两地 相距多少千米?。

相关文档
最新文档