2019-2020学年江苏省淮安市第一学期八年级数学期末试卷解析版
江苏省南京市玄武区2019-2020学年八年级(上)期末数学试卷 解析版
2019-2020学年八年级(上)期末数学试卷一.选择题(共6小题)1.有下列实数:,﹣0.101001,,π,其中无理数有()A.1 个B.2 个C.3 个D.4 个2.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N3.将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7 4.如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.∠ABD=∠DCA,∠A=∠D5.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D 的长度为()A.cm B.1cm C.2cm D.cm6.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )二.填空题(共10小题)7.的平方根为.8.函数y=中,自变量x的取值范围是.9.地球的半径约为6371km,用科学记数法表示约为km.(精确到100km)10.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是.11.已知点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,若x1<x2,则y1﹣y20(填“>”、“<”或“=”).12.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=°.13.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为.14.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2 ﹣1 0 …y…m 2 n…则m+n的值为.15.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是km.16.如图,在△ABC中,AB=6,AC=5,BC=9,∠BAC的角平分线AP交BC于点P,则CP 的长为.三.解答题(共10小题)17.计算:﹣+(π﹣3.14)0.18.求下列各式中的x:(1)(x﹣1)2=25(2)x3+4=19.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:CF平分∠DCE.20.在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x 轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为;(3)在直线l上画出点Q,使得QA+QC的值最小.21.在平面直角坐标系xOy中,已知一次函数的图象经过点A(5,0),B(1,4).(1)求这个一次函数的表达式;(2)直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为.22.如图,已知△ABC(AB<BC),用不带刻度的直尺和圆规完成下列作图.(不写作法,保留作图痕迹(1)在图1中,在边BC上求作一点D,使得BA+DC=BC;(2)在图2中,在边BC上求作一点E,使得AE+EC=BC.23.如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.24.(1)如图1,在△ABC中,AB=AC,∠BAC=45°.△ABC的高AD、BE相交于点M.求证:AM=2CD;(2)如图2,在Rt△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,过点B作BE ⊥AD,交AD的延长线于点E.若AD=3,则BE=.25.快车从M地出发沿一条公路匀速前往N地,慢车从N地出发沿同一条公路匀速前往M 地,已知快车比慢车晚出发0.5小时,快车先到达目的地.设慢车行驶的时间为t(h),快慢车辆车之间的距离为s(km),s与t的函数关系如图1所示.(1)求图1中线段BC的函数表达式;(2)点D的坐标为,并解释它的实际意义;(3)设快车与N地的距离为y(km),请在图2中画出y关于慢车行驶时间t的函数图象.(标明相关数据)26.【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为.(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)参考答案与试题解析一.选择题(共6小题)1.有下列实数:,﹣0.101001,,π,其中无理数有()A.1 个B.2 个C.3 个D.4 个【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,是整数,属于有理数;﹣0.101001是有限小数,属于有理数;是分数,属于有理数.无理数有π共1个.故选:A.2.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选:C.3.将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7 【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【解答】解:∵将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3+2,即y=﹣2x+5.故选:C.4.如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.∠ABD=∠DCA,∠A=∠D【分析】根据全等三角形的判定定理即可得到结论.【解答】解:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB(SSS),故A选项正确;∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故B选项正确;∵BO=CO,∴∠ACB=∠DBC,∵BC=CB,∠A=∠D∴△ABC≌△DCB(AAS),故C选项正确;∵∠ABD=∠DCA,∠A=∠D,BC=CB,不能证明△ABC≌△DCB,故D选项错误;故选:D.5.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D 的长度为()A.cm B.1cm C.2cm D.cm【分析】先在直角△AOB中利用勾股定理求出AB==5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD=AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1﹣OD=1.5cm.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.6.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB 的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【解答】解:直线y=﹣x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB===5,设OM=m,由折叠知,AC=AB=5,CM=BM,BM=OB+OM=4+m,∴OC=8,CM=4+m根据勾股定理得,64+m2=(4+m)2,∴m=6,∴M(0,﹣6),故选:C.二.填空题(共10小题)7.的平方根为±.【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.8.函数y=中,自变量x的取值范围是x≠2 .【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.9.地球的半径约为6371km,用科学记数法表示约为 6.4×103km.(精确到100km)【分析】近似数精确到哪一位就是看这个数的最后一位是哪一位.【解答】解:地球的半径约为6371km,用科学记数法表示约为6.4×103km(精确到100km).故答案为:6.4×10310.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是(3,﹣2).【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【解答】解:若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为3,则点的坐标为(3,﹣2),故答案为:(3,﹣2).11.已知点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,若x1<x2,则y1﹣y2>0(填“>”、“<”或“=”).【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2即可得出结论.【解答】解:∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为>.12.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=108 °.【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.【解答】解:∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=108°,故答案为:108.13.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n 的解集为x≥1 .【分析】首先把P(a,2)坐标代入直线y=x+1,求出a的值,从而得到P点坐标,再根据函数图象可得答案.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.14.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2 ﹣1 0 …y…m 2 n…则m+n的值为 4 .【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【解答】解:设一次函数解析式为:y=kx+b,则可得:﹣2k+b=m①;﹣k+b=2②;b=n③;m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.15.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是350 km.【分析】设行驶xkm,由油箱内剩余油量不低于油箱容量的,列出不等式,即可求解.【解答】解:设行驶xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×.∴x≤350故,该辆汽车最多行驶的路程是350km,故答案为:350.16.如图,在△ABC中,AB=6,AC=5,BC=9,∠BAC的角平分线AP交BC于点P,则CP 的长为.【分析】作PM⊥AB于M,PN⊥AC于N,根据角平分线的性质得出PM=PN,由三角形面积公式得出===,从而得到===,即可求得CP=9×=.【解答】解:作PM⊥AB于M,PN⊥AC于N,∵AP是∠BAC的角平分线,∴PM=PN,∴===,设A到BC距离为h,则===,∵PB+PC=BC=9,∴CP=9×=,故答案为.三.解答题(共10小题)17.计算:﹣+(π﹣3.14)0.【分析】直接利用零指数幂的性质以及立方根的性质分别化简得出答案.【解答】解:原式=﹣4+1=﹣.18.求下列各式中的x:(1)(x﹣1)2=25(2)x3+4=【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可.【解答】解:(1)∵(x﹣1)2=25∴x﹣1=±5,即x﹣1=5或x﹣1=﹣5,解得x=6或x=﹣4;(2)x3+4=,.19.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:CF平分∠DCE.【分析】(1)根据平行线性质求出∠A=∠B,根据SAS推出△ACD≌△BEC;(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质即可证明CF平分∠DCE.【解答】证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,,∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF⊥DE,∴CF平分∠DCE.20.在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x 轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n);(3)在直线l上画出点Q,使得QA+QC的值最小.【分析】(1)分别作出△ABC的三个顶点关于直线l的对称点,在首尾顺次连接即可得;(2)由题意得出两点的横坐标相等,对称点P1的纵坐标为1﹣(n﹣1),从而得出答案;(3)利用轴对称的性质求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n),故答案为:(m,2﹣n);(3)如图所示,点Q即为所求.21.在平面直角坐标系xOy中,已知一次函数的图象经过点A(5,0),B(1,4).(1)求这个一次函数的表达式;(2)直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为.【分析】(1)利用待定系数法即可求得;(2)求得直线AB,直线y=2x﹣4与y轴的交点,以及两直线的交点坐标,然后根据三角形面积公式求得即可.【解答】解:(1)设一次函数的解析式为y=kx+b,∵一次函数的图象经过点A(5,0),B(1,4).∴,解得,∴一次函数的表达式为y=﹣x+5,(2)解得,∴两直线的交点为(3,2),直线y=2x﹣4中,令x=0,则y=﹣4,直线y=﹣x+5中,令x=0,则y=5,∴两直线与y轴的交点为(0,﹣4)和(0,5),∴直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为×3=,故答案为.22.如图,已知△ABC(AB<BC),用不带刻度的直尺和圆规完成下列作图.(不写作法,保留作图痕迹(1)在图1中,在边BC上求作一点D,使得BA+DC=BC;(2)在图2中,在边BC上求作一点E,使得AE+EC=BC.【分析】(1)由BD+DC=BC结合BA+DC=BC知BD=BA,据此在BC上截取BD=BA即可得;(2)由BE+EC=BC且AE+EC=BC知BE=AE,据此知点E是AB的中垂线与BC的交点,利用尺规作图求解可得.【解答】解:(1)如图1所示,点D即为所求.(2)如图2所示,点E即为所求.23.如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.【分析】(1)利用勾股定理的逆定理,证明△ADC是直角三角形,即可得出∠ADC是直角;(2)根据三角形的中线的定义以及直角三角形的性质解答即可.【解答】解:(1)∠ADC是直角.∵DE是△ADC的高,∴∠AED=∠CED=90°,在Rt△ADC中,∠AED=90°,∴AD2=AE2+DE2=42+22=20,同理:CD2=5,∴AD2+CD2=25,∵AC2=25,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC是直角;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=5,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF==.24.(1)如图1,在△ABC中,AB=AC,∠BAC=45°.△ABC的高AD、BE相交于点M.求证:AM=2CD;(2)如图2,在Rt△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,过点B作BE ⊥AD,交AD的延长线于点E.若AD=3,则BE= 1.5 .【分析】(1)根据全等三角形的判定和性质定理即可得到结论;(2)延长BE、AC交于F点,首先利用三角形内角和计算出∠F=∠ABF,进而得到AF=AB,再根据等腰三角形的性质可得BE=BF,然后证明△ADC≌△BFC,可得BF=AD,进而得到BE=AD.【解答】解:(1)在△ABC中,∵∠BAC=45°,BE⊥AC,∴AE=BE,∠EAM=∠EBC,在△AEM和△BEC中,,∴△AEM≌△BEC(ASA),∴AM=BC,∵BC=BD+CD,且BD=CD,∴BC=2CD,∴AM=2CD;(2)解:延长BE、AC交于F点,如图,∵BE⊥EA,∴∠AEF=∠AEB=90°.∵AD平分∠BAC,∴∠FAE=∠BAE,∴∠F=∠ABE,∴AF=AB,∵BE⊥EA,∴BE=EF=BF,∵△ABC中,AC=BC,∠C=90°,∴∠CAB=45°,∴∠AFE=(180﹣45)°÷2=67.5°,∠FAE=22.5°,∴∠CDA=67.5°,∵在△ADC和△BFC中,,∴△ADC≌△BFC(AAS),∴BF=AD,∴BE=AD=1.5,故答案为:1.5.25.快车从M地出发沿一条公路匀速前往N地,慢车从N地出发沿同一条公路匀速前往M 地,已知快车比慢车晚出发0.5小时,快车先到达目的地.设慢车行驶的时间为t(h),快慢车辆车之间的距离为s(km),s与t的函数关系如图1所示.(1)求图1中线段BC的函数表达式;(2)点D的坐标为(,90),并解释它的实际意义;(3)设快车与N地的距离为y(km),请在图2中画出y关于慢车行驶时间t的函数图象.(标明相关数据)【分析】(1)由待定系数法可求解;(2)先求出两车的速度和,即可求解;(3)画出图形即可.【解答】解:(1)设线段BC的函数表达式为y=kx+b(k,b为常数,k≠0)∴解得,∴线段BC的函数表达式为y=﹣120x+180;(2)由图象可得两车的速度和==120千米,∴小时后两车相距=120×()=90千米,∴点D(,90),表示慢车行驶了小时后,两车相距90千米;(3)如图所示:26.【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为(﹣6,﹣2).(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为 2 .(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)【分析】【基础模型】利用同角的余角相等判断出∠CAD=∠BCE,即可得出结论;(1)同【基础模型】的方法即可得出结论;【模型应用】(2)先求出直线l的解析式,进而确定出点A,B坐标,再判断出△ACD≌△CBE,即可得出结论;(3)同(2)的方法即可得出结论;(4)分点C在第三象限和第四象限两种情况:先确定出点A.B坐标,同(2)(3)的方法确定出点C的坐标(用k表示),即可得出结论.【解答】解:【基础模型】:∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);【模型应用】:(2)如图1,过点C作CE⊥y轴于4,∵直线l:y=kx﹣4k经过点(2,﹣3),∴2k﹣4k=﹣3,∴k=,∴直线l的解析式为y=x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=x﹣6,∴x=4,∴A(4,0),∴OA=4,同(1)的方法得,△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=4,∴OE=OB﹣BE=6﹣4=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为(﹣6,﹣2);(3)如图2,针对于直线l:y=kx﹣4k,令x=0,则y=﹣4k,∴B(0,﹣4k),∴OB=4k,令y=0,则kx﹣4k=0,∴x=4,∴A(4,0),∴OA=4,过点C作CF⊥y轴于F,同【基础模型】的方法得,△OAB≌△FBC(AAS),∴BF=OA=4,CF=OB=4k,∴OF=OB+BF=4k+4,∵点C在第四象限,∴C(4k,4k+4),∵B(0,﹣4k),∵BD∥x轴,且D在y=x上,∴D(﹣4k,﹣4k),∴BD=4k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=BF=2,故答案为2;(4)当点C在第四象限时,由(3)知,C(4k,4k+4),∵C(a,b),∴a=4k,b=4k+4,∴b=4k+4,当点C在第三象限时,由(3)知,B(0,﹣4k),A(4,0),∴OB=4k,OA=4,如图1,由(2)知,△OAB≌△FBC(AAS),∴CE=OB=4k,BE=OA=4,∴OE=OB﹣BE=4k﹣4,∴C(﹣4k,4k﹣4),∵C(a,b),∴a=﹣4k,b=4k﹣4,∴b=﹣a﹣4,即:b=a+4或b=﹣a﹣4.。
八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)
东城区2019-2020学年度第一学期期末教学统一检测初二数学 2020.1一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B. 3910-⨯C. 30.910-⨯D. 40.910-⨯ 2. 下列等式中,从左到右的变形是因式分解的是A .()m a b ma mb +=+B .23313(1)1x x x x -+=-+ C .()()23212x x x x ++=++ D .22(2)+4+4a a a +=3.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是A.①B.②C.③D.④4. 下列各式计算正确的是 A.2133a aa -⋅= B.236()ab ab = C.22(2)4x x -=- D.824623x x x ÷=5. 对于任意的实数x ,总有意义的分式是A.152--x x B.231x x -+ C.x x 812+ D.21x -6.如图,△ABC 中,∠A =40°,AB 的垂直平分线分别交AB ,AC 于点D ,E ,连接BE ,则∠BEC 的大小为A.40°B.50°C.80°D.100°7.若分式2213x x -+的值为正数,则x 需满足的条件是 A. x 为任意实数 B. 12x < C. 12x >D. 12x >- 8. 已知△ABC ,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB ,AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.∠A 的平分线上B.AC 边的高上C.BC 边的垂直平分线上D.AB 边的中线上9.如图,已知∠MON 及其边上一点A .以点A 为圆心,AO 长为半径画弧,分别交OM ,ON于点B 和C .再以点C 为圆心,AC 长为半径画弧,恰好经过点B .错误的结论是 A. AOC ABC S S =△△ B. ∠OCB =90° C. ∠MON =30° D. OC =2BC10. 已知OP 平分∠AOB ,点Q 在OP 上,点M 在OA 上,且点Q ,M 均不与点O 重合.在OB 上确定点N ,使QN =QM ,则满足条件的点N 的个数为A.1 个B.2个C.1或2个D.无数个二、填空题(本题共16分,每小题2分) 11. 因式分解:39a a -= _ . 12. 已知 -2是关于x 的分式方程23x kx x -=+的根,则实数k 的值为________ . 13. 如图,BE 与CD 交于点A ,且∠C =∠D .添加一个条件: ,使得△ABC ≌△AED .BA CM第8题图 第9题图14. 如图,将长方形纸片ABCD 折叠,使顶点A ,C 重合,折痕为EF .若∠BAE =28°,则∠AEF 的大小为 °.15. 如图,等边△ABC 中,AD 是BC 边上的中线,且AD =4,E ,P 分别是AC ,AD 上的动点,则C P +EP 的最小值等于 .16. 我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数.(1)()5a b +展开式中4a b 的系数为 ;(2)()7a b +展开式中各项系数的和为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:3+23x x x +-. 18.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程. 已知:线段m ,n 及∠O .求作:△ABC ,使得线段m ,n 及∠O 分别是它的两边和一角. 作法:如图,① 以点O 为圆心,m 长为半径画弧,分别交∠O 的两边于点M ,N ; ② 画一条射线AP ,以点A 为圆心,m 长为半径画弧,交AP 于点B ; ③ 以点B 为圆心,MN 长为半径画弧,与第②步中所画的弧相交于点D ; ④ 画射线AD ;⑤ 以点A 为圆心,n 长为半径画弧,交AD 于点C ; ⑥ 连接BC ,则△ABC 即为所求作的三角形. 请回答:(1)步骤③得到两条线段相等,即 = ; (2)∠A =∠O 的作图依据是 ; (3)小红说小明的作图不全面,原因是 .19.计算:()201π533-⎛⎫- ⎪⎝⎭.20.如图,在△ABC 和△ADE 中,∠BAC =∠DAE ,AD =AE .连接BD ,CE,∠ABD =∠ACE . 求证:AB =AC .21. 计算:2()()()4()2m n m n m n m m n m ⎡⎤+-+---÷⎣⎦.B22. 解方程:2151=24xx x +--- . 23.在三角形纸片ABC 中,∠B =90°,∠A =30°,AC =4,点E 在AC 上,AE =3.将三角形纸片按图1方式折叠,使点A 的对应点A '落在AB 的延长线上,折痕为ED ,A E '交BC 于点F .(1)求∠CFE 的度数;(2)如图2,,继续将纸片沿BF 折叠,点A '的对应点为A '',A F ''交DE 于点G .求线段DG 的长.图1 图224. 如图,△ABC .(1)尺规作图:过点C 作AB 的垂线交AB 于点O .不写作法,保留作图痕迹;(2)分别以直线AB ,OC 为x 轴,y 轴建立平面直角坐标系,使点B ,C 均在正半轴上.若AB=7.5,OC =4.5,∠A =45°,写出点B 关于y 轴的对称点D 的坐标; (3)在(2)的条件下,求△ACD 的面积.25. 先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中a 是满足|3|3a a -=-的最大整数.26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积. (1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.A'F E C A GA'F E C设首届进博会企业平均展览面积为x 平方米,把下表补充完整: 届别总面积(平方米)企业平均展览面积(平方米)首 届 270 000x第二届 330 000(2)根据以上分析,列出方程(不解..方程).27. 在ABC 中,AB >BC ,直线l 垂直平分AC .(1)如图1,作∠ABC 的平分线交直线l 于点D ,连接AD ,CD . ①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2) 如图2,直线l 与ABC 的外角∠ABE 的平分线交于点D ,连接AD ,CD . 求证:∠BAD =∠BCD .28.对于△ABC 及其边上的点P ,给出如下定义:如果点1M ,2M ,3M ,……,n M 都在 △ABC 的边上,且 123n PM PM PM PM ====L L ,那么称点1M ,2M ,3M ,……,n M 为△ABC 关于点P 的等距点,线段1PM ,2PM ,3PM ,……,n PM 为△ABC 关于点P 的等距线段.(1)如图1,△ABC 中,∠A <90°,AB =AC ,点P 是BC 的中点.①点B ,C △ABC 关于点P 的等距点,线段P A ,PB △ABC 关于点P 的等距线段;(填“是”或“不是”)②△ABC 关于点P 的两个等距点1M ,2M 分别在边AB ,AC 上,当相应的等距线段最短时,在图1中画出线段1PM ,2PM ;(2)△ABC 是边长为4的等边三角形,点P 在BC 上,点C ,D 是△ABC 关于点P 的等距lE D A C B lA B 图1 图2点,且PC =1,求线段DC 的长;(3)如图2,在Rt △ABC 中,∠C =90°,∠B =30°.点P 在BC 上,△ABC 关于点P 的等距点恰好有四个,且其中一个是点C . 若BC a =,直接写出PC 长的取值范围.(用含a 的式子表示)图1 图2东城区2019-2020学年度第一学期期末教学统一检测初二数学参考答案及评分标准 2020.1一、选择题(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCCADC二、填空题(本题共16分,每小题2分)11.()()33a a a +- 12. 2 13.答案不唯一,但必须是一组对应边,如:AC =AD 14. 59 15. 4 16. 5 ;128三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17. 解: 原式()()()()332=223x x x x x -+++-L L L L 分()()2336423x x x x x -++=+-L L L L 分 ()()26523x x x +=+-L L L L 分 18.(1)BD ,MN ;……………………1分(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分 (3)小明没有对已知中的边和角的位置关系分类讨论. ……………………5分19.解:()-201π53⎛⎫- ⎪⎝⎭94=-+……………………4分=……………………5分20.证明:∵∠BAC =∠DAE,∴∠BAC -∠CAD =∠DAE -∠CAD.即∠BAD =∠CAE. ……………………2分 在△BAD 和△CAE 中,,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪⎨⎪⎩=,=,=∴△BAD ≌△CAE (AAS ). …………………… 4分 ∴ AB =AC. …………………… 5分2222222()()()4()2(243454)2m (22)2m n m n m n m m n mm n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分分分B()()()222124532453112343x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分分经检验:13x =-是原方程的解. ∴13x =-.……………………5分23.解:(1)∵∠A =30°,∴∠A '=30°. ……………………1分 ∵∠A BF '=90°, ∴∠A FB '=60°. ……………………2分∵∠CFE =∠A FB ',∴∠CFE =60°. ……………………3分(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.∵∠A =30°,AE =3, ∴1322DE AE == . ……………………4分 由(1)知,∠CFE =60°,∠C =60°,∴△CFE 是等边三角形.∴EF =CE =AC -AE =1. ……………………5分 同理,△EFG 也是等边三角形, ∴12DG DE EG =-=DG =DE -EG =.……………………6分 24.解:(1)……………………………………………………………………………………2分GA''DA'FECAB图2A'FECA图1(2)D (-3,0); ……………………4分 (3)13927==2228ACD S ⨯⨯△.……………………6分22222221225.[](2)(2)44(1)2[](2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数, ∴30a -≥. ∴3a ≤.∴=3a . ……………………5分 ∴1=15原式.……………………6分……………………………………………………………………………………4分(2)270 000330000+300=(1+12.8%)x x.……………………6分 27. 解:(1)①补全图形;……………………1分② 结论:∠BAD +∠BCD =180°. ……………………2分证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F , 则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF . ∵直线l 垂直平分AC ,∴DA =DC. ……………………3分在Rt ADE 和Rt CDF 中, DA DC DE DF =⎧⎨=⎩,,∴Rt ADE ≌Rt CDF . ∴∠BAD =∠FCD.∵∠FCD +∠BCD =180°,∴Rt ADN ≌Rt CDM.∴∠BAD =∠BCD. ……………………7分28.解:(1)①是,不是;……………………2分②……………………3分(2)如图,DC =2,或DC =1; ……………………5分B(3)32a a PC <<.……………………7分。
江苏省淮安市淮安区2019-2020学年八年级上学期期末数学试题(word无答案)
江苏省淮安市淮安区2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 下列交通标识中,是轴对称图形的是()A.B.C.D.(★) 2 . 64的立方根是()A.4B.±4C.8D.±8(★) 3 . 一次函数的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限(★) 4 . 如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD(★) 5 . 下列长度的三条线段不能组成直角三角形的是( )A.1.5,2.5,3B.1,,2C.6,8,10D.3,4,5(★) 6 . 点关于y轴对称的点的坐标为()A.B.C.D.(★★) 7 . 如图,在中, , ,点在上, , ,则的长为()A.B.C.D.(★★) 8 . 甲、乙两人沿相同的路线由 A地到 B地匀速前进, A、 B两地间的路程为20km.他们前进的路程为 s(km),甲出发后的时间为 t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h二、填空题(★) 9 . 4的算术平方根是.(★) 10 . 如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为______.(★★) 11 . 已知直角三角形的两边长分别为3、4.则第三边长为 ________ .(★) 12 . 在,,,3.14,这些数中,无理数有__________个.(★★) 13 . 已知,点和点关于原点对称,则的值为__________.(★★) 14 . 在一次函数中,随的增大而增大,则的取值范围__________.(★★) 15 . 观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对来表示,则红“马”到达点后,点的位置可以用数对表示为__________.(★★) 16 . 如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD= °.(★★) 17 . 如图,在中,,,垂直平分斜边,交于,是垂足,连接,若,则的长是__________.(★★) 18 . 根据如图所示的计算程序,小明输入的的值为36,则输出的的值为__________ . <u></u>三、解答题(★★) 19 . (1)求的值:(2)计算:(★★) 20 . 如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.(★★) 21 . 已知坐标平面内的三个点,,,把向下平移3个单位再向右平移2个单位后得.(1)画出;(2)的面积为 .(★★) 22 . 如图, 中, , , 是 边上的垂直平分线,的周长为14 ,求 的长.(★) 23 . 已知一次函数 y= kx+3的图象经过点(1,4). (1)求这个一次函数的解析式;(2)求关于 x 的不等式 kx+3≤6的解集.(★★) 24 . 已知的算术平方根是 , 的平方根是 , 是 的整数部分,求 的平方根.(★★) 25 . 如图,四边形 ABCD 中, AB=20, BC=15, CD=7, AD=24,∠ B=90°.(1)判断∠ D 是否是直角,并说明理由. (2)求四边形 ABCD 的面积.(★★★★) 26 . 某玉米种子的价格为 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象,以下是该科技人员绘制的图象和表格的不完整资料,已知点A 的坐标为 ,请你结合表格和图象:付款金额7.51012购买量(千克)11.522.53(1), ;(2)求出当 时, 关于 的函数解析式;(★★) 27 . 如图,过点A (2,0)的两条直线 , 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB= .(1)求点B的坐标;(2)若△ABC的面积为4,求的解析式.。
2019-2020学年江苏省苏州市常熟市八年级(上)期末数学试卷解析版
2019-2020学年江苏省苏州市常熟市八年级(上)期末数学试卷一.选择题1.下列四个图标中,是轴对称图形的是()A.B.C.D.2.下列实数中,无理数是()A.B.3πC.D.3.人的眼睛可以看见的红光的波长约为8×10﹣5cm,近似数8×10﹣5精确到()A.0.001cm B.0.0001cm C.0.00001cm D.0.000001cm4.下列四组数,可作为直角三角形三边长的是()A.4cm、5cm、6cm B.1cm、2cm、3cmC.2cm、3cm、4cm D.1cm、cm、cm5.若分式的值为0,则x的值为()A.1B.﹣2C.﹣1D.26.已知点P(a,2a﹣1)在一、三象限的角平分线上,则a的值为()A.﹣1B.0C.1D.27.在平面直角坐标系中,把直线y=﹣3x+4沿x轴向左平移2个单位长度后,得到的直线函数表达式为()A.y=﹣3x+1B.y=﹣3x+2C.y=﹣3x﹣1D.y=﹣3x﹣28.如图,一次函数y=kx+b(k>0)的图象过点(0,2),则不等式kx+b﹣2>0的解集是()A.x>0B.x<0C.x<2D.x>29.如图,已知O为△ABC三边垂直平分线的交点,且∠A=50°,则∠BOC的度数为()A.80°B.100°C.105°D.120°10.如图,直线y=x+b(b>0)分别交x轴、y轴于点A、B,直线y=kx(k<0)与直线y=x+b(b>0)交于点C,点C在第二象限,过A、B两点分别作AD⊥OC于D,BE⊥OC于E,且BE+BO=8,AD=4,则ED的长为()A.2B.C.D.1二、填空题:本大题共8小题,每小题3分,共24分.11.计算:=.12.等腰三角形的两边长分别是2cm和5cm,则它的周长是.13.若代数式有意义,则x的取值范围是.14.在平面直角坐标系中,已知一次函数y=﹣x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1>x2,则y1y2.15.已知点P(m,n)在一次函数y=3x﹣1的图象上,则9m2﹣6mn+n2=.16.若关于x的分式方程﹣=1有增根,则a的值.17.如图,点C坐标为(0,﹣1),直线y=x+3交x轴,Y轴于点A,点B,点D为直线上一动点,则CD 的最小值为.18.如图,已知直角三角形ABC中,∠ABC为直角,AB=12,BC=16,三角形ACD为等腰三角形,其中AD =DC=,且AB∥CD,E为AC中点,连接ED,BE,BD,则三角形BDE的面积为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔19.计算:++|1﹣|20.解方程:﹣=121.先化简,再求值(﹣x+3)÷,其中x=﹣22.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC的三个顶点的坐标分别为A (﹣3,6),B(﹣1,2),C(﹣5,4).(1)作出三角形ABC关于y轴对称的三角形A1B1C1.(2)点A1的坐标为.(3)①利用网络画出线段AB的垂直平分线l;②P为直线l上一动点,则P A+PC的最小值为.23.如图,△ABC为等边三角形,D为△ABC内一点,且∠ABD=∠DAC,过点C作AD的平行线,交BD 的延长线于点E,BD=EC,连接AE.(1)求证:△ABD≌△ACE.(2)求证:△ADE为等边三角形.24.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?25.如图,一次函数y1=x+b的图象与x轴y轴分别交于点A,点B,函数y1=x+b,与y2=﹣x的图象交于第二象限的点C,且点C横坐标为﹣3.(1)求b的值;(2)当0<y1<y2时,直接写出x的取值范围;(3)在直线y2=﹣x上有一动点P,过点P作x轴的平行线交直线y1=x+b于点Q,当PQ=OC时,求点P的坐标.26.在同一直线上有甲乙两地,小明,小红同学分别从甲乙两地同时出发,相向而行,当他们相遇后小明立即以原速返回,且他先达到甲地,小红继续前行到甲地.在整个行进过程中,他们之间的距离y(m)与行进的时间x(min)之间的函数关系如图所示,请结合图象信息解答下列问题.(1)a=,小明速度为m/min,小红速度为m/min;(2)求小明与小红从第一次相遇到小明到达甲地时,y与x之间的函数表达式;(3)他们第一次相遇后再过多长时间相距200m.27.直角三角形ABC中,∠ABC=90°,点D为AC的中点,点E为CB延长线上一点,且BE=CD,连接DE.(1)如图1,求证∠C=2∠E;(2)如图2,若AB=6,BE=5,△ABC的角平分线CG交BD于点F,求△BCF的面积.28.已如,在平面直角坐标系中,点A的坐标为(6,0)、点B的坐标为(0,8),点C在y轴上,作直线AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.(1)写出一点B′的坐标,并求出直线AC对应的函数表达式;(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;(3)如图2,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.2019-2020学年江苏省苏州市常熟市八年级(上)期末数学试卷参考答案与试题解析一.选择题1.【解答】解:A、不是轴对称图案,故此选项错误;B、是轴对称图案,故此选项正确;C、不是轴对称图案,故此选项错误;D、不是轴对称图案,故此选项错误;故选:B.2.【解答】解:A、是有理数,不合题意;B、3π是无理数,符合题意;C、﹣=﹣2是有理数,不合题意;D、=3是有理数,不合题意;故选:B.3.【解答】解:8×10﹣5=0.00008,∴近似数8×10﹣5精确到0.00001cm.故选:C.4.【解答】解:A、∵42+52≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+()2=()2,∴此组数据能构成直角三角形,故本选项正确.故选:D.5.【解答】解:由题意得:1﹣x=0,且x+2≠0,解得:x=1,故选:A.6.【解答】解:∵点P(a,2a﹣1)在一、三象限的角平分线上,∴a=2a﹣1,解得:a=1.故选:C.7.【解答】解:由题意得:平移后的解析式为:y=﹣3(x+2)+4,即y=﹣3x﹣2.故选:D.8.【解答】解:∵一次函数y=kx+b(k>0)的图象过点(0,2),∴不等式kx+b﹣2>0即kx+b>2的解集是x>0,故选:A.9.【解答】解:连接OA,∵O为△ABC三边垂直平分线的交点,∴OA=OB=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∴∠OBA+∠OCA=∠BCA=50°,∵∠ABC+∠ACB=180°﹣∠BCA=130°,∴∠OBC+∠OCB=130°﹣50°=80°,∴∠BOC=180°﹣80°=100°,故选:B.10.【解答】解:当y=0时,x+b=0,解得,x=﹣b,∴直线y=x+b(b>0)与x轴的交点坐标A为(﹣b,0);当x=0时,y=b,∴直线y=x+b(b>0)与y轴的交点坐标B为(0,b);∴OA=OB,∵AD⊥OC于D,BE⊥OC于E,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠EOB,在△DAO和△BOE中,∴△DAO≌△EOB,∴OD=BE,AD=OE=4,∵BE+BO=8,∴OB=8﹣BE,∵OB2=BE2+OE2,∴(8﹣BE)2=BE2+42,∴BE=3,∴DE=OE﹣OD=AD﹣BE=1,故选:D.二、填空题:本大题共8小题,每小题3分,共24分.11.【解答】解:∵42=16,∴=4,故答案为4.12.【解答】解:若2为腰,5为底边,此时2+2<5,不能构成三角形,故2不能为腰;若2为底边,5为腰,此时三角形的三边分别为2,5,5,周长为2+5+5=12,综上三角形的周长为12.故答案为:12cm13.【解答】解:代数式有意义,则2x+1≠0,解得:x≠﹣.故答案为:x≠﹣.14.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.15.【解答】解:∵点P(m,n)在一次函数y=3x﹣1的图象上,∴n=3m﹣1,即3m﹣n=1,∴9m2﹣6mn+n2=(3m﹣n)2=12=1.故答案为:1.16.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.17.【解答】解:连接AC,过点C作CD⊥直线AB于点D,此时CD的长度最小,如图所示.当x=0时,y=x+3=3,∴点B的坐标为(0,3),OB=3;当y=0时,x+3=0,解得:x=﹣4,∴点A的坐标为(﹣4,0),OA=4,∴AB==5.∵S△ABC=OA•BC=AB•CD,∴CD==.故答案为:.18.【解答】解:∵∠ABC为直角,AB=12,BC=16,∴AC===20,∵AD=CD,E为AC中点,∴AE=EC=10,DE⊥AC,∴DE===∵S△ABC=×AB×BC=96,∴S△BEC=48,∵三角形BDE的面积=S△BDC﹣S△BEC﹣S△EDC,∴三角形BDE的面积=×16×﹣48﹣×10×=,故答案为:.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔19.【解答】解:原式=3﹣2﹣1+=.20.【解答】解:方程两边同时乘以(x+2)(x﹣2)得:x﹣(1﹣x)(x﹣2)=(x+2)(x﹣2),解方程可得:x=3,经检验,x=3是原方程的根,∴原方程的解为x=3.21.【解答】解:原式=[﹣]•=•=,当x=﹣时,原式=.22.【解答】解:(1)如图所示,三角形A1B1C1即为所求;(2)由图可得,点A1的坐标为(3,6),故答案为:(3,6);(3)①如图所示,直线l即为所求;②直线l与BC的交点即为点P,P A+PC的最小值为线段BC的长,由勾股定理可得,BC===2,故答案为:2.23.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∵AD∥CE,∴∠DAC=∠ACE,且∠ABD=∠DAC,∴∠ACE=∠ABD,且AB=AC,BD=CE,∴△ABD≌△ACE(SAS)(2)∵△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∵∠BAD+∠DAC=∠BAC=60°,∴∠CAE+∠DAC=∠DAE=60°,且AD=AE,∴△ADE是等边三角形.24.【解答】解:设每支水笔的价格为x元,则每支圆珠笔的价格为(x+2)元,假设小明和小红能买到相同数量的笔,依题意,得:=,解得:x=4,经检验,x=4是原方程的解.当x=4时,=7.5,∵7.5不是整数,∴不符合题意,即假设不成立.答:小明和小红不能买到相同数量的笔.25.【解答】解:(1)将x=﹣3代入y2=﹣x,可得C(﹣3,4),再将C点代入y1=x+b,∴b=7;(2)﹣7<x<﹣3;(3)∵点P为直线y2=﹣x上一动点,设P(a,﹣a),∵PQ∥x轴,∴Q(﹣a﹣7,﹣a),∴PQ=|a+7|,∵C(﹣3,4),∴OC=5,∴PQ=OC=14,∴|a+7|=14,∴a=3或a=﹣9,∴P(3,﹣4)或P(﹣9,12).26.【解答】解:(1)小红速度为:2000÷50=40(m/min),小明速度为:40×(50﹣20)÷20=60(m/min),a=2000÷(60+40)=20.故答案为:20;60;40;(2)当x=40时,y=2000﹣40×40=400,∴点C的坐标为(40,400),设线段BC的函数表达式为y=k1+b1,把B(20,0),C(40,400)代入,得,解得,∴小明与小红从第一次相遇到小明到达甲地时,y与x之间的函数表达式为:y=﹣20x﹣400(20≤x≤40);(3)设线段CD的函数表达式为y=k2+b2,把C(40,400),D(50,0)代入,得,解得,∴线段CD的函数表达式为:y=﹣40x+2000(40<x≤50),把y=200代入y=20x﹣400,得x=30,30﹣20=10;把y=200代入y=﹣40x+2000,得x=45,45﹣20=25.答:他们第一次相遇后再过10min或25min后相距200m.27.【解答】解:(1)证明:∵∠ABC=90°,点D为AC的中点,∴BD=AC=CD=AD,∵CD=BE,∴BE=BD,∴∠BDE=∠E,∵BD=CD,∴∠C=∠DBC,∴∠C=∠DBC=∠BDE+∠E=2∠E;(2)过点F作FM⊥BC,FN⊥AC∵CG平分∠ABC∴FM=FN∵BE=5∴CD=AD=BE=5,AC=10又∵AB=6∴在Rt△ABC中,AB2+BC2=AC2∴BC=8∵BD为△ABC的中线∴S△BCD=S△ABC=×AB×BC=××6×8=12又∵S△BCD=S△BCF+S△CDF∴12=CD•FN+BC•FM∴×5×FM+×8×FM=12∴FM=∴S△BCF=BC•FM=×8×=.28.【解答】解:(1)∵A的坐标为(6,0)、点B的坐标为(0,8),∴OA=6,OB=8,∵∠AOB=90°,∴AB=10,∵B与B'关于直线AC对称,∴AC垂直平分BB',∴BC=CB',AB'=AB=10,∴B'(﹣4,0),设点C(0,m),∴OC=m,∴CB'=CB=8﹣m,∵在Rt△COB'中,∠COB'=90°,∴m2+16=(8﹣m)2,∴m=3,∴C(0,3),设直线AC的解析式为y=kx+b(k≠0),把A(6,0),C(0,3)代入可得k=﹣,b=3,∴y=﹣x+3;(2)∵AC垂直平分BB',∴DB=DB',∵△BDB'是等腰直角三角形,∴∠BDB'=90°,过点D作DE⊥x轴,DF⊥y轴,∴∠DFO=∠DFB=∠DEB'=90°,∵∠EDF=360°﹣∠DFB﹣∠DEO﹣∠EOF,∠EOF=90°,∴∠EDF=90°,∴∠EDF=∠BDB',∴∠BDF=∠EDB',∴△FDB≌△EDB'(AAS),∴DF=DE,设点D(a,a)代入y=﹣x+3中,∴a=2,∴D(2,2);(3)同(2)可得∠PDF=∠QDE,∵DF=DE=2,∠PDF=∠QDE=90°,∴△PDF≌△QDE(AAS),∴PF=QE,①当DQ=DA时,∵DE⊥x轴,∴QE=AE=4,∴PF=QE=4,∴BP=BF﹣PF=2,∴点P运动时间为1秒;②当AQ=AD时,∵A(6,0)、D(2,2),∴AD=2,∴AQ=2﹣4,∴PF=QE=2﹣4,∴BP=BF﹣PF=10﹣2,∴点P的运动时间为5﹣秒;③当QD=QA时,设QE=n,则QD=QA=4﹣n,在Rt△DEQ中,∠DEQ=90°,∴4+n2=(4﹣n)2,∴n=1.5,∴PF=QE=1.5,∴BP=BF+PF=7.5,∴点P的运动时间为7.5秒;综上所述:点P的运动时间为1秒或5﹣秒或7.5秒.。
淮安市2019年中考数学试卷及答案(Word解析版)
江苏省淮安市2019年中考数学试卷参考答案与试题解析一、选择题﹣223.(3分)(2019•淮安)地球与月球的平均距离大约为384000km,将384000用科学记数法4.(3分)(2019•淮安)小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,5.(3分)(2019•淮安)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B 都是格点,则线段AB的长度为()=56.(3分)(2019•淮安)若式子在实数范围内有意义,则x的取值范围是()7.(3分)(2019•淮安)如图,直解三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为()8.(3分)(2019•淮安)如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()×二、填空题9.(3分)(2019•淮安)因式分解:x2﹣3x=x(x﹣3).10.(3分)(2019•淮安)不等式组的解集为﹣3<x<2.,11.(3分)(2019•淮安)若一个三角形三边长分别为2,3,x,则x的值可以为4(只需填一个整数)12.(3分)(2019•淮安)一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为.个球,则摸出红球的概率为:.故答案为:13.(3分)(2019•淮安)如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是AB=CD(只填写一个条件,不使用图形以外的字母和线段).14.(3分)(2019•淮安)若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为5.15.(3分)(2019•淮安)如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是P.估算出<16.(3分)(2019•淮安)将二次函数y=2x2﹣1的图象沿y轴向上平移2个单位,所得图象对应的函数表达式为y=2x2+1.17.(3分)(2019•淮安)如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为130°.18.(3分)(2019•淮安)如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.面积的一半,即,则周长是原来的面积的一半,即,则周长是原来的面积的一半,即,则周长是原来的;面积的一半,则周长是原来的;个正方形周长是原来的周长是原来的的周长为故答案为:.三、解答题19.(12分)(2019•淮安)计算:(1)32﹣|﹣2|﹣(π﹣3)0+;(2)(1+)÷..20.(6分)(2019•淮安)解方程组:.,.21.(8分)(2019•淮安)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.22.(8分)(2019•淮安)班级准备召开主题班会,现从由3名男生和2名女生所组成的班委中,随机选取两人担任主持人,求两名主持人恰为一男一女的概率.(请用“画树状图”或“列表”等方法写出过程)∴两名主持人恰为一男一女的概率为:=23.(8分)(2019•淮安)某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并a=0.05,b=14,c=0.35;(2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.==0.05=0.3524.(8分)(2019•淮安)为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.,+BD=24≈25.(10分)(2019•淮安)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.26.(10分)(2019•淮安)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC.(1)求∠ACB的度数;(2)若AC=8,求△ABF的面积.,ABAC=ECACx=4==2427.(12分)(2019•淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为6;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.得:代入得:n====,=﹣28.(14分)(2019•淮安)如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=1秒时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC 的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.﹣﹣﹣(tPR=RQ=PR﹣(﹣t.PQ=QS=PQ=(﹣﹣t=2)秒.。
期末检测卷02(解析版) -2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)
2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)期末检测卷02一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·大庆市万宝学校八年级期中)下列哪组数据能构成三角形的三边( )A .1cm 、2cm 、3cmB .2cm 、3cm 、4cmC .14cm 、4cm 、9cmD .7cm 、2cm 、4cm【答案】B2.(2020·营山县化育初级中学校八年级期中)下列图形中一定是轴对称图形的是( )A .B .C .D .【答案】A3.(2020·河北唐山市·八年级月考)下列计算错误的是( )A .32a b ⋅=5abB .2a a -⋅=3a -C .()()936-x -x =x÷ D .()2362a 4a -=【答案】A4.(2020·浙江杭州市·七年级其他模拟)若24(1)9xm x --+是完全平方式,则m 的值为( )A .13B .12±C .11或13-D .11-或13.【答案】D5.(2020·营山县化育初级中学校八年级期中)如图所示,在△ABC 中,∠C =90°,BC =40,AD 是∠BAC 的平分线,交BC 于点D .若DC ∶DB =3∶5,则点D 到AB 的距离是( )A .40B .15C .25D .20【答案】B6.(2020·广东广州市·执信中学八年级期中)如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm /s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为( )s 时,能够使BPE 与CQP 全等.A .1B .1或4C .1或2D .2或4【答案】B二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·上海市建平中学西校七年级期中)分解因式:32327-=xxy ______.【答案】()()333+-xx y x y8.(2019·江西赣州市·八年级期末)为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,根据题意列方程为____.【答案】12000120001001.2x x=+ 9.(2020·昌乐县白塔镇第一中学八年级期中)若关于x 的分式方程4333x ax x --=--有增根,则a 的值是______. 【答案】-110.(2020·重庆市南川道南中学校八年级期中)如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.【答案】611.(2020·宁津县育新中学八年级期中)如图,在△ABC 中,∠A =64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n -1BC 与∠A n -1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.【答案】612.(2020·南昌市心远中学八年级期中)如图:一条船从A 处出发向正北航行,从A 望灯塔C 测得30NAC ∠=︒,当点B在射线AN 上,且BAC 为等腰三角形,则NBC ∠的度数是__________.【答案】105°或60°或150°三、(本题共计5小题,每小题6分,共计30分)13.(2020·福建泉州市·泉州七中八年级期中)分解因式:(1)2x x 30--(2)222ax8axy 8ay -+【答案】解:(1)230x x --()()65x x =-+(2)22288axaxy ay -+()22244a x xy y =-+()222a x y =-【点睛】本题考查的是利用十字乘法,提公因式,完全平方公式分解因式,掌握以上因式分解的方法是解题的关键.14.(2020·剑阁县公兴初级中学校九年级月考)先化简(21x x +-x +1)÷22121x x x -++,再从-1,0,1中选择合适的x 值代入求值.【答案】2221(21)11x x x x x x -+÷++-+ 222121(1)1111x x x x x x x x x x ⎡⎤++=-+⨯⎢⎥++++⎣⎦-+ 222(1)1(1)(1)1x x x x x x x x ⎡⎤-+=⨯⎢⎥+-⎣+++-⎦2(1)()1(1)(1)1x x x x +=⨯+-+ 11x =- 11x x x ≠-≠∴=,0当0x=时,原式11==1101x =--- 【点睛】本题考查分式的化简求值,其中涉及分式有意义的条件、完全平方公式、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.(2020·马鞍山二中实验学校八年级期中)如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数. 【答案】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A ;(2)在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB =180°﹣∠A =180°﹣40°=140°,∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB , 在△PBC 中,∠P =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB )=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.16.(2020·江苏淮安市·八年级期中)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(请用直尺保留作图痕迹).(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)△ABC的面积是;(3)在DE上画出点Q,使△QAB的周长最小.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=2×3−12×1×3−12×1×2−12×1×2=52.故答案为:5 2.(3)如图所示,点Q即为所求;【点睛】本题主要考查了利用轴对称作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(2020·武威第十九中学八年级月考)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式B.平方差公式C.完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.【答案】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式,故选:C;(2)∵x2-4x+4=(x-2)2 ,∴该同学因式分解的结果不彻底,最后结果为(x-2)4 ,故答案为:不彻底,(x-2)4 ;(3)设x2-2x=y,则:原式=y(y+2)+1=y2+2y+1=(y+1)2=( x2-2x+1)2=(x﹣1)4.【点睛】本题考查利用换元法和公式法进行因式分解,熟记完全平方公式,熟练掌握因式分解的各种方法是解答的关键.四、(本题共计3小题,每小题8分,共计24分)18.(2020·全国八年级期中)如图所示,△ABC中,AB=BC.DE⊥AB于点E.DF⊥BC于点D,交AC于F..若∠AFD=155°,求∠EDF的度数;.若点F是AC的中点,求证:∠CFD=12∠B.【答案】. ∵∠AFD=155°.∴∠DFC=25°.∵DF⊥BC.DE⊥AB.∴∠FDC =∠AED =90°.在Rt △EDC 中,∴∠C =90°.25°=65°.∵AB =BC .∴∠C =∠A =65°.∴∠EDF =360°.65°.155°.90°=50°.. 连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC .12ABFCBF ABC ∠=∠=∠.∴∠CFD +∠BFD =90°.∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴12CFDABC ∠=∠. 19.(2020·重庆西南大学银翔实验中学八年级月考)西南大学银翔实验中学初2022级举行“迎篮而上,求进不止”的篮球比赛,在某商场购买甲、乙两种不同篮球,购买甲种篮球共花费3000元,购买乙种篮球共花费2100元,购买甲种篮球数量是购买乙种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花60元;(1)求购买一个甲种篮球、一个乙种篮球各需多少元?(2)活动结束以后,学校决定再次购买甲、乙两种篮球共50个.恰逢该商场对两种篮球的售价进行调整,甲种篮球售价比第一次购买时提高了10%,乙种篮球售价比第一次购买时降低了10%.如果此次购买甲、乙两种篮球的总费用不超过8730元,那么这所学校最多可购买多少个乙种篮球?【答案】解:(1)设购买一个甲种篮球需x 元,则购买一个乙种篮球需()60x +元,根据题意可得:30002100260x x =⨯+, 解得:150x =,经检验得150x =是分式方程的解,∴60210x +=,答:购买一个甲种篮球需150元,则购买一个乙种篮球需210元;(2)调整之后的价格为:甲种篮球()150110165⨯+%=(元),乙种篮球()210110189⨯-%=(元),设购买m 个乙种篮球,则购买()50m -个甲种篮球,根据题意可得:()165501898730m m -+≤,解得:20m ≤,∴这所学校最多可购买20个乙种篮球.【点睛】本题考查分式方程的应用、不等式的实际应用,理解题意并列出方程和不等式是解题的关键.20.(2020·昌乐县白塔镇第一中学八年级期中)如图1,在△ABC 中,90ACB ∠=︒,AC =BC ,直线MN 经过点C ,AD MN ⊥,垂足为点D ,BE MN ⊥,垂足为点E .(1)请说明:①ADC CEB △≌△,②DE AD BE =+;(2)当直线MN 绕着点C 旋转到如图2所示的位置时,猜想线段DE ,AD ,BE 之间有怎样的数量关系?并说明理由.【答案】解:(1)①AD MN ⊥,BE MN ⊥,∴∠=∠=︒,ADC CEB90∴∠+∠=︒,DAC ACD90∠=︒,ACB90∴∠+∠=︒-︒=︒,ACD BCE1809090∴∠=∠;DAC ECB△中,在ADC和CEB=,∠=∠,AC CBADC CEB∠=∠,DAC ECB()∴△≌△;ADC CEBAAS△≌△,②由①得ADC CEB=,DC EB∴=,AD CE=+,DE CD CE∴=+;DE AD BE=-,(2)DE AD BE△≌△,由(1)同理可得:ADC CEB∴=,CD BE=,AD CEDE CE CD,∴=-.DE AD BE【点睛】本题考查了全等三角形的判定和性质,涉及到补角和余角的性质,熟练掌握全等三角形的判定方法是解题的关键.五、(本题共计2小题,每小题9分,共计18分)21.(2020·张家口市宣化区教学研究中心八年级期末)阅读理解 (发现)如果记22()1x f x x =+,并且f (1)表示当x =1时的值,则f (1)=______;()2f 表示当2x =时的值,则()2f =______;12f ⎛⎫ ⎪⎝⎭表示当12x =时的值,则12f ⎛⎫ ⎪⎝⎭=______; ()3f 表示当3x =时的值,则()3f =______;13f ⎛⎫ ⎪⎝⎭表示当13x =时的值,则13f ⎛⎫= ⎪⎝⎭______; (拓展)试计算111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 【答案】解:【发现】2211(1)=211=+f ; 2224(2)=512=+f ;221112()=25112⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f ; 2239(3)=1013=+f ;221113()=310113⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f 【拓展】∵22()1x f x x =+ ∴2221()11(),111()x f x x x∴1()()1,f x f x += ∴111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()111=2012+=201222=2012+f 【点睛】本题考查了函数值,数字变化规律,读懂题目信息,理解变化规律f 的方法并确定出1()()1f x f x+=是解题的关键. 22.(2020·广州市白云区明德中学七年级期中)如图1是一个长为2a ,宽为2b 的长方形()a b >,沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为______;小正方形(阴影部分)的边长为______.(用含a 、b 代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式.2()a b -,2()a b +,4ab 之间的等量关系.(3)利用(2)中得出的结论解决下面的问题.已知7a b +=,6ab =,求代数式()a b -的值.【答案】解:(1)图2中大正方形的边长为(a +b );小正方形(阴影部分)的边长为(a −b ),故填:()a b +,()a b -;(2)三个代数式之间的等量关系是:(a +b )2=(a −b )2+4ab ;(3)(a −b )2=(a +b )2−4ab =72-4×6=25,∴a −b =5.【点睛】本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.六、(本题共计1小题,每小题12分,共计12分)23.(2020·阳泉市第三中学校八年级期中)问题情境:在自习课上,小雪拿来了如下一道题目(原问题)和合作学习小组的同学们交流,如图①,△ACB 和△∠CDE 均为等腰三角形.CA =CB ,CD =CE ,∠ACB =∠DCE .点A 、D 、E 在同一条直线上,连接BE .求证:∠CDE =∠BCE +∠CBE . 问题发现:小华说:我做过一道类似的题目:如图②,△ACB 和△CDE 均为等边三角形,其他条件不变,求∠AEB 的度数. (1)请聪明的你完成小雪的题目要求并直接写出小华的题目要求.拓展研究:(2)如图③,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一条直线上,CF 为△DCE 中DE 边上的高,连接BE .请求∠AEB 的度数及线段CF 、AE 、BE 之间的数量关系,并说明理由.【答案】(1)小雪的题目:证明:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△CAD CBE ∴∠=∠又ACD BCE ∠=∠,CDE CAD ACD ∠=∠+∠CDE CBE BCE ∴∠=∠+∠;小华的题目:解:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△ADC BEC ∠∠∴= CDE 为等边三角形60CDE CED ∴∠=∠=︒ 又点A 、D 、E 在同一条直线上120ADC BEC ∴∠=∠=︒60AEB BEC CED ∴∠=∠-∠=︒(2)∠AEB =90︒;2AE BE CF =+;理由如下:△ACB 和△DCE 均为等腰直角三角形,,,9045AC BC CD CE ACB DCE CDE CED ∴==∠=∠=︒∠=∠=︒,,ACB DCB DCE DCB ∴∠-∠=∠-∠即ACD BCE ∠=∠在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△,BE AD BEC ADC ∴=∠=∠,点A 、D 、E 在同一直线上∴∠=︒-︒=︒ADC18045135∴∠=︒BEC135∴∠=∠-∠=︒-︒=︒AEB BEC CED1354590,∠=︒=⊥DCE CD CE CF DE90,∴==CF DF EF∴=+=DE DF EF CF2∴=+=+.AE AD DE BE CF2【点睛】本题考查了全等三角形的判定及性质、等腰三角形的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.。
2019-2020学年江苏省苏州市吴中区八年级下学期期中数学试卷 (解析版)
2019-2020学年八年级第二学期期中数学试卷一、选择题1.下列代数式中属于分式的是()A.B.C.D.a2.下列图案中,不是中心对称图形的是()A.B.C.D.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣64.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的5.下列分式是最简分式的()A.B.C.D.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.410.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).12.当x=时,分式无意义.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为.(用“<”连接)14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为.15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=.16.当m=时,解分式方程=会出现增根.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.20.解方程:=1.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C 类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=,b=;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足时,四边形EFGH是正方形.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母填涂在答题卷相对应的位置上.)1.下列代数式中属于分式的是()A.B.C.D.a【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.解:、、a的分母中不含有字母,属于整式.的分母中含有字母,属于分式.故选:B.2.下列图案中,不是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.解:A、是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项正确;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:B.3.反比例函数y=的图象经过点(3,﹣2),则k的值为()A.6B.5C.﹣5D.﹣6【分析】直接把点(3,﹣2)代入y=,然后求出k即可.解:把点(3,﹣2)代y=得﹣2×3=k,∴k=﹣6,故选:D.4.如果把的x与y都扩大10倍,那么这个代数式的值()A.不变B.扩大50倍C.扩大10倍D.缩小到原来的【分析】依题意分别用10x和10y去代换原分式中的x和y,利用分式的基本性质化简即可.解:分别用10x和10y去代换原分式中的x和y,得==,可见新分式与原分式的值相等;故选:A.5.下列分式是最简分式的()A.B.C.D.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选:C.6.矩形、菱形、正方形都具有的性质是()A.对角线互相平分B.对角线相等C.每一条对角线平分一组对角D.对角线互相垂直【分析】先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故选:A.7.对于反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣4)B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.图象关于原点中心对称【分析】根据反比例函数的性质和题目中的函数解析式,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵反比例函数y=﹣,∴当x=1时,y=﹣4,即图象经过点(1,﹣4),故选项A正确;它的图象在第二、四象限,故选项B错误;当x>0时,y随x的增大而增大,故选项C正确;图象关于原点中心对称,故选项D正确;故选:B.8.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.在这次调查中,样本是()A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.解:样本是所抽取的50名学生对“世界读书日”的知晓情况.故选:B.9.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.4【分析】根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.解:∵在△ACD中,∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=16,∴EF=8,故选:C.10.如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD=AM2.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据菱形的四条边都相等,先判定△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;根据全等三角形对应角相等可得∠DBF=∠EDC,然后利用三角形的一个外角等于与它不相邻的两个内角的和可以求出∠DMF=∠BDC=60°,再根据平角等于180°即可求出∠BMD=120°,从而判定②正确;根据三角形的一个外角等于与它不相邻的两个内角的和以及平行线的性质求出∠ABM=∠ADH,再利用“边角边”证明△ABM和△ADH全等,根据全等三角形对应边相等可得AH=AM,对应角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,判定出③正确;根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.解:在菱形ABCD中,∵AB=BD,∴AB=BD=AD,∴△ABD是等边三角形,∴根据菱形的性质可得∠BDF=∠C=60°,∵BE=CF,∴BC﹣BE=CD﹣CF,即CE=DF,在△BDF和△DCE中,,∴△BDF≌△DCE(SAS),故①小题正确;∴∠DBF=∠EDC,∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,∴∠BMD=180°﹣∠DMF=180°﹣60°=120°,故②小题正确;∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,∴∠DEB=∠ABM,又∵AD∥BC,∴∠ADH=∠DEB,∴∠ADH=∠ABM,在△ABM和△ADH中,,∴△ABM≌△ADH(SAS),∴AH=AM,∠BAM=∠DAH,∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,∴△AMH是等边三角形,故③小题正确;∵△ABM≌△ADH,∴△AMH的面积等于四边形ABMD的面积,又∵△AMH的面积=AM•AM=AM2,∴S四边形ABMD=AM2,故④小题正确,综上所述,正确的是①②③④共4个.故选:D.二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)11.“抛掷一枚质地均匀的硬币,正面向上”是随机事件(从“必然”、“随机”、“不可能”中选一个).【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.12.当x=2时,分式无意义.【分析】根据分母等于0,分式无意义列式进行计算即可求解.解:根据题意得,x﹣2=0,解得x=2.故答案为:2.13.已知点A(1,a),B(3,b)都在反比例函数y=的图象上,则a,b的大小关系为b<a.(用“<”连接)【分析】直接利用反比例函数的增减性分析得出答案.解:∵反比例函数y=中,k=4>0,∴在每个象限内,y随x的增大而减小,∵点A(1,a),B(3,b)都在反比例函数y=的图象上,且3>1,∴b<a,故答案为:b<a.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为60°.【分析】根据矩形的性质,可得∠ABC的度数,OA与OB的关系,根据等边三角形的判定,可得答案.解:由矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,得∠ABC=90°,∠BAO=90°﹣∠ACB=60°.由OA=OB,得△ABO是等边三角形,∠AOB=60°,故答案为:60°15.如图,面积为3的矩形OABC的一个顶点B在反比例函数y=的图象上,另三点在坐标轴上,则k=﹣3.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S =|k|.解:根据题意,知S=|k|=3,k=±3,又因为反比例函数位于第四象限,k<0,所以k=﹣3,16.当m=2时,解分式方程=会出现增根.【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.解:分式方程可化为:x﹣5=﹣m,由分母可知,分式方程的增根是3,当x=3时,3﹣5=﹣m,解得m=2,故答案为:2.17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.18.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x 轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(+)×(2m﹣m)=.故答案为:.三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.化简:1﹣÷.【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.解:原式=1﹣•=1﹣=.20.解方程:=1.【分析】因为x2﹣1=(x+1)(x﹣1),所以可确定最简公分母(x+1)(x﹣1),然后方程两边同乘最简公分母将分式方程转化为整式方程求解即可,注意检验.解:方程两边同乘(x+1)(x﹣1),得:x(x+1)﹣(2x﹣1)=(x+1)(x﹣1),解得:x=2.经检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解为:x=2.21.已知反比例函数y=(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.【分析】(1)由反比例函数y=的性质:当k<0时,在其图象的每个分支上,y随x 的增大而增大,进而可得:m﹣5<0,从而求出m的取值范围;(2)先将交点的纵坐标y=3代入一次函数y=﹣x+1中求出交点的横坐标,然后将交点的坐标代入反比例函数y=中,即可求出m的值.解:(1)∵在反比例函数y=图象的每个分支上,y随x的增大而增大,∴m﹣5<0,解得:m<5;(2)将y=3代入y=﹣x+1中,得:x=﹣2,∴反比例函数y=图象与一次函数y=﹣x+1图象的交点坐标为:(﹣2,3).将(﹣2,3)代入y=得:3=解得:m=﹣1.22.某校课外兴趣小组在本校学生中开展“感动中国2019年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类,被调查者只能选择一类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如表:类别A B C D频数304024b频率a0.40.240.06(1)表中的a=0.3,b=6;(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?【分析】(1)根据B类频数和频率求出总数,再根据频数、频率、总数之间的关系分布进行计算即可;(2)用类别为B的学生数所占的百分比乘以360°,即可得出答案;(3)用1000乘以类别为C的人数所占的百分比,即可求出该校学生中类别为C的人数.解:(1)问卷调查的总人数是:=100(名),a==0.3,b=100×0.06=6(名),故答案为:0.3,6;(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;(3)根据题意得:1000×0.24=240(名).答:调查结果估计该校学生中类别为C的人数约为240名.23.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.24.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价为多少元?【分析】设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据数量=总价÷单价结合购进第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,依题意,得:3×=,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批饮料进货单价为8元.25.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.(1)求证:四边形BCED是平行四边形;(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)由已知角相等,利用对顶角相等,等量代换得到同位角相等,进而得出DB与EC平行,再由内错角相等两直线平行得到DE与BC平行,即可得证;(2)由角平分线得到一对角相等,再由两直线平行内错角相等,等量代换得到一对角相等,再利用等角对等边得到CN=BC,再由平行四边形对边相等即可确定出所求.【解答】(1)证明:∵∠A=∠F,∴DE∥BC,∵∠1=∠2,且∠1=∠DMF,∴∠DMF=∠2,∴DB∥EC,则四边形BCED为平行四边形;(2)解:∵BN平分∠DBC,∴∠DBN=∠CBN,∵EC∥DB,∴∠CNB=∠DBN,∴∠CNB=∠CBN,∴CN=BC=DE=2.26.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.27.阅读下面材料:在数学课上,老师请同学思考如下问题:如图①,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题,有如下思路:连接AC.结合小敏的思路作答.(1)若只改变图①中四边形ABCD的形状(如图②),则四边形EFGH还是平行四边形吗?说明理由;(参考小敏思考问题方法)(2)如图②,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是矩形,写出结论并证明;②当AC与BD满足AC⊥BD,且AC=BD时,四边形EFGH是正方形.【分析】(1)连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)①根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.根据邻边相等的矩形是正方形即可证明.解:(1)四边形EFGH是平行四边形,理由如下:如答图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)如答图2,连接BD.①当AC⊥BD时,四边形EFGH为矩形;理由如下:同(1)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形;②结论:当AC⊥BD,且AC=BD时,四边形EFGH为正方形.理由:∵EH=BD,EF=AC,BD=AC,∴EH=EF,∵当AC⊥BD时,四边形EFGH是矩形,∴四边形EFGH是正方形.故答案是:AC⊥BD,且AC=BD.28.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB =2,CD=BC,请求出GE的长.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM =CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。
2019-2020学年江苏省淮安市淮安区八年级(上)期末数学试卷解析版
2019-2020学年江苏省淮安市淮安区八年级(上)期末数学试卷一、选择题(本大题共8小题.每小题2分,共计16分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.(2分)下列交通标识中,是轴对称图形的是()A.B.C.D.2.(2分)64的立方根是()A.4B.±4C.8D.±83.(2分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(2分)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD5.(2分)下列长度的三条线段不能组成直角三角形的是()A.1.5,2.5,3B.1,,2C.6,8,10D.3,4,56.(2分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(3,2)D.(﹣3,2)7.(2分)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+18.(2分)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h二、填空题(本大题共10小题.每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.(3分)4是的算术平方根.10.(3分)如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.11.(3分)已知直角三角形的两边的长分别是3和4,则第三边长为.12.(3分)在,,﹣,3.14,这些数中,无理数有个.13.(3分)已知,点A(a,1)和点B(3,b)关于原点O对称,则a+b的值为.14.(3分)在一次函数y=(k﹣1)x+5中,y随x的增大而增大,则k的取值范围是.15.(3分)观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B点后,B点的位置可以用数对表示为.16.(3分)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.17.(3分)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.18.(3分)根据如图所示的计算程序,小明输入的x的值为36,则输出的y的值为.三、解答题(本大题共9小题,共计74分.请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(8分)(1)求x的值:x2=25(2)计算:﹣+.20.(8分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.21.(8分)已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO向下平移3个单位再向右平2个单位后得△DEF.(1)画出△DEF;(2)△DEF的面积为.22.(8分)如图,△ABC中,∠BAC=90°,AC=8cm,DE是BC边上的垂直平分线,△ABD的周长为14cm,求BC的长.23.(8分)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.24.(8分)已知2a﹣1的算术平方根是3,3a+b﹣1的平方根是±4,c是的整数部分,求a+2b﹣c的平方根.25.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.26.(8分)某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出了函数图象,以下是该科技人员绘制的图象和表格的不完整资料,已知点A的坐标为(2,10),请你结合表格和图象:付款金额a7.51012b购买量(千克)1 1.52 2.53(1)写出表中a、b的值;(2)求出当x>2时,y关于x的函数解析式.27.(10分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.2019-2020学年江苏省淮安市淮安区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题.每小题2分,共计16分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.【解答】解:由轴对称的概念可得,只有B选项符合轴对称的定义.故选:B.2.【解答】解:∵4的立方等于64,∴64的立方根等于4.故选:A.3.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选:C.4.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.5.【解答】解:A、∵1.52+2.52≠32,∴以1.5,2.5,3为边不能组成直角三角形,故本选项符合题意;B、∵12+()2=22,∴以1,,2为边能组成直角三角形,故本选项不符合题意;C、∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项不符合题意;D、∵32+42=52,∴以3,4,5为边能组成直角三角形,故本选项不符合题意.故选:A.6.【解答】解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:C.7.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故选:D.8.【解答】解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选:C.二、填空题(本大题共10小题.每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.10.【解答】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是4,∴点P的坐标为(﹣3,4).故答案为:(﹣3,4).11.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.12.【解答】解:是分数,属于有理数;﹣=﹣是分数,属于有理数;3.14是有限小数,属于有理数.无理数有共1个.故答案为:113.【解答】解:∵点A(a,1)是点B(3,b)关于原点O的对称,∴a=﹣3,b=﹣1,∴a+b=﹣4.故答案为:﹣4.14.【解答】解:∵y=(k﹣1)x+1的函数值y随x的增大而增大,∴k﹣1>0,解得k>1.故答案为:k>1.15.【解答】解:如图所示:B点的位置可以用数对表示为:(1,6).故答案为:(1,6).16.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为:30°.17.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.18.【解答】解:∵x=36>4,∴y=﹣3=3﹣3=0故答案为:0.三、解答题(本大题共9小题,共计74分.请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.【解答】解:(1)开方得:x=5或x=﹣5;(2)原式=2﹣2+4=4.20.【解答】证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE,在△BCA和△ECD中,,∴△ABC≌△DEC,∴∠A=∠D.21.【解答】解:(1)如图所示,△DEF即为所求;(2)△DEF的面积为3×3﹣2××1×3﹣×2×2=4,故答案为:4.22.【解答】解:∵DE是BC边上的垂直平分线,∴DB=DC,∵△ABD的周长为14,∴AB+AD+BD=14,∴AB+AD+DC=AB+AC=14,∴AB=14﹣8=6,由勾股定理得,BC===10(cm).23.【解答】解:(1)∵一次函数y=kx+3的图象经过点(1,4),∴4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.24.【解答】解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,解得:a=5,∵3a+b﹣1的平方根是±4,∴3a+b﹣1=16,解得:b=2,∵c 是的整数部分,∴c=4,∴a+2b﹣c=5+4﹣4=5,故a+2b﹣c 的平方根为:±.25.【解答】解:(1)连接AC,∵∠B=90°,∴AC2=BA2+BC2=400+225=625,∵DA2+CD2=242+72=625,∴AC2=DA2+DC2,∴△ADC是直角三角形,即∠D是直角;(2)∵S四边形ABCD=S△ABC+S△ADC,∴S四边形ABCD =AB•BC +AD•CD=×20×15+×24×7=234.26.【解答】解:(1)购买量是函数中的自变量x,设射线OA解析式为y=mx,把A(2,10)代入得:10=2m,即m=5,∴射线OA解析式为y=5x,把x=1代入得:y=5,即a=5;根据题意得:b=2×5+(3﹣2)×5×80%=10+4=14;(2)当x>2时,设y与x的函数关系式为:y=kx+b,第11页(共12页)∵y=kx+b经过点(2,10),又x=3时,y=14,∴,解得:,∴当x>2时,y与x的函数关系式为:y=4x+2.27.【解答】解:(1)∵点A(2,0),AB =∴BO ===3∴点B的坐标为(0,3);(2)∵△ABC的面积为4∴×BC×AO=4∴×BC×2=4,即BC=4∵BO=3∴CO=4﹣3=1∴C(0,﹣1)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y =x﹣1第12页(共12页)。
2019-2020学年江苏省无锡市八年级(下)期末数学试卷 (解析版)
2019-2020学年江苏省无锡市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥52.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为.13.(3分)若1<x<3,则化简+|x﹣3|=.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.20.(8分)(1)计算:+;(2)解方程:﹣5=.21.(6分)先化简,再求值:,其中a=﹣2,b=1.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为;(3)请将条形统计图补充完整.24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.2019-2020学年江苏省无锡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵二次根式有意义,∴x﹣5≥0,解得:x≥5.故选:D.2.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、射击一次,中靶,属于随机事件,不合题意;B、明天会下雨,属于随机事件,不合题意;C、太阳从东边升起,属于必然事件,符合题意;D、公鸡下蛋,属于不可能事件,不合题意;故选:C.3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义判断即可.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意;故选:A.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行【分析】根据平行四边形的性质和菱形的性质对各选项进行判断即可.【解答】解:A、菱形、平行四边形的对角线互相平分,故A选项不符合题意;B、菱形、平行四边形的两组对角分别相等,故B选项不符合题意;C、菱形的对角线互相垂直平分,平行四边形的对角线互相平分,故C选项符合题意;D、菱形、平行四边形的两组对边分别平行,故D选项不符合题意;故选:C.5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据函数的解析式和反比例函数的性质得出函数y=﹣的图象,在每个象限内,y随x的增大而增大,再比较即可.【解答】解:∵y=﹣中年k=﹣3<0,∴函数y=﹣的图象,在每个象限内,y随x的增大而增大,∵点(2,y1)(4,y2)都在函数y=﹣的图象上,2<4,∴y1<y2,故选:B.6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B、其中的每名八年级学生每天做家庭作业所用的时间是个体,故B符合题意;C、从中抽取的1000名学生每天做家庭作业所用的时间是总体的一个样本,故C不符合题意;D、样本容量是1000,故D不符合题意;故选:B.7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.【分析】分k>0及k<0两种情况考虑,根据一次函数图象与系数的关系、反比例函数的图象对照四个选项即可得出结论.【解答】解:当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴A、C、D不符合题意,B符合题意;故选:B.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,进而可得出OA,OB 的长,由四边形ABCD为矩形可得出∠ABC=90°,结合同角的余角相等可得出∠OBC =∠OAB,结合∠BOC=∠AOB=90°可得出△BOC∽△AOB,利用相似三角形的性质可求出OC的长,进而可得出点C的坐标,再利用矩形的性质(对角线互相平分),即可求出点D的坐标.【解答】解:当x=0时,y=﹣×0+3=3,∴点B的坐标为(0,3),OB=3;当y=0时,﹣x+3=0,解得:x=4,∴点A的坐标为(4,0),OA=4.∵四边形ABCD为矩形,∴∠ABC=90°.∵∠OAB+∠OBA=90°,∠OBA+∠OBC=90°,∴∠OBC=∠OAB,又∵∠BOC=∠AOB=90°,∴△BOC∽△AOB,∴=,即=,∴OC=,∴点C的坐标为(﹣,0).又∵四边形ABCD为矩形,A(4,0),B(0,3),C(﹣,0),∴点D的坐标为(4﹣﹣0,0+0﹣3),即(,﹣3).故选:D.10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2【分析】设P(0,m),则OP=m,通过证得△AOP≌△PMQ求得Q的坐标,然后根据勾股定理得到BQ=,即可求得当m=1时,BQ有最小值3.【解答】解:∵A(2,0),∴OA=2,设P(0,m),则OP=m,作QM⊥y轴于M,∵∠APQ=90°,∴∠OAP+∠APO=∠APO+∠QPM,∴∠OAP=∠QPM,∵∠AOP=∠PMQ=90°,P A=PQ,∴△AOP≌△PMQ(AAS),∴MQ=OP=m,PM=OA=2,∴Q(m,m+2),∵B(4,0),∴BQ==,∴当m=1时,BQ有最小值3,故选:A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为0.2.【分析】首先计算出第4组的频数,然后再计算出第4组的频率即可.【解答】解:第4组的频数为:40﹣6﹣12﹣14=8,频率为:=0.2,故答案为:0.2.13.(3分)若1<x<3,则化简+|x﹣3|=2.【分析】直接利用二次根式的性质结合绝对值的性质化简得出答案.【解答】解:∵1<x<3,∴+|x﹣3|=x﹣1+3﹣x=2.故答案为:2.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为2.5.【分析】连接BD,由矩形的性质得CD=AB=3,BC=AD=4,∠C=90°,由勾股定理得BD=5,证MN是△BCD的中位线,由三角形中位线定理即可得出答案.【解答】解:连接BD,如图:∵四边形ABCD是矩形,∴CD=AB=3,BC=AD=4,∠C=90°,∴BD===5,∵M、N分别为BC、CD的中点,∴MN是△BCD的中位线,∴MN=BD=2.5;故答案为:2.5.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为4.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE=.故答案为:4.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为70°.【分析】直接利用等腰三角形的性质结合旋转的性质得出∠BAD=∠CBE=20°,进而利用三角形的外角得出答案.【解答】解:∵AB=AC,∠C═50°,∴∠ABC=∠C=50°,∠BAC=80°,∵将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,DE恰好经过点A,∴BD=AB,∴∠D=∠BAD=∠BAC=80°,∴∠BAD=∠CBE=20°,∴∠AFB=∠CBF+∠C=20°+50°=70°.故答案为:70°.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是x<0或1<x<5.【分析】根据k1x+b﹣<0,则反比例函数大于一次函数,进而结合图象得出答案.【解答】解:如图所示:关于x的不等式k1x+b﹣<0的解集是:x<0或1<x<5.故答案为:x<0或1<x<5.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为15.【分析】过M点作MN⊥BE,交BC于点N,设BC=x,根据折叠的性质,结合矩形的性质,通过证明△EMD≌△NEC可表示AM=x﹣3,BM=x﹣2,再根据勾股定理列式计算即可求解.【解答】解:过M点作MN⊥BE,交BC于点N,由折叠可知:△MNE和△BMN均为等腰三角形,∴BM=BN,ME=NE,∵∠MEB=45°,∴∠MEN=90°,∴∠MED+∠NEC=90°,在矩形ABCD中,∠D=∠C=90°,CD=AB=5,∴∠MED+∠EMD=90°,∴∠EMD=∠NEC,∴△EMD≌△NEC,∴DE=CN,MD=EC,∵DE=2,∴CN=2,MD=EC=3,设BC=x,则AD=x,∴AM=x﹣3,BM=BN=x﹣2,在Rt△ABM中,AB2+AM2=BM2,即52+(x﹣3)2=(x﹣2)2,解得x=15,故BC的长为15.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式进而计算得出答案.【解答】解:(1)原式=5﹣3+=2+2=4;(2)原式=(2)2﹣()2﹣2=8﹣3﹣2=3.20.(8分)(1)计算:+;(2)解方程:﹣5=.【分析】(1)先通分,再因式分解,约分后即可求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=+==;(2)﹣5=,去分母得:4+x﹣5﹣(x﹣1)=2x,解得:x=,经检验,x=是分式方程的解.21.(6分)先化简,再求值:,其中a=﹣2,b=1.【分析】首先算括号里面的加法(通分),再算除法,把除法变成乘法(除以一个数等于乘以它的倒数)再把分式的分子、分母分解因式约分,化成最简分式即可.【解答】解:,=,=,=,当a=﹣2,b=1时,原式=.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.【分析】(1)根据已知条件推出四边形ABCD是平行四边形,求得AO=AC,BO=BD,等量代换得到AC=BD,于是得到四边形ABCD是矩形;(2)连接OE,设EC与BD交于F,根据垂直的定义得到∠CFD=90°,根据平行四边形的性质得到AE∥BO,根据直角三角形的性质得到EO=AO,推出△AEO是等边三角形,于是得到结论.【解答】(1)证明:∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)解:连接OE,设EC与BD交于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了580名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为108°;(3)请将条形统计图补充完整.【分析】(1)由“优秀”的人数及其所占百分比可得调查的总人数;(2)由360°乘以学习效果“良好”的学生人数所占的比例即可;(3)求出“一般”的学生人数为82名,从而补全条形统计图.【解答】解:(1)这次活动共抽查的学生人数为232÷40%=580(名);故答案为:580;(2)在扇形统计图中,“良好”所对应的圆心角的度数为360°×=108°;故答案为:108°;(3)“一般”的学生人数为580﹣92﹣174﹣232=82(名),将条形统计图补充完整如图:24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?【分析】(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得等量关系:第一次购进大浮杨梅数量×3=第二次购进大浮杨梅数量,根据等量关系,列出方程,再解即可;(2)首先计算出两次购进大浮杨梅的数量,然后再计算卖完后的总收入,然后再减去两次的总进价即可.【解答】解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.【分析】(1)把点A坐标代入反比例函数y=求得k的值,将点B坐标代入反比例函数的解析式求出a的值即可;(2)由题意得点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE ⊥EF,BF⊥EF,则E(2,m),F(2,2),由S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD得出方程,解方程即可.【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴k=2×4=8,∵B(4,a)在反比例函数y=的图象上,∴a==2;(2)∵A(2,4),B(4,2),点C的横坐标为8,∴点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE⊥EF,BF⊥EF,如图所示:则E(2,m),F(2,2),∵▱ABCD的面积为10,∴S△ABD=×10=5,∵S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD,或S梯形DEFB+S△DEA﹣S△AFB=S△ABD,∴(2+4)(m﹣2)﹣×4×(m﹣4)﹣×2×2=5,或(2+4)(m﹣2)+×4×(4﹣m)﹣×2×2=5,解得:m=5,∴点D的坐标为:(6,5).26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=5时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.【分析】(1)根据当∠B'PC=90°时,∠BPB'=90°,即可得到△BEP为等腰直角三角形,进而得到BP=BE=5cm,再根据点P从点B出发以每秒1cm的速度沿射线BC方向运动,即可得到t的值;(2)过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,进而得出四边形ABNM是矩形,四边形AEHM是矩形.再分两种情况进行讨论:①如图1,若点B'在AD下方;②如图2,若点B'在AD上方,分别根据Rt△PB'N中,B'P2=PN2+B'N2,即可得到t的值为秒或15秒.【解答】解:(1)∵正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,∴BE=5cm,当∠B'PC=90°时,∠BPB'=90°,∴由折叠可得,∠BPE=∠BPB'=45°,又∵∠B=90°,∴∠BEP=45°,∴BP=BE=5cm,∵点P从点B出发以每秒1cm的速度沿射线BC方向运动,∴t=5÷1=5(秒),故答案为:5;(2)存在,过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,∵AD∥BC,MN∥AB,∴四边形ABNM是平行四边形,又∵∠A=90°,∴四边形ABNM是矩形,同理可得:四边形AEHM是矩形.①如图1,若点B'在AD下方,则B'M=3cm,B'N=3cm,∵MH=AE=1cm,∴B'H=2cm,由折叠可得,EB'=EB=5cm,∴Rt△EB'H中,EH==(cm),∴BN=AM=EH=cm,∵BP=t,∴PB'=t,PN=﹣t,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(﹣t)2+32,解得t=.②如图2,若点B'在AD上方,则B'M=3cm,B'N=9cm,同理可得,EH=3cm,∵BP=t,∴B'P=t,PN=t﹣3,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(t﹣3)2+92,解得t=15.综上所述,t的值为秒或15秒.。
2019-2020学年江苏省南通市第一中学高一上学期期末数学试题(解析版)
2019-2020学年江苏省南通市第一中学高一上学期期末数学试题一、单选题1.函数()()lg 2f x x =+的定义域是( ) A .[2,)-+∞ B .(2,)-+∞C .(2,)+∞D .[2,)+∞【答案】B【解析】根据对数函数的性质,只需20x +>,即可求解. 【详解】()()lg 2f x x =+Q , 20x ∴+>,解得2x >-,所以函数的定义域为(2,)-+∞, 故选:B 【点睛】本题主要考查了对数函数的性质,属于容易题. 2.sin 225︒的值为( )A .2-B .2C .D 【答案】A【解析】把225o 变为18045+o o ,利用诱导公式()sin 180sin αα+=-o化简后,再利用特殊角的三角函数值即可得结果. 【详解】()sin 225sin 18045sin 452︒=︒+︒=-︒=-,故选A. 【点睛】本题主要考查诱导公式的应用以及特殊角的三角函数,属于简单题.对诱导公式的记忆不但要正确理解“奇变偶不变,符号看象限”的含义,同时还要加强记忆几组常见的诱导公式,以便提高做题速度.3.函数23cos()56y x π=-的最小正周期是( )A .25π B .52πC .2πD .5π【答案】D【解析】分析:直接利用周期公式求解即可. 详解:∵23cos 56y x π⎛⎫=- ⎪⎝⎭,25ω=,∴2π5πT ω==.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由 函数cos()y A x ωϕ=+可求得函数的周期为2πω;由x k ωϕπ+=可得对称轴方程;由2x k πωϕπ+=+可得对称中心横坐标.4.若向量,a b r r 不共线,且a mb +r r与()2b a -r r 共线,则实数m 的值为(A .12B .12-C .2D .2-【答案】B【解析】根据向量共线可得()2a mb k b a -+=r r r r,化简即可求出m 的值.【详解】因为向量,a b r r 不共线,且a mb +r r与()2b a -r r 共线,所以()2a mb k b a -+=r r r r ,即2b a mb ka k +=-r r r u u r,所以12m kk=⎧⎨=-⎩,解得12m =-, 故选:B 【点睛】本题主要考查了向量共线,属于容易题. 5.若1tan 3α=,1tan()2αβ+=,则tan β=( ) A .17-B .17C .67D .76【答案】B【解析】利用角的变换()βαβα=+-,代入两角差的正切公式即可求解. 【详解】因为()βαβα=+-,所以11tan()tan 123()]=11+tan()t tan t an 716an[αβααβααβαβ-+-+-==+⋅+=, 故选:B 【点睛】本题主要考查了角的变换,两角差的正切公式,属于容易题. 6.要得到函数y =cos 23x π⎛⎫+⎪⎝⎭的图象,只需将函数y =cos2x 的图象( ) A .向左平移3π个单位长度 B .向左平移6π个单位长度 C .向右平移6π个单位长度D .向右平移3π个单位长度【答案】B【解析】∵cos(2)cos[2()]36y x x ππ=+=+,∴要得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需将函数cos2y x =的图像向左平移6π个单位. 选B .7.已知角θ的终边经过点P (4,m ),且sinθ=35,则m 等于( ) A .﹣3 B .3C .163D .±3【答案】B【解析】试题分析:3sin 5θ==,解得3m =. 【考点】三角函数的定义. 8.已知扇形圆心角为6π,面积为3π,则扇形的弧长等于() A .6πB .4πC .3π D .2π 【答案】C【解析】根据扇形面积公式得到半径,再计算扇形弧长. 【详解】221122263S r r r παπ==⨯=⇒=扇形弧长263l r ππα==⨯=故答案选C 【点睛】本题考查了扇形的面积和弧长公式,解出扇形半径是解题的关键,意在考查学生的计算能力. 9.若02a π<<,3sin()35πα-=,则sin α的值( )A .B .310C D .310-【答案】B【解析】利用角的变换()33ππαα=--,代入两角差的正弦公式即可求解. 【详解】 因为02a π<<,3sin()35πα-=, 所以032ππα<-<,故4cos()35πα-=,所以sin sin[()]sin cos()sin()cos 333333ππππππαααα=--=---431552=-⨯=, 故选:B 【点睛】本题主要考查了角的变换,两角差的正弦公式,属于中档题.10.已知正三角形ABC 边长为2,D 是BC 的中点,点E 满足AE 2ED =u u u v u u u v ,则EB EC ⋅=u u u v u u u v() A .13- B .12-C .23-D .-1【答案】C【解析】化简2EB EC ED DB DC ⋅=+⋅u u ur u u u u u u v r u u u v u u u r ,分别计算3ED =,1DB DC ==,代入得到答案. 【详解】2EB EC ()()()ED DB ED DC ED ED DB DC DB DC ⋅=+⋅+=+⋅++⋅u u u v u u u u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r v u u u r u u u r正三角形ABC 边长为2,D 是BC 的中点,点E 满足AE 2ED =u u u v u u u v13AD ED DB DC =⇒===222EB EC (133ED DB DC ⋅=+⋅=-=-u u u r u u u r u u u r u u u v u u u v故答案选C 【点睛】本题考查了向量的计算,将2EB EC ED DB DC ⋅=+⋅u u ur u u u u u u v r u u u v u u u r 是解题的关键,也可以建立直角坐标系解得答案.11.如果函数y =f(x)在区间I 上是增函数,且函数()f x y x=在区间I 上是减函数,那么称函数y =f(x)是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数213()22f x x x =-+是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0C .[0,1]D .[1【答案】D【解析】由题意,求213()22f x x x =-+的增区间,再求()13122f x y x x x==-+的减区间,从而求缓增区间. 【详解】 因为函数213()22f x x x =-+的对称轴为x =1, 所以函数y =f(x)在区间[1,+∞)上是增函数, 又当x≥1时,()13122f x x x x=-+, 令13()122g x x x =-+(x ≥1),则222133'()222x g x x x-=-=,由g′(x)≤0得1x ≤≤即函数()13122f x x x x=-+在区间上单调递减,故“缓增区间”I 为[1,3], 故选D. 【点睛】该题考查的是有关新定义的问题,涉及到的知识点有应用导数研究函数的单调性,属于简单题目. 12.已知3()|sin |2f x x π=,123,,A A A 为图象的顶点,O ,B ,C ,D 为()f x 与x 轴的交点,线段3A D 上有五个不同的点125,,,Q Q Q L .记2(1,2,,5)i i n OA OQ i =⋅=u u u u r u u u u rL ,则15n n ++L 的值为( )A .1532B .45C .452D .1534【答案】C【解析】通过分析几何关系,求出230A OC ︒∠=,260A O C ︒∠=,再将i n 表示成222()=i i i n OA OQ OA OD DQ OA OD =⋅=⋅+⋅u u u u r u u u u r u u u u r u u u r u u u u r u u u u r u u u r,结合向量的数量积公式求解即可【详解】解:由图中几何关系可知,32OE =,23A E =,23OA =21A C =230A OC ︒∠=∴260A O C ︒∠=,32//A D A C Q ,∴23OA DA ⊥,即23OA DA ⊥u u u u r u u u u r.则2222()cos 6i i i n OA OQ OA OD DQ OA OD OA OD π=⋅=⋅+=⋅=⋅u u u u r u u u u r u u u u r u u u r u u u u r u u u u r u u u r u u u u r u u u r ,1545352n n ++==L 答案选C 【点睛】本题结合三角函数考查向量的线性运算,找出两组基底向量2OA u u u u r ,OD uuu r是关键二、填空题13.已知向量()2,1a =r ,(),2b x =-r ,若//a b r r ,则a b +=r r___________.【答案】()2,1--【解析】根据向量平行可得b r,由向量坐标运算即可求解.【详解】//a b r r Q ,2(2)x ∴⨯-=,解得4x =-,(4,2)b ∴=--r,(2,1)(4,2)(2,1)a b ∴+=+--=--r r,故答案为:()2,1-- 【点睛】本题主要考查了平行向量,向量的坐标运算,属于容易题. 14.若幂函数()f x 的图象过点()4,2,则()8f =______.【答案】【解析】设()af x x =,将点()4,2代入函数()y f x =的解析式,求出实数a 的值,即可求出()8f 的值. 【详解】设()a f x x =,则()442af ==,得12a =,()12f x x∴=,因此,()128822f ==.故答案为22. 【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.15.给定两个长度为1的平面向量OA u u u r 和OB uuu r,它们的夹角为120o .如图所示,点C 在以O 为圆心的圆弧上变动.若,OC xOA yOB =+u u u r u u u r u u u r其中,x y R ∈,则x y +的最大值是________.【答案】2 【解析】【详解】12x y OA OC -=⋅u u u r u u u r 12x y OB OC -+=⋅u u u r u u u r 2()22cos ,x y OA OB OC OD OC OD OC +=+⋅=⋅=<>u u u r u u u r u u u r u u u r u u u r u u u r u u u r所以最大值为216.已知函数()21sin sin cos 2f x x x x =+-,下列结论中: ①函数()f x 关于8x π=-对称;②函数()f x 关于(,0)8π对称;③函数()f x 在3(,)88ππ是增函数,④将2y x =的图象向右平移34π可得到()f x 的图象. 其中正确的结论序号为______ . 【答案】①②③【解析】把()f x 化成()()sin f x A wx ϕ=+的型式即可。
最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷
苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。
江苏省扬州市仪征市2019-2020学年八年级上学期期末数学试题(解析版)
2019-2020 年度第一学期期末调研试题八年级数学一、选择题1.下列大学的校徽图案是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.在下列各数中,无理数是( )B. 3πC. 227 【答案】B【解析】【分析】根据无理数的定义进行判断即可.,2273π是无理数,故选B.【点睛】本题主要考查无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.3.下列四组线段中,可以构成直角三角形的是()A. 2,3,4B. 3,4,5C. 4,5,6D. 1,,3【答案】B【解析】【分析】根据勾股定理逆定理进行分析.【详解】A. 22+32≠42,,,构成直角三角形;B. 32+42=52 ,可以构成直角三角形;C. 42+52≠62,,,构成直角三角形;D. 122≠32,,,构成直角三角形.故选B【点睛】本题考核知识点:勾股定理逆定理.解题关键点:熟记勾股定理逆定理.4.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C .【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.5.在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为( )A. 1B. 1-C. ±1D. 无法确定【答案】A【解析】【分析】 先根据正比例函数的定义列出关于k 的方程组,求出k 的值即可.【详解】Q 函数()2y k 1x k 1=++-是正比例函数, 210k 10k +≠⎧∴⎨-=⎩, 解得k 1=,故选A .【点睛】本题考查的是正比例函数的定义,正确把握“形如(0)=y kx k =≠的函数叫正比例函数”是解题的关键.6.已知等腰三角形的周长为 17cm ,一边长为 5cm ,则它的腰长为( )A. 5cmB. 6cmC. 5.5cm 或 5cmD. 5cm 或 6cm【答案】D【解析】【分析】分为两种情况:5cm 是等腰三角形的底边或5cm 是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(17-5)÷2=6(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17-5×2=7(cm),能够组成三角形.故该等腰三角形的腰长为:6cm或5cm.故选:D.【点睛】本题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.7.已知:点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)2019的值为()A. 0B. 1C. ﹣1D. 32019【答案】B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案.【详解】解:∵点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,∴m﹣1=2,n﹣1=﹣3,∴m=3,n=﹣2,∵(m+n)2019=1,故选:B.【点睛】本题考查坐标对称点的特性,熟记知识点是解题关键.8.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组3243x y ax y a-=-⎧⎨+=-+⎩的解(a 为任意实数),则当a 变化时,点P 一定不会经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】首先用消元法消去a,得到y与x的函数关系式,然后根据一次函数的图象及性质即可得出结论.【详解】解:3243x y a x y a -=-⎧⎨+=-+⎩①②用②×2+①,得52x y +=∴52y x =-+∵50,20-<>∴52y x =-+过一、二、四象限,不过第三象限∴点P 一定不会经过第三象限,故选:C .【点睛】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a ,求出y 与x 的函数关系式.二、填空题9.将数字 1657900 精确到万位且用科学记数法表示的结果为__________.【答案】1.66×106【解析】【分析】用科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,再对千位数的数字进行四舍五入即可.【详解】解:1657900=1.6579×106≈1.66×106.故答案为:1.66×106.【点睛】本题考查了科学记数法表示较大的数的方法,准确确定a 与n 值是关键.10.在平面直角坐标系中,把直线 y =-2x +3 沿 y 轴向上平移 3 个单位长度后,得到的直线函数关系式为__________.【答案】y=-2x+6【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+3=-2x+6.故答案为:y=-2x+6.【点睛】本题考查了一次函数图形的平移变换和函数解析式之间的关系,掌握一次函数的规律:左加右减,上加下减是解决此题的关键.11.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O 为圆心,长方形的对角线OB 长为半径作弧,交数轴正半轴于点A ,则点A 表示的实数是_______.【解析】【分析】根据勾股定理求出OB ,根据实数与数轴的关系解答.【详解】在Rt △OAB 中,,∴点A,【点睛】本题考查的是勾股定理,实数与数轴,掌握如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.12.与0.5_____0.5.(填“,”,“=”,“,”, 【答案】>【解析】10.52-==20>0>0.5> ,故答案为>. 13.如图,直线y =x +1与直线y =mx -n 相交于点M (1,b ),则关于x ,y 的方程组1x y mx y n +⎧⎨-⎩==的解为:________.【答案】12x y ==⎧⎨⎩【解析】【分析】首先利用待定系数法求出b的值,进而得到M点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】∵直线y=x+1经过点M(1,b),∴b=1+1,解得b=2,∴M(1,2),∴关于x的方程组1x ymx y n+⎧⎨-⎩==的解为12xy==⎧⎨⎩,故答案为12 xy==⎧⎨⎩.【点睛】此题考查二元一次方程组与一次函数的关系,解题关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.【答案】3【解析】【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×12ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【点睛】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.15.如图,在△ABC 中,AB=AC=12,BC=8,BE 是高,且点D、F 分别是边AB、BC 的中点,则△DEF 的周长等于_____________________.【答案】16【解析】【分析】根据三角形中位线定理分别求出DF,再根据直角三角形斜边的中线等于斜边的一半计算出DE、EF即可.【详解】解:点D、F分别是边AB、BC的中点,∴DF=12AC=6∵BE 是高∴∠BEC=∠BEA=90°∴DE=12AB=6,EF=12BC=4∴△DEF的周长=DE+DF+EF=16故答案为:16.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半和三角形中位线的性质是解题的关键.16.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________【答案】80°【解析】【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的度数.【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.17.如图,已知ABC V中,AB AC 16cm ==,B C ∠∠=,BC 10cm =,点D 为AB 的中点,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若当BPDV 与CQP V全等时,则点Q 运动速度可能为____厘米/秒.【答案】2或3.2【解析】【分析】B C ∠∠=,表示出BD 、BP 、PC 、CQ ,再根据全等三角形对应边相等,分①BD 、PC 是对应边,②BD 与CQ 是对应边两种情况讨论求解即可.【详解】AB 16cm =Q ,BC 10cm =,点D 为AB 的中点,1BD 168cm 2∴=⨯=, 设点P 、Q 的运动时间为t ,则BP 2t =,()PC 102t cm =-①当BD PC =时,102t 8-=,解得:t 1=,则BP CQ 2==,故点Q 的运动速度为:212(÷=厘米/秒);②当BP PC =时,BC 10cm =Q ,BP PC 5cm ∴==,t 52 2.5(∴=÷=秒).故点Q 的运动速度为8 2.5 3.2(÷=厘米/秒).故答案为2或3.2厘米/秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.18.已知函数 y 1=x +2,y 2=4x -4,y 3=-12x +1,若无论 x 取何值,y 总取 y 1,y 2,y 3 中的最大值,则 y 的最小值是__________. 【答案】23【解析】分析】利用两直线相交的问题,分别求出三条直线两两相交的交点,然后观察函数图象,利用一次函数的性质易得:当x≤-23时,y 3最大;当-23≤x ≤2时,y 1最大;当x≥2时,y 2最大,于是可得满足条件的y 的最小值. 【详解】解:y 1=x +2,y 2=4x -4,y 3=-12x +1,如下图所示:令y 1=y 2, 得x+2=4x -4解得:x=2,代入解得y=4∴直线y 1=x+2与直线y 2=4x -4的交点坐标为(2,4),令y 2= y 3,得4x -4=-12x +1 解得:x=109 代入解得: y=49∴直线y 2=4x -4与直线y 3=-12x +1的交点坐标为(104,99), 令y 1=y 3,得x+2=-12x +1 解得:x=23- 代入解得: y=23 ∴直线y 1=x+2与直线y 3=-12x +1的交点坐标为(2233-,), 由图可知:①当x≤-23时,y 3最大 ∴此时y= y 3,而此时y 3的最小值为23,即此时y 的最小值为23; ②当-23≤x ≤2时,y 1最大 ∴此时y= y 1,而此时y 1的最小值为23,即此时y 的最小值为23; ③当x≥2时,y 2最大,,∴此时y= y2,而此时y2的最小值为4,即此时y的最小值为4综上所述:y的最小值为23.故答案为:23.【点睛】本题考查了一次函数的交点问题和利用一次函数的图象解决问题,掌握一次函数的交点求法和学会观察一次函数的图象是解决此题的关键.三、解答题19.计算:(1)计算:(-1)2020 3-+(2)求x 的值:4x2-25=0【答案】(1)0;(2)x1=52,x2=-52.【解析】【分析】(1)先化简乘方、根式和绝对值,再利用实数的运算顺序求解即可;(2)利用直接开平方法求解即可.【详解】解:(1)(-1)2020 3-+=1+4-3-2=0;(2)∵4x2-25=0∴4x2=25,∴x2=25 4,∴x=±5 2 ,∴x1=52,x2=-52.【点睛】本题考查了实数是混合运算和解含平方的方程,熟练掌握运算法则及平方根的定义是解题的关键.20.如图,已知点B、F、C、E 在一条直线上,BF = CE,AC = DF,且AC∥DF.求证:∠B =∠E.【答案】见解析【解析】【分析】先证出BC=EF ,∠ACB=∠DFE ,再证明△ACB ≌△DFE ,得出对应角相等即可.【详解】证明:∵BF=CE ,∴BC=EF ,∵AC ∥DF ,∴∠ACB=∠DFE ,在△ACB 和△DFE 中,BC EF ACB DFE AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DFE (SAS ),∴∠B=∠E .【点睛】本题考查了全等三角形的判定与性质、平行线的性质,熟练掌握全等三角形的判定方法,证出三角形全等是解题的关键.21.已知 2x -1 的算术平方根是 3,12y+3 的立方根是-1,求代数式 2x+y 的平方根 【答案】【解析】【分析】 利用算术平方根、立方根定义求出x 与y 的值,进而求出2x+y 的值,即可求出平方根.【详解】解:∵2x -1的算术平方根为3,∴2x -1=9,解得:x=5,,∵12y+3 的立方根是-1,∴12y+3=-1,解得:y=-8,∴2x+y=2×5-8=2,∴2x+y的平方根是【点睛】本题考查了立方根,算术平方根,以及平方根,熟练掌握各自的性质是解题的关键.22.已知y 与x﹣2 成正比例,且当x =﹣4 时,y =﹣3.(1)求y 与x 的函数关系式;(2)若点M(5.1,m)、N(﹣3.9,n)在此函数图像上,判断m 与n 的大小关系.【答案】(1)y=12x-1;(2)m>n.【解析】【分析】(1)首先根据题意设出关系式:y=k(x-2),再利用待定系数法把x=-4,y=-3代入,可得到k的值,再把k 的值代入所设的关系式中,可得到答案;(2)利用一次函数图象上点的坐标特征可求出m,n的值,比较后即可得出结论.【详解】解:∵y与x-2成正比例,∴关系式设为:y=k(x-2),∵x=-4时,y=-3,∴-3=k(-4-2),解得:k=12,∴y与x的函数关系式为:y=12(x-2)=12x-1.故答案为:y=12x-1;(2)∵点M(5.1,m)、N(﹣3.9,n)是一次函数y=12x-1图象上的两个点,∴m=12×5.1-1=1.55,n=12×(-3.9)-1=-2.95.∵1.55>-2.95,∴m>n.【点睛】本题考查了待定系数法求一次函数关系式和一次函数图象上点的坐标特征,关键是设出关系式,代入x,y的值求k是解题的关键.23.如图,在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1).(1)请在如图所示的网格内画出平面直角坐标系,并写出C 点坐标;(2)先将△ABC 沿x 轴翻折,再沿x 轴向右平移4 个单位长度后得到△A1B1C1,请在网格内画出△A1B1C1;(3)在(2)的条件下,△ABC 的边AC 上一点M(a,b)的对应点M1的坐标是.(友情提醒:画图结果确定后请用黑色签字笔加黑)【答案】(1)图见解析; C(-1,3);(2)图见解析;(3) (a+4,-b).【解析】【分析】(1)根据A、B的坐标即可画出平面直角坐标系,进而得出点C的坐标;(2)依据轴对称的性质,即可得到△ABC关于x轴对称的图形,然后利用平移的性质得到△A1B1C1;(3)利用关于x轴对称的两点坐标关系和平移规律即可求出点M1的坐标.【详解】(1)根据点A(-3,5),故将A向右移动3个单位、向下移动5个单位,即可得到原点的位置,建立坐标系,如图所示平面直角坐标系即为所求,此时点C(-1,3);(2)根据题意,翻折和平移后得到△A1B1C1,如图所示△A1B1C1即为所求:(3)点M(a,b)关于x轴对称点为(a,-b),然后向右平移4个单位后的坐标为(a+4,-b)M1的坐标为(a+4,-b).【点睛】本题考查了轴对称和平移变换,熟练掌握轴对称和平移变换的性质是解题的关键.24.如图,将长方形ABCD 沿EF 折叠,使点D 与点B 重合.(1)若∠AEB=40°,求∠BFE 的度数;(2)若AB=6,AD=18,求CF 的长.【答案】(1)70°;(2)8.【解析】【分析】(1)依据平行线的性质可求得∠BFE=∠FED,然后依据翻折的性质可求得∠BEF=∠DEF,最后根据平角的定义可求得∠BFE的度数;(2)先依据翻折的性质得到CF=GF,AB=DC=BG=6,然后设CF=GF=x,然后在RT△BGF中,依据勾股定理列出关于x的方程求解即可.【详解】解:(1)∵AD∥BC,∴∠BFE=∠FED,由翻折的性质可知:∠BEF=∠DEF,∴∠BFE=∠FED=∠BEF∵∠FED+∠BEF+∠AEB=180°∴2∠BFE =180°-40°=140°,∴∠BFE=70°;(2)由翻折的性质可知CF=GF,AB=DC=BG=6,设CF=GF=x,则BF=18-x,在Rt△BGF中,依据勾股定理可知:BF2=BG2+GF2,即(18-x)2=62+x2,解得:x=8即CF=8【点睛】本题考查了翻折的性质及勾股定理,熟练掌握翻折的性质和利用勾股定理解直角三角形是解题的关键.25.某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(千克)的一次函数,且部分对应关系如下表所示.(1)求y 关于x 的函数关系式;(2)求旅客最多可免费携带行李的质量;(3)当行李费为3≤y≤10 时,可携带行李的质量x 的取值范围是.【答案】(1)y=15x-2;(2)10千克;(3)25≤x≤60.【解析】【分析】(1)利用待定系数法求一次函数解析式即可解答;(2)令y=0时求出x的值即可;(3)分别求出y=3时,x的值和y=10时,x的值,再利用一次函数的增减性即可求出x的取值范围.【详解】解:(1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=15,y=1;x=20,y=2分别代入y=kx+b,得1=15220k b k b+⎧⎨=+⎩, 解得:152k b ⎧=⎪⎨⎪=-⎩,∴函数表达式为y=15x -2, (2)将y=0代入y=15x -2,得0=15x -2, ∴x=10,答:旅客最多可免费携带行李的质量为10千克.(3)把y=3代入解析式,可得:x=25,把y=10代入解析式,可得:x=60, ∵15>0 ∴y 随x 的增大而增大所以可携带行李的质量x (kg )的取值范围是25≤x≤60,故答案为:25≤x≤60.【点睛】本题考查了一次函数的应用,掌握利用了待定系数法求一次函数解析式和已知函数值的取值范围求自变量的取值范围是解决此题的关键.26.请你用学习 “一次函数”时积累的经验和方法研究函数 y =1x +的图像和性质,并 解决问题. (1)按照下列步骤,画出函数 y =1x +的图像;①列表;②描点;③连线.(友情提醒:画图结果确定后请用黑色签字笔加黑)(2)观察图像,填空;①当 x 时,y 随 x 的增大而减小; 当 x 时,y 随 x 的增大而增大;②此函数有最 值(填“大”或“小”),其值是 ;(3)根据图像,不等式1x +> 12x +72的解集为 . 【答案】(1)见解析;(2)①<-1,> -1;②小,0;(3)x>5或x<-3.【解析】【分析】(1)描点画出图象解答即可;(2)根据函数的图象解答即可;(3)先画出两个函数的图象,再根据函数图象解答即可.【详解】(1)画函数图象如图:(2)由图象可得:①当x<-1时,y 随 x 的增大而减小; 当x>-1时,y 随 x 的增大而增大故答案为: <-1,> -1;②此函数有最小值,其值是0;故答案为: 小,0;(3)在同一直角坐标系画y=12x +72,①列表;②描点; ③连线.如图所示: 当x <-1时,y =11x x +=--联立11722y x y x =--⎧⎪⎨=+⎪⎩解得:32x y =-⎧⎨=⎩ 当x >-1时,y =11x x +=+联立11722y x y x =+⎧⎪⎨=+⎪⎩解得56x y =⎧⎨=⎩∴两函数图象的交点分别为(-3,2)和(5,6)根据图像,当y 1>y 2时,x>5或x<-3∴不等式1x +> 12x +72的解集为:x>5或x<-3. 【点睛】本题考查了函数与不等式的关系,函数的图象画法等知识点,掌握求函数图象的画法和一次函与不等式的关系是解决此题的关键.27.如图在△ABC 中,AB 、AC 边的垂直平分线相交于点 O ,分别交 BC 边于点 M 、N ,连接 AM ,AN .(1)若△AMN 的周长为 6,求 BC 的长;(2)若∠MON=30°,求∠MAN 的度数;(3)若∠MON=45°,BM=3,BC=12,求 MN 的长度.【答案】(1)6;(2)120°(3)5.【解析】分析】(1)根据垂直平分线的性质可得BM=AM ,CN=AN ,再根据三角形的周长即可求出BC ;(2)设射线OM 交AB 于E ,射线ON 交AC 于F ,根据四边形的内角和,即可求出∠EAF ,再根据三角形的内角和,即可求出∠B +∠C ,然后根据等边对等角即可求出∠MAB +∠NAC ,从而求出∠MAN ; (3)设射线OM 交AB 于E ,射线ON 交AC 于F ,根据四边形的内角和,即可求出∠EAF ,再根据三角形的内角和,即可求出∠B +∠C ,然后根据等边对等角即可求出∠MAB +∠NAC ,从而求出∠MAN ,设MN=x ,根据勾股定理列出方程求出x 即可. 【详解】解:(1)∵AB 、AC 边的垂直平分线相交于点 O ,分别交 BC 边于点 M 、N ,∴BM=AM ,CN=AN∵△AMN 的周长为 6,∴AM +AN +MN=6 ∴BC=BM +MN +CN= AM +MN +AN =6;(2)设射线OM 交AB 于E ,射线ON 交AC 于F ,【在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=150°∴∠B+∠C=180°-∠BAC=30°∵BM=AM,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=30°∴∠MAN=∠EAF-(∠MAB+∠NAC)=120°;(3)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=135°∴∠B+∠C=180°-∠BAC=45°∵BM=AM=3,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=45°∴∠MAN=∠EAF-(∠MAB+∠NAC)=90°设MN=x,则AN =CN=BC-BM-MN=9-x在Rt△AMN中,MN2=AM2+AN2即x2=32+(9-x)2解得:x=5即MN=5【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质和勾股定理,掌握垂直平分线的性质、等边对等角和用勾股定理解直角三角形是解决此题的关键.28.如图1 ,等腰直角三角形ABC 中,∠ACB=90°,CB=CA,直线DE 经过点C,过A 作AD⊥DE 于点D,过B 作BE⊥DE 于点E,则△BEC≌△CDA,我们称这种全等模型为“K 型全等”.(不需要证明)【模型应用】若一次函数y=kx+4(k≠0)的图像与x 轴、y 轴分别交于A、B 两点.(1)如图2,当k=-1 时,若点B 到经过原点的直线l 的距离BE 的长为3,求点A 到直线l 的距离AD 的长;(2)如图3,当k=-43时,点M 在第一象限内,若△ABM 是等腰直角三角形,求点M 的坐标;(3)当k 的取值变化时,点A 随之在x 轴上运动,将线段BA 绕点B 逆时针旋转90° 得到BQ,连接OQ,求OQ 长的最小值.【答案】(1;(2)点M的坐标为(7,3)或(4,7)或(72,72);(3)OQ的最小值为4.【解析】【分析】(1)先求出A、B两点的坐标,根据勾股定理即可求出OE的长,然后利用AAS证出△ADO≌△OEB,即可求出AD的长;(2)先求出A、B两点的坐标,根据等腰直角三角形的直角顶点分类讨论,分别画出对应的图形,利用AAS 证出对应的全等三角形即可分别求出点M的坐标;(3)根据k的取值范围分类讨论,分别画出对应的图形,设点A的坐标为(x,0),证出对应的全等三角形,利用勾股定理得出OQ2与x的函数关系式,利用平方的非负性从而求出OQ的最值.【详解】解:(1)根据题意可知:直线AB的解析式为y=-x+4当x=0时,y=4;当y=0时,x=4∴点A 的坐标为(4,0)点B 的坐标为(0,4)∴OA=BO=4根据勾股定理:OE= =∵∠ADO=∠OEB=∠AOB=90°∴∠AOD +∠OAD=90°,∠AOD +∠BOE=90°∴∠OAD=∠BOE在△ADO 和△OEB 中ADO OEB OAD BOE OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADO ≌△OEB∴(2)由题意可知:直线AB 的解析式为y=43-x+4 当x=0时,y=4;当y=0时,x=3∴点A 的坐标为(3,0)点B 的坐标为(0,4)∴OA=3,BO=4①当△ABM 是以∠BAM 为直角顶点的等腰直角三角形时,AM=AB ,过点M 作MN ⊥x 轴于N∵∠MNA=∠AOB=∠BAM=90°∴∠MAN +∠AMN=90°,∠MAN +∠BAO=90°∴∠AMN=∠BAO在△AMN 和△BAO 中MNA AOB AMN BAO AM BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMN ≌△BAO∴AN=BO=4,MN=AO=3∴ON=OA +AN=7∴此时点M 的坐标为(7,3);②当△ABM 是以∠ABM 为直角顶点的等腰直角三角形时,BM=AB ,过点M 作MN ⊥y 轴于N∵∠MNB=∠BOA=∠ABM=90°∴∠MBN +∠BMN=90°,∠MBN +∠ABO=90°∴∠BMN=∠ABO在△BMN 和△ABO 中MNB BOA BMN ABO BM AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BMN ≌△ABO∴BN=AO=3,MN=BO=4∴ON=OB +BN=7∴此时点M 的坐标为(4,7);③当△ABM 是以∠AMB 为直角顶点等腰直角三角形时,MA=MB ,过点M 作MN ⊥x 轴于N ,MD ⊥y 轴于D ,设点M 的坐标为(x ,y )∴MD =ON=x ,MN = OD =y ,∠MNA=∠MDB=∠BMA=∠DMN=90°∴BD=OB -OD=4-y ,AN=ON -OA=x -3,∠AMN +∠DMA=90°,∠BMD +∠DMA=90° ∴∠AMN=∠BMD在△AMN 和△BMD 中MNA MDB AMN BMD MA MB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMN ≌△BMD∴MN=MD ,AN=BD∴x=y ,x -3=4-y解得:x=y=72 ∴此时M 点的坐标为(72,72) 综上所述:点M 的坐标为(7,3)或(4,7)或(72,72). (3)①当k <0时,如图所示,过点Q 作QN ⊥y 轴,设点A 的坐标为(x ,0)该直线与x 轴交于正半轴,故x >0 的∴OB=4,OA=x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN +∠BQN=90°,∠QBN +∠ABO=90°∴∠BQN=∠ABO在△BQN 和△ABO 中QNB BOA BQN ABO BQ AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BQN ≌△ABO∴QN=OB=4,BN=OA=x∴ON=OB +BN=4+x在Rt △OQN 中,OQ 2=ON 2+QN 2=(4+x )2+42=(x +4)2+16,其中x >0∴OQ 2=(x +4)2+16>16②当k >0时,如图所示,过点Q 作QN ⊥y 轴,设点A 的坐标为(x ,0)该直线与x 轴交于负半轴,故x <∴OB=4,OA=-x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN +∠BQN=90°,∠QBN +∠ABO=90°∴∠BQN=∠ABO在△BQN 和△ABO 中QNB BOA BQN ABO BQ AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BQN ≌△ABO∴QN=OB=4,BN=OA=-x∴ON=OB -BN=4+x在Rt △OQN 中,OQ 2=ON 2+QN 2=(4+x )2+42=(x +4)2+16,其中x <0∴OQ 2=(x +4)2+16≥16(当x=-4时,取等号)综上所述:OQ 2的最小值为16∴OQ 的最小值为4.【点睛】此题考查是一次函数与图形的综合大题,难度系数较大,掌握全等三角形的判定及性质、等腰三角形的性质、勾股定理、平方的非负性和分类讨论的数学思想是解决此题的关键.。
2018-2019学年江苏省苏州市八年级(上)期末数学试卷(解析版)
2018-2019学年江苏省苏州市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.34.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.138.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣30.14.(填“>”、“<”或“=”)12.(2分)27的立方根为.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=°.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.26.(8分)如图,在四边形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,点E为BC的中点.(1)求四边形ABCD的面积;(2)若AE⊥BC,求CD的长.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m =dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)2018-2019学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.【分析】根据轴对称图形的概念解答.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解.【解答】解:A、0是有理数,故选项错误;B、是无理数,故选项正确;C、﹣2是有理数,故选项错误;D、是有理数,故选项错误.故选:B.【点评】此题主要考查了无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.3【分析】先估计的大小,进而解答即可.【解答】解:∵,∴,∴最“接近”(﹣1)的整数是0,故选:A.【点评】此题考查无理数的大小估计,关键是根据无理数对进行估计解答.4.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°【分析】先根据等腰三角形的性质及三角形外角与内角的关系求出∠ADC的度数,再根据等腰三角形的性质及三角形内角和定理求出∠DAC的度数即可.【解答】解:∵△ABD中,AD=BD,∠B=25°,∴∠BAD=25°,∴∠ADC=25°×2=50°,∵AD=AC,∴∠C=50°,∴∠DAC=180°﹣50°×2=80°.故选:C.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)【分析】联立两一次函数的解析式求出x、y的值即可得出P点坐标.【解答】解:解得,,∴点P的坐标为(1,﹣1),故选:B.【点评】本题考查的是两条直线相交或平行问题.正确的得出方程组的解是解答此题的关键.6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可.【解答】解:①22+32≠42,故不能构成直角三角形;②42+32=52,故能构成直角三角形;③()2+22=()2,故能构成直角三角形;故选:D.【点评】本题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.13【分析】根据题意画出图形,根据等腰三角形的性质得出BD的长,由勾股定理求出AB 的长即可.【解答】解:如图所示,∵△ABC是等腰三角形,且AB=AC,AD是底边BC的高,∴BD=BC=×24=12,∴AB===13.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】根据非负数的性质判断出点A的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.【分析】过点C作CF⊥BA,由题意可得AO=4,BO=3,根据“AAS”可证△ACF≌△ACO,可得CO=CF,AO=AF=4,再根据勾股定理可求OC的长,即可得点C的纵坐标.【解答】解:如图,过点C作CF⊥BA,∵y=﹣x+3的图象分别与x轴、y轴交于点A、B,∴点A坐标为(4,0),点B坐标为(0,3),∴AO=4,BO=3,在Rt△ABO中,AB==5,∵AC平分∠BAO,∴∠FAC=∠OAC,且AC=AC,∠CFA=∠COA=90°,∴△ACF≌△ACO(AAS)∴CO=CF,AO=AF=4∴BF=1,在Rt△BCF中,BC2=BF2+CF2,∴(3﹣CO)2=1+CO2,∴CO=故选:B.【点评】本题考查了一次函数图象上点的坐标特征,勾股定理,全等三角形的判定和性质等知识,灵活运用相关的性质定理进行推理是本题的关键.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)【分析】将BN沿NM方向平移MN长的距离得到AM,连接AB,可得四边形ABNM是平行四边形,根据当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP 的长,即BN+PM的最小值等于AP长,可得PM、MN、NB长度之和最小,再根据待定系数法求得AP的解析式,即可得到点M的坐标.【解答】解:如图,将BN沿NM方向平移MN长的距离得到AM,连接AB,则BN=AM,∴四边形ABNM是平行四边形,∴MN=AB=1,∴当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP的长,即BN+PM 的最小值等于AP长,此时PM、MN、NB长度之和最小,∵P(3,2),B(﹣2,0),AB=1,∴A(﹣1,0),设AP的解析式为y=kx+b,则,解得,∴y=x+,令x=0,则y=,即M(0,),故选:A.【点评】本题主要考查了最短路线问题以及待定系数法的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣3>0.14.(填“>”、“<”或“=”)【分析】直接得出π的近似值,进而得出答案.【解答】解:∵π≈3.14159,∴π﹣3≈0.14159,∴π﹣3>0.14.故答案为:>.【点评】此题主要考查了实数比较大小,正确得出π的近似值是解题关键.12.(2分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=1.【分析】将点P坐标代入解析式可求k的值.【解答】解:∵一次函数y=kx+1的图象经过点P(﹣1,0),∴0=﹣k+1∴k=1故答案为:1【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=10.【分析】先利用垂直得到∠ABF=∠CEF=90°,再证明∠A=∠C,然后根据“ASA”可以判断△ABF≌△CBD,从而得到BF=BD,求出BC,BD,利用勾股定理即可解决问题.【解答】证明:∵CB⊥AD,AE⊥DC,∴∠ABF=∠CEF=90°,∵∠AFB=∠CFE,∴∠A=∠C,在△ABF和△CBD中,∴△ABF≌△CBD(ASA),∴BF=BD,∵AB=BC=8,CF=2,∴BF=BD=8﹣2=6,在Rt△BCD中,CD===10,故答案为10.【点评】本题考查了全等三角形的判定与性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为x>1.【分析】观察函数图象得到,当x>1时,一次函数y=kx+b的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b>mx+n的解集.【解答】解:不等式kx+b>mx+n的解集为x>1.故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=135°.【分析】利用等腰三角形的性质分别求出∠ADB,∠BDC即可解决问题.【解答】解:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BA=BD,∵BA=BC,∠ABC=90°,∴BD=BC,∠CBD=30°,∴∠BDC=∠BCD=(180°﹣30°)=75°,∴∠ADC=∠ADB+∠BDC=135°,故答案为135.【点评】本题考查了等腰直角三角形的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【分析】由折叠的性质可得AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,根据矩形的性质可证∠EAB=∠AEB,即AB=BE,根据勾股定理可求AB的长.【解答】解:∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:5【点评】本题考查了折叠的性质,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=2.【分析】作CP⊥x轴于点P,由余角的性质得到∠OBA=∠PAC,根据全等三角形的性质得到AP=OB=b,PC=OA=a.于是得到C点坐标是(a+b,a),求得D(,),根据勾股定理即可得到结论.【解答】解:如图:作CP⊥x轴于点P,∴∠APC=90°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∴∠ABO+∠BAO=∠BAO+∠CAP=90°,∴∠OBA=∠PAC,在△OBA和△PAC中,,∴△OBA≌△PAC(AAS),∴AP=OB=b,PC=OA=a.由线段的和差,得OP=OA+AP=a+b,即C点坐标是(a+b,a),∵B(0,b),C(a+b,a),∵D是BC的中点,得D(,),∵OD=,∴()2+()2=2,∴a+b=2,故答案为:2.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.【分析】直接利用立方根以及零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2+1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.【分析】(1)用天数乘以日饮水量即可求得总饮水量;’(2)先用科学记数法表示,然后根据近似数的精确度求解.【解答】解:(1)∵平均一天饮水1980毫升,∴30天一共饮水30×1980=59400毫升;(2)59400≈6×104(精确到10000).【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.【分析】欲证明BE=CD,只要证明△ABE≌△BCD(AAS)即可解决问题;【解答】证明:∵AB⊥BC,AE⊥BE,CD⊥BE,∴∠AEC=∠CDB=∠ABC=90°,∴∠A+∠ABE=90°,∠ABE+∠CBD=90°,∴∠A=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD(AAS),∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.【分析】依据线段垂直平分线的性质,可得∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,依据三角形内角和定理,即可得到∠A的度数.【解答】解:∵DE为AB的垂直平分线,∴∠A=∠ABD,又∵∠ABD=2∠CBD,∴∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,又∵∠C=90°,∴∠A+∠ABC=90°,即α+α+α=90°,解得α=36°,∴∠A=36°.【点评】此题考查了线段垂直平分线的性质,等腰三角形性质,三角形内角和定理的应用,解题的关键是注意线段垂直平分线上任意一点,到线段两端点的距离相等.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.【分析】(1)依据△ABC三个顶点的位置,即可得到点A、B、C的坐标;(2)依据轴对称的性质,即可得到△ABC关于直线l成轴对称的△A1B1C1,依据勾股定理进行计算,即可得出线段BC1的长.【解答】解:(1)A(1,1),B(3,4),C(4,2);(2)如图所示,△A1B1C1即为所求;由勾股定理可得,BC1==.【点评】本题主要考查了勾股定理以及轴对称性质的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.【分析】(1)首先证明CD=DE=EC,再证明FD=FC=DC即可.(2)连接EF,设EF交CD于点O.分别求出OE,OF即可解决问题.【解答】(1)证明:连接DE,EC.∵∠ADB=∠ACB=90°,AE=EB,∴DE=EC=AB=4,∵CD=4,∴DE=EC=CD=4,∴△DEC是等边三角形,∵E,F关于CD对称,∴DF=DE,FC=CE,∴DF=FC=CD,∴△DFC是等边三角形,(2)解:连接EF,设EF交CD于点O.∵△DCE,△DFC都是等边三角形,边长为4,∴FD=FC=ED=EC,∴EF⊥CD,∴OE=×4=2,OF=×4=2,∴EF=4.【点评】本题考查轴对称的性质,等边三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.【分析】(1)由已知得到A(﹣1,0),把(﹣1,0)代入y=kx+2即可得到结论;(2)解方程组得到C (,3),根据三角形的面积公式即可得到结论.【解答】解:(1)∵OA =1,∴A (﹣1,0),把(﹣1,0)代入y =kx +2得,k =2,∴直线l 1的函数表达式为:y =2x +2;(2)解得,∴C (,3),∵B (0,2),∴OB =2,当y =0时,﹣2x +4=0,∴x =2,∴D (2,0),∴AD =3,∴四边形OBCD 的面积=S △ACD ﹣S △AOB =×3×3﹣×1×2=.【点评】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.26.(8分)如图,在四边形ABCD 中,已知AB ∥CD ,AD ⊥AB ,AD =2,AB +CD =4,点E 为BC 的中点.(1)求四边形ABCD 的面积;(2)若AE ⊥BC ,求CD 的长.【分析】(1)作辅助线,构建三角形全等,将四边形ABCD 的面积转化为三角形DAF 的面积来解答;(2)连接AC ,设CD =x ,根据勾股定理列方程可解答.【解答】解:(1)如图1,连接DE 并延长,交AB 的延长线于F ,∵DC ∥AB ,∴∠C =∠EBF ,∵CE =BE ,∠DEC =∠FEB ,∴△DCE ≌△FBE (ASA ),∴BF =DC ,∵AB +CD =4,∴AB +BF =4=AF ,∴S 四边形ABCD =S 四边形ABED +S △DCE =S 四边形ABED +S △EBF =S △DAF ===4;(2)如图2,连接AC ,∵CE =BE ,AE ⊥BC ,∴AC =AB ,设CD =x ,则AB =AC =4﹣x ,Rt △ACD 中,由勾股定理得:CD 2+AD 2=AC 2,x 2+22=(4﹣x )2,x =,∴CD =.【点评】本题考查了直角梯形的性质,还考查了线段垂直平分线的性质,全等三角形的性质和判定,勾股定理的应用,能正确作辅助线是解此题的关键.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.【分析】(1)根据正方形的性质得到∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,根据三角形的面积公式列方程即可得到结论;(2)分三种情况:当点P在边AB上时,当点P在边BC上时,当点P在边CD上时,列函数关系式即可.【解答】解:(1)∵在边长为12cm的正方形ABCD中,M是AD边的中点,∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,∴根据题意得,12×12﹣×12×6﹣×6t=96,解得:t=4,∴点P的速度为=3cm/s;(2)当点P在边AB上时,y=12×12﹣×6×3t﹣×6t=144﹣12t(0≤t≤4);当点P在边BC上时,y=×(24﹣3t)×12+×6×(12﹣t)=180﹣21t(4<t≤8);当点P在边CD上时,y=×(36﹣4t)×6=﹣12t+108(8<t≤9);综上所述,y与t的函数关系式为:y=.【点评】本题考查了正方形的性质,根据实际问题列函数关系式,三角形的面积,正确的理解题意是解题的关键.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m=2dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)【分析】(1)注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,代入公式求解即可.(2)放水时间=放水体积÷放水速度,求出时间补全图象.(3)圆柱的高=圆柱体积÷圆柱的底面积,代入公式求解.【解答】解:(1)由图象可知,4秒,A容器内水的高度下降了1dm,V=sh=π()2•1=3π,则注水速度u==,由图象可知,4秒,B容器内水的高度上升了3dm,B容器增加的水的体积等于A容器减少的水的体积,V1=sh=π()2•3=,∴=3π,∴d=2.故答案为;2.(2)注满后B容器中水的总体积为:4π,∵放水速度为dm3/s,∴放空所需要的时间为:4π÷()=16.(3)A容器内水的高度:B容器内水的高度:∴=解得,t=6,∴容器A向容器B全程注水时间t为6s.【点评】此题考查了一次函数与注水的相关问题,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,这两个公式为解题关键.。
2019-2020学年江苏省淮安市高一下学期期末数学试卷 (解析版)
2019-2020学年江苏省淮安市高一第二学期期末数学试卷一、选择题(共8小题).1.某校高一、高二、高三年级分别有学生1100名、1000名、900名,为了了解学生的视力情况,现用分层抽样的方法从中随机抽取容量为30的样本,则应从高二年级抽取的学生人数为()A.9B.10C.11D.122.直线x﹣y+1=0的倾斜角的大小为()A.B.C.D.3.已知直线2x+3y﹣2=0和直线mx+(2m﹣1)y=0平行,则实数m的值为()A.﹣1B.1C.2D.34.如图,在正方体ABCD﹣A1B1C1D1中,异面直线AC和A1B所成的角的大小为()A.30°B.45°C.60°D.120°5.△ABC的内角A,B,C所对的边分别为a,b,c,若a cos B=b cos A,则△ABC形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形6.已知棱长为的正方体的所有顶点在球O的球面上,则球O的体积为()A.B.C.D.4π7.我国南宋时期数学家秦九韶发现了求三角形面积的“三斜求积”公式:设△ABC内角A,B,C所对的边分别为a,b,c,面积S=.若c=2,b sin C =4sin A,则△ABC面积的最大值为()A.B.C.D.8.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,圆柱的高为.设酒杯上部分(圆柱)的体积为V1,下部分(半球)的体积为V2,则的值是()A.1B.2C.3D.4二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.在△ABC中,若B=30°,AB=2,AC=2,则C的值可以是()A.30°B.60°C.120°D.150°10.设α,β是互不重合的平面,m,n是互不重合的直线,下列选项中正确的有()A.若m∥n,n⊂α,m⊄α,则m∥αB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β11.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN≥2,则k 的取值可以是()A.﹣1B.﹣C.0D.112.如图是某市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择6月1日至6月13日中的某一天到达该市,并停留2天.下列说法正确的有()A.该市14天空气质量指数的平均值大于100B.此人到达当日空气质量优良的概率为C.此人在该市停留期间只有1天空气重度污染的概率为D.每连续3天计算一次空气质量指数的方差,其中第5天到第7天的方差最大三、填空题(本大题共4小题,每小题5分,共计20分.其中第16题共有2空,第一个空2分,第二个空3分;其余题均为一空,每空5分.请把答案填写在答题卡相应位置上)13.用半径为2cm的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为cm.14.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知身高在[120,130]内的学生人数为.15.在平面直角坐标系xOy中,已知点A(3,0),点P在圆x2+(y﹣a)2=4上,若满足PA=2PO的点P有且只有2个,则实数a的取值范围为.16.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若a=3,B=2A,则=,b的取值范围为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.某机器人兴趣小组有男生3名,记为a1,a2,a3有女生2名,记为b1,b2,从中任意选取2名学生参加机器人大赛.(1)求参赛学生中恰好有1名女生的概率;(2)求参赛学生中至少有1名女生的概率.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=ac.(1)求B的值;(2)若cos A=,求sin C的值.19.已知圆C的圆心在x轴正半轴上,半径为3,且与直线4x+3y+7=0相切.(1)求圆C的方程;(2)若直线l:y=x+1与圆C相交于点A,B,求△ACB的面积.20.工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(万件)908483807568(1)根据上表数据计算得,,,,求回归直线方程;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,若该产品的单价被定为8.7元,且该产品的成本是4元/件,求该工厂获得的利润.(利润=销售收入﹣成本)附:回归方程中,系数a,b为:,.21.如图,三棱锥P﹣ABC中,棱PA垂直于平面ABC,∠ACB=90°.(1)求证:BC⊥PC;(2)若PA=AB=2,直线PC与平面ABC所成的角的正切值为,求直线AB与平面PBC所成的角的正弦值.22.平面直角坐标系xOy中,已知点P(2,4),圆O:x2+y2=4与x轴的正半轴的交于点Q.(1)若过点P的直线l1与圆O相切,求直线l1的方程;(2)若过点P的直线l2与圆O交于不同的两点A,B.①设线段AB的中点为M,求点M纵坐标的最小值;②设直线QA,QB的斜率分别是k1,k2,问:k1+k2是否为定值,若是,则求出定值,若不是,请说明理由.参考答案一、选择题(共8小题).1.某校高一、高二、高三年级分别有学生1100名、1000名、900名,为了了解学生的视力情况,现用分层抽样的方法从中随机抽取容量为30的样本,则应从高二年级抽取的学生人数为()A.9B.10C.11D.12【分析】由题意用样本容量乘以高二年级的学生人数占的比例,即为所求.解:由题意可得高二年级的学生人数占的比例为=,则应从高二年级抽取的学生人数为30×=10,故选:B.2.直线x﹣y+1=0的倾斜角的大小为()A.B.C.D.【分析】由直线方程求出直线的斜率,再由斜率等于倾斜角的正切值求解.解:直线x﹣y+1=0的斜率为1,设其倾斜角为θ(0≤θ<π),由tanθ=1,得.故选:B.3.已知直线2x+3y﹣2=0和直线mx+(2m﹣1)y=0平行,则实数m的值为()A.﹣1B.1C.2D.3【分析】根据两直线平行,它们的斜率相等,解方程求得m的值.解:∵直线l1:2x+3y﹣2=0和直线l2:mx+(2m﹣1)y+1=0平行,∴﹣=﹣,解得m=2,故选:C.4.如图,在正方体ABCD﹣A1B1C1D1中,异面直线AC和A1B所成的角的大小为()A.30°B.45°C.60°D.120°【分析】法一:(几何法)连结A1C1、BC1,由A1C1∥AC,得∠BA1C1是异面直线A1B 与AC所成角(或所成角的补角),由此能求出异面直线A1B与AC所成角.法二:(向量法)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1B与AC所成角.【解答】解法一:(几何法)连结A1C1、BC1,∵A1C1∥AC,∴∠BA1C1是异面直线A1B与AC所成角(或所成角的补角),∵A1C1=A1B=BC1,∴∠BA1C1=60°,∴异面直线A1B与AC所成角是60°.解法二:(向量法)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,则A1(1,0,1),B(1,1,0),A(1,0,0),C(0,1,0),=(0,1,﹣1),=(﹣1,1,0),设异面直线A1B与AC所成角为θ,则cosθ===,∴θ=60°,∴异面直线A1B与AC所成角是60°.故选:C.5.△ABC的内角A,B,C所对的边分别为a,b,c,若a cos B=b cos A,则△ABC形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【分析】利用正弦定理化简已知的等式,移项后再利用两角和与差的正弦函数公式化简,得到sin(A﹣B)的值为0,由A和B都为三角形的内角,得出A﹣B的范围,进而利用特殊角的三角函数值得出A﹣B=0,即A=B,利用等角对等边可得a=b,即三角形为等腰三角形.解:∵a cos B=b cos A,由正弦定理可得:sin A cos B=sin B cos A,即sin A cos B﹣cos A sin B=sin(A﹣B)=0,又﹣π<A﹣B<π,∴A﹣B=0,即A=B,∴a=b,则△ABC的形状是等腰三角形,故选:A.6.已知棱长为的正方体的所有顶点在球O的球面上,则球O的体积为()A.B.C.D.4π【分析】易知,正方体的外接球的球心为正方体的体对角线的交点,体对角线长即为球的直径,由此可求出球的半径,则体积可求.解:设球的半径为R,则由已知得:,故R=1,所以球的体积为:.7.我国南宋时期数学家秦九韶发现了求三角形面积的“三斜求积”公式:设△ABC内角A,B,C所对的边分别为a,b,c,面积S=.若c=2,b sin C =4sin A,则△ABC面积的最大值为()A.B.C.D.【分析】首先利用正弦定理的应用求出b=2a,进一步利用二次函数的性质和不等式的应用求出最大值.解:b sin C=4sin A,利用正弦定理bc=4a,由于c=2,整理得b=2a,所以设y===,当时,,所以.故选:D.8.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,圆柱的高为.设酒杯上部分(圆柱)的体积为V1,下部分(半球)的体积为V2,则的值是()A.1B.2C.3D.4【分析】由已知可得圆柱的底面半径,再由圆柱与球的体积公式分别表示出V1,V2,则解:由题意可知,上部分圆柱的底面半径为R,圆柱的高为,则酒杯上部分(圆柱)的体积为V1=;下部分(半球)的体积为V2=.则=.故选:B.二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.在△ABC中,若B=30°,AB=2,AC=2,则C的值可以是()A.30°B.60°C.120°D.150°【分析】直接根据正弦定理即可求出.解:△ABC中,B=30°,AB=2>2=AC,由正弦定理可得=,∴sin C===,∵0<C<180°,∴C=60°或120°,故选:BC.10.设α,β是互不重合的平面,m,n是互不重合的直线,下列选项中正确的有()A.若m∥n,n⊂α,m⊄α,则m∥αB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β【分析】对于A,由线面平行的判定定理得m∥α;对于B,α与β相交或平行;对于C,由面面垂直的判定定理得α⊥β;对于D,若α⊥β,α∩β=m,n⊂α,m⊥n,则线面垂直的判定定理得n⊥β.解:由α,β是互不重合的平面,m,n是互不重合的直线,知:对于A,若m∥n,n⊂α,m⊄α,则由线面平行的判定定理得m∥α,故A正确;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α与β相交或平行,故B错误;对于C,若m⊥β,m⊂α,则由面面垂直的判定定理得α⊥β,故C正确;对于D,若α⊥β,α∩β=m,n⊂α,m⊥n,则线面垂直的判定定理得n⊥β,故D正确.故选:ACD.11.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN≥2,则k 的取值可以是()A.﹣1B.﹣C.0D.1【分析】由圆的方程可得圆心坐标及半径,进而求出圆心到直线的距离,再由圆的半径,圆心到直线的距离和半个弦长构成直角三角形可得求出弦长的表达式,由题意可得k的取值范围,进而选出答案.解:由圆的方程(x﹣3)2+(y﹣2)2=4可得圆心C的坐标为(3,2),半径r为2,圆心C到直线y=kx+3即kx﹣y+3=0的距离d==,所以弦长MN=2=2≥2,即≤1,解得﹣≤k≤0,故选:BC.12.如图是某市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择6月1日至6月13日中的某一天到达该市,并停留2天.下列说法正确的有()A.该市14天空气质量指数的平均值大于100B.此人到达当日空气质量优良的概率为C.此人在该市停留期间只有1天空气重度污染的概率为D.每连续3天计算一次空气质量指数的方差,其中第5天到第7天的方差最大【分析】结合所给统计图,逐一分析即可解:该市14天空气质量指数的平均值==113.5>100,故A正确;6月1日至6月13日中空气质量优良的是1日、2日、3日、7日、12日、13日共6天.空气质量优良的天数为6,故其概率为,故B正确;此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=,故C正确;方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大,故D正确.故选:ABCD.三、填空题(本大题共4小题,每小题5分,共计20分.其中第16题共有2空,第一个空2分,第二个空3分;其余题均为一空,每空5分.请把答案填写在答题卡相应位置上)13.用半径为2cm的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为cm.【分析】先求半圆的弧长,就是圆锥的底面周长,求出底面圆的半径,然后利用勾股定理求出圆锥的高.解:半径为2的半圆弧长为2π,圆锥的底面圆的周长为2π,其轴截面为等腰三角形如图:圆锥的底面半径为:1∴圆锥的高h==.故答案是.14.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知身高在[120,130]内的学生人数为30.【分析】由题意,可由直方图中各个小矩形的面积和为1求出a值,再求出此小矩形的面积即此组人数在样本中的频率,再乘以样本容量即可得到此组的人数.解:由图知,(0.035+a+0.020+0.010+0.005)×10=1,解得a=0.03∴身高在[120,130]内的学生人数为100×0.03×10=30.故答案为:30.15.在平面直角坐标系xOy中,已知点A(3,0),点P在圆x2+(y﹣a)2=4上,若满足PA=2PO的点P有且只有2个,则实数a的取值范围为(﹣,).【分析】根据题意,设P(x,y),若PA=2PO,则有(x﹣3)2+y2=4(x2+y2),变形分析可得P的轨迹以及轨迹方程,又由满足PA=2PO的点P有且只有2个,则圆(x+1)2+y2=4与圆x2+(y﹣a)2=4相交,由圆与圆的位置关系分析可得答案.解:根据题意,设P(x,y),若PA=2PO,则有(x﹣3)2+y2=4(x2+y2),变形可得:x2+y2+2x﹣3=0,即(x+1)2+y2=4,则P的轨迹是以(﹣1,0)为圆心,半径r=2的圆,点P在圆x2+(y﹣a)2=4上,又由x2+(y﹣a)2=4,其圆心为(0,a),半径R=2,若满足PA=2PO的点P有且只有2个,则圆(x+1)2+y2=4与圆x2+(y﹣a)2=4相交,则有0<1+a2<16,解可得:﹣<a<,即a的取值范围为(﹣,);故答案为:(﹣,).16.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若a=3,B=2A,则=6,b的取值范围为(3,3).【分析】先根据正弦定理,结合二倍角公式即可求出,可得b=6cos A,再求出A的取值范围,即可求出b的范围.解:由正弦定理可得===,∴=6,∴b=6cos A,∵△ABC为锐角三角形,∴30°<B<90°,30°<A<90°,∴30°<2A<90°,∴30°<A<45°,∴<cos A<,∴3<6cos A<3,∴3<b<3,故答案为:6,(3,3).四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.某机器人兴趣小组有男生3名,记为a1,a2,a3有女生2名,记为b1,b2,从中任意选取2名学生参加机器人大赛.(1)求参赛学生中恰好有1名女生的概率;(2)求参赛学生中至少有1名女生的概率.【分析】(1)从5名学生中任选取2名学生,利用列举法求出基本事件有10个,设事件A表示“参赛学生中恰好有1名女生”,利用列举求出事件A包含的基本事件有6个,由此能求出参赛学生中恰好有1名女生的概率.(2)设事件B表示“参赛学生中至少有1名女生”,利用列举法求出事件B包含的基本事件有7个,由此能求出参赛学生中至少有1名女生的概率.解:(1)从5名学生中任选取2名学生,基本事件有10个,分别为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),设事件A表示“参赛学生中恰好有1名女生”,则事件A包含的基本事件有6个,分别为:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),∴参赛学生中恰好有1名女生的概率P(A)==.(2)设事件B表示“参赛学生中至少有1名女生”,则事件包含的基本事件有7个,分别为:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),∴参赛学生中至少有1名女生的概率P(B)=.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=ac.(1)求B的值;(2)若cos A=,求sin C的值.【分析】(1)由已知利用余弦定理可得cos B=,结合范围B∈(0,π),可求B的值.(2)由已知利用同角三角函数基本关系式可求sin A的值,根据三角形内角和定理,两角和的正弦函数公式即可计算得解sin C的值.解:(1)∵a2+c2﹣b2=ac,∴由余弦定理可得cos B===,∵B∈(0,π),∴B=.(2)∵cos A=,A∈(0,π),∴sin A==,∴sin C=sin[π﹣(A+B)]=sin(A+B)=sin A cos+cos A sin==.19.已知圆C的圆心在x轴正半轴上,半径为3,且与直线4x+3y+7=0相切.(1)求圆C的方程;(2)若直线l:y=x+1与圆C相交于点A,B,求△ACB的面积.【分析】(1)设C(a,0),利用圆心到直线的距离为半径3得到=3,易得a的值;(2)利用点的直线的距离公式和两点间的距离公式求得相关线段的长度,然后结合三角形的面积公式解答.解:(1)设C(a,0),其中a>0,因为圆C的半径问3,且与直线4x+3y+7=0相切,所以=3.解得a=2(负值舍去).得到圆C的方程为(x﹣2)2+y2=9;(2)由直线l:y=x+1知圆心C到直线l的距离为d==.所以AB=2=2=3.所以△ACB的面积为AB•d==.20.工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(万件)908483807568(1)根据上表数据计算得,,,,求回归直线方程;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,若该产品的单价被定为8.7元,且该产品的成本是4元/件,求该工厂获得的利润.(利润=销售收入﹣成本)附:回归方程中,系数a,b为:,.【分析】(1)由已知求得与的值,则y关于x的线性回归方程可求;(2)由定价求出产量,进一步求得利润.解:(1),,=,=80+20×8.5=250.∴y关于x的线性回归方程为;(2)∵产品定价为8.7元,∴估计产量为﹣20×8.7+250.利润为(﹣20×8.7+250)(8.7﹣4)=357.2万元.故工厂获得的利润为357.2万元.21.如图,三棱锥P﹣ABC中,棱PA垂直于平面ABC,∠ACB=90°.(1)求证:BC⊥PC;(2)若PA=AB=2,直线PC与平面ABC所成的角的正切值为,求直线AB与平面PBC所成的角的正弦值.【分析】(1)推导出BC⊥AC,BC⊥PA,从而得到BC⊥平面PAC,由此能证明BC⊥PC.(2)过A作AH⊥PC于H,推导出BC⊥PH,AH⊥平面PBC,从而∠ABH是直线AB 与平面PBC所成角,由此能求出直线AB与平面PBC所成角的正弦值.解:(1)证明:∵∠ACB=90°,∴BC⊥AC,∵PA⊥平面ABC,BC⊂平面ABC,∴BC⊥PA,∵PA∩AC=A,PA、AC⊂平面PAC,∴BC⊥平面PAC,∵PC⊂面PAC,∴BC⊥PC.(2)如图,过A作AH⊥PC于H,∵BC⊥平面PAC,AH⊂平面PAC,∴BC⊥PH,∵PC∩BC=C,PC,BC⊂平面PBC,∴AH⊥平面PBC,∴∠ABH是直线AB与平面PBC所成角,∵PA⊥平面ABC,∴∠PCA是PC与平面ABC所成角,∵tan∠PCA==,PA=2,∴AC=.∴Rt△PAC中,AH==,∵AB=2,∴Rt△ABH中,sin∠ABH===,∴直线AB与平面PBC所成角的正弦值为.22.平面直角坐标系xOy中,已知点P(2,4),圆O:x2+y2=4与x轴的正半轴的交于点Q.(1)若过点P的直线l1与圆O相切,求直线l1的方程;(2)若过点P的直线l2与圆O交于不同的两点A,B.①设线段AB的中点为M,求点M纵坐标的最小值;②设直线QA,QB的斜率分别是k1,k2,问:k1+k2是否为定值,若是,则求出定值,若不是,请说明理由.【分析】(1)当过P的直线l1的斜率不存在时可得与圆O相切,当直线l1的斜率存在时,设直线的方程,求出圆心O到直线的距离等于半径可得斜率的值,进而求出过P的切线的方程;(2)①设弦AB的中点为M可得OM⊥MP,所以可得数量积•=0,可得M的轨迹方程,与圆O联立求出交点坐标,可得M的纵坐标的最小值;②设A,B的坐标,直线l1与圆O联立求出两根之和及两根之积,进而求出k1+k2的代数式,将两根之和及两根之积代入可得为定值.解:(1)当直线l1的斜率不存在时,则直线l1的方程为:x=2,圆心O到直线l1的距离d=2=r,显然x=2符合条件,当直线l1的斜率存在时,由题意设直线l1的方程为y﹣4=k(x﹣2)即kx﹣y﹣2k+4=0,圆心O到直线l1的距离为d==2,解得k=,所以切线方程为x﹣y﹣2+4=0,即3x﹣4y+10=0,综上所述:过P点的切线方程为x=2或3x﹣4y+10=0;(2)①设点M(x,y),因为M是弦AB的中点,所以MO⊥MP,又因为=(x,y),=(x﹣2,y﹣4),所以x(x﹣2)+y(y﹣4)=0,即x2+y2﹣2x﹣4y=0,联立解得或,又因为M在圆O的内部,所以点M的轨迹是一段圆x2+y2﹣2x﹣4y=0以(﹣,)和(2,0)为端点的一段劣弧(不包括端点),在圆x2+y2﹣2x﹣4y=0方程中,令x=1,得y=2,根据点(1,2﹣)在圆O内部,所以点M的纵坐标的最小值为2﹣;②联立,整理可得(1+k2)x2﹣4k(k﹣2)x+(2k﹣4)2﹣4=0,设A(x1,y1),B(x2,y2)则,所以k1+k2=+=+=2k++=2k+=2k+=2k﹣=﹣1,所以k1+k2为定值﹣1.。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
第一章 直角三角形的边角关系(单元测试)(解析版)
第一章 直角三角形的边角关系单元测试参考答案与试题解析一、单选题1.(2020·哈尔滨德强学校)在△ABC 中,若, )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【答案】A【解析】试题解析:∵cos A tan B ,∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°.∴△ABC 为锐角三角形.故选A .2.(2019·福建三明市·九年级月考)在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A .sinB =23B .cos B =23C .tan B =23D .tan B =32【答案】C【解析】∵∠C =90°,AC =2,BC =3,∴,∴sinB=AC AB ==,cosB=BC AB ==,tanB=AC 2BC 3=,故选C.3.(2020·济南历下区明德中学九年级期中)如图所示,菱形ABCD 的周长为20cm ,DE AB ^,垂足为E ,35DE AD =,则下列结论正确的有( )①3DE cm =;②1BE cm =;③菱形的面积为215cm ;④BD =.A .1个B .2个C .3个D .4个【答案】C【分析】根据菱形的性质及已知对各个选项进行分析,从而得到答案.【详解】解:Q 菱形ABCD 的周长为20cm ,5cm AD \=,35DE AD =Q ,3cm(DE \=①正确),4cm AE \==,5cm AB =Q ,541cm(BE \=-=②正确),\菱形的面积25315cm (AB DE =´=´=③正确),3cm DE =Q ,1cm BE =,BD \==④不正确),故选:C .【点睛】本题考查菱形的性质、勾股定理等内容,掌握菱形的性质是解题的关键.4.(2019·辽宁抚顺市·九年级月考)在△ABC 中(2cosA-)2+|1-tanB|=0,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】D【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A 、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由()2+|1-tanB|=0,得,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC 一定是等腰直角三角形,故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.(2020·山东枣庄市·九年级期末)若α为锐角,且()sin10a °-=,则α等于( )A .80°B .70°C .60°D .50°【答案】B【解析】【分析】根据sin 60°=得出α的值.【详解】解:∵sin 60°=∴α-10°=60°,即α=70°.故选:B .【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.6.(2019·全国九年级单元测试)已知∠A 为锐角,且tan A ,则∠A 的取值范围是( )A .0°<∠A <30°B .30°<∠A <45°C .45°<∠A <60°D .60°<∠A <90°【答案】C【解析】【分析】通过tan30°、tan45°、tan60°这些特殊角度的正切值来判断随角度变化正切值的变化规律,再通过具体数值确定其大致范围.【详解】解:tan30°,tan45°=1,tan60°,则可知正切值随角增大而增大,由145°<∠A <60°.故选择C .【点睛】熟悉特殊角的正切值以及由此判断正切函数随角度变化的变化规律是解题关键.7的值是( )A .1-B -1C -1D .1【答案】A【解析】11=-=故本题应选A.点睛:00a a a a a ³ì=í-<î,, .8.(2019·全国九年级单元测试)=( )A .B .C .D .1【答案】D【解析】【分析】由于tan30°=,故1-tan30°>0,再对根号里的各项利用完全平方公式变形,从而可以计算出答案.【详解】解:∵tan30°=,∴ 1-tan30°>0,原式=+tan30°=|1-tan30°|+tan30°=1-tan30°+tan30°=1.故选:D .【点睛】本题考查了特殊角的三角函数值、完全平方公式.以及二次根式的性质与化简,本题的关键有两步:第一步判断tan30°-1的正负;第二步熟练运用=|a|进行化简,同时也要掌握绝对值的代数意义.9.(2019·福建三明市·九年级月考)如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于()A B C D.2 3【答案】C【解析】试题解析:设正方形网格每个小正方形边长为1,则BC边上的高为2,则AB===,sin ABCÐ== .故本题应选C.10.(2020·福建莆田市·九年级一模)小明沿着坡角为30°的山坡向上走,他走了1000m,则他升高了( )A.B.500m C.D.1000m【答案】B【解析】【分析】根据坡角的概念,直角三角形中30°所对直角边等于斜边一半的性质计算即可.【详解】解:设他升高了xm,∵山坡的坡角为30°,∴x=12×1000=500(m),故选:B.【点睛】本题考查的是解直角三角形的应用:坡度坡角问题,属于简单题,掌握坡角的概念是解题的关键.二、填空题11.(2020·四川攀枝花市·九年级期末)△ABC中,∠C=90°,tan A=43,则sin A+cos A=_____.【答案】7 5【解析】∵在△ABC 中,∠C=90°,4tan 3A =,∴可设BC=4k ,AC=3k ,∴由勾股定理可得AB=5k ,∴sinA=4455BC k AB k ==,cosA=3355AC k AB k ==,∴sinA+cosA=437555+=.故答案为75.12.(2020·全国九年级单元测试)如图,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m 到达A 处,在A 处观测C 地的俯角为30°,则B 、C 两地之间的距离为__________m.【答案】【分析】利用题意得到∠C=30°,AB=100,然后根据30°的正切可计算出BC .【详解】根据题意得∠C=30°,AB=100,∵tanC=A B B C,∴BC=0100tan 30=0100tan 30(m ).故答案为【点睛】本题考查了解直角三角形的应用-仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.13.(2020·阜康市第三中学九年级其他模拟)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为_____.【答案】3 4【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得AD=CD,再根据等边对等角可得∠A=∠ACD,然后利用锐角的正切值等于对边比邻边列式计算即可得解.【详解】解:∵∠ACB=90°,CD是AB边上的中线,∴AD=CD,∴∠A=∠ACD,∴tan∠ACD=tan∠A=BCAC=68=34.故答案为:34.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半的性质,锐角三角函数的定义,熟记性质并求出∠A=∠ACD是解题的关键.14.(2020·江苏淮安市·淮安六中八年级期中)有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一个树的树梢,则小鸟至少飞行_________________米【答案】10【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】解:如图,设大树高为12AB m =,小树高为6CD m =,过C 点作CE AB ^于E ,则四边形EBDC 是矩形,连接AC ,6EB m \=,8EC m =,1266()AE AB EB m =-=-=,在Rt AEC D 中,10()AC m ==.故小鸟至少飞行10m .故答案为:10.【点睛】本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.15.如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5 m ,则大树的高度为_______m(结果保留根号).【答案】5+【分析】作CE ⊥AB 于点E ,则△BCE 和△BCD 都是直角三角形,即可求得CE ,BE 的长,然后在Rt △ACE 中利用三角函数求得AE 的长,进而求得AB 的长,即为大树的高度.【详解】如图,过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,BE =CD =5m ,CE =tan 30BE o=(m ),在Rt △ACE 中,AE =CE·tan 45°=(m ),AB =BE +AE =5+m ).【点睛】本题考查解直角三角形的应用-仰角俯角问题的应用,要求学生能借助仰角构造直角三角形并解直角三角形.16.(2019·全国九年级单元测试)小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为________ 米.【答案】50【分析】根据斜坡的坡比为1:2.4,可得BC :AC=1:2.4,设BC=x ,AC=2.4x ,根据勾股定理求出AB ,然后根据题意可知AB=130米,求出x 的值,继而可求得BC 的值.【详解】解:如图所示:∵坡比为1:2.4,∴BC :AC=1:2.4,设BC=x ,AC=2.4x ,则,∵AB=130米,∴x=50,则BC=x=50(米).故答案为50.【点睛】此题主要考查了坡度的定义和勾股定理,根据勾股定理把AB 用x 表示出来并求出是解题的关键.三、解答题17.计算:(1)(-1)2-2cos 30°+(-2017)0;(2)3tan 302tan 60cos 60°-°°+4sin 60°.【答案】(1) 2;(2) 0.【解析】试题分析:(1)先求出式子每一项的值,然后相加即可.(2)先计算每一个特殊角的三角函数值,然后代入式子求值即可.试题解析:(1) 原式=1-1=11=2;(2)+=-=0.18.(2019·福建三明市·九年级月考)如图,在△ABC 中,BD ⊥AC ,AB =6,AC =,∠A =30°.(1)求BD 和AD 的长;(2)求tan C 的值.【答案】(1) BD =3,AD =;(2) tan C.【解析】(1)∵BD ⊥AC ,∴∠ADB =∠BDC =90°.在Rt △ADB 中,AB =6,∠A =30°,∴BD =AB·sin30°=3,∴·cos30AD AB =°=.(2)CD AC AD =-=-=,在Rt △BDC 中,tan BD C CD Ð===19.(2020·辽宁盘锦市·)如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A 点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B 点,在B 处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).【答案】米【分析】过C 作CD ⊥AB 于D ,交海面于点E ,设BD=x ,利用锐角三角函数的定义用x 表示出BD 及CD 的长,由CE=CD+DE 即可得出结论.【详解】解:过C 作CD ⊥AB 于D ,交海面于点E ,设BD=x , ∵∠CBD=60°,∴tan ∠CBD=CD BD∴. ∵AB=2000, ∴AD=x+2000,∵∠CAD=45° ∴tan ∠CAD=CD AD=1,x=x+2000,解得, ∴+1000)∴.答:黑匣子C 点距离海面的深度为米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.20.如图,AB 是长为5m ,倾斜角为37°的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数).(参考数据:3sin 375°»,3tan 374°»,9sin 6510°»,15tan 657°»)【答案】大楼CE 的高度约为14m .【分析】如图(见解析),先在Rt ABF V 中,利用正弦三角函数可求出BF 的长,再在Rt CDB V 中,利用正切三角函数可求出CD 的长,然后根据线段的和差即可得.【详解】如图,作BF AE ^于点F ,则BF DE=由题意得:5,BD AB m BD CE ==^,37,65BAF CBD Ð=°Ð=°在Rt ABF V 中,sin BF BAF AB Ð=则3sin 3753()5BF AB m =×°»´=在Rt CDB V 中,tan CD CBD BDÐ=则15tan 65511()7C mD BD °»»=×´则31114()CE DE CD BF CD m =+=+»+=答:大楼CE 的高度约为14m .【点睛】本题考查了解直角三角形的应用,通过作辅助线,构造直角三角形是解题关键.21.如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1AB=10米,AE=15米.(i=1坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1»1.414,1.732)【答案】(1)点B 距水平面AE 的高度BH 为5米.(2)宣传牌CD 高约2.7米.【分析】(1)过B 作DE 的垂线,设垂足为G .分别在Rt △ABH 中,通过解直角三角形求出BH 、AH.(2)在△ADE 解直角三角形求出DE 的长,进而可求出EH 即BG 的长,在Rt △CBG 中,∠CBG=45°,则CG=BG ,由此可求出CG 的长然后根据CD=CG+GE ﹣DE 即可求出宣传牌的高度.。
2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)
2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)1.如图,在四边形ABCD中,AB=BC=3,CD,DA=5,∠B=90°,求∠BCD的度数.2.如图,已知某开发区有一块四边形空地ABCD,现计划在该空地上种植草皮,经测量∠ADC=90°,CD =6m,AD=8m,BC=24m,AB=26m,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?3.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?4.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.5.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB =90°,AC+AB=10,BC=3,求AC的长.6.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?7.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.8.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.9.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.10.已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.11.已知某校有一块四边形空地ABCD如图,现计划在该空地上种草皮,经测量∠A=90°,AB=3m,BC =12m,CD=13m,DA=4m.若种每平方米草皮需100元,问需投入多少元?12.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)13.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.(1)在图(1)中以格点为顶点画一个面积为10的正方形;(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,,;这个三角形的面积为.14.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.15.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.16.如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?17.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?18.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E 的距离相等,则收购站E应建在离A点多远处?19.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,求四边形ABCD的面积.20.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.21.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.22.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C 处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.23.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)2019--2020学年江苏省八年级上册数学(苏科版)期末考试《勾股定理》试题分类——解答题(2)参考答案与试题解析一.解答题(共23小题)1.【答案】见试题解答内容【解答】解:∵在Rt△ABC中,AB=BC=3,∠B=90°,∴由勾股定理得:AC2=AB2+BC2=32+32=18,∵CD,DA=5,∴CD2+AC2=DA2,∴∠ACD=90°,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∴∠BCD=∠ACB+∠ACD=45°+90°=135°.2.【答案】见试题解答内容【解答】解:连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB﹣S△ACD•AC•BCAD•CD,10×248×6=96.所以需费用96×200=19200(元).3.【答案】见试题解答内容【解答】解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米.4.【答案】见试题解答内容【解答】(1)证明:∵CD=3,BC=5,BD=4,∴CD2+BD2=9+16=25=BC2,∴△BCD是直角三角形,∴BD⊥AC;(2)解:设AD=x,则AC=x+3.∵AB=AC,∴AB=x+3.∵∠BDC=90°,∴∠ADB=90°,∴AB2=AD2+BD2,即(x+3)2=x2+42,解得:x,∴AB3.5.【答案】见试题解答内容【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.6.【答案】见试题解答内容【解答】解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD3×45×12=6+30=36.答:这块钢板的面积等于36.7.【答案】见试题解答内容【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15,DB=9,∴CD12;(2)在Rt△ACD中,∵AC=20,CD=12,∴AD16,则AB=AD+DB=16+9=25.8.【答案】见试题解答内容【解答】解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中,AD=5,CD=12,AC13.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BEAB10=5.在Rt△CAE中,CE12.∴S四边形ABCD=S△DAC+S△ABC5×1210×12=30+60=90.9.【答案】见试题解答内容【解答】(1)△ABE≌△ACD.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD;(2)证明∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.10.【答案】见试题解答内容【解答】解:(1)证明:连接AD∵AB=AC,∠A=90°,D为BC中点∴ADBD=CD且AD平分∠BAC∴∠BAD=∠CAD=45°在△BDE和△ADF中,,∴△BDE≌△ADF(SAS)∴DE=DF,∠BDE=∠ADF∵∠BDE+∠ADE=90°∴∠ADF+∠ADE=90°即:∠EDF=90°∴△EDF为等腰直角三角形.(2)解:仍为等腰直角三角形.理由:∵△AFD≌△BED∴DF=DE,∠ADF=∠BDE∵∠ADF+∠FDB=90°∴∠BDE+∠FDB=90°即:∠EDF=90°∴△EDF为等腰直角三角形.11.【答案】见试题解答内容【解答】解:∵∠A=90°,AB=3m,DA=4m,∴DB5(m),∵BC=12m,CD=13m,∴BD2+BC2=DC2,∴△DBC是直角三角形,∴S△ABD+S△DBC3×45×12=36(m2),∴需投入总资金为:100×36=3600(元).12.【答案】见试题解答内容【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD(米),∴BD=AB﹣AD=12(米),答:船向岸边移动了(12)米.13.【答案】见试题解答内容【解答】解:(1)面积为10的正方形的边长为,∵,∴如图1所示的四边形即为所求;(2)∵,,∴如图2所示的三角形即为所求这个三角形的面积2×2=2;故答案为:2.14.【答案】见试题解答内容【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE4.8(cm)∴CE3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.15.【答案】见试题解答内容【解答】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE,∴CE,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.16.【答案】见试题解答内容【解答】解:设BC=xcm时,三角形ACD是以DC为斜边的直角三角形,∵BC+CD=34,∴CD=34﹣x,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2﹣AD2=(34﹣x)2﹣576,∴36+x2=(34﹣x)2﹣576,∴当C离点B8cm时,△ACD是以DC为斜边的直角三角形.17.【答案】见试题解答内容【解答】解:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC5(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC5×123×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.18.【答案】见试题解答内容【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(25﹣x),∵DA=15km,CB=10km,∴x2+152=(25﹣x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.19.【答案】见试题解答内容【解答】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABCAC×CDAB×BC5×124×3=30﹣6=24.故四边形ABCD的面积为24cm2.20.【答案】见试题解答内容【解答】解:(1)如图①所示:(2)如图②③所示.21.【答案】见试题解答内容【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).22.【答案】见试题解答内容【解答】解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒时,所以速度为72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.23.【答案】见试题解答内容【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级(上)期末数学试卷一.选择题(共8小题)1.5的相反数是()A.5 B.﹣5 C.D.﹣2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2016年全国共享单车用户数量达18860 000,将18860 000用科学记数法表示应为()A.1886×104B.0.1886×108C.1.886×107D.1.886×106 3.下列计算正确的是()A.(a2)3=a6B.a2+a2=a4C.(3a)•(2a)2=6a D.3a﹣a=34.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>05.估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.在平面直角坐标系中,点P(﹣2,3)关于y轴对称的点的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(3,﹣2)D.(2,3)7.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是()A.4 B.5 C.10 D.208.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=CA,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°二.填空题(共8小题)9.16的平方根是.10.分解因式:a2﹣4a+4=.11.如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=°.12.如图,点B、F、C、E在同一直线上,∠1=∠2,BF=EC,要使△ABC≌△DEF,还需添加的一个条件是.(只需写出一个即可).13.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.14.已知△ABC的三边长分别为5、12、13,则最长边上的中线长为.15.已知点A(3,y1)、B(2,y2)在一次函数y=(m﹣2)x+3的图象上,若y1<y2,则m 的取值范围是.16.如图,已知直线l:y=x,过点A1(1,0)作x轴的垂线交直线l于点B1,以A1B1为边作正方形A1B1C1A2,过点A2作x轴的垂线交直线l于点B2,以A2B2为边作正方形A2B2C2A3,…;则点A5的坐标为,点∁n的坐标为.三.解答题(共7小题)17.计算:(1)|﹣2|++(﹣3)0(2)不等式组:18.化简求值:m(1﹣3m)+3(m+2)(m﹣2),其中m=6.19.如图,过△ABC的顶点C作CE∥AB,且CE=AC,D点在AC边上,连接DE,∠B=∠EDC.求证:BC=DE.20.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).(1)△ABC的面积是.(2)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(3)请画出与△ABC关于y轴对称的△A2B2C2.21.小明到文具店给班级买奖品,发现2本笔记本的费用比1支水笔的费用多10元;6本笔记本的费用比13支水笔的费用少10元.求小明买5本笔记本和5支水笔共需多少钱.22.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?23.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.参考答案与试题解析一.选择题(共8小题)1.5的相反数是()A.5 B.﹣5 C.D.﹣【分析】根据相反数的定义求解即可.【解答】解:5的相反数是﹣5,故选:B.2.共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2016年全国共享单车用户数量达18860 000,将18860 000用科学记数法表示应为()A.1886×104B.0.1886×108C.1.886×107D.1.886×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将18860 000用科学记数法表示为:1.886×107.故选:C.3.下列计算正确的是()A.(a2)3=a6B.a2+a2=a4C.(3a)•(2a)2=6a D.3a﹣a=3【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a2×3=a6,故本选项正确;B、应为a2+a2=2a2,故本选项错误;C、应为(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D、应为3a﹣a=2a,故本选项错误.故选:A.4.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>0【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.5.估计+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【分析】先求出的范围,即可得出选项.【解答】解:∵2<<3,∴3<+1<4,即+1在3和4之间,故选:B.6.在平面直角坐标系中,点P(﹣2,3)关于y轴对称的点的坐标为()A.(2,﹣3)B.(﹣2,﹣3)C.(3,﹣2)D.(2,3)【分析】根据点P(x,y)关于y轴对称的点的坐标为(﹣x,y)易得到点P(﹣2,3)关于y轴对称的点的坐标为(2,3).【解答】解:点P(﹣2,3)关于y轴对称的点的坐标为(2,3).故选:D.7.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5,若点Q是射线OB上一点,OQ=4,则△ODQ的面积是()A.4 B.5 C.10 D.20【分析】作DH⊥OB于点H,根据角平分线的性质得到DH=DP=5,根据三角形的面积公式计算,得到答案.【解答】解:作DH⊥OB于点H,∵OC是∠AOB的角平分线,DP⊥OA,DH⊥OB,∴DH=DP=5,∴△ODQ的面积=OQ×DH=×4×5=10,故选:C.8.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=CA,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°【分析】想办法求出∠B,再利用三角形内角和定理即可解决问题.【解答】解:由作图可知,MN垂直平分线段BC,∴DB=DC,∴∠B=∠DCB,∵CD=CA,∴∠A=∠CDA=50°,∵∠CDA=∠B+∠DCB,∴∠B=∠DCB=25°,∴∠ACB=180°﹣25°﹣50°=105°,故选:D.二.填空题(共8小题)9.16的平方根是±4 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.10.分解因式:a2﹣4a+4=(a﹣2)2.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【解答】解:a2﹣4a+4=(a﹣2)2.11.如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=55 °.【分析】由平角的定义求出∠3=55°,即可解决问题.【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故答案是:55.12.如图,点B、F、C、E在同一直线上,∠1=∠2,BF=EC,要使△ABC≌△DEF,还需添加的一个条件是AC=DF(答案不唯一).(只需写出一个即可).【分析】此题是一次开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是AC=DF,理由是:∵BF=EC,∴BF+CF=EC+CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.13.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15 .【分析】分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【解答】解:当腰为3时,3+3=6,∴3、3、6不能组成三角形;当腰为6时,3+6=9>6,∴3、6、6能组成三角形,该三角形的周长为=3+6+6=15.故答案为:15.14.已知△ABC的三边长分别为5、12、13,则最长边上的中线长为.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由直角三角形的性质即可得出结论.【解答】解:∵△ABC的三边长分别为5、12、13,52+122=132,∴△ABC是直角三角形,∴最长边上的中线长=.故答案为:.15.已知点A(3,y1)、B(2,y2)在一次函数y=(m﹣2)x+3的图象上,若y1<y2,则m 的取值范围是m<2 .【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m 的取值范围.【解答】解:∵点A(3,y1)、B(2,y2)在一次函数y=(m﹣2)x+3的图象上,∴当3>2时,由题意可知y1<y2,∴y随x的增大而减小,∴m﹣2<0,解得m<2,故答案为m<2.16.如图,已知直线l:y=x,过点A1(1,0)作x轴的垂线交直线l于点B1,以A1B1为边作正方形A1B1C1A2,过点A2作x轴的垂线交直线l于点B2,以A2B2为边作正方形A2B2C2A3,…;则点A5的坐标为(16,0),点∁n的坐标为(2n,2n﹣1).【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2、C1的坐标,以此类推总结规律便可求出点A5、∁n的坐标.【解答】解:直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,可知B1点的坐标为(1,1),以A1B1为边作正方形A1B1C1A2,A1B1=A1A2=1,OA2=1+1=2,点A2的坐标为(2,0),C1的坐标为(2,1),这种方法可求得B2的坐标为(2,2),故点A3的坐标为(4,0),C2的坐标为(4,2),此类推便可求出点点A5的坐标为(16,0),点∁n的坐标为(2n,2n﹣1).故答案为(16,0),(2n,2n﹣1).三.解答题(共7小题)17.计算:(1)|﹣2|++(﹣3)0(2)不等式组:【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用立方根的定义化简,第三项利用零指数幂法则计算,即可得到结果;(2)分别求出两不等式的解集,找出两解集的公共部分求出不等式组的解集即可;【解答】解:(1)原式=2﹣2+1=1;(2),由①得:x>2;由②得:x≤5,∴不等式组的解集为2<x≤5.18.化简求值:m(1﹣3m)+3(m+2)(m﹣2),其中m=6.【分析】先根据平方差公式和单项式乘以多项式算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=m﹣3m2+3m2﹣12=m﹣12,当m=6时,原式=6﹣12=﹣6.19.如图,过△ABC的顶点C作CE∥AB,且CE=AC,D点在AC边上,连接DE,∠B=∠EDC.求证:BC=DE.【分析】由条件证得△ABC≌CDE,由全等三角形的性质即可证得结论.【解答】证明:∵CE∥AB,∴∠A=∠ECA,在△ABC和△CDE中,∴△ABC≌CDE(AAS),∴BC=DE.20.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).(1)△ABC的面积是 1.5 .(2)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(3)请画出与△ABC关于y轴对称的△A2B2C2.【分析】(1)直接利用割补法进行计算,即可得到△ABC的面积;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)直接利用轴对称的性质得出对应点位置进而得出答案.【解答】解:(1)△ABC的面积为2×2﹣×1×1﹣2××1×2=1.5;故答案为:1.5;(2)如图所示:△A1B1C1即为所求;(3)如图所示:△A2B2C2即为所求.21.小明到文具店给班级买奖品,发现2本笔记本的费用比1支水笔的费用多10元;6本笔记本的费用比13支水笔的费用少10元.求小明买5本笔记本和5支水笔共需多少钱.【分析】设每本笔记本x元,每支水笔y元,根据“2本笔记本的费用比1支水笔的费用多10元,6本笔记本的费用比13支水笔的费用少10元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(5x+5y)中即可求出结论.【解答】解:设每本笔记本x元,每支水笔y元,依题意,得:,解得:,∴5x+5y=55.答:小明买5本笔记本和5支水笔共需55元钱.22.数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+2)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+82=(x+2)2,解得x=15m,∴旗杆的高度为15米.23.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135 °.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.【分析】[问题初探]利用同角的余角相等判断出∠ADB=∠DEF,进而得出△ABD≌△DFE,得出BD=EF,DF=AB,进而判断出△CEG是等腰直角三角形,即可得出结论;[继续探究]同[问题初探]的方法即可得出结论;[拓展延伸]先判断出点E是过点C垂直于AC的直线上的点,进而判断出BE⊥MN时,BE 最小,即可得出结论.【解答】解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.。