(整理)实验二1实验二模拟滤波器频率特性测试.

合集下载

模拟电路实验指导书

模拟电路实验指导书

目录实验一整流、滤波、稳压电路 (1)实验二单级交流放大器(一) (5)实验三单级交流放大器(二) (7)实验四两级阻容耦合放大电路 (9)实验五负反馈放大电路 (11)实验六射极输出器的测试 (14)实验七 OCL功率放大电路 (16)实验八差动放大器 (18)实验九运算放大器的基本运算电路(一) (20)实验十集成运算放大器的基本运算电路(二) (22)实验十一比较器、方波—三角波发生器 (24)实验十二集成555电路的应用实验 (26)实验十三 RC正弦波振荡器 (30)实验十四集成功率放大器 (32)实验十五函数信号发生器(综合性实验) (34)实验十六积分与微分电路(设计性实验) (36)实验十七有源滤波器(设计性实验) (38)实验十八电压/频率转换电路(设计性实验) (40)实验十九电流/电压转换电路(设计性实验) (41)实验一整流、滤波、稳压电路一、实验目的1、比较半波整流与桥式整流的特点。

2、了解稳压电路的组成和稳压作用。

3、熟悉集成三端可调稳压器的使用。

二、实验设备1、实验箱(台)2、示波器3、数字万用表三、预习要求1、二极管半波整流和全波整流的工作原理及整流输出波形。

2、整流电路分别接电容、稳压管及稳压电路时的工作原理及输出波形。

3、熟悉三端集成稳压器的工作原理。

四、实验内容与步骤首先校准示波器。

1、半波整流与桥式整流:●分别按图1-1和图1-2接线。

●在输入端接入交流14V电压,调节使I O=50mA时,用数字万用表测出V O,同时用示波器的DC档观察输出波形记入表1-1中。

图1-1图1-2Vi(V) V O(V) I O (A) V O波形半波桥式2、加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图1-3接线,比较并测量接C 与不接C两种情况下的输出电压V O及输出电流I O,并用示波器DC档观测输出波形,记入表1-2中。

图1-33上述电路不动,在电容后面加稳压二极管电路(510Ω、VDz),按图1-4接线。

IIR数字滤波器设计实验报告

IIR数字滤波器设计实验报告

实验三IIR数字滤波器设计实验报告一、实验目的:1.通过仿真冲激响应不变法和双线性变换法2.掌握滤波器性能分析的基本方法二、实验要求:1.设计带通IIR滤波器2.按照冲激响应不变法设计滤波器系数3. 按照双线性变换法设计滤波器系数4. 分析幅频特性和相频特性5. 生成一定信噪比的带噪信号,并对其滤波,对比滤波前后波形和频谱三、基本原理:㈠IIR模拟滤波器与数字滤波器IIR数字滤波器的设计以模拟滤波器设计为基础,常用的类型分为巴特沃斯(Butterworth)、切比雪夫(Chebyshev)Ⅰ型、切比雪夫Ⅱ型、贝塞尔(Bessel)、椭圆等多种。

在MATLAB信号处理工具箱里,提供了这些类型的IIR数字滤波器设计子函数。

(二)性能指标1.假设带通滤波器要求为保留6000hz~~7000hz频段,滤除小于2000hz和大宇9000hz频段2.通带衰减设为3Db,阻带衰减设为30dB,双线性变换法中T取1s.四、实验步骤:1.初始化指标参数2.计算模拟滤波器参数并调用巴特沃斯函数产生模拟滤波器3.利用冲激响应不变法和双线性变换法求数字IIR滤波器的系统函数Hd (z)4.分别画出两种方法的幅频特性和相频特性曲线5.生成一定信噪比的带噪信号6.画出带噪信号的时域图和频谱图6.对带噪信号进行滤波,并画出滤波前后波形图和频谱图五、实验结果模拟滤波器的幅频特性和相频特性:101010101Frequency (rad/s)P h a s e (d e g r e e s )1010101011010-5100Frequency (rad/s)M a g n i t u d e在本实验中,采用的带通滤波器为6000-7000Hz ,换算成角频率为4.47-0.55,在上图中可以清晰地看出到达了题目的要求。

冲击响应不变法后的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )双线性变换法的幅频特性和相频特性:0.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)P h a s e (d e g r e e s )00.10.20.30.40.50.60.70.80.91Normalized Frequency (⨯π rad/sample)M a g n i t u d e (d B )通过上图比较脉冲响应不变法双线性变换法的幅频特性和相频特性,而在在幅频曲线上几乎没有差别,都能达到相同的结果。

实验五滤波器的频率特性测试

实验五滤波器的频率特性测试

实验五 滤波器的频率特性测试一. 实验目的1. 了解无源和有源滤波器的类型、电路结构、工作原理和特性,比较其性能的不同点。

2. 通过对滤波器频率响应特性的测试,掌握对元件或系统做频率特性测试的方法。

二. 实验所需仪器及元器件THM-6模拟电路实验箱、直流稳压电源、双踪示波器、数字万用表、 信号发生器、交流毫伏表、运算放大器、电阻、电容、连接线。

三. 实验原理实验装置及仪器连接方法见图1所示,其中滤波器实验电路可根据实验内容的不同在THM-6模拟电路实验箱接插成不同的滤波器。

信号发生器输出幅值恒定、频率可调的正弦波电压作为滤波器的输入信号u i ,由交流毫伏表测量其幅值。

在每一给定频率下,从交流毫伏表读出输出电压u o ,从双踪示波器读出u o 滞后u i 的时间,由此可计算两者相位差。

直流稳压电源为有源滤波器的运算放大器提供±12V 电源。

图1 滤波器频率特性测试系统框图四.实验内容及步骤1.实验内容⑴ RC 无源一阶低通滤波器的频率特性测试电路如图2所示,如果负载电阻R L = ∞,其幅频特性和 相频特性分别为()A ω= ()()arctg Φωωτ=-式中,时间常数:RC τ=,截止频率:()12c f RC π=⑵ RC 有源一阶低通滤波器的频率特性测试电路如图3所示,其幅频特性和相频特性分别为()A ω= ()()arctg Φωωτ=-式中,时间常数:RC τ=, 11f K R R =+图3 有源滤波电路U o U R R =10k ΩR 1=10k ΩR f =10k ΩR L =1k ΩC= 0.05μ F 图2 无源滤波电路R =10k ΩR L =1k ΩC= 0.05μ F R L2.实验步骤两个实验对象虽然不同,但均为测试滤波器的幅频和相频特性,因此,实验方法及步骤相同。

⑴按图2在THM-6模拟电路实验箱上选择C元件和外接电阻R,用万用表测量R、C元件的实际值:C= ,R= ,计算截止频率f c= 。

《电子测量实验指导书》

《电子测量实验指导书》

《电子测量》实验指导书电子测量实验室编写目录实验一示波器性能研究及使用实验二交流电压的测量实验三时间的测量实验四相位差和频率的测量实验五测量放大器参数测试实验六函数信号发生器的设计与调测实验七扫频仪的使用及有源滤波器性能测试实验八简易数显频率计的设计前言《电子测量》是一门理论与实践并重的课程。

它主要介绍电学中常见物理量(如电压、电流、电阻、电感、频谱、频率特性等)的测量方法、测量时使用的测量仪器以及基本的测量误差理论。

学生通过本课程的学习,应该在理解原理的基础上,掌握各物理量的测量方法,会使用相关的测量仪器。

《电子测量》课程实验开设目的:首先是加深理解在课堂上获得的理论知识,将理论知识形象化;同时学习仪器设备的实际操作,加强动手能力,积累实践经验;另外通过一些综合性实验达到对已学过的其它课程知识融会贯通的效果。

实验一示波器性能研究及使用一实验目的熟悉示波器的工作原理;掌握正确使用示波器测量各种参数的方法。

二实验原理我们可以把示波器简单地看成是具有图形显示的电压表。

普通的电压表是在其刻度盘移动的指针或数字显示来给出信号电压的测量度数。

而示波器则不同,示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压的随时间的变化,即波形。

示波器能把非常抽象的,眼睛看不到的电过程,变换成具体的看得见的图像。

因此,使用示波器测量电压和电流时,可在显示被测电压或电流幅值的同时,还可显示波形、频率、相位。

这是其它电压测量仪表,如电压表等无法做到的。

一般电压表的读数与被测电压波形有关,而用示波器测量时,其精度可不受被测电压和电流波形形状的影响。

另外,示波器的响应速度极快,也没有指针式仪表所具有的惯性。

但是,示波器作定量测试时,测试值是以屏面上波形幅值所占的垂直刻度值乘Y 轴偏转灵敏度得出的,而屏面上波形幅值所占的垂直刻度值将受到光迹宽度、视差及示波器固有误差和工作误差等因素的影响,往往不易精确读出测试值,这就决定了示波器的测试精度不可能太高。

通信原理实验指导书(完整)

通信原理实验指导书(完整)

实验一:抽样定理实验一、实验目的1、熟悉TKCS—AS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习《通信系统原理》中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。

因此,采取多路化制式是极为重要的通信手段。

最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。

频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。

而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础的。

在工作设备中,抽样过程是模拟信号数字化的第一步。

抽样性能的优劣关系到整个系统的性能指标。

作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。

从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。

因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。

图1-1 单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。

除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。

2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。

实验二 二阶系统的模拟及频率特性测试

实验二  二阶系统的模拟及频率特性测试

实验二 二阶系统的模拟及频率特性测试一、实验目的1. 学会二阶系统的模拟方法,研究系统参数n ω和ξ对阶跃响应指标的影响;2. 学习频率特性测试仪的使用方法;3. 学会系统频率特性测试方法。

二、实验设备1. 自动控制原理试验箱一台;2. 双踪示波器一台;3. 频率特性测试仪一台;4. 万用表一块。

三、实验内容及步骤1. 二阶系统的阶跃响应按图2-1接线,传递函数222()()()2nn nC s G s R s s s ωξωω==++,其中110R K R =、111T R C =、222T R C =、n ω=112n T ξω=。

取1212120.1(1010)T T T s R R K C C F μ=====Ω==,,则在00.5(10)R K ξ==Ω取时,110n Tω==,观测二阶系统的阶跃响应曲线。

2. 测试二阶系统的频率响应特性方法与步骤:(1)按图2-1先接成二阶系统,并观测阶跃响应。

接上频率特性测试仪,如图2-2 所示。

(2)先测试转折频率 1.592(10/)f H z rad s ω==时对应的幅值R 和相角ϕ。

设定频率 1.592FREQ clear EN TER →→→;设定前面板状态w aveform ~,d e l a y 0.1s ,inputrang AUTO ,int errator AUTO ,display mod e R 、ϕ,sw eep o ff 。

按sin gle 键,从显示窗读取对应 1.592f H z =的R 和ϕ的值。

(3)系统参数不变。

采用单次步进测量,记录f 由0.1Hz 到15Hz ,步长为0.5Hz的R 和ϕ的值。

设定最大频率 m ax 15.0f clear EN TER →→→;设定最小频率 m in 0.1f clear EN TER →→→;设定步长(0.5Hz )/0.5Lin F step clear EN TER →∆→→→; 设定前面板状态 sw eep Lin →∆,其他与(2)同。

信号与系统实验总结(2000字)

信号与系统实验总结(2000字)

信号与系统实验总结(2000字)信号与系统实验心得体会为期四周的信号与系统测试实验结束了,细细品味起来每一次在顺利完成实验任务的同时,又都伴随着开心与愉快的心情,赵老师的幽默给整个原本会乏味的实验课带来了许多生机与欢乐。

现对这四周的实验做一下总结: 统观来说,信号与系统是通信工程、电子工程、自动控制、空间技术等专业的一门重要的基础课,由于该课程核心的基本概念、基本理论和分析方法都很重要,为了使我们加深理解深入掌握基本理论和分析方法以及使抽象的概念和理论形象化,具体化,在信号与系统课开设不久后又开设了信号与系统实验课。

这四次实验的实验目的及具体内容如下:实验一:信号的分类与观察。

本次实验的目的是观察常用信号的波形特点及产生方法,学会使用示波器对常用信号波形的参数的测量。

实验过程中我们对正弦信号、指数信号及指数衰减信号进行了观察和测量。

示波器是测量信号参数的重要元件,之前各种试验中我们对示波器也有一定接触,而这次赵老师详细的讲解使我更清楚的掌握了示波器的使用,同时也为以后其它工具的使用有了理论基础。

第一次做信号与系统的实验,让我明白了实验前的准备工作相当重要,预习是必不可少的,虽然我们都要求写预习报告,但是预习的目的并不简简单单是完成报告,真正的良好预习效果是让我们明确实验目的与实验内容,掌握实验步骤来达到在实验中得心应手的目的。

而实验后的数据处理也并不是一件很轻松地事,通过实际的实验结果与理论值相比较,误差分析与实验总结,让我们及时明白实验中可能出现的错误以及减小实验误差的措施,减小了以后实验出现差错的可能性,提高了实验效率。

第一次实验结束后,我比较形象直观的观察到了几种常见波形的特点并了解了计算它表达式的方法。

更重要的是,知道了信号与系统实验的实验过程,为接下来的几次实验积累了更多经验。

实验二:非正弦周期信号的频谱分析。

这次实验的目的是掌握频谱仪的基本工作原理与正确使用的方法;掌握非正弦周期信号的测试方法;观察非正弦周期信号频谱的离散型、谐波性、收敛性。

(实验二)无源和有源滤波器

(实验二)无源和有源滤波器

(实验二)无源和有源滤波器实验目的:1.了解无源滤波器和有源滤波器的基本原理2.熟练掌握RC、RL、RCL、LPF、HPF、BPF、BSF等滤波器的设计与实现3.通过实验掌握电容和电感的电气特性及其滤波器的设计和制作实验仪器:示波器、信号发生器、电容测试仪、电阻测试仪、电感测试仪实验内容:一、无源滤波器1.RC滤波器(1)低通滤波器:从信号发生器输出的正弦波接到电路的输入端,同时连接示波器探头,把探头分别接到电容器C和电阻R两端,调整信号发生器的频率,观察示波器上正弦波的振幅与频率变化,得到RC滤波器的减频特性曲线。

(2)高通滤波器:同样连接电路并调整信号发生器频率,示波器上高通滤波器输出电压的振幅随着频率的变化而发生变化,得到高通滤波器的增频特性曲线。

2.RL滤波器仿照RC滤波器的示范,再借助于电感L,设计和实现一个低通RL滤波器,同样测试示波器的输出特性曲线。

3.RCL滤波器结合RC和RL滤波器的经验,接入电容C和电感L以及电阻R,基本组合形式有π型/△型/串联型/并联型。

并分别实现和调试它们的滤波器特性。

二、有源滤波器1.甲类和乙类滤波器分别设计和实现比较典型的甲类和乙类无源滤波器。

将信号发生器的正弦波接入有源滤波器的输入端,选择并连接合适的电容和电阻,再选择一个适当的放大器反馈电路,经过放大器的功率放大和滤波器的频谱滤波,输出筛选后的高清正弦波到示波器。

2.低通/高通/带通/带阻滤波器设计从理论上推导出差分放大器电路的频率响应函数,根据函数形式选择合适的电容和电阻,设计并制作差分放大器,最后通过实测数据检验其频率响应的有效性和准确性。

3.低通/高通/带通/带阻滤波器实验在购买好的AD623差分放大器芯片的基础上,结合理论计算和模拟仿真结果,选择合适的电容和电阻参数,将芯片安装在面包板上,经过电阻电容网络的选取和调试,制作出低通/高通/带通/带阻滤波器,逐一测试滤波器的性质和曲线特性。

通信原理实验报告(终)

通信原理实验报告(终)

通信原理实验报告班级: 12050641姓名:谢昌辉学号: 1205064135实验一 抽样定理实验一、实验目的1、 了解抽样定理在通信系统中的重要性。

2、 掌握自然抽样及平顶抽样的实现方法。

3、 理解低通采样定理的原理。

4、 理解实际的抽样系统。

5、 理解低通滤波器的幅频特性对抽样信号恢复的影响。

6、 理解低通滤波器的相频特性对抽样信号恢复的影响。

7、 理解带通采样定理的原理。

二、实验器材1、 主控&信号源、3号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图保持电路S1信号源A-outmusic抽样电路被抽样信号抽样脉冲平顶抽样自然抽样抽样输出抗混叠滤波器LPFLPF-INLPF-OUTFPGA 数字滤波FIR/IIR译码输出编码输入3# 信源编译码模块图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz 的巴特沃斯低通滤波器)或FPGA 数字滤波器(有FIR 、IIR 两种)。

反sinc 滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。

在做本实验时与信源编译码的内容没有联系。

四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

实验二二阶系统的阶跃响应及频率特性

实验二二阶系统的阶跃响应及频率特性

实验二二阶系统的阶跃响应及频率特性实验简介:通过本实验学生能够学习二阶系统的频率响应和幅频特性的测试方法,对实验装置和仪器的调试操作,具备对实验数据、结果的处理及其与理论计算分析比较的能力。

适用课程:控制工程基础实验目的:A 学习运算放大器在控制工程中的应用及传递函数的求取。

B 学习二阶系统阶跃响应曲线的实验测试方法。

C 研究二阶系统的两个重要参数ζ、ωn对阶跃瞬态响应指标的影响。

D 学习频率特性的实验测试方法。

E 掌握根据频率响应实验结果绘制Bode图的方法。

F 根据实验结果所绘制的Bode图,分析二阶系统的主要动态特性(MP ,ts)。

面向专业:机械类实验性质:综合性/必做知 识 点:A《模拟电子技术》课程中运算放大器的相关知识;B《数字电子技术》课程中采样及采样定理的相关知识;C《机械工程控制基础》课程中,传递函数,时域响应, 频率响应三章的内容。

学 时 数:2设备仪器:XMN-2自动控制原理学习机,CAE-98型微机接口卡,计算机辅助实验系统2.0软件,万用表。

材料消耗:运算放大器,电阻,电容,插接线。

要 求:实验前认真预习实验指导书的实验内容,完成下述项目, 做实验时交于指导教师检查并与实验报告一起记入实验成绩。

B推导图2所示积分放大器的输出输入时域关系和传递函数。

C 推导图3所示加法和积分放大器的输出输入时域关系(两输入单输出)和S<1>.写出op1,op2,op9,0p6对应的微分方程组(4个方程)。

<2>.画出系统方框图。

<3>.用方框图化简或方程组联立消元的方法求取实验电路所示系统的传递函数,写出求解过程。

和ζ。

<4>.求取该系统的ωn实验地点:教一楼327室实验照片:实验装置及仪器。

实验三、滤波器的频响特性测定实验报告(报告人 09光信2)

实验三、滤波器的频响特性测定实验报告(报告人 09光信2)

实验三、滤波器的频响特性测定实验报告一、 实验目的1) 了解RC 无源和有源滤波器的种类、基本结构及其特性 2) 对比研究无源和有源滤波器的滤波特性 3) 学会列写无源和有源滤波器网络函数的方法二、 实验原理 (1)滤波器是对输入信号的频率具有选择性的一个双口网络,它允许某些基本频率(通常是某个频带范围)的信号通过,而其他频率的信号受到衰减或抑制,这些网络可以是由RLC 原件或RC 原件构成的无源滤波器,也可以是由RC 元件和有源器件构成的有源滤波器。

(2)根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分 成低通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )和带阻滤波器(BEF )四种。

把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。

而通带与阻带的分界点的频率c f 称为截止频率或称转折频率。

图2-6-1中的Aup 为通带的电压放大倍数,cf 为截止频率,0f 为中心频率,L f 和H f 分别为低端和高端截止频率。

其中,低通滤波器的通频带为BW=(0~c w )=2∏(0~c f )。

高通滤波器的通频带为:BW=(c w ~∞)=2∏(c f ~∞)。

高通滤波器的通频带为: BW=H w - L w =2∏(H f -L f )。

带通滤波器的通频带为:BW=2∏(0~Lf )∪2∏(Hf ~∞)。

图2-6-1 各种滤波器的理想幅频特性(3)滤波器的频响特性定义如图2-6-2所示。

滤波器的频响特性H (jw ),又称为传递函数或系统函数,它全面反映了滤波器的幅频和相频特性;.222.111()()()U H jw A w w U UUϕϕϕ∠===∠∠式中,2211()m mU U A w U U ==为滤波器的幅频特性(又称为转移电压比;1()w ϕϕϕϕ=-为滤波器的相频特性。

可以通过实验方法来测量滤波器的上述幅频特性()A w 。

频率特性的测量实验报告

频率特性的测量实验报告

课程名称: 控制理论乙 指导成绩:实验名称: 频率特性的测量 实验类型:同组学生__ 一、实验目的和要求〔必填〕二、实验内容和原理〔必填〕 三、主要仪器设备〔必填〕四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析〔必填〕 七、讨论、心得 一、实验目的和要求1.掌握用李沙育图形法,测量各典型环节的频率特性;2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数. 二、实验内容和原理1.实验内容〔1〕R-C 网络的频率特性.图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性. 〔2〕闭环频率特性的测试被测的二阶系统如图5-3所示,图5-4为它的模拟电路图. 取参考值051R K =,1R 接470K 的电位器,2510R K =,3200R K =2.实验原理对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()sin m X t X t ω=,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变.输出信号为其中()mmY G j X ω=,()arg ()G j ϕωω= 只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比()G j ω和它们的相位差()ϕω.不断改变()x t 的频率,就可测得被测环节〔系统〕的幅频特性和相频特性. 本实验采用李沙育图形法,图5-1为测试的方框图在表〔1〕中列出了超前于滞后时相位的计算公式和光点的转向.表中 02Y 为椭圆与Y 轴交点之间的长度,02X 为椭圆与X 轴交点之间的距离,m X 和m Y 分别为()X t 和()Y t 的幅值.三、主要仪器设备1.控制理论电子模拟实验箱一台; 2.慢扫描示波器一台;3. 任意函数信号发生器一台; 4.万用表一只. 四、操作方法和实验步骤 1.实验一〔1〕根据连接图,将导线连接好〔2〕由于示波器的CH1已经与函数发生器的正极相连,所以接下来就要将CH2接在串联电阻电容上,将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地.〔3〕调整适当的扫描时间,将函数发生器的幅值定为5V 不变,然后摁下扫描时间框中的menu,点击从Y-t变为X-Y显示.〔4〕改变函数发生器的频率,记录数据与波形.2.实验二:基本与实验一的实验步骤相同.五、实验数据记录和处理1.实验结果分析〔1〕实验一根据测得的数据,并经过一系列计算之后,得到的实验一幅频相频特性曲线如图所示:实验一幅频特性曲线〔实验〕实验一相频特性曲线〔实验〕通过运用公式理论计算得到的曲线如下图所示:实验一幅频特性曲线〔计算〕实验一相频特性曲线〔计算〕通过matlab仿真所得实验一中的幅频相频特性曲线如下图所示:由此可以看出,所测并计算之后得到的幅频特性曲线与相频特性曲线和公式计算结果所得到的曲线非常相近,并且与通过matlab仿真得到的波特图之间的差距很小,但仍然存在一定误差.(2)实验二根据测得的实验结果,在matlab上绘制幅频特性曲线图如下图所示:实验二幅频特性曲线〔实验〕实验二相频特性曲线〔实验〕根据计算结果,在matlab上绘制幅频曲线如下图所示实验二幅频特性曲线〔计算〕实验二相频特性曲线〔计算〕通过matlab程序仿真得到的幅频与相频曲线如下图所示:由上图分析可以得到,实验所测得到的幅频特性曲线与计算结果得到的曲线几乎一样,并且与matlab仿真的波特图非常相近.但是实验所测得到的相频特性曲线虽然和计算结果得到的曲线较为温和,但是却与matlab 仿真得到的相频曲线有着非常大的差别.这一点的主要原因为:...2.实验误差分析本次实验的误差相对于其他实验的误差而言比较大,主要原因有以下几点:(1)示波器读取幅值的时候,由于是用光标测量,观测到的误差相对来说非常大,尤其是当李萨如图像与x 轴的交点接近于零的时候,示波器的光标测量读数就非常困难了.(2)在调整函数发生器的频率过程中,由于示波器的李萨如图像模型对于横坐标扫描时间的要求,导致当频率增加的时候,可观测的点寥寥无几.只能用display里面的连续记录显示功能来记录波形.这样记录下来的波形,由于本身点走动的时候带有一定厚度,导致记录波形的宽度非常大,并且亮度基本一致,无法判断曲线边界的具体值,造成的误差也是非常大的.(3)在绘制曲线过程中,由于测量数据点有限,而造成绘制曲线与计算值存在一定误差.(4)本次实验的计算量非常繁琐且冗杂,对于实验误差的影响也是非常大的.(5)电阻和电容等非理想元件造成的误差3.思考题(1)在实验中如何选择输入的正弦信号的幅值?解:先将频率调到很大,再是信号幅值应该调节信号发生器的信号增益按钮,令示波器显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真.(2)测试频率特性时,示波器Y轴输入开关为什么选择直流?便于读取数据,使测量结果更加准确.(3)测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?若将输入和输出信号所在的坐标轴变换,则判断超前和滞后的办法也要反过来,即顺时针为滞后,逆时针为超前.七、讨论、心得1.在实验过程中,一定要耐心仔细,因为可能会出现李萨如图像与光轴的两个交点非常接近于原点,由于曲线本身的宽度,造成的视觉误差会非常大.所以在用光标测量数据的时候,一定要非常仔细耐心,尽可能让误差降到最小.2.在实验过程中,随着频率的增加,李萨如图像的显示光点也会随之减少,这个时候一定要适当调节扫描时间,尽量往小调,让扫描光点增加,形成比较完整的曲线,以便于测量与观察.3.在做第二个实验的时候,即使扫描时间已经调到了最小,仍然无法看见完整的曲线,这时,需要摁下示波器上display按钮,然后点击是否记录轨迹,然后就可以让点完整清晰地将曲线还原回来,从而减小误差.4.在计算过程中,注意认真仔细.计算量繁杂,容易导致计算错误,可以多设几个变量来解决.5.在绘制曲线过程中,如果直接用角速度w的话,有可能会出现小频率的点比较密集,大频率的点比较疏松,得到的曲线误差比较大,并且并不美观.当数据相差较大时,我采用了将横坐标求对数之后,再将新得到的数据作为横坐标绘制图像,则实验图像变得非常美观和清晰,并且具有说服力.6.通过本次实验,我了解到了频率特性测量的方法以与怎样求幅频特性|G<w>|和相频特性φ<w>的值,并且通过将自己实验所得曲线、实际计算曲线与matlab仿真之间的对比,将理论、实践、仿真融为一体,使我更加加深了频率响应曲线的认识.这样的方法,在以后的学习过程中,会应用的更加广泛,并且具有非常深远的意义.。

模拟电子技术试验

模拟电子技术试验


V0 RF
AVf= =G
Vi R1
当 RF =R1 时,运算电路的输出电压等于输入电压的负值,称为反相器.
由于反相输入端具有 “虚地”的特点,故其共模输入电压等于零.反相比例运算电路的
电压传输特性如图 2
G2

2 所示.其输出电压的最大不失真峰G峰值为
VoPGP=2VoM
式中,VoM 为受电源电压限制的运放最大输出电压,通常 VoM 比电源电压 VCC 小 1~2V.
各控制件的名称及其作用.
(
2)掌握常用电子仪器的使用方法.
1)电源的使用 (
DF1731S 型)
① 将二路可调电源独立稳压输出,调节一路输出电压为 10V,另一路为 15V.
② 将稳压电源输出接为如 图 2



1 所 示 的 正 负 电 源 形 式. 输 出 直 流
电压为 ±15V.
③ 将两路可调电源串联使用,调节输出稳压值为 48V.
运放本身失调的影响,保证在集成运放闭环工作后,输入为零时输出为零,必须考虑调零问
题;为了消除输入偏置电流的影响,通常让集成运放两个输入端对地直流电阻相等,以确保
其处于平衡对称的工作状态.

反相输入比例运算电路
电路如图 2
G2

1 所示.信号 Vi 由反相端输入,所以 Vo 与 Vi 相位相反.输出电压经 RF
方面的应用.
(
2)掌握反相比例运算电路,同相比例运算电路、加法和减法运算及单电源交流放大等
电路的设计方法.
(
3)学会测试上述各运算电路的工作波形及电压传输特性.
二、实验原理
集成运算放大器是高增益的直流放大器.在其输出端和输入端之间接入不同的反馈网络,就

实验一:用频谱分析仪测量滤波器的特性参数

实验一:用频谱分析仪测量滤波器的特性参数

实验一用频谱分析仪测量滤波器的特性参数1、实验设置的意义广义而言,凡是有能力进行信号处理的装置都可以称为滤波器。

狭义而言,射频滤波器是用来分离不同频率RF信号的一种器件。

它的主要作用是抑制不需要的信号,使其不能通过滤波器,而只让需要的信号通过。

实际上很多射频元件都具有一定的频率响应特性,都可以用滤波器的理论进行分析。

利用频谱分析仪测试时,可以不用考虑滤波器的内部结构,而将它看作一个二端口网络来测试它的各个性能。

显然这种方法不但特别方便、准确,而且也能用于其它具有一定的频率响应特性的射频元件和网络。

通过这种具有普遍性的实验方法的学习和实践,可把书本的理论知识与工程实际相结合,加深对理论知识的理解,对培养实践动手能力、观察发现问题和解决问题的能力以及培养学生工程研究能力具有一定的现实意义。

2 实验目的2.1、学会作用频谱仪2.2、了解不同类型的滤波器和它的频谱特性。

2.3、掌握滤波器测试的原理。

2.4、学会使用频谱仪来完成滤波器的测试。

2.5、学会使用频谱仪的测试结果提取滤波器主要参数。

3、实验原理滤波器按频率通带范围分类可分为低通、高通、带通、带阻、全通五个类别,而梳形滤波器属于带通和带阻滤波器,因为它有周期性的通带和阻带。

如果按滤波器在射频系统中的用途分类,主要有发射滤波器、接收滤波器和带阻滤波器等。

发射滤波器主要用于对发射部分所生成的带外噪声进行限制。

放大器和(或)发射系统所生成的宽带噪声如果未得到抑制,经常会对接收系统造成干扰或致使其灵敏度降低。

另外,发射噪声可能会干扰同址系统或在发射系统的直接路径(视距)中的其他系统的其他业务。

发射滤波器(不包括连接器、电缆或相关的路径内损耗)的插入损耗直接对天线处的射频总功率构成影响。

因此,发射滤波器插入损耗对天线处能够得到的辐射射频功率极其重要。

因为发射滤波器的插入损耗直接影响天线处的射频功率,也就直接影响发射系统的效率。

对于很高功率的系统,较高的发射滤波器损耗会转化为相当高的能量消耗。

matlab实验报告

matlab实验报告

南昌大学信息工程学院信号与系统实验报告班级:通信122班姓名:***学号:**********软件实验部分:1.用matlab实现π的求解解:相应程序如下:for n=1:10000sum=qiuhe(n);pai(1,n)=sqrt(6*sum);endt=[1:10000];plot(t,pai,'r')调用函数sum如下function sum=qiuhe(m);sum=0;for n=1:ma=1/(n^2);sum=sum+a;end2.用simulink实现冲激响应观察波形如图所示:3.1.已知某系统微分方程为r’’(t)+r’(t)+r(t)=e’(t)+e(t)分别用两种方法计算其冲激响应h(t)和阶跃响应g(t),对比理论结果进行验证。

解:a=[1,1,1];b=[1,1];sys=tf(b,a); %定义LTI系统模型t=[0:0.01:10]; %生成0到10s,间隔0.01s的抽样时间figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t)); %产生阶跃信号x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t); %仿真x_step激励sys的响应并绘图subplot(2,2,3);[h1,t1]=impulse(sys,t);plot(t1,h1,'k');title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4); %在右下角的子图中用第二种方法绘制冲激响应x_delta=zeros(size(t)); %产生冲激信号x_delta(t==0)=100; %保证数值积分为1[y1,t]=lsim(sys,x_delta,t); %仿真x_delta激励sys的响应并保存y2=y1'-x_delta;plot(t,y2,'k');title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');结论:通过比较发现两种方法求解冲击响应和阶跃响应的结果是一致的3.2. 请编写一个自定义函数【F,tF】=int1(f,tf,a).实现数值积分,其中f和tf 分别用列矢量表示待积函数的抽样值和抽样时间,a表示积分的其实时间,F和tF分别表示积分结果的抽样值和抽样时间。

实验二 IIR数字滤波器设计

实验二  IIR数字滤波器设计

实验二 IIR 数字滤波器设计一.实验目的1.掌握双线性变换法设计IIR 数字滤波器的原理及具体设计方法,熟悉用双线性变换法设计低通、带通和高通IIR 数字滤波器的计算机编程。

2.观察用双线性变换法设计的数字滤波器的频域特性,了解双线性变换法的特点。

3.熟悉用双线性变换法设计数字Butterworth 和Chebyshev 滤波器的全过程。

4. 通过观察对实际心电图信号的滤波作用,获得数字滤波工程应用的认识。

二.实验原理与方法1. IIR 数字滤波器可以借助于模拟滤波器设计,即先设计一个适于技术要求的原型模拟滤波器,再按一定的准则用映射的方法将模拟原型的传递函数Ha(s)变换为数字滤波器的系统函数H(z),从而完成数字滤波器的设计任务。

这是一类简单而有效的方法,因为模拟滤波器理论已经相当成熟,有大量公式图表可以利用。

2. 双线性变换法的设计准则是使数字滤波器的频率响应与参考模拟滤波器的频率响应相似。

由双线性变换式 1111z s z ---=+ 建立s 平面与z 平面的单值映射关系,频率变换关系为()2tg ωΩ=。

s 平面的频率轴j Ω单值对应于z 平面上的单位圆j z e ω=,因此不存在频率混叠问题。

由于Ω与ω间的非线性关系,使各个临界频率位置发生非线性畸变,可以通过预畸变校正。

用双线性变换法设计数字滤波器时,先将数字滤波器的各临界频率经过频率预畸变求得模拟原型滤波器的各临界频率,设计模拟原型传递函数,通过双线性变换,正好将这些频率点映射到所需位置上。

双线性变换法设计数字低通滤波器步骤如下:(1)确定数字滤波器的性能指标,包括:通带、阻带临界频率,通带内最大衰减,阻带内最小衰减,采样周期 T 。

(2)确定相应的数字频率。

(3)计算预畸的模拟低通原型临界频率。

(4)计算低通原型阶数N 和3dB 频率ΩC ,求得传递函数Ha(s)。

(5)用低通变换公式1111z s z---=+代入Ha(s),求得数字滤波器系统函数H(z)。

模拟滤波器实验报告

模拟滤波器实验报告

模拟滤波器实验报告模拟滤波器实验报告引言:滤波器是电子工程中常用的设备,用于对信号进行处理和改变。

模拟滤波器是一种将模拟信号进行滤波处理的装置,通过选择性地传递或阻断特定频率的信号,实现对信号的频率分离和滤波。

本文将介绍一次模拟滤波器实验的过程和结果,并探讨滤波器在实际应用中的重要性。

实验目的:本次实验的目的是通过搭建模拟滤波器电路,观察和分析滤波器对不同频率信号的响应特性。

通过实验,我们可以了解滤波器的工作原理,掌握滤波器的设计和调试技巧,并了解滤波器在实际应用中的重要性。

实验步骤:1. 准备工作:收集所需的实验器材和元件,包括电压源、电阻、电容、运放等。

确保实验环境安全,并检查实验仪器是否正常工作。

2. 搭建电路:根据实验要求,按照电路图连接电阻、电容和运放等元件。

确保电路连接正确无误。

3. 调试电路:接通电源,调整电压源的输出电压,并观察电路的工作状态。

根据实验要求,调整电容和电阻的数值,以改变滤波器的截止频率。

4. 测试信号:将不同频率的信号输入滤波器电路,观察输出信号的变化。

记录并分析实验数据。

5. 结果分析:根据实验数据,绘制滤波器的频率响应曲线,并分析滤波器对不同频率信号的响应特性。

实验结果:经过实验,我们得到了滤波器的频率响应曲线,可以清晰地观察到滤波器对不同频率信号的响应特性。

在低频段,滤波器的增益较高,可以有效地传递低频信号;而在高频段,滤波器的增益逐渐降低,可以有效地阻断高频信号。

通过调整电容和电阻的数值,我们可以改变滤波器的截止频率,实现对特定频率信号的选择性传递或阻断。

讨论与应用:模拟滤波器在电子工程中有着广泛的应用。

例如,在音频处理中,滤波器可以用于去除噪音和杂音,提高音质;在通信系统中,滤波器可以用于信号调制和解调,实现信号的传输和接收;在生物医学工程中,滤波器可以用于生理信号的处理和分析,提取有用的信息。

滤波器的设计和调试是电子工程师必备的技能之一,掌握滤波器的原理和应用,对于实际工程项目的完成具有重要意义。

低通滤波器仿真实验

低通滤波器仿真实验

图 6-17 系统函数模块的参数设置Ⅰ
图 6-18 系统函数模块的参数设置Ⅱ
⑵重复实验内容 1 中的步骤⑵,并将系统函数的参数填入表 6-3 对应的栏目中。
表 6-3

R ()
f c ( Hz )
B f ( Hz)
A1
A0
B1
B0
10 100 1000
四、实验报告 1.粗略画出实验内容 1 中步骤⑴的幅频特性曲线,标出截止频率点。 2.写出幅频特性曲线、截止频率、通频带宽度与电路参数或系统参数的关系。 五、预习要求 1.预习 RC 电路频率特性的特点、截止频率、频带宽度等概念。 2.预习系统模拟及系统函数等概念。 3.预习实验内容,熟悉实验中所使用的测量仪器和控制器件的使用方法。
图 6-2 所示。
图 6-4 一阶 RC 低通滤波电路
当 0 时, H ( ) 1 , ( ) 0 ;当
时, H ( ) 0 , ( ) 90 。
1 1 1 时, H ( ) , ( ) 45 ;当 RC 2
H ( ) H ( ) e j ( )
其中:模 H ( ) 随 变化的规律称为系统的幅频特性;辐角 ( ) 随 变化的规律称为系统 的相频特性。
28
频率特性不仅可用函数表达式表示, 还可用随频率 f (或 )变化的曲线来描述, 如图 6-2 所示。
(Gain)
幅频特性
V1 ( s ) H (s)
1 RC s 1 RC
V2 (s)
图 6-7 一阶系统模拟框图
图 6-8
一阶系统函数模拟框图
31
三、实验内容与方法 1.RC 低通滤波电路 ⑴按图 6-9 连接电路并设置参数;用波特仪观察频率特性曲线,并测量截止频率 f c 。 ⑵改变电阻 R ,观察频率特性曲线的变化,并将测量结果填入表 6-1 对应的栏目中。

实验二1实验二模拟滤波器频率特性测试

实验二1实验二模拟滤波器频率特性测试

实验二模拟滤波器频率特性测试一、实验目的1、掌握低通无源滤波器的设计;2、学会将无源低通滤波器向带通、高通滤波器的转换;3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性;二、预备知识1、学习“模拟滤波器的逼近”;2、系统函数的展开方法;3、低通滤波器的结构与转换方法;预习报告中回答以下问题:1、实际中常用的滤波器电路类型有哪些,有何特点?2、有源滤波器、无源滤波器的概念,优缺点和各自的应用场合?3、绘出低通、带通、带阻、高通四种滤波器的理想频响曲线及实际频响曲线,两者有何根本区别,产生原因?三、实验原理模拟滤波器根据其通带的特征可分为:(1)低通滤波器:允许低频信号通过,将高频信号衰减;(2)高通滤波器:允许高频信号通过,将低频信号衰减;(3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减;(4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减;各种滤波器的频响特性图:图2一1低通滤波器图2一2高通滤波器图2一3带通滤波器 图2一4带阻滤波器在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。

1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。

用矢量形式表示:()()()j H j H j e φωωω=其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。

2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。

3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2Tτφωπ=当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二模拟滤波器频率特性测试
一、实验目的
1、掌握低通无源滤波器的设计;
2、学会将无源低通滤波器向带通、高通滤波器的转换;
3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性;
二、预备知识
1、学习“模拟滤波器的逼近”;
2、系统函数的展开方法;
3、低通滤波器的结构与转换方法;
预习报告中回答以下问题:
1、实际中常用的滤波器电路类型有哪些,有何特点?
2、有源滤波器、无源滤波器的概念,优缺点和各自的应用场合?
3、绘出低通、带通、带阻、高通四种滤波器的理想频响曲线及实际频响曲线,两者
有何根本区别,产生原因?
三、实验原理
模拟滤波器根据其通带的特征可分为:
(1)低通滤波器:允许低频信号通过,将高频信号衰减;
(2)高通滤波器:允许高频信号通过,将低频信号衰减;
(3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减;
(4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减;
各种滤波器的频响特性图:
图2一1低通滤波器图2一2高通滤波器
图2一3带通滤波器 图2一4带阻滤波器
在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。

1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。

用矢量形式表示:
()()()j H j H j e φωωω=
其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。

2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。

3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2T
τ
φωπ
=
当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。

四、实验原理图
图2一5实验电路
图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。

B 函数发
CH1



R R
R/2
C C 2C
INPUT
A IN1 IN2
OUT1 OUT2
GND GND
五、实验内容及步骤:
将信号源CH1的信号波形调为正弦波,信号的幅度调为Vpp=10V 。

1、RC高通滤波器的频响特性的测量:
将信号源的输出端(A)接实验板的IN1端,滤波后的信号OUT1接示波器的输入(B) 。

根据被测电路的参数及系统的频特性,将输入信号的频率从低到高逐次改变十次以上(幅度保持Vipp=10v) ,逐个测量输出信号的峰峰值大小(Vopp)及输出信号与输入信号的相位差,并将测量数据填入表一:
表一
Vi (V ) 10 10 10 10 10
10 10
10 10
10
10
10
10
10
10
f( Hz ) 15
20
30
35
40
45
50
55
10
00
15
00
20
00
25
00
30
00
35
00
40
00
Vo (v ) 1.
44
1.
2
1.
26
2.
96
3.
28
3.
60
4 4.
24
6.
60
7.
44
8.
00
8.
40
8.
72
8.
76
8.
88
φ(ω) 0.
05
02
4
0.
03
76
8
0.
01
88
4
0.
01
63
28
0.
01
50
72
0.
01
25
6
0.
01
13
04
0.
01
00
48
0.
00
37
68
0.
00
18
84
0.
00
11
30
4
0.
00
08
79
2
0.
00
05
02
4
0.
00
04
39
6
0.
00
03
76
8
2.RC低通滤波器的频响特性的测量:
将信号源的输出(A)接实验板的IN2,滤波后的输出信号OUT2接示波器的输入(B) 。

根据被测电路的参数及系统的幅频特性,将输入信号的频率从低到高逐次改变十次以上(幅度保持Vipp=10v) ,逐个测量输出信号的峰峰值大小(Vopp) 及Φ(ω),并将测量数据填入表二:
表二
Vi(V
)
10 10 10 10 10 10 10 10 10 10 10
f(Hz
)
500 700 1000 1250 1500 1750 2000 2500 3000 3500 4000
Vo(v
)
5.44 4.40 3.36 2.96 2.56 3.32 2.08 1.68 1.52 1.28 1.20
φ(ω) 0.01
0048
0.00
8164
0.00
6908
0.00
5338
0.00
471
0.00
4082
0.00
3768
0.00
3014
4
0.00
2763
2
0.00
2512
0.00
2260
8
3.双TRC带阻滤波器的频响特性的测量:
将实验板上的两输入端IN1与IN2短接,输出端OUT1与OUT2短接;并将信号源的输出(A)接实验板输入(IN1 )或(IN2 ),滤波后的输出OUT1或OUT2接示波器的输入(B) 。

根据
被测电路的参数及系统的幅频特性,将输入信号的频率从低到高逐次改变二十次以上(幅度保持Vipp=10v) ,逐个测量输出信号的峰峰值大小(Vopp)及Φ(ω) ,并将测量数据填入表三:
表三
Vi(V
)
10 10 10 10 10 10 10 10 10 10
10
f(Hz
)
30 50 100 150 200 250 350 450 500 750 1000
Vo(v
)
8.48 8.48 7.44 5.92 4.88 3.84 2.16 2 0.66 1.78 3.24
φ(ω) 0.03
768
0.03
454
0.03
14
0.02
826
0.02
512
0.02
1352
0.01
7584
0.01
884
0.01
1932
0.00
7536
0.00
5338
Vi(V )10
10 10 10 10 10 10 10 10 10
f(Hz )1250
1500 1750 2000 2250 2500 3000 3500 4000 4500
Vo(v )4.24
5.12 5,76
6.32 6.72
7.04 7.52 7.84
8.08 8.16
φ(ω) 0.00
4396
0.00
2888
8
0.00
2512
0.00
1884
0.00
1758
4
0.00
1381
6
0.00
1067
6
0.00
0628
0.00
0565
2
0.00
0439
6
六、实验仪器:
函数发生器一台,双踪示波器一台,实验板一块
七、数据处理:
1、整理实验数据,并以㏒f为横坐标,Vo/Vi为纵坐标,绘制三种滤波器的幅频特性曲线;以㏒f为横坐标,φ(ω)为纵坐标,绘制三种滤波器的相频特性曲线;并将测得的各滤波器的截止频率与理论值进行比较。

相关文档
最新文档