2019版高考数学一轮复习第4章平面向量4.2平面向量基本定理及坐标表示课后作业理
高三理科数学第一轮复习§4.2:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
点拨
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
解析
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向量的基本定理及坐标表示
第四章:平面向量与解三角形 §4.1:平面向4.1:平面向量的基本定理及坐标表示
第四章 第二节 平面向量的基本定理及坐标表示
个正交基底{e1,e2},e1,e2分别是与x轴和y轴同方向
的 单位向量,这个基底也叫做直角坐标系xOy的基底.
返回
在坐标平面xOy内,任作一向量 AB =a,由平面向量基 本定理知,存在唯一的有序实数对(a ,a )使得 a=a1e1+
1 2
a2e2,(a1,a2) 就是向量a在基底{e1,e2}下的坐标,即a = (a1,a2),显然,0= (0,0) ,e1=(1,0),e2= (0,1) . (2)在直角坐标系中,一点A的位置被点A的位置向量 OA 所唯一确定.设A(x,y),则 OA =xe1+ ye2=(x,y) .
第 四 章 平 面 向 量、 数 系 的 扩 充 与 复 数 的 引 入
第二 节 平 面 向 量 的 基 本 定 理 及 坐 标 表示
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
提 能 力
返回
[备考方向要明了]
考 什 么 1.了解平面向量基本定理及其意义. 2.掌握平面向量的正交分解及坐标表示.
1 n ∴m= ,n=-1.∴m=-4. 4
答案:-4
返回
返回
1.平面向量基本定理的理解 (1)平面内任意两个不共线的向量都可以作为这个平面的 基底.单位正交基底是进行向量运算最简单的一组基 底.
(2)平面内任一向量都可以表示为给定基底的线性组合,
并且表示方法是唯一的.但不同的基底表示形式是 不同的. (3)用基底表示向量的实质是向量的线性运算.
3.会用坐标表示平面向量的加法、减法与数乘运算.
4.理解用坐标表示的平面向量共线的条件.
返回
怎 么 考 1.平面向量基本定理的应用及坐标表示下向量共线条件的 应用是重点. 2.向量的坐标运算可能单独命题,更多的是与其他知识点
高考理科第一轮复习课件(4.2平面向量的坐标运算)
(λ x,λ y) 设a=(x,y),λ ∈R,则λ a=____________
标
(x2-x1,y2-y1) _______________
4.向量平行的坐标表示 设a,b是非零向量且a=(x1,y1),b=(x2,y2),y1,y2≠0,则 x1y2-x2y1=0 a∥b⇔__________. 定理1:若两个向量(与坐标轴不平行)平行,则它们相应的 成比例 坐标_______.
【互动探究】在本例题(2)图中,连接CD交AM于点P,若
AP AM,CP CD 求λ ,μ 的值. ,
【解析】CD AD AC 2 AB AC 2 a b,
3 3 1 1 AM (AB AC) (a b). 2 2 AC AP PC AP CP AM CD
则向量 MN =______. CM 3CA CN 2CB , ,
【思路点拨】(1)利用向量坐标运算的法则求解即可.
(2)根据向量的共线及向量坐标运算的法则逐一验证即可.
(3)利用平面向量的基本概念及其坐标表示求解.
【规范解答】(1)选B.设b=(x,y),则2b-a=(2x-3,2y-3)= (-1,1), 故
)
(4)平面向量的基底不唯一,只要基底确定后,平面内的任 何一个向量都可被这组基底唯一表示.( )
(5)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示 成 x1 = y1 . (
x2 y2
)
【解析】(1)错误.只有不共线的两个向量才能作为平面的一 组基底.
高三数学大一轮复习 平面向量的基本定理及坐标表示学
学案26 平面向量的基本定理及坐标表示导学目标: 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.自主梳理1.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个________向量,那么对于这一平面内的任意向量a ,__________一对实数λ1,λ2,使a =______________.我们把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组________. 2.夹角(1)已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的________.(2)向量夹角θ的范围是________,a 与b 同向时,夹角θ=____;a 与b 反向时,夹角θ=____.(3)如果向量a 与b 的夹角是________,我们说a 与b 垂直,记作________. 3.把一个向量分解为两个____________的向量,叫做把向量正交分解.4.在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使a =x i +y j ,我们把有序数对______叫做向量a 的________,记作a =________,其中x 叫a 在________上的坐标,y 叫a 在________上的坐标.5.平面向量的坐标运算 (1)已知向量a =(x 1,y 1),b =(x 2,y 2)和实数λ,那么a +b =________________________,a -b =________________________,λa =________________.(2)已知A (11x y ,),B (22x y ,),则AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),即一个向量的坐标等于表示此向量的有向线段的__________的坐标减去__________的坐标.6.若a =(x 1,y 1),b =(x 2,y 2) (b ≠0),则a ∥b 的充要条件是________________________. 7.(1)P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2的中点P 的坐标为________________________________.(2)P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则△P 1P 2P 3的重心P 的坐标为_______________. 自我检测1.(2010·福建)若向量a =(x,3)(x ∈R ),则“x =4”是“|a |=5”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件2.设a =⎝ ⎛⎭⎪⎫32,sin α,b =⎝⎛⎭⎪⎫cos α,13,且a∥b ,则锐角α为 ( )A .30°B .45°C .60°D .75°3.(2011·马鞍山模拟)已知向量a =(6,-4),b (0,2),OC →=c =a +λb ,若C 点在函数y =sinπ12x 的图象上,则实数λ等于( )A.52B.32 C .-52 D .-324.(2010·陕西)已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.5.(2009·安徽)给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧»AB 上变动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是______.探究点一 平面向量基本定理的应用例1 如图所示,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,以a 、b 为基底表示OM →.变式迁移1 (2011·厦门模拟)如图,平面内有三个向量OA →、OB →、OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ、μ∈R ),则λ+μ的值为________.探究点二 平面向量的坐标运算例2 已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3CA →,CN →=2CB →,试求点M ,N 和MN →的坐标.变式迁移2 已知点A (1,-2),若向量|AB →与a =(2,3)同向,|AB →|=213,则点B 的坐标为________.探究点三 在向量平行下求参数问题例3 (2011·嘉兴模拟)已知平面内三个向量:a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =m b +n c 的实数m 、n ; (2)若(a +k c )∥(2b -a ),求实数k .变式迁移3 (2009·江西)已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________.1.在解决具体问题时,合理地选择基底会给解题带来方便.在解有关三角形的问题时,可以不去特意选择两个基本向量,而可以用三边所在的三个向量,最后可以根据需要任意留下两个即可,这样思考问题要简单得多.2.平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被a 所唯一确定,此时a 的坐标与点A 的坐标都是(x ,y ).向量的坐标表示和以坐标原点为起点的向量是一一对应的,即向量(x ,y )垐垐垎噲垐垐一一对应向量OA →垐垐垎噲垐垐一一对应点A (x ,y ).要把点的坐标与向量的坐标区分开,相等的向量坐标是相同的,但起点、终点的坐标可以不同,也不能认为向量的坐标是终点的坐标,如A (1,2),B (3,4),则AB →=(2,2).(满分:75分)一、选择题(每小题5分,共25分)1.已知a,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b , (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为 ( )A .λ1=λ2=-1B .λ1=λ2=1C .λ1λ2-1=0D .λ1λ2+1=02.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <03.(2011·湛江月考)设两个向量a =(λ+2,λ2-cos 2α)和b =⎝ ⎛⎭⎪⎫m ,m2+sin α,其中λ、m 、α为实数.若a =2b ,则λm的取值范围是 ( )A .[-6,1]B .[4,8]C .(-∞,1]D .[-1,6] 4.设0≤θ≤2π时,已知两个向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cosθ),则向量P 1P 2→长度的最大值是 ( )A. 2B. 3 C .3 2 D .2 35.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( ) A .(-2,-4) B .(-3,-5) C .(3,5) D .(2,4) 题号 1 2 3 4 5 答案 二、填空题(每小题4分,共12分)6.(2011·烟台模拟)如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为______.7.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6),则D 点的坐标为________.8.(2009·天津)在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|·BA →+1|BC →|·BC →=3|BD →|·BD →,则四边形ABCD 的面积为________.三、解答题(共38分)9.(12分)已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →.求证:EF →∥AB →.10.(12分)(2011·宣城模拟)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m =(a ,b ),向量n =(cos A ,cos B ),向量p =(22sin B +C 2,2sin A ),若m ∥n ,p 2=9,求证:△ABC 为等边三角形.11.(14分)如图,在边长为1的正△ABC 中,E ,F 分别是边AB ,AC 上的点,若AE →=mAB →,AF →=nAC →,m ,n ∈(0,1).设EF 的中点为M ,BC 的中点为N .(1)若A ,M ,N 三点共线,求证:m =n ;(2)若m +n=1,求MN u u u u r的最小值.答案 自主梳理1.不共线 有且只有 λ1e 1+λ2e 2 基底 2.(1)夹角(2)[0,π] 0 π (3)π2a ⊥b3.互相垂直4.(x ,y ) 坐标 (x ,y ) x 轴 y 轴5.(1)(x 1+x 2,y 1+y 2) (x 1-x 2,y 1-y 2) (λx 1,λy 1) (2)终点 始点6.x 1y 2-x 2y 1=0 7.(1)⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22(2)⎝ ⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 33自我检测1.A [由x =4知|a |=42+32=5;由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分而不必要条件.]2.B [∵a ∥b ,∴32×13-sin αcos α=0,∴sin 2α=1,2α=90°,α=45°.]3.A [c =a +λb =(6,-4+2λ),代入y =sin π12x 得,-4+2λ=sin π2=1,解得λ=52.]4.-1解析 a +b =(1,m -1),由(a +b )∥c , 得1×2-(m -1)×(-1)=0,所以m =-1. 5.2解析 建立如图所示的坐标系,则A (1,0),B (cos 120°,sin 120°),即B (-12,32).设AOC ∠=α,则OA →= (cos α,sin α). ∵OC →=xOA →+yOB →=(x,0)+⎝ ⎛⎭⎪⎫-y2,32y =(cos α,sin α).∴⎩⎪⎨⎪⎧x -y2=cos α,32y =sin α.∴⎩⎪⎨⎪⎧x =sin α3+cos α,y =2sin α3,∴x +y =3sin α+cos α=2sin(α+30°).∵0°≤α≤120°,∴30°≤α+30°≤150°. ∴x +y 有最大值2,当α=60°时取最大值. 课堂活动区例1 解题导引 本题利用方程的思想,设OM →=ma +nb ,通过建立关于m 、n 的方程求解,同时注意体会应用向量法解决平面几何问题的方法.解 设OM →=m a +n b (m ,n ∈R ), 则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b .因为A ,M ,D 三点共线,所以m -1-1=n12,即m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b ,因为C ,M ,B 三点共线,所以m -14-14=n1,即4m +n =1.由⎩⎪⎨⎪⎧m +2n =1,4m +n =1, 解得⎩⎪⎨⎪⎧m =17,n =37.所以OM →=17a +37b .变式迁移1 6解析 如右图,OC →=OD →+OE →=λOA →+μOB →在△OCD 中,∠COD =30°,∠OCD =∠COB =90°,可求|OD →|=4,同理可求|OE →|=2, ∴λ=4,μ=2,λ+μ=6.例2 解 ∵A (-2,4),B (3,-1),C (-3,-4), ∴CA →=(1,8),CB →=(6,3). ∴CM →=3CA →=(3,24), CN →=2CB →=(12,6).设M (x ,y ),则CM →=(x +3,y +4)=(3,24), ∴⎩⎪⎨⎪⎧x +3=3,y +4=24,∴⎩⎪⎨⎪⎧x =0,y =20.∴M (0,20).同理可得N (9,2),因此MN →=(9,-18).∴所求M (0,20),N (9,2),MN →=(9,-18). 变式迁移2 (5,4)解析 ∵向量AB →与a 同向,∴设AB →=(2t,3t ) (t >0). 由|AB →|=213,∴4t 2+9t 2=4×13.∴t 2=4.∵t >0,∴t =2.∴AB →=(4,6).设B 为(x ,y ),∴⎩⎪⎨⎪⎧x -1=4,y +2=6. ∴⎩⎪⎨⎪⎧x =5,y =4.例3 解 (1)∵a =m b +n c ,m ,n ∈R ,∴(3,2)=m (-1,2)+n (4,1)=(-m +4n,2m +n ).∴⎩⎪⎨⎪⎧-m +4n =3,2m +n =2, 解之得⎩⎪⎨⎪⎧m =59,n =89.(2)∵(a +k c )∥(2b -a ),且a +k c =(3+4k,2+k ),2b -a =(-5,2), ∴(3+4k )×2-(-5)×(2+k )=0,∴k =-1613.变式迁移3 5解析 ∵a -c =(3,1)-(k,7)=(3-k ,-6),且(a -c )∥b ,∴3-k 1=-63,∴k =5.课后练习区1.C [∵A 、B 、C 三点共线⇔AB →与AC →共线⇔AB →=kAC →⇔⎩⎪⎨⎪⎧λ1=k ,kλ2=1,∴λ1λ2-1=0.]2.B [由于点P 落在第Ⅲ部分,且OP →=aOP 1→+bOP 2→,则根据实数与向量的积的定义及平行四边形法则知a >0,b <0.]3.A [∵2b =(2m ,m +2sin α),∴λ+2=2m ,λ2-cos 2α=m +2sin α,∴(2m -2)2-m =cos 2α+2sin α,即4m 2-9m +4=1-sin 2α+2sin α.又∵-2≤1-sin 2α+2sin α≤2,∴-2≤4m 2-9m +4≤2,解得14≤m ≤2,∴12≤1m ≤4.又∵λ=2m -2, ∴λm =2-2m ,∴-6≤2-2m≤1.]6.2解析 方法一 若M 与B 重合,N 与C 重合,则m +n =2.方法二 ∵2AO →=AB →+AC →=mAM →+nAN →, AO →=m 2AM →=m 2AM →.∵O 、M 、N 共线,∴m 2+n2=1.∴m +n =2. 7.(0,-2)解析 设D 点的坐标为(x ,y ),由题意知BC→=AD→,即(2,-2)=(x +2,y ),所以x =0,y =-2,∴D (0,-2). 8. 3S =|AB →|=|BC→|sin 60°=2×2×32= 3. 9.证明 设E 、F 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则依题意,得AC→=(2,2),BC→=(-2,3),AB →=(4,-1).∴A E→=13AC →=⎝ ⎛⎭⎪⎫23,23,BF→=13BC →=⎝ ⎛⎭⎪⎫-23,1.∴A E→=(x 1,y 1)-(-1,0)=⎝ ⎛⎭⎪⎫23,23,BF→=(x 2,y 2)-(3,-1)=⎝ ⎛⎭⎪⎫-23,1.…………………………………………………(4分)∴(x 1,y 1)=⎝ ⎛⎭⎪⎫23,23+(-1,0) =⎝ ⎛⎭⎪⎫-13,23, (x 2,y 2)=⎝ ⎛⎭⎪⎫-23,1+(3,-1)=⎝ ⎛⎭⎪⎫73,0. ∴EF→=(x 2,y 2)-(x 1,y 1)=⎝ ⎛⎭⎪⎫83,-23.…………………………………………………(8分)又∵AB →=(4,-1),∴4×⎝ ⎛⎭⎪⎫-23-(-1)×83=0, ∴EF→∥AB →.……………………………………………………………………………(12分)10.证明 ∵m ∥n ,∴a cos B =b cos A . 由正弦定理,得sin A cos B =sin B cos A , 即sin(A -B )=0.∵A 、B 为三角形的内角, ∴-π<A -B <π.∴A =B .……………………………………………………………………………………(5分)∵p 2=9,∴8sin2B +C2+4sin 2A =9.∴4[1-cos(B +C )]+4(1-cos 2A )=9.∴4cos 2A -4cos A +1=0,解得cos A =12.……………………………………………………………………………(10分)又∵0<A <π,∴A =π3.∴△ABC 为等边三角形.………………………………………………………………(12分)11.解 (1)由A ,M ,N 三点共线,得A M→∥A N→,设A M→=λAN →(λ∈R ),即12(AE →+A F→)=12λ(AB →+AC →),所以m AB →+nAC →=λ(AB →+AC →),所以m =n .…………………………………………(5分)(2)因为MN →=AN →-AM →=12(AB →-AC →)=12(AE →-AF →)=12 (1-m )AB → +12(1-n )AC →,……………………………………………………………………………………………(8分)又m +n =1,所以MN →=12 (1-m )AB →+12mAC →,所以|MN →|2=14(1-m )2AB →2+14m 2AC →2+12(1-m )mAB →·AC →………………………………(10分)=14(1-m )2+14m 2+14(1-m )m =14(m -12)2+316. 故当m =12时,|MN →|min =34.……………………………………………………………(14分)。
高考理科第一轮复习课件(4.4平面向量的应用)
【规范解答】(1)选C.设a,b的夹角为θ,由条件得
cos ab , a b ab 2 ) 1 , 2 a b | | a | b |
sin 1 cos 2 1 (
【解析】选D.|F3|2=|F1|2+|F2|2+2|F1||F2|cos 60°=28,所以
|F3|= 2 7, 选D.
2.若不重合的四点P,A,B,C,满足 PA PB PC 0,
AB AC mAP, 则实数m的值为(
【思路点拨】(1)将a·b表示为θ的三角函数,然后求得a·b 的最值,转化为解不等式的问题. (2)①由 | BC BA | 2 得到关于θ的关系式,两边平方可求解; ②用含θ的关系式表示m,n,然后转化为三角函数的最值问题
求解.
【规范解答】(1)选B.由已知得|b|=1,所以|a|= 因此a· b=mcos θ+nsin θ =
3. 在△ABC中,∠C=90°,且CA=CB=3,点M满足 BM=2MA, 则 CMCB 等于( (A)2 (B)3
) (C)4 (D)6
【解析】选B.由题意可知,
1 CM CB CA+ AB)CB =( 3 1 =CACB ABCB + 3 1 =0+ 3 2 3cos 45=3. 3
(A)等边三角形
(C)等腰非等边三角形
(B)直角三角形
(D)三边均不相等的三角形
【解析】选A.由 ( AB AC )BC 0 知△ABC为等腰三角形,且 AB | AC | AB=AC.由 AB AC 1 知, 与AC 的夹角为60°,所以 AB 2 AB | AC |
平面向量基本定理及坐标表示讲义
专题3:平面向量基本定理及坐标表示核心知识点1:平面向量基本定理1.平面向量基本定理(1)由平面向量基本定理可知,在平面内任一向量都可以沿两个不共线的方向分解成两个向量的和,且这样的分解是唯一的,同一个非零向量在不同的基底下的分解式是不同的,而零向量的分解式是唯一的,即0=λ1e 1+λ2e 2,且λ1=λ2=0.(2)对于固定的e 1,e 2(向量e 1与e 2不共线)而言,平面内任一确定的向量的分解是唯一的,但平面内的基底却不唯一,只要平面内的两个向量不共线,就可以作为基底,它有无数组.(3)这个定理可推广为:平面内任意三个不共线的向量中,任何一个向量都可表示为其余两个向量的线性组合且形式唯一.核心知识点2:平面向量的正交分解及坐标表示1.平面向量的正交分解把一个平面向量分解为两个互相垂直的向量,叫做平面向量的正交分解.2.平面向量的坐标表示(1)基底:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.(2)坐标:对于平面内的一个向量a ,有且只有一对实数x 、y ,使得a =x i +y j ,我们把有序实数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中x 叫做向量a 在x 轴上的坐标,y 叫做向量a 在y 轴上的坐标.(3)坐标表示:a =(x ,y )就叫做向量的坐标表示.(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0).3.向量与坐标的关系设OA →=x i +y i ,则向量OA →的坐标(x ,y )就是终点A 的坐标;反过来,终点A 的坐标就是向量OA →的坐标(x ,y ).因此,在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示.即以原点为起点的向量与实数对是一一对应的.【知识微点评】点的坐标与向量的坐标的联系与区别点的坐标反映的是点的位置,而向量的坐标反映的是向量的大小和方向,向量仅由大小和方向决定,与位置无关.1.联系:(1)当且仅当向量的起点为原点时,向量终点的坐标等于向量本身的坐标.(2)两个向量相等,当且仅当它们的坐标相同.即若a =(x 1,y 1),b =(x 2,y 2),则a =b ⇔⎩⎪⎨⎪⎧x 1=x 2,y 1=y 2. 注意:相等向量的坐标是相同的,但是两个相等向量的起点、终点的坐标却可以不同.2.区别:(1)书写不同,如a =(1,2),A (1,2).(2)给定一个向量,它的坐标是唯一的;给定一个有序实数对,由于向量可以平移,故以这个有序实数对为坐标的向量有无穷多个.因此,符号(x ,y )在平面直角坐标系中有双重意义,它既可以表示一个固定的点,又可以表示一个向量.为了加以区分,在叙述中,常说点(x ,y )或向量(x ,y ).4.平面向量的坐标运算设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:核心知识点3:平面向量的垂直与平行1.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2=x 2y 1时,a ∥b .【知识微点评】两个向量共线条件的三种表示方法已知a =(x 1,y 1),b =(x 2,y 2).(1)当b ≠0时,a =λb .这是几何运算,体现了向量a 与b 的长度及方向之间的关系.(2)x 1y 2-x 2y 1=0.这是代数运算,用它解决向量共线问题的优点在于不需要引入参数“λ”,从而减少未知数的个数,而且使问题的解决具有代数化的特点和,程序化的特征.(3)当x 2y 2≠0时,x 1x 2=y 1y 2. 即两向量的相应坐标成比例,通过这种形式较易记忆向量共线的坐标表示,而且不易出现搭配错误.2.平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2). 数量积 两个向量的数量积等于它们对应坐标的乘积的和,即a·b =x 1x 2+y 1y 2 两个向量垂直 a ⊥b ⇔x 1x 2+y 1y 2=0知识微点评】1.公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.2.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.3.平面向量的模与夹角的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表:坐标表示模 |a |2=x 21+y 21或|a |=x 21+y 21 设A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2夹角cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21x 22+y 22(a ,b 为非零向量) 【知识微点评】向量的模的坐标运算的实质向量的模即向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离.同样,若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=(x 2-x 1)2+(y 2-y 1)2,即平面直角坐标系中任意两点间的距离.由此可知,向量的模的坐标运算的实质为平面直角坐标系中两点间的距离的运算. 必考必会题型1:用基底表示向量【典型例题】在平行四边形ABCD 中,,且,则λ+μ= .【题型强化】1.如图,在△ABC 中,,P 是BN 上的一点,若m ,则实数m 的值为 .2.如图,已知,与的夹角为60°,与的夹角为30°,,用,表示,则.【名师点睛】用基底表示向量的两种基本方法:用基底表示向量的基本方法有两种:一种是运用向量的线性运算对待求向量不断地进行转化,直至用基底表示为止;另一种是通过列向量方程(组),利用基底表示向量的唯一性求解.必考必会题型2:平面向量基本定理在平面几何中的应用【典型例题】如图,在长方形ABCD中,E为边DC的中点,F为边BC上一点,且.设.(Ⅰ)试用基底{,},表示;(Ⅱ)若G为长方形ABCD内部一点,且.求证:E,G,F三点共线.【题型强化】1.如图所示,在△ABO中,,,AD与BC相交于点M.设,.(1)试用向量表示;(2)在线段AC上取点E,在线段BD上取点F,使EF过点M.设,其中λ,μ∈R.当EF与AD重合时,λ=1,μ,此时5;当EF与BC重合时,λ,μ=1,此时5;能否由此得出一般结论:不论E,F在线段AC,BD上如何变动,等式5恒成立,请说明理由.2.如图,M为△ABC的中线AD的中点,过点M的直线分别交AB,AC两边于点P,Q,设,请求出x、y的关系式,并记y=f(x)(1)求函数y=f(x)的表达式;(2)设△APQ的面积为S1,△ABC的面积为S2,且S1=kS2,求实数k的取值范围.(参考:三角形的面积等于两边长与这两边夹角正弦乘积的一半.)必考必会题型3:平面向量坐标运算【典型例题】已知向量,.那么向量的坐标是.【题型强化】1.已知A(﹣4,6),B(2,4),点P在线段AB的延长线上,且||||,则点P的坐标为.2.如图所示,在平面直角坐标系中,(2,﹣3),则点D的坐标为.【名师点睛】利用向量线性运算的坐标表示解决有关问题的基本思路:1.向量的线性运算的坐标表示主要是利用加、减、数乘运算法则进行的,若已知有向线段两端点的坐标,则应先求出向量的坐标,然后再进行向量的坐标运算,另外解题过程中要注意方程思想的运用.2.利用向量线性运算的坐标表示解题,主要根据相等向量的坐标相同这一原则,通过列方程(组)进行求解.3.利用坐标运算求向量的基底表示,一般先求出基底向量和被表示向量的坐标,再用待定系数法求出相应系数.必考必会题型4:向量共线、垂直的坐标表示的应用【典型例题】已知向量(1,3),(2,),若单位向量与2平行,则.【题型强化】1.已知向量(1,3),(﹣2,1),(3,2).若向量与向量k共线,则实数k=.2.已知2,2,与的夹角为45°,且λ与垂直,则实数λ=.【名师点睛】根据向量共线、垂直求参数的值的基本思路:借助两向量平行和垂直的条件求解某参数的值,是向量坐标运算的重要应用之一,具体做法就是先借助或(其中,),列关于某参数的方程(或方程组),然后解之即可.必考必会题型5:向量坐标运算与平面几何的交汇【典型例题】如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.【题型强化】1.如图,平行四边形ABCD中,E,F分别是AD,AB的中点,G为BE与DF的交点.若,.(1)试以,为基底表示,;(2)求证:A,G,C三点共线.2.如图,在△ABC中,AB=8,AC=5,BC=7,O为△ABC的外心,,求x,y的值.【名师点睛】利用向量解决平面几何问题的基本思路:利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,其解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算转化为代数问题来解决.必考必会题型6:向量坐标运算与三角函数的交汇【典型例题】设向量.(1)当时,求的值;(2)若,且,求的值.【题型强化】1.已知△ABC内角A,B,C的对边分别为a,b,c,向量(cos A,a﹣2b),(2c,1)且.(1)求角C;(2)若c=2,△ABC的面积为,求△ABC的周长.2.已知A,B,C为△ABC的三个内角,向量(2﹣2sin A,sin A+cos A)与向量(sin A﹣cos A,1+sin A)共线,且角A 为锐角.(Ⅰ)求角A 的大小; (Ⅱ)求函数的值域. 【名师点睛】解决数量积的坐标表示与三角函数交汇问题的基本思路: 先运用平面向量数量积的坐标表示的相关知识(平面向量数量积的坐标表示、平面向量模与夹角的坐标表示、平面向量平行与垂直的坐标表示等)将问题转化为与三角函数有关的问题(如化简、求值、证明等),再利用三角函数的相关知识求解即可.解决这类问题时应注意充分挖掘题目中的隐含条件,使问题得到快速解决,注意到,可以简化运算. 【课后巩固】 1.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .-3B .-2C .2D .32.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC 3.已知向量(sin ,2),(1,cos )a b θθ=-=,且a b ⊥,则2sin 2cos θθ+的值为( )A .1B .2C .12D .34.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =( ) A .1233AD AB - B .2133AD AB + C .2133AD AB - D .1233AD AB + 5.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 A .9 B .10 C .11 D .126.已知向量a,b 满足a 1=,a b 1⋅=-,则a (2a b)⋅-=A .4B .3C .2D .07.设向量a =(1,0),b =(−1,m ),若()a ma b ⊥-,则m =_________.8.已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 9.已知()2,1a =--,(),1b λ=,若a 与b 的夹角α为钝角,则实数λ的取值范围为______. 10.已知向量a =(﹣1,2),b =(m ,1),若()a b a +⊥,则m=_________.11.在平面直角坐标系xoy 中,已知向量2(,2m =,(sin ,cos )n x x =,(0,)2x π∈. (1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值. 12.已知平面向量()3,4a =,()9,b x =,()4,c y =,且//a b ,a c ⊥.(1)求b 和c ; (2)若2m a b =-,n a c =+,求向量m 与向量n 的夹角的大小.13.在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,(,),(,)p a c b q b a c a =+=--,若//p q , (1)求角C 的大小;(2)若()cos 23ab C c =,求11tan tan A B +的值.。
4.2 平面向量的坐标运算
(0,2)-(1,0)=(-1,-2)-(x,y),
即(-1,2)=(-1-x,-2-y),
1 x 1, x 0, y 4. 2 y 2.
∴D点的坐标为(0,-4)(如图中的D1).[4分] (2)若是ADBC,则由AD=CB得 (x,y)-(1,0)=(0,2)-(-1,-2),
中点P的坐标为 ( x1 x2 , y1 y2 ). 2 2 △ABC中,若A(x 1,y 1),B(x2 ,y2),C(x 3,y 3),则 △ABC的重心G的坐标为 (
x1 x2 x3 y1 y2 y3 , ). 3 3
定时检测
一、填空题
1.(2009·天津汉沽一中模拟)已知平面向量a=
【例4】(14分)已知点A(1,0)、B(0,2)、
C (-1,-2),求以A、B、C为顶点的平行四
边形的ቤተ መጻሕፍቲ ባይዱ四个顶点D的坐标.
分析 “以A、B、C为顶点的平行四边形”可以 有三种情况:(1)ABCD;(2)ADBC;
(3)ABDC.
解题示范
解 设D的坐标为(x,y). (1)若是ABCD,则由AB=DC得
2.借助于向量可以方便地解决定比分点问题.
在处理分点问题,比如碰到条件“若P是线段AB 的分点,且|PA|=2|PB|”时,P可能是AB的内
分点,也可能是AB的外分点,即可能的结论有:
AP=2PB或AP=-2PB. 3.中点坐标公式:P 1 (x 1 ,y 1 ),P 2 (x 2 ,y 2 ),则P 1 P 2 的
2 1 (1,1),b=(1,-1),则向量 a- b= (-1,2) . 3 2 解析 1 a 3 b 1 (1,1) 3 (1,1) 2 2 2 2 1 1 3 3 ( , ) ( , ) 2 2 2 2 1 3 1 3 ( , ) (1,2). 2 2 2 2
高考数学一轮复习 4.2 平面向量的基本定理及坐标表示课件 理 新人教A版
解得 x=4+
5 5
或 x=4-
5 5
.
y=1+2 5 5
y=1-2
5 5
∴d=20+5 5,5+52 5或 d=20-5 5,5-52 5.
第三十四页,共59页。
(2013·北京西城期末)已知向量 a=(1,3),b=(-2,1),c= (3,2).若向量 c 与向量 ka+b 共线,则实数 k=________.
第九页,共59页。
问题探究 1:平面内任一向量用两已知不共线向量 e1、e2 表 示时,结果唯一吗?平面内任何两个向量 a、b 都能作一组基底 吗?
提示:表示结果唯一.平面内只有不共线的两个向量才能作 基底.
问题探究 2:向量的坐标与点的坐标有何不同? 提示:向量的坐标与点的坐标有所不同,相等向量的坐标是 相同的,但起点、终点的坐标却可以不同,以原点 O 为起点的向 量O→A的坐标与点 A 的坐标相同.
第三页,共59页。
考情分析
平面向量的坐标表示是通过坐标运算将几何问题转化为代 数问题来解决.特别地,用坐标表示的平面向量共线的条件 是高考考查的重点,属中低档题目,如 2013 年辽宁卷 3、 重庆卷 10,常与向量的数量积、运算等交汇命题.注重对 转化与化归、函数与方程思想的考查,如 2013 年江苏卷 15、 天津卷 12 等.
则x<0 y>0
且(x,y)=(1,2)+t(3,3),
∴xy==12++33tt ,∴12++33tt<>00 ,∴-23<t<-13.
第二十八页,共59页。
(2)因为O→A=(1,2),P→B=O→B-O→P=(3-3t,3-3t), 若四边形 OABP 为平行四边形,则O→A=P→B. ∵33--33tt==12 ,无解, ∴四边形 OABP 不可能为平行四边形.
2019年高考数学一轮复习第4章平面向量、数系的扩充与复数的引入第3节平面向量的数量积及其应
第三节平面向量的数量积及其应用[考纲传真]1.理解平面向量数量积的含义及其物理意义 2 了解平面向量的数量积与向量投影的关系3掌握数量积的坐标表达式,会进行平面向量数量积的运算4能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题6会用向量方法解决简单的力学问题与其他一些实际问题.双基自主测评I基础知识环能力全面巩固■(对应学生用书第61页)[基础知识填充]1. 向量的夹角(1)定义:已知两个非零向量a和b,如图4-3-1 ,作0A= a, 0B= b,则/ AOB=0 (0 °w 0 < 180° )叫作a与b的夹角.0 b B图4-3-1(2)当0 = 0°时,a与b共线同向.当0 = 180°时,a与b共线反向.当0 =90°时,a与b互相垂直. '—2•平面向量的数量积(1) 定义:已知两个非零向量a和b,它们的夹角为0,则数量| a|| b| • cos 0叫做a与b的数量积(或内积).规定:零向量与任一向量的数量积为0.(2) 几何意义:数量积a • b等于a的长度| a|与b在a的方向上的投影| b|cos 0的乘积Jk 曜或b的长度| b|与a在b方向上射影| a|cos 0的乘积.3. 平面向量数量积的运算律(1) 交换律:a • b= b • a;(2) 数乘结合律:(入a) • b=入(a • b) = a •(入b);(3) 分配律:a •( b+ c) = a • b+ a • C.4. 平面向量数量积的性质及其坐标表示122结论几何表示坐标表小2| a || b |cos 0夹角a - bcos 0 — . [[ i .|a || b |X 1X 2+ y 1y 2cos 0 — . y, ------------------------------- .,,V X 2 + y2^/X 2 + y 2a 丄ba -b — 0X 1X 2+ y 1y 2— 0|a • b | 与 | a || b | 的关系|a - b | w| a || b || X 1X 2+ y 1y 2| w 寸X 1 + y 2 •寸 X 2+ y ;[知识拓展]1两个向量a , b 的夹角为锐角? a •b >0且a , b 不共线;两个向量a ,b 的夹角为钝角? a •b <0且a , b 不共线. 2 •平面向量数量积运算的常用公式 (1)( (2)( (3)(2 2a +b ) •( a -b ) = a — b .2 2 2a +b ) = a + 2a • b + b .a -b )2= a 2-2a • b + b 2.3.当a 与b 同向时,a •b = | a||b1.当a 与b 反向时,a ・b = — |a||b |.[基本能力自测](思考辨析)判断下列结论的正误.(正确的打“V”,错误的打“X” (1) 两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.由 a - b = 0,可得 a = 0 或 b = 0.()由a - b = a - c 及a ^0不能推出b = C.()2. 在四边形 ABCDh AB- DC &AC- BD= 0,则四边形 ABCD 为矩形•( [答案](1) V (2) X (3) V(2016 -全国卷川)已知向量BA=A . 30° ,1,则/ ABC=(3.C. 60°D. 120°A [因为BA=2, -2 , BC > 三3, 1,所以 E3A- £=¥+石3=_23.又因为 B A- B <> I B AII 航cos / ABC= 1X 1X cos / ABC 所以 cos / 又 0°<Z ABCc 180°,所以/ABC= 30° .故选 A .](2015 •全国卷 n )向量 a = (1 , - 1), b = ( — 1,2),则(2a + b ) - a =()A . - 1 B. 0 C. 1D. 22C [法: T a = (1 , — 1) , b = ( — 1,2) ,.•. a = 2, a • b =— 3, 从而(2a + b ) • a = 2a 2 + a • b = 4 — 3= 1. 法二:T a = (1 , — 1) , b = ( — 1,2), .2a + b = (2 , — 2) + ( — 1,2) = (1,0),从而(2a + b ) • a = (1,0) • (1 , — 1) = 1,故选 C.]4. ______________ (教材改编)已知|a | = 5, | b | = 4, a 与b 的夹角0 = 120° ,则向量b 在向量a 方向上的 投影为 __ .—2 [由数量积的定义知, b 在a 方向上的投影为| b |cos 0 = 4x cos 120 ° =— 2.]5. (2017 •全国卷I)已知向量 a = ( — 1,2) , b = (m,1).若向量 a + b 与a 垂直,则 m=7 [ T a = ( — 1,2) , b = (m,1), ••• a + b = ( — 1 + m,2 + 1) = ( m- 1,3). 又 a + b 与 a 垂直,二(a + b ) • a = 0, 即(m-1) x ( — 1) + 3X 2= 0, 解得m= 7.]题型分类突破I 高琴题型烦律方法逐-突砸■(对应学生用书第62页)心 ......平面向量数量积的运算■■■I (1)(2016 •天津高考)已知△ ABC 是边长为1的等边三角形,点D, E 分别是边AB,BC 的中点,连接 DE 并延长到点F ,使得DE= 2EF,则AF- BC 勺值为()A . 11D -S'已知正方形 ABCD 勺边长为1,点E 是AB 边上的动点,则DE- CB 勺值为C.;DE ・DC的最大值为 【导学号: 00090135】AF = AM DF又D, E 分别为AB BC 的中点,(1) B (2) 1 1 [(1)如图所示,f 1 f f 1 ・_且DE=2EF所以AD= 1A B DF=2AC+;AC=4AC1f2当E 运动到B 点时,DE^DC 方向上的投影最大,即为 DC = 1, 所以(DE' Dg =| DC - 1= 1.][规律方法]1.求两个向量的数量积有三种方法: 利用定义;利用向量的坐标运算; 利用数量积的几何意义.~T 1 -T 3 ~T 所以 AF = 2AB+ 4AC又 BC= AC- AB3T-4AC-又 | AB =|AQ = 1,z BAO 60°,故AF- E3C = 4-2 — 4X 1X 1X 2= 1.故选 B.4 2 4 2 8⑵ 法一:以射线AB AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),巳1,0),C (1,1) ,D (0,1),设E (t, 0) , t € [0,1],则DE = (t , - 1),(t , -1) - (0,- 1) = 1.因为 DC = (1,0),所以 DE- DC = (t ,- 1) - (1,0) = t w 1, 故D E- DC 的最大值为1.法二:由图知,无论E 点在哪个位置,DE 在CB^向上的投影都是 CB= 1,所以DE- CB= | CB则 AF- BC= -(AC-AB 3 T T2. (1)要有“基底”意识,关键用基向量表示题目中所求相关向量. (2)注意向量夹角的大小,以及夹角0 = 0°, 90°, 180°三种特殊情形.2[变式训练1] ⑴ 已知AB= (2,1),点C ( — 1,0) , D (4,5),则向量AB 在 C [方向上的投影为(1) C (2)C [(1)因为点 C ( —1,0) , Q4,5),所以 C* (5,5),又AB= (2,1),所以向量 AB 在CD?向上的投影为|AB |cos 〈 AB C D =磊=芈I CD%2⑵ 由 AB- AF = 3 得AB ・(AM DF = AB- DF= 3,所以 |DF = 1, |CF = 2,BE • BC= — 6 + 2 = — 4.](1)(2017 •合肥二次质检)已知不共线的两个向量a ,b 满足|a — b | = 2且a 丄(a—2b ),则 | b | =( )A . 2 C. 2 2⑵(2018 •西安模拟)已知平面向量a , b 的夹角为 卡,且|a | = .3, | b | = 2,在厶ABC 中,AB= 2a + 2b , AC= 2a — 6b , D 为 BC 的中点,贝U |AQ = ______ .(1)B (2)2[(1)由 a 丄(a — 2b )得 a - (a — 2b ) = | a | — 2a - b = 0.又•/ | a — b | = 2,「. | a(2)(2018 •榆林模拟)已知在矩形ABCD 中 AB= 3, BC = 3, BE = 2EC 点 F 在边 CD 上.若AB- AF = 3,则 A E- 'BF 的值为()【导学号:00090136】A . 0B 育C.— 4D. 42B.- 3 5 D. 3 5C. 所以 AE - BF = ( AB+ BE ) •( BC+ CF ) =AB- BC+ AB- CF + BE- BC + BE- CF = AB- CF +ISfifl... ......... . ............................ j平面向量数量积的性质角度1平面向量的模MBB. 2 D. 4—b| 2= | a|2—2a - b+ | b|2= 4,则| b|2= 4, | b| = 2,故选B.■ ■ ~9 1 ~> (2)因为 A[> 2(AB+ AC 1=2(2a + 2b + 2a — 6b ) =2a — 2b ,所以 |AD 2= 4(a — b )2= 4(a 2— 2b •a + b 2)—e 2的夹角为B ,贝U cos 3 =⑵ 若向量a = (k, 3) , b = (1,4) , c = (2,1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取2=I — 2X 3X 2X1 X cos a + 4= I ,所以|a | = 3,i i222因为 b = (3e 1 — e 2) = I — 2X 3X 1 XI X cos a + 1 = 8, 所以 | b | = 2 2,a •b = (3 e 1 — 2e 2)- (3 e 1 — e ?)2 21 =9e 1 — 9e 1 • e2 + 2e 2= I — I X 1 X 1 X + 2 = 8,3 所以cos 3= rOi 占=3^=弩.(2) •/ 2a — 3b 与c 的夹角为钝角, ••• (2 a — 3b ) - c v 0, 即(2 k — 3, — 6) - (2,1) v 0,• 4k — 6— 6v 0, • k v 3.9又若(2a — 3b ) // c ,贝U 2k — 3 =— 12,即卩 k =—》 当 k =— I 时,2a — 3b = ( — 12,— 6) = — 6c ,=4X (3 — 2X 2X3 X cos n + 4) = 4,所以 | AD = 2.]角度2平面向量的夹角2-2 1(1)已知单位向量 e 1与e 2的夹角为 a ,且cos a = 3 向量 a = 3e i — 2e 2与 b = 3e i值范围是 (1)弩(2)[(1)因为 a 2= (3 e 1 — 2e 2)2△in 2 x — ¥cos x = 2,2 2即2a -3b 与c 反向. 综上,k 的取值范围为 一R, 角度3平面向量的垂直 (2016 •山东高考)已知向量a = (1 , - 1), b = (6 , - 4).若a 丄(ta + b ),则实 数t 的值为 _________ —5 [ - a = (1 , — 1), b = (6 , — 4),…ta + b = (t + 6, — t — 4). 又 a 丄(ta + b ),则 a •( ta + b ) = 0,即 t + 6 +1 + 4= 0,解得 t =— 5.] a • b [规律方法]1.求两向量的夹角:cos 0 = ,要注意0 c [0 , n ]. 丨a l •丨b | 2.两向量垂直的应用: 两非零向量垂直的充要条件是: a 丄b ? a • b = 0? | a — b | = |a + b |. 3 •求向量的模:利用数量积求解长度问题的处理方法有: (1) a 2= a • a = | a |2 或 | a | = a • a . (2) | a ± b | = a ± b 2= a ±2a • b + b . ⑶若 a = (x , y ),则 | a | = x 2 + y 2. |U3[ 平面向量与三角函数的综合 (2018 •佛山模拟)在平面直角坐标系 xOy 中,已知向量m = ^2, — 2小=(sin cos x ) , x c (1)若 miL n ,求 tan x 的值; n ⑵若m 与n 的夹角为—,求x 的值. 【导学号:00090137】所以 sin x = cos x ,所以 tan x = 1. n 1⑵因为 | m = I n | = 1,所以 m-n = cos —=-,3 2x . 所以 m-n = 0, x , cos x ), n Ln . 即承n cos x(1)因为m = n = (sin所以sin 12因为 O v x v n ,所以—n_< x — n_<n n , 一 n n 5 n 所以x —才=6,即x =〒2. [规律方法]平面向量与三角函数的综合问题的解题思路得到三角函数的关系式,然后求解. (2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题 sin x x= -------cos x •- tan 2 x = —=1 — tan x 53⑵•/ a = sin ^, , b = (cos x , — 1),3 2 2 2 2••• a •b = sin x cos x — ?, b = cos x + ( — 1) = cos x + 1,23 2 1 1 1• f (x ) = (a + b ) - b = a •b + b = sin x cos x — ~ + cos x + 1 = 2sin 2x + 尹 + cos 2x ) — ?⑴ 题目条件给出向量的坐标中含有三角函数的形式, 运用向量共线或垂直或等式成立等, 思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等. [变式训练2] (2018 •郴州模拟)已知向量a = sin x , | , b = (cos X , (1)当a //b 时,求tan 2 x 的值; (2)求函数f (x ) = (a + b ) - b 在|—-2 , 0上的值域. (1) ■/ a //b , a = sin x , | , b = (cos x , 3 x - ( — 1) — 2 • cos 即sin 3 X + 2C0S x = 0, 得sin 3 x = — 2C0S x , 二tan -32,匕2tan x 12 x = 0,1 n 1 sin 2x+ 才.I nT x€ |—— , 0••• sin 2x+4 € —1 ,n故函数 f (X ) = (a + b ) • b 在 | — , 0 • •• f(X)= 刍n -弓,2上的值域为•—, 2。
高二数学课件:第四章 第二节 平面向量的基本定理及向量坐标运算
0°≤θ ≤180° ②范围:向量a与b的夹角的范围是_____________.
同向 ③当θ =0°时,a与b_____. 反向 当θ =180°时,a与b_____. 垂直 当θ =90°时,a与b_____.
【即时应用】
(1)已知a=(-1,3),b=(x,-1),且a、b共线,则x=_______. (2)设a=(1,1),b=(-1,0),若向量λ a+b与向量c=(2,1)共线,则 λ =_________.
【解析】(1)∵a∥b,∴(-1)2-3x=0,∴x= . (2)∵λa+b=λ(1,1)+(-1,0)=(λ-1,λ), 又∵(λa+b)∥c,∴(λ-1)·1-2λ=0,∴λ=-1.
两向量a=(x1,y1),b=(x2,y2)相等的充要条件是它们的对应坐标
x1 x 2 分别相等,即 利用向量相等可列出方程组求其中的未 , y y 2 1
知量,从而解决求字母取值、求点的坐标及向量的坐标等问题.
uuu r uuu r 【例2】(1)(2012·广东高考)若向量 BA 2,3 ,CA 4,7 ,
∴ a d c, 代入②
方法二: 设 AB a,AD b, 因为M,N分别为CD,BC的中点,
1 1 所以 BN b, DM a, 2 2 2 1 a (2d c) c b a 3 2 ⇒ 因而 b 2 (2c d ) d a 1 b 3 2 4 4 2 2 即 AB d c, AD c d. 3 3 3 3
p q 3 p 1 ∴ , ∴ . 2p q 2 q 4 1 答案:(1)( 3 , (2)(5,4) ) 2 2
平面向量基本定理及其坐标表示教案
平面向量基本定理及其坐标表示教案一、教学目标1. 理解平面向量的基本定理,掌握平面向量的分解。
2. 学会用坐标表示平面向量,理解向量坐标与向量运算之间的关系。
3. 能够运用平面向量基本定理及其坐标表示解决实际问题。
二、教学内容1. 平面向量的基本定理:任何一个平面向量都可以唯一地表示为两个不共线向量的线性组合。
2. 向量的分解:将一个向量表示为两个不共线向量的线性组合。
3. 向量的坐标表示:用坐标表示向量,掌握向量坐标的运算规则。
4. 向量运算与坐标表示:理解向量加法、减法、数乘在坐标表示下的具体运算。
三、教学重点与难点1. 重点:平面向量的基本定理,向量的分解,向量的坐标表示。
2. 难点:理解向量坐标与向量运算之间的关系,熟练运用平面向量基本定理及其坐标表示解决实际问题。
四、教学方法1. 采用讲授法,系统地讲解平面向量的基本定理及其坐标表示。
2. 利用多媒体演示,直观地展示向量的分解和坐标表示。
3. 结合例题,引导学生运用平面向量基本定理及其坐标表示解决问题。
4. 开展小组讨论,加强学生之间的互动交流。
五、教学安排1. 课时:2课时2. 教学过程:第一课时:1. 导入新课,介绍平面向量的基本定理。
2. 讲解向量的分解,引导学生理解平面向量基本定理。
3. 介绍向量的坐标表示,讲解坐标运算规则。
4. 课堂练习,巩固所学知识。
第二课时:1. 复习上节课的内容,回顾平面向量基本定理及其坐标表示。
2. 讲解向量加法、减法、数乘在坐标表示下的运算。
3. 结合例题,引导学生运用平面向量基本定理及其坐标表示解决实际问题。
4. 课堂练习,提高学生运用知识解决问题的能力。
5. 总结本节课的内容,布置课后作业。
六、教学评价1. 课后作业:布置有关平面向量基本定理及其坐标表示的练习题,巩固所学知识。
2. 课堂练习:评价学生在课堂上运用平面向量基本定理及其坐标表示解决问题的能力。
3. 小组讨论:评价学生在小组讨论中的参与程度和合作能力。
4.2平面向量基本定理-一轮复习
已 知 O 为 直 线 A B 外 任 意 一 点 ,
求 证 : 若 P 在 直 线 A B 上 存 在 实 数 λ , 使 O P = 1 - λ O A + λ O B
证 明 : 若 点 P 在 直 线 A B 上 , 则 AP//AB,
由 共 线 向 量 定 理 , 存 在 实 数 λ , 使 A P = λ A B ,
3.平面向量的坐标运算
向量的加法、 设a=(x1,y1),b=(x2,y2),则a+b= _(_x_1+_x_2_,_y_1_+_y_2)_,
减法
a-b= _(_x_1-_x_2_,_y_则λ a= _(_λ__x_,_λ__y_)_
向量坐标 的求法
②若 OEOA,求实数λ 的值. 分析:由平面向量基本定理及共线向量定理求解.
解:由题意知,EC//DC, 可 设 EC=xDC.
E C O C O E 2 a b a 2ab ,D C 2a5b ,
2abx(2a5b).因a与b不共线,由平面向量基3 本定理,
O P 3 关 于 O P 1 和 O P 2的终点共线分解系数”为( )
A.-3
B.3
C.1
D.-1
分 析 : O P 3 = λ O P 1 + 1 - λ O P 2
解 : 由 O P 3 与 a = 1 , 1 垂 直 , 可 设 O P 3 = t , - t t ≠ 0 ,
得2-1-λ =-=532xx,,解得λ x==3545,.3 故λ=
4. 5
2.应用平面向量基本定理的注意事项 (1)选定基底后,通过向量的加、减、数乘以及向量平行 的充要条件,把相关向量用这一组基底表示出来. (2)强调几何性质在向量运算中的作用,用基底表示未知 向量,常借助图形的几何性质,如平行、相似等. (3)强化共线向量定理的应用 提醒:在基底未给出的情况下,合理地选取基底会给解 题带来方便.
高三数学一轮复习平面向量基本定理及坐标表示
A. 2
√B. 5
C. 10
D.5
解析 根据题意可得1×t=2×(-2),可得t=-4,
所以a+b=(-1,-2),
从而可求得|a+b|= 1+4= 5,故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任
∴-2×(4-k)=-7×(-2k),解得 k=-23.
3 课时作业
PART THREE
基础保分练
1.已知 M(3,-2),N(-5,-1),且M→P=12M→N,则 P 点的坐标为
A.(-8,1)
√B.-1,-23
解析 设 P(x,y),则M→P=(x-3,y+2).
C.1,32
D.(8,-1)
而12M→N=12(-8,1)=-4,12,
x-3=-4, ∴y+2=12,
x=-1, 解得y=-32,
∴P-1,-23.故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2019·山西榆社中学诊断)若向量A→B=D→C=(2,0),A→D=(1,1),则A→C+B→C等于
2.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) , λa= (λx1,λy1) ,|a|= x21+y21 .
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则 A→B= (x2-x1,y2-y1),|A→B|= x2-x12+y2-y12 . 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔ x1y2-x2y1=0 .
专题25 平面向量的基本定理和向量的坐标运算()-2019高考数学(文)名师揭秘之一轮
正方向单位向量,则 a=-i+j,b=6i+2j,c=-i-
3j,所以-i-3j=λ(-i+j)+μ(6i+2j),即-i-3j=(-
λ + 6μ)i + (λ + 2μ)j , 根 据 平 面 向 量 基 本 定 理 得
-1=-λ+6μ, -3=λ+2μ,
2019年8月10日
解遇得上你是μλ缘=分=,-愿-您2生,12活.愉快所,身以体健μλ=4.故填 4.
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
8
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
9
一、向量的坐标表示及其运算 例1已知点 O(0,0),A(1,2),B(4,5)及O→P=O→A +tA→B,试问: (1)当 t 为何值时,P 在 x 轴上?P 在 y 轴上?P 在第三象限内? (2)四边形 OABP 能否成为平行四边形?若能,求 出 t 的值;若不能,请说明理由.
①若 a 与 b-2c 垂直,求 tan(α+β)的值; ②求|b+c|的最大值; ③若 tan α tan β =16,求证:a∥b.
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
13
【解析】(1)设存在点 M,且O→M=λO→C=
(6λ,3λ)(0<λ≤1),
∴34-λ-21λ==-t,t,两式相加得 2λ+2=0,
∴λ=-1.
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
22
(2)△ABC 中,AB=c,BC=a,AC=b,∵sin B=cos A·sin C,
∴sin(A+C)=sin Ccos A,即 sin Acos C+sin Ccos A=sin Ccos A,
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
高考数学第一轮复习 第四篇 第2讲 平面向量基本定理及坐标表示课件 理 新人教A版
设 a=(x1,y1),b=(x2,y2),其中 a≠b 则 a∥b⇔ _x_1_y_2-__x_2_y_1=__0___.
第三页,共18页。
1.对平面向量基本(jīběn)定理的理 解
(1)平面内的任何两个向量都可以作为一组基底.( ) (2)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则 λ1=λ2,μ1=μ2.( ) (3)(2013·广东卷改编)已知 a 是已知的平面向量且 a≠0.关于向量 a
1234 A.5 B.5 C.5 D.5
解析 因为A→B=A→N+N→B =A→N+C→N (x=jiīě)A→N+(C→A+A→N)=2A→N+C→M+M→A
=所2A以→NA→-B=14A→85BA→-NA-→M45A,→M, 所以 λ+μ=45. 答案 D
第十页,共18页。
平面(píngmiàn)向量的
考
坐标运算
点
【例 2】已知 A(-2,4),B(3,-1),C(-3,-4),设A→B=a,
B→C=b, C→A=c,且C→M=3c, C→N=-2b.
(1)求 3a+b-3c;(2)求满足 a=mb+nc 的实数 m,n;
(3)求 M,N 的坐标及向量M→N的坐标.
解析 由已知得 a=(5,-5), b=(-6,-3), c=(1,8)
点
【例 3】平面内给定三个向量 a=(3,2),
审题路线
b=(-1,2),c=(4,1).
(1)若(a+kc)∥(2b-a),求实数 k;
(1)分别求出(a+kc)
(2)若 d 满足(d-c)∥(a+b),且|d-c|= 5, 与(2b-a)的坐标
求 d 的坐标.
平面向量的基本定理及坐标表示重难点解析版
突破6.3 平面向量的基本定理及坐标表示一、学情分析二、学法指导与考点梳理知识点一 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 平面向量的坐标运算运算 坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2) 数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数 任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)设a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.,(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.三、重难点题型突破重难点题型突破1 平面向量的实际背景与概念(一) 平面向量的基本定理与坐标表示 知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·江西高一期末)设12,e e 是平面内的一组基底,则下面四组向量中,能作为基底的是( ) A .21e e -与12e e - B .1223e e +与1246e e -- C .12e e +与12e e - D .121128e e -+与1214e e - 【答案】C 【解析】由12,e e 是平面内的一组基底,所以1e 和2e 不共线,对应选项A :21e e -()12e e =--,所以这2个向量共线,不能作为基底; 对应选项B :1223e e +()121462e e =---,所以这2个向量共线,不能作为基底; 对应选项D :121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭,所以这2个向量共线,不能作为基底;对应选项C :12e e +与12e e -不共线,能作为基底. 故选:C .(2).(2022·内蒙古·阿拉善盟第一中学高一期末)如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE =( )A .21318BA BC -+B .21318BA BC +C .41318BA BC +D .21318BA BC -【答案】B 【解析】 【分析】利用平面向量的加法和减法以及平面向量的基本定理求解. 【详解】由题可得:FE FC CE =+ 1232BC CD =+ ()1223BC CB BA AD =+++ 121233BC BC BA BC ⎛⎫=+-++ ⎪⎝⎭21318BA BC =+. 故选:B .【变式训练1-1】、(2021·全国·高一课时练习)若{}12e e ,是平面内的一个基底,则下列四组向量能作为平面向量的基底的是( ) A .12e e -,21e e - B .12e e -,12e e + C .212e e -,212e e -+ D .122e e +,124e 2e +【答案】B 【解析】 【分析】不共线的向量能作为基底,逐一判断选项即可. 【详解】不共线的向量能作为基底,因为()1221e e e e -=--,所以向量12e e -,21e e -共线,故排除A ;假设1212(e e e e λ-=+),解得=1=1λλ⎧⎨-⎩,无解,所以向量12e e -,12e e +不共线,故B 正确;因为()212122e e e e =-+--,所以212e e -,212e e +-共线,故排除C ; 因为()121212422e e e e =++,所以122e e +,1224e e +共线,故排除D , 故选:B【变式训练1-2】、(2022·江西上饶·一模(理))如图,在ABM 中,3BM CM =,27AN AM =,若AN AB AC λμ=+,则λμ+=( )A .17-B .17C .27-D .27【答案】D 【解析】 【分析】由向量的线性运算把AN 用,AB AC 表示出来后可得结论. 【详解】 ()22227777AN AM AB BM AB BM ==+=+ 2232313()7727777AB BC AB BA AC AB AC =+⨯=++=-+, 所以13,77λμ=-=,132777λμ+=-+=,故选:D(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2). (2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ). (4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2021·安徽·泾县中学高三阶段练习(文))已知平面向量()()2,3,24,5a a b =--=,则a b =___________.【答案】3 【解析】 【分析】设(),=b x y ,利用()24,5-=a b ,求得b ,再利用数量积公式可得多大啊. 【详解】设(),=b x y ,由已知得224325x y --=⎧⎨-=⎩,解得31x y =-⎧⎨=-⎩,即()3,1b =--,所以()()2,33,1633⋅=-⋅--=-=a b . 故答案为:3.(2).(2022·全国·高一专题练习)已知A (1,2),B (3,-1),C (3,4),则AB AC ⋅等于( ) A .11 B .5 C .-1 D .-2【答案】D 【解析】 【分析】直接利用向量数量积的坐标运算即可解决 【详解】∵()2,3AB =-,()2,2AC = ∴()22322AC AB ⋅=⨯+-⨯=- 故选: D .(3).(2022·山东济南·二模)若平面向量a 与b 同向,(2,1)a =,||25b =,则b =( ) A .(4,2)B .(2,4)C .(6,3)D .(4,2)或(2,4)【答案】A 【解析】 【分析】根据题意,设()0b a λλ→→=>,进而根据||25b →=b →. 【详解】因为,a b →→同向,所以设()0b a λλ→→=>,则22||215252b λλλ→=+==,于是,()4,2b →=. 故选:A.【变式训练2-1】、(2022·全国·高三专题练习)已知向量()()2,6,1,a b λ==-,若//a b ,则a b λ+=______. 【答案】(5,15) 【解析】 【分析】由向量平行得3λ=-,再进行向量的坐标运算即可得答案. 【详解】解:因为()()2,6,1,a b λ==-,//a b , 所以62λ-=,解得3λ=-, 所以()()()2,631,35,15a b λ+=---=. 故答案为:()5,15【变式训练2-2】、(2022·青海西宁·高一期末)设()3,1OM =,()5,1ON =--,则MN =( ). A .()8,2-- B .()8,2C .()8,2-D .()2,2-【答案】A 【解析】 【分析】由向量坐标的减法运算可得答案. 【详解】因为()3,1OM =,()5,1ON =--,所以()()()5,13,18,2=-=---=--MN ON OM . 故选:A.(三) 平面向量的数量积 知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a . (3)cos θ=a·b |a||b|. (4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2. (3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1).(2022·陕西·高三期末(文))已知向量(1,7a =-,3b =,36a b ⋅=,则a 与b 的夹角为( ) A .6πB .4π C .3π D .23π 【答案】A 【解析】 【分析】先计算向量a 的模,再根据向量数量积的定义,将36a b ⋅=展开,即可求得答案.因为(1,7a =-,所以22||1(7)22a =+-= 又因为36a b ⋅=,设a 与b 的夹角为θ ,[0,]θπ∈ , 所以||||cos 36a b θ=,即23cos 36θ⨯=, 解得3cos θ=,故6πθ= ,故选:A.(2).(2021·重庆一中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =--,则下列命题中正确的有( ) A .a b > B .2a b +=C .a b ⊥D .4cos ,5a b =-【答案】BD 【解析】 【分析】由向量的定义判断A ,由模的坐标表示求出模判断B ,根据垂直的坐标表示判断C ,由数量积求得向量的夹角余弦判断D . 【详解】对于A ,由于向量不能比较大小,故A 错误; 对于B ,∵()1,1a b =-+,∴()22112a b +=-+=B 正确;对于C ,∵()()122140a b ⋅=⨯-+⨯-=-≠,∴a b ⊥不成立,故C 错误; 对于D ,∵(12214cos ,555a b a b a b⨯-+⨯-⋅===-⨯,故D 正确.故选:BD .【变式训练3-1】.(2021·河北·武安市第一中学高一阶段练习)(多选题)向量(cos ,sin )a θθ=,(3,1)b =,则2a b -的值可以是( ) A .2 B .22C .4D .2【答案】ABC 【解析】 【分析】利用公式表达出2a b -,利用三角函数恒等变换,求出2a b -的范围,进而求出结果.())()22cos ,2sin 3,12cos 3,2sin 1a b θθθθ-=-=-,所以()()22π22cos 32sin 1843cos 4sin 88sin 3a b θθθθθ⎛⎫-=-+----+ ⎪⎝⎭因为[]πsin 1,13θ⎛⎫+∈- ⎪⎝⎭,所以[]π88sin 0,163θ⎛⎫-+∈ ⎪⎝⎭,[]20,4a b -∈,显然ABC 均满足题意.故选:ABC【变式训练3-2】.(2022·山东济南·高三期末)(多选题)已知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .16a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30°D .向量a b +在a 上的投影向量为2a【答案】BD 【解析】 【分析】根据向量坐标得线性运算和模的坐标表示即可判断A ; 根据向量数量积的坐标表示即可判断B ; 根据()cos ,a b a a b aa b a+⋅+=+即可判断C ; 根据投影向量的定义即可判断D. 【详解】解:(2,23a b +=,则4124a b +=+,故A 错误;()2a b a +⋅=,故B 正确;()1cos ,2a b a a b aa b a+⋅+==+,又0,180a b a ︒≤+≤︒,所以向量a b +与a 的夹角为60°,故C 错误;向量a b +在a 上的投影向量为()2a b a a a a+⋅=,故D 正确. 故选:BD.(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)、(2021·安徽·六安一中高三阶段练习(文))已知()1,2a m =+-,()2,3b m =+,若a b ⊥,则m =______. 【答案】1或4- 【解析】 【分析】根据向量垂直得到等量关系,求出结果. 【详解】由题意得:()()1260m m ++-=,解得:1m =或4-,经检验,均符合要求. 故答案为:1或4-(2)、(2022·陕西宝鸡·一模(理))已知平面向量()1,a m =-,()2,3b m =-,若a b ∥,则m =___________. 【答案】3- 【解析】 【分析】由a b ∥,列方程求解即可 【详解】因为平面向量()1,a m =-,()2,3b m =-,且a b ∥, 所以23m m =-,得3m =-, 故答案为:3-(3)、(2022·辽宁·高一期末)已知向量()1,a m =-,()2,4b =,若a 与b 共线,则m =( ) A .1-B .1C .2-D .2【答案】C 【解析】 【分析】根据平面向量共线坐标表示可得答案. 【详解】由题意得24m =-,即2m =-. 故选:C【变式训练4-1】、(2022·广东湛江·高二期末)已知向量()2,3a =-,()1,2b =-,且()a kb a +⊥,则k =___________.【答案】138【解析】 【分析】求出向量a kb +的坐标,利用平面向量垂直的坐标表示可得出关于实数k 的等式,即可解得k 的值. 【详解】由题意可得()2,32a kb k k +=--+,因为()a kb a +⊥,所以()()()223320a kb a k k +=---+=⋅,即1380k -=,解得138k =. 故答案为:138. 【变式训练4-2】.(2022·全国·高三专题练习)已知向量()12a =,,()22b =-,,()1c λ=,.若()//2c a b +,则λ=________. 【答案】12 【解析】 【分析】由两向量共线的坐标关系计算即可. 【详解】由题可得()24,2a b +=, ()//2c a b +,又()1,c λ=, 4λ20∴-=,1λ2∴=.故答案为:12.【变式训练4-3】.(2022·辽宁葫芦岛·高一期末)已知向量()1,1a =,()2,1b =-,若()a b λ+∥()2a b -,则实数λ=( ) A .12B .12-C .2D .-2【答案】B 【解析】 【分析】由平面向量线性运算的坐标表示出a b λ+,2a b -,再由平面向量共线的坐标表示即可得解. 【详解】由已知得()2,1a b =++-λλλ,()23,3a b -=-, 又因为()a b λ+∥()2a b -,所以有()()3231+=--λλ,解得12λ=-.故选:B例5.(2022·重庆八中高一期末)已知3a =,4b =. (1)若a 与b 的夹角为60︒,求()2a b a +⋅;(2)若a 与b 不共线,当k 为何值时,向量a kb +与a kb -互相垂直? 【答案】(1)21 (2)34k =±【解析】 【分析】(1)结合向量数量积运算与运算律计算求解即可; (2)根据()()0a kb a kb +-=解方程即可得答案. (1)解: ()21229234212a b a a b a +⋅=+⋅=+⨯⨯⨯= (2)解:∵向量a kb +与a kb -互相垂直,∴()()0a kb a kb +-=,整理得2220a k b -=,又3a =,4b =,∴29160k -=,解得34k =±.∴当34k =±时,向量a kb +与a kb -互相垂直.【变式训练5-1】.(2022·全国·高三专题练习)已知向量(cos ,sin ),(3,3),[0,π].a x x b x ==-∈ (1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,解不等式()3f x ≥【答案】(1)3π(2)[0,]6π 【解析】 【分析】(1)根据向量垂直的坐标运算,数量积为零得到关于x 的方程,即可得答案. (2)先根据数量积的坐标运算得到()f x a b =⋅的表达式,确定π31cos()62x -+,再解不等式,结合6x π+的范围,求得结果. (1)因为(cos ,sin )a x x =,(3,3b =-,a b ⊥, 所以3cos 30x x =, 所以tan 3x =因为[0,]x π∈,所以3x π=.(2)()(π()cos ,sin 3,33cos 323)6f x a b x x x x x =⋅=⋅-==+.因为[]0,πx ∈,所以ππ7π[,]666x +∈,从而π31cos()62x -+. 由()3f x ≥1cos()62x π+≥,所以1π3cos()262x +,所以663x πππ≤+≤,即06x π≤≤,故不等式()3f x ≥[0,]6π.四、课堂定时训练(45分钟)1.(2021·全国·高一课时练习)设12e e ,是不共线的两个向量,则下列四组向量不能构成基底的是( ) A .1e 与12e e + B .12e 2e -与21e 2e - C .12e 2e -与214e 2e - D .12e e +与12e e -【答案】C 【解析】 【分析】在同一平面内,只要两个向量不共线,就可以作为这个平面的一组基底,逐项判断即可. 【详解】对于A 选项:设121e e e =λ+,12e e ,是不共线的两个向量,1=1=0λ⎧∴⎨⎩,无解,1e ∴与12e e +不共线,1e ∴与12e e +可以构成一组基底;对于B 选项:设()1221=e 2e 2e e λ--,12e e ,是不共线的两个向量,1=22=λλ-⎧∴⎨-⎩,无解,12e 2e ∴-与21e 2e -不共线,12e 2e ∴-与21e 2e -可以构成一组基底;对于C 选项:设()1221=e 24e 2e e λ--,12e e ,是不共线的两个向量,1=21=2=42λλλ-⎧∴∴-⎨-⎩,,()21212e 2e 1=4e 2e ∴---,12e 2e ∴-与214e 2e -共线,12e 2e ∴-与214e 2e -不能构成一组基底; 对于D 选项:设()1212=e e e e λ-+,12e e ,是不共线的两个向量,1=1=λλ⎧∴⎨-⎩,无解, 12e e +∴与12e e -不共线,12e e +∴与12e e -可以构成一组基底; 故选:C2.(2022·全国·高一专题练习)已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A 2B 2C 22D .0【答案】C 【解析】 【分析】应用向量平行的坐标表示列方程求参数值即可. 【详解】由//a b 知:1×2-m 2=0,即2m 2-故选:C.3.(2022·江西·高三期末(文))已知平面向量()1,3a =,()2,1b =-,若()a ab λ⊥+,则实数λ的值为( ) A .10 B .8C .5D .3【答案】A 【解析】 【分析】由()a ab λ⊥+,得()0a a b λ⋅+=,将坐标代入化简计算可得答案 【详解】因为()1,3a =,()2,1b =-, 所以()12,3a b λλλ+=+-. 因为()a ab λ⊥+,所以()12330λλ++-=,解得10λ=. 故选:A.4.(2021·辽宁·沈阳二中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =-,()2,c t =,下列说法正确的是( ) A .若()a b +//c ,则6t = B .若()a b +⊥c ,则23t =C .若1t =,则4cos ,5a c <>=D .若向量a 与向量c 夹角为锐角,则1t >- 【答案】BC 【解析】 【分析】若()()1122,,,a x y b x y ==,根据a ∥b 时1221x y x y =判断A 选项是否正确;根据a b ⊥时12120x x y y +=判断B 选项是否正确;根据121222221122cos ,x a b a b a bx y x y <>==++判断C 选项是否正确;根据向量a 与向量c 夹角为锐角时0a c >,且向量a 与向量c 不平行,判断C 选项是否正确. 【详解】()1,2a =,()2,1b =-,()=1,3a b ∴+-,()2,c t ==22a c t ∴+若()a b +//c ,()2,c t =123t ∴-⨯=⨯6t ∴=-,故A 不正确;若()a b +⊥c ,()2,c t =123=0t ∴-⨯+⨯23t ∴=,故B 正确; 若1t =,则()2,1c =,=22=4a c t +,=5a ,5c =44cos ,555a c a c a c∴<>==⨯,故C 正确; 若向量a 与向量c 夹角为锐角, 则0a c >()1,2a =(),2,c t ==1220a c t ∴⨯+⨯>1t∴>-若向量a 与向量c 平行,则1=22t ⨯⨯,=4t ,故向量a 与向量c 夹角为锐角时1t >-且4t ≠.故D 不正确; 故选:BC5.(2021·广东·仲元中学高一期末)(多选题)已知向量()2,1a =,()3,1b =-,则( ) A .a 与a b -25B .()//a b a +C .向量a 在向量b 10D .若525,5c ⎛= ⎝⎭,则a c ⊥【答案】ACD 【解析】 【分析】对于A :由已知得()50a b -=,,根据向量夹角的计算公式计算可判断; 对于B :由已知得()+a b a ⊥,由此可判断;对于C :由已知得向量a 在向量b 上的投影,从而可判断; 对于D :由5252+105a c ⎛⋅=⨯⨯= ⎝⎭,可判断. 【详解】解:对于A :因为向量()2,1a =,()3,1b =-,所以()50a b -=,,所以a 与a b -的夹角余弦值为2225215+⨯,故A 正确; 对于B :因为()+12a b =-,,所以()+12+120a b a ⋅=-⨯⨯=,所以()+a b a ⊥,故B 不正确; 对于C :向量a 在向量b 上的投影为(()2223+11101031a b b⨯-⨯===-+⋅,所以向量a 在向量b 上的投影向量10C 正确;对于D :因为525,55c ⎛⎫=- ⎪ ⎪⎝⎭,所以5252+1055a c ⎛⎫⋅=⨯⨯-= ⎪ ⎪⎝⎭,所以a c ⊥,故D 正确, 故选:ACD.6.(2022·安徽亳州·高三期末(理))如图,在平面四边形ACDE 中,点B 在边AC 上,ABE △是等腰直角三角形,四边形BCDE 是边长为1的正方形,则AD CE ⋅=___________.【答案】-1 【解析】 【分析】以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系,用坐标法求解. 【详解】如图示,以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系.则()1,0A -、()1,0C 、()1,1D 、()0,1E ,所以()21AD =,,()11CE =-,, 所以211AD CE ⋅=-+=-. 故答案为:-17.(2021·江西·赣州市赣县第三中学高三期中(文))已知向量()2,1a =-,10a b ⋅=,52a b +=,则b =___________.【答案】5 【解析】 【分析】由已知,利用向量数量积的运算律有22250a b a b ++⋅=,结合向量模的坐标计算求||a ,进而求b . 【详解】∵52a b +=,则250a b +=,即22250a b a b ++⋅=, ∴252050b ++=,可得5b =. 故答案为:58.(2022·全国·高三专题练习)已知平面向量(),0,0αβαβ≠≠,β与αβ-的夹角为23π,且()0t t t αββ-=>,则t 的最小值是____________.【答案】233- 【解析】 【分析】作半径为2的圆O ,圆O 上取三点,,A B C ,(3,1)C --,(3,1)B -,A 在,B C 两点的优弧上,3BAC π∠=,这样CB α=,CA β=,满足β与αβ-的夹角为23π,然后把模式平方求得t ,可得最小值. 【详解】如图,设圆O 半径为2,,,A B C 在圆O ,设(3,1)C --,(3,1)B -,3BAC π∠=,CB α=,CA β=,设(2cos ,2sin )A θθ,7(,)66ππθ∈-,(23,0)α=,(2cos 3,2sin 1)βθθ=++,由t t αββ-=得222()t t αββ-=,因为0t >,所以21233233243(2cos 3)2cos 323t ααβθθ===≥=-⋅+++,cos 1θ=时等号成立.故答案为:233-.【点睛】本题考查由模求平面向量的数量积,解题关键是用图形表示出向量α,β,确定点,,A B C 的关系,引入坐标后用坐标表示向量的数量积,从而得出最值.。
平面向量 高三 一轮复习(完整版)
题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 平面向量基本定理及坐标表示
[基础送分 提速狂刷练]
一、选择题
1.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b .如果c ∥d ,那么( )
A .k =1且c 与d 同向
B .k =1且c 与d 反向
C .k =-1且c 与d 同向
D .k =-1且c 与d 反向
答案 D
解析 ∵c ∥d ,∴(k a +b )∥(a -b ),∴存在λ使k a +b =λ(a -b ),∴⎩⎪⎨⎪⎧ k =λ,1=-λ⇒
⎩⎪⎨⎪⎧ k =-1,λ=-1.
∴c =-a +b ,∴c 与d 反向.故选D.
2.(2018·襄樊一模)已知OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,
C 三点不能构成三角形,则实数k 应满足的条件是( )
A .k =-2
B .k =12
C .k =1
D .k =-1 答案 C
解析 若点A ,B ,C 不能构成三角形,则向量AB →与AC →
共线.因为AB →=OB →-OA →=(2,-1)-
(1,-3)=(1,2),AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1).所以1×(k +1)-2k
=0,解得k =1,故选C.
3.(2018·怀化一模)设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d =( )
A .(2,6)
B .(-2,6)
C .(2,-6)
D .(-2,-6)
答案 D
解析 设d =(x ,y ),由题意知4a =(4,-12),4b -2c =(-6,20),2(a -c )=(4,-
2),又4a +4b -2c +2(a -c )+d =0,所以(4,-12)+(-6,20)+(4,-2)+(x ,y )=(0,0),
解得x =-2,y =-6,所以d =(-2,-6).故选D.
4.(2017·河南高三质检)在△ABC 中,∠BAC =60°,AB =5,AC =4,D 是AB 上一点,且
AB →·CD →=5,则|BD →|等于( )
A .6
B .4
C .2
D .1
答案 C
解析 设AD →=λAB →,∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=λAB →
2-AB →·AC →=5,可得
25λ=15,∴λ=35,∴|BD →|=25
|AB →|=2,故选C. 5.在平面直角坐标系中,O 为坐标原点,设向量OA →=a ,OB →
=b ,其中a =(3,1),b =(1,3).若OC →
=λa +μb ,且0≤λ≤μ≤1,则C 点所有可能的位置区域用阴影表示正确的是( )
答案 A
解析 由题意知OC →=(3λ+μ,λ+3μ),取特殊值,λ=0,μ=0,知所求区域包含原
点,排除B ;取λ=0,μ=1,知所求区域包含(1,3),排除C ,D ,故选A.
6.(2018·茂名检测)已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( )
A .24
B .8 C.83 D.53
答案 B
解析 ∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3,又x ,y >0,∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ×13
(2x +3y )=13⎝ ⎛⎭⎪⎫6+9y x +4x y +6≥13⎝ ⎛⎭
⎪⎫12+29y x ·4x y =8,当且仅当2x =3y =32时,等号成立.∴3x +2y
的最小值是8.故选B.
7.(2017·济南二模)如图所示,两个非共线向量OA →、OB →的夹角为θ,N 为OB 中点,M 为。