2018年河北省衡水中学高三下学期期初考试(3月)理科数学

合集下载

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}AB =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=,即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D 解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否→输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( )A . 5B .3C.5D.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( )A .3B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0B.CD7.答案:B解析:解法1:123410,02a a a a a -======-,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( )A .110,3⎛⎤⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B 解析:当,32x ππ⎛⎫∈⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( )A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭ B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞B.,2⎛-∞- ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .2±C .12或3 D .1或2 12.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= . 13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 . 14.答案:(0,)e 解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t =-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于 ()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 .15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0n S>,所以222n S +=,所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因(2)求cos 2sin 22B --⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos A ∴=0πA <<,所以6πA = (2)25cos 2sin sin cos 1sin cos()122πCB BC B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin 116626πππB B B B B B ⎛⎫=-+-=-=-- ⎪⎝⎭由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦, 故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是1⎛⎤ ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============所以的分布列为()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AACC 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OCOA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),3)C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,1111130AB m x AC m y ⎧⋅=-=⎪∴⎨⋅=-=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,3,1)m =-.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)ABAA =-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =,于是cos ,5m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为 20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值.20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令2ln ()(0)1x xg x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==, 所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >).(1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围;(3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分)(2)()21a f x x a ax '=+-+,依题意,1101212a f a a⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分)(3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭.问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+- ⎪⎝⎭恒成立,设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭,则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤.当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭.于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立.综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—4:坐标系与参数方程x 轴的非负半轴重合,直线l 的参数方程为1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c o s ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y-+=.由1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t 解得10x+=, 所以直线l10x +=……………………(5分)(2)把1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则 12125tt t t +==,所以12PQ t t =-==10分)方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =, 所以PQ ==………………(10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:1212524y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥,解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

2018届河北省衡水市衡水中学第三次月考理科数学.docx

2018届河北省衡水市衡水中学第三次月考理科数学.docx

2017-2018学年度上学期高三年级三调考试数学(理科)试卷一、选择题(本题共12小题,每小题5分,共60分,从每小题给出的四个选项中,选出 最佳选项,并在答题纸上将该项涂黑)1.己知集合 A = {X |X 2-3X -10<0},B = {X | v = ln(x-2)},则 4 =( )A. (2,5) C. (-2,2] D. (—2,2)1.答案:C解析:A = {% | x 2 - 3x -10 < 0} = (-2,5), B | y = ln(x - 2)} = (2, +oo),.•.飘= (Y ,2],A (詔)=(-2,2]2.已知复数z 满足(z-i )(l + 2i ) = i 3 (其中i 是虚数单位),则复数z 的虚部等于( )解析:(z —i)(l + 2i)=f=—i,.:z —i = l + 2z 4故z 的虚部为一593•阅读如图所示的程序框图,若输入的a = —,则输出的厂值是( )19A. 9B. 10C. 11D. 12B. [2,5)1 A.—— 52 B.——5 4 C.— 5 2.答案:CD.(1 +2i)(l-2i) 2 4. 2 4.----------- 1, z — -------- 1—1 , 5 5 5 5第3题图3.答案:C] _£x (2k + l)-(2k-1) _]_(_J __________(2k —l)(2k + l) ~2X (2k —l)(2k + l) _ 2(2k-1 _ 2k + lJ所以s=22k9辱= -------- >—,解得k>9,所以取k = 10,再执行一步k = k+l,则输出k = U 2k + l 194若数列心满足心…’二=心纠则数如的第|。

项为()liiiA. B. -^7- C. ----- D.—210<)250100 504.答案:D解析:由山5 = 5 5 ,两边取倒数,得—— =———("M2),故数列丄>a n-\ ~ a n a n ~色+1 色色-1 色+1色、色’ 是等差数列,其首项为公差为丄-丄=丄,所以—=-+丄(“-1)=2% 2 a2 a x 2 a n 2 2 22 2 1色=一,伽= 二——n n ^00100 50x-y 2 05.已知兀,y满足约束条件<x+yW2 ,则|3x+4j-12|的最小值为()y N 0A. 5B. 12 C・ 6 D. 45.答案:A解析:作可行域如图所示,则可行域内的任一点(兀,y)到直线3x + 4y-12 = 0的距离d = |3x + ?_12| ,所以 |3x+4y_12|=5t/;由图可知,点4(1,1)到直线3x + 4y-12 = 0的距离最小,所以|3x+4y—12|聞=|3xl + 4xl-12|=56.放在水平桌面上的某几何体的三视图如图所示,则该几何体的表面积为()—1—俯视图第6题图6.答案:C解析:该几何体可以看成是一个底面是扇形的柱体,其表面积7. 在AABC 中,a,b,c 分别是角A,B,C 的对边,若a 2 + b~ = 2014c 2,则2 tan A - tan B _ 2sin Asin Bcos C _ 2sin AsinBcosCA. 07.答案:CB. 1C. 2013D. 2014解析:cosC = a2+b 2 -< & _ 2013c 2 2aZ?cosC = 2013c 2,由正弦定理,得 2ab lab的值为()A.兀 + 4B.兀 + 3C.辺 + 4 S = 2x —X ^X 22 +45 2 + 2 + ^-x2x^-x2 |xl = ^ + 4 3602 tan A • tan B tan C(tan A + tan B) 2sinAsinBcos C = 2013sin 2 C ,所以sin Asin Bcos C sin 2B20132 D.辺+ 2tan C(tan A + tan B) sin C(sin A cos B + sin B cos A)sin C sin(A + B)2sin Asin B cos C - 2013 -=2x = 2013 sin 2 C 2 8. 若对于数列[a n ],有任意m,n e N*,满足a,”+”的值为()析:由 ^m +n =+ 色,色=2 ,当 m — 1 时,色=Q] +。

河北省衡水中学2018届高三数学下学期全国统一联合考试3月试题理无答案

河北省衡水中学2018届高三数学下学期全国统一联合考试3月试题理无答案

河北省衡水中学2018届高三数学下学期全国统一联合考试(3月)试题 理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,{}3,4,5A =,{}1,3,6B =,则集合{}2,7,8是( ) A.ABB.ABC.()U C ABD.()U C A B2.已知复数z 的实部不为0,且1z =,设1z z ω=+,则ω在复平面上对应的点在( )A.实轴上B.虚轴上C.第三象限D.第四象限3.将()2nx -的展开式按x 的升幂排列,若倒数第三项的系数是40-,则n 的值是( )4.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )33B.6πC.9π435.设1F ,2F 分别是双曲线()2222:10,0x y C a b a b -=>>的左、右焦点,以1F 为圆心、12F F 为半径的圆与双曲线左支的其中一个交点为A ,若12120AF F =∠°,则该双曲线的离心率是( ) 233131+6.若函数()()()2sin 20f x a x θθπ=+<<,a 是不为零的常数)在R 上的值域为[]2,2-,且在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上是单调减函数,则a 和θ的值是( )A.1a =,3πθ=B.1a =-,3πθ=C.1a =,6πθ=D.1a =-,6πθ=7.已知函数()32f x x ax bx c =+++(a ,b ,c 均为常数)的图象关于点()1,0-对称,则b c -的值是( ) A.4-B.4C.2-8.已知“x a x b ≥⇒>”,且“x a x c <⇒≤”,则“x c ≤”是“x b ≤”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( )10.已知向量()cos ,sin AB αα=,()cos ,sin BC ββ=,()cos ,sin CA γγ=,其中02αβγπ<<<<,则AB BC ⋅的值是( )A.12B.12-C.3-D.3 11.设函数()f x 定义如下表: x1 2 3 4 5 ()f x14253执行如图所示的程序框图,则输出的x 的值是( )12.已知异面直线a ,b 所成的角为90°,直线AB 与a ,b 均垂直,且垂足分别为A ,B ,若动点P 在直线a 上运动,动点Q 在直线b 上运动,4PA QB +=,则线段PQ 的中点M 的轨迹所围成的平面区域的面积是( )二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.抛物线24y x =-的焦点到它的准线的距离是____________.14.若实数x ,y 满足100x y x y +≥-⎧⎪≤⎨⎪≤⎩,则2z x y =+取得最大值时对应的最优解是____________.15.已知在ABC △中,角,,A B C 的对边分别是,,a b c ,5cos A =,10cos B =,2c =,则a =____________.16.已知函数()xxf x e =,关于x 的方程()()220f x f x c -+=⎡⎤⎣⎦有以下四个结论: ①当0c =时,方程有3个实根;②当221c c e -=时,方程有3个实根;③当2211e c e -<<时,方程有2个实根;④当221e c e -<时,方程有4个实根. 以上结论中正确的有____________(填序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知正项等比数列{}n a 满足()*14n n n a a n N +=∈. (1)求数列{}n a 的通项公式; (2)设2211log log n n n b a a +=,求数列{}n b 的前n 项和n S .18.如图,在三棱柱111ABC A B C -中,1AC BC AB AA ===,过1AA 的平面分别交BC ,11B C 于点D ,1D .(1)求证:四边形11ADD A 为平行四边形;(2)若1AA ⊥平面ABC ,D 为BC 中点,E 为1DD 中点,求二面角1A C E C --的余弦值.19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频被转发的天数x 与点赞的人数y 进行了统计,数据见下表: x1 2 3 4 5 6 7 y611213466114210根据所给数据(),x y ,画出了散点图以后,发现演讲视频被转发的天数x 与点赞的人数y 的关系可以近似地表示为x y a b =⋅(,a b 均为正常数). (题中所有数据的最后计算结果都精确到0.01) (1) 建立y 关于x 的回归方程;(2) 试预测,至少经过多少天,点赞的人数超过12000?附:①对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y x a β=+的斜率和截距的最小二乘估计分别为()()()121nii i nii xx y yxxβ==--=-∑∑,a y x β=-.②参考数据: lg2lg3lg6lg11lg 21lg34lg66lg114lg 2100.30 0.48 0.78 1.04 1.32 1.53 1.82 2.06 2.3220.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F 、2F ,椭圆E 上一点A 在x 轴上的射影恰好为1F ,且直线2AF 的斜率为3(1)求椭圆E 的离心率;(2)当2a =时,过点()0,2Q -的射线与椭圆E 交于不同的两点M ,N ,若点P 在射线QM 上,且满足2QM QN QP ⋅=,求点P 的横坐标0x 的取值范围. 21.已知函数()ln f x x =.(1)设()()()()'F x f k x k f k =-+(其中0k >),求证:()()f x F x ≤.(2)若曲线()y f x =与抛物线()22y ax a x =+-有两个公共点,求实数a 的取值范围.22.已知圆C 的极坐标方程为222sin 104πρρθ⎛⎫+++= ⎪⎝⎭,直角坐标系xOy 的坐标原点O 与极点重合,x轴的正半轴与极轴重合.(1)求圆C的标准方程和它的一个参数方程;(2)设()P x y是圆C上的任意一点,求xy的最大值.,23.已知函数()1=+-.f x x x(1)解不等式()3f x≥;(2)若()()2f x f y+≤,求x y+的取值范围.。

(word完整版)河北省衡水中学2018年高三下学期期初试卷

(word完整版)河北省衡水中学2018年高三下学期期初试卷

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分.满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £ 19.15.B. £ 9.18.C. £ 9.15.答案是C。

1. When did the taxi arrive?A. At 7:10.B. At 7:25.C. At 7:45.2. How is Frank getting on with his project?A. Very poorly.B. Quite smoothly.C. Just so-so.3. Where does the conversation probably take place?A. In a bank.B. In a shop.C. In a restaurant.4. What are the speakers talking about?A. A website.B. A PPT.C. Some photos.5. What will the man do?A. Go to the party.B. Watch a DVD.C. Attend his brother.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6. What is the probable relationship between the speakers?A. Boss and employee.B. Husband and wife.C. Colleagues.7. Why does Dave go to Seattle?A. To get a new job.B. To look after his daughter.C. To attend a party.听第7段材料,回答第8、9题。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)最新修正版

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)最新修正版

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}A B =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=, 即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D 解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否→输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( ) A . 5 B .3CD.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,5d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3 B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( ) A .3 B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0 B.CD7.答案:B解析:解法1:123410,02a a a a a -======-,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=-⎪⎝⎭在,32ππ⎛⎫⎪⎝⎭内单调递减,则ω的取值范围是( ) A .110,3⎛⎤⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦ C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B 解析:当,32x ππ⎛⎫∈⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D 解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( ) A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞ B.,⎛-∞ ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1 B .2±C .12或3 D .1或212.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x ∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= .13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 .14.答案:(0,)e解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t=-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 .15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0n S>,所以222n S +所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a 的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因2(1)求角A 的大小; (2)求25cos 2sin 22C B π⎛⎫--⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos A ∴=0πA <<,所以6πA =(2)25cos 2sin sin cos 1sin cos()122πC B B C B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin cos 1166226πππB B B B B B ⎛⎫=-+-=--=-- ⎪⎝⎭ 由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦,故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是1⎛⎤ ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B 1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OC OA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,11111300AB m xAC m y ⎧⋅=-=⎪∴⎨⋅=--=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,m =.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA =-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =, 于是cos ,55m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值. 20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令 2ln ()(0)1x x g x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==,所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >). (1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围; (3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分) (2)()21a f x x a ax '=+-+,依题意,1101212a f a a ⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分) (3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭. 问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+-⎪⎝⎭恒成立, 设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭, 则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤. 当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭. 于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立. 综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的非负半轴重合,直线l 的参数方程为1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c os ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y -+=.由1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t解得10x +=, 所以直线l的普通方程为10x +=……………………(5分)(2)把1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则12125t t t t +==,所以12PQ t t =-==………………(10分) 方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =,所以PQ ==………………(10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:12125,24y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥,解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

2018届河北省衡水市衡水中学第三次月考理科数学

2018届河北省衡水市衡水中学第三次月考理科数学

2017~2018学年度上学期高三年级三调考试数学(理科)试卷一、选择题(本题共12小题,每小题5分,共60分,从每小题给出的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.已知集合2{|3100},{|ln(2)}A x x x B x y x =--<==-,则()R AB =ð( ) A .(2,5)B .[2,5)C .(2,2]-D .(2,2)-1.答案:C解析:2{|3100}(2,5),{|ln(2)}(2,),A x x x B x y x =--<=-==-=+∞()(,2],(2,2]B AB ∴=-∞=-R R痧2.已知复数z 满足3(i)(12i)i z -+=(其中i 是虚数单位),则复数z 的虚部等于( )A .15-B .25-C .45D .352.答案:C解析:3i i(12i)2424(i)(12i)i i,i i,i 12(12i)(12i)5555z z z i ----+==-∴-===--∴=-+++-, 故z 的虚部为453.阅读如图所示的程序框图,若输入的919a =,则输出的k 值是( ) A .9B .10C .11D .123.答案:C解析:11(21)(21)111(21)(21)2(21)(21)22121k k k k k k k k +--⎛⎫=⨯=- ⎪-+-+-+⎝⎭,所以11111111112335212122121k S k k k k ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 令92119k S k =>+,解得9k >,所以取10k =,再执行一步1k k =+,则输出11k =4.若数列{}n a 满足122,1a a ==,且1111(2)n n n n n n n n a a a an a a a a -+-+⋅⋅=--≥,则数列{}n a 的第100项为( )A .10012B .5012 C .1100D .1504.答案:D 解析:由1111n n n n n n n n a a a a a a a a -+-+⋅⋅=--,两边取倒数,得111111(2)n n n nn a a a a -+-=-≥,故数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,其首项为1112a =,公差为211112a a -=,所以111=+(1),222n n n a -=100221,10050n a a n ∴===5.已知,x y 满足约束条件020x y x y y -⎧⎪+⎨⎪⎩≥≤≥ ,则3412x y +-的最小值为( )A .5B .12C .6D .45.答案:A解析:作可行域如图所示,则可行域内的任一点(,)x y 到直线34120x y +-=的距离34125x y d +-=,所以3412=5x y d +-,由图可知,点(1,1)A 到直线34120x y +-=的距离最小,所以min 34123141125x y +-=⨯+⨯-=6.放在水平桌面上的某几何体的三视图如图所示,则该几何体的表面积为( )A .4π+B .3π+C .342π+ D .322π+6.答案:C解析:该几何体可以看成是一个底面是扇形的柱体,其表面积245453222222143603602S πππ⎛⎫=⨯⨯⨯+++⨯⨯⨯⨯=+ ⎪⎝⎭7.在ABC △中,,,a b c 分别是角,,A B C 的对边,若2222014a b c +=,则2tan tan tan (tan tan )A BC A B ⋅+的值为( )A .0B .1C .2013D .20147.答案:C解析:222222013cos ,2cos 201322a b c c C ab C c ab ab+-==∴=,由正弦定理,得: 22sin sin cos 2013sin A B C C =,所以2sin sin cos 2013sin 2A B C B =, 2tan tan 2sin sin cos 2sin sin cos =tan (tan tan )sin (sin cos sin cos )sin sin()A B A B C A B CC A B C A B B A C A B ⋅=+++22sin sin cos 201322013sin 2A B C C ==⨯= 8.若对于数列{}n a ,有任意,m n N *∈,满足2,2m n m n a a a a +=+=,则132013222014a a a a a a ++++++的值为( )A .10061007B .10081009C .10051006D .100710088.答案:D解析:由2,2m n m n a a a a +=+=,当1m =时,21112,1a a a a =+=∴=;当1m =时,111n n n a a a a +=+=+,所以数列{}n a 是首项为1,公差为1的等差数列,故n a n =,所以132013222014(12013)100713201310072(22014)242014100810072a a a a a a +⨯++++++===+++++++⨯ 9.在ABC △中,角,,A B C 所对的边分别为,,a b c ,若32C ππ<<,sin 2,sin sin 2b Ca b A C=--3a =,sin 6B =b 等于( ) AB .2CD.9.答案:A 解析:由sin 2sin sin 2b C a b A C =--及正弦定理可得sin sin 2sin sin sin sin 2B CA B A C=--, 即sin sin sin sin 2sin sin 2sin sin 2B A B C A C B C -=-,sin sin sin sin 2B A A C ∴=又sin 0A ≠,sin sin 2B C ∴=,故2B C =或2B C π+=,又因为3C π>,若2B C =,则23B C C π+=>,故舍去,所以2B C π+=,又因为A B C π++=,所以A C =,所以3c a ==,由sin B =5cos 6B =,由余弦定理可得 2222cos 99153b a c ac B =+-=+-=,故b =10.如图所示,23ABC π∠=,圆M 与,AB AC 分别相切于,,1D E AD =,若点P 是圆M及其内部任意一点,且(,)AP x AD y AE x y R =+∈,则x y +的取值范围是( )A.[1,4+ B.[44-+ C.[1,2+ D.[22+10.答案:B 解析:连接DE ,则当点P 在线段DE 上运动时,1x y +=,连接AM 并延长,交圆于,S T两点,交线段DE 于点N ,则圆的半径r =12,,22AM AN AS AMr ===-=- 2AT AM r =+=+,当点P 位于点T时,x y +取得最大值,最大值为4ATAN=+当点P位于点S 时,x y +取得最小值,最小值为4ASAN=-另一种解释,考虑以,AD AE 方向为x 轴、y 轴,AD 为单位长度建立菱形坐标系,则直线DE 的方程为1x y +=,设z x y =+,作直线0x y +=并平移,当直线过点S 时,z 取得最小值,当直线过点T 时,z取得最大值.11.已知向量,,αβγ满足()()()1,2,αααβαγβγ=⊥--⊥-,若17,2βγ=的最大值和最小值分别为,m n ,则m n +等于( )A .32B .2 C .52D 11.答案:C解析:()()212,22120,2ααβααβααβαβαβ⊥-∴⋅-=-⋅=-⋅=∴⋅=, ()22217255211,442αβααββαβ∴+=+⋅+=++=∴+=, 如图,设,,OA OB OC αβγ===,则,CA CB αγβγ-=-=,所以CA CB ⊥,即点C 在以AB 为直径的圆上,设D 为AB 中点,连接OD 并延长,与圆交于12,C C 两点,则125,,22m OC OD r n OC OD r m n OD αβ==+==-+==+=12.已知定义在(0,)+∞内的函数()f x 的导函数为()f x ',且满足2()(ln )2()f x x x f x '>,则( )A .326()2()3()f e f e f e >>B .236()3()2()f e f e f e <<C .236()3()2()f e f e f e >>D .326()2()3()f e f e f e <<12.答案:B解析:由2()(ln )2()f x x x f x '>可得()(ln )()f x x x f x '>,设()()ln f x g x x=,则 221()ln ()()(ln )()()0(ln )(ln )f x x f x f x x x f x x g x x x x '-⋅'-'==>,故()g x 在(0,)+∞上单调递增,所以23()()()g e g e g e <<,即23()()()23f e f e f x <<,即236()3()2()f e f e f e << 二、填空题(本题共4小题,每小题5分,共20分)13.322144x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .13.答案:160解析:22222111144(2)222x x x x x x x x ⎛⎫⎛⎫++=++⋅⋅=+ ⎪ ⎪⎝⎭⎝⎭,故362211442x x x x ⎛⎫⎛⎫++=+⎪ ⎪⎝⎭⎝⎭,展开式中的常数项为333461(2)160T C x x ⎛⎫== ⎪⎝⎭14.已知数列{}n a 的前n 项和为n S ,若函数()22()f x x x x R =+∈的最C 2C 1DABO大值为1a ,且满足114n n n n n a a a S a S +-=-,则数列n a 的前2 017项之积2017A = . 14.答案:4解析:()224sin(2)4f x x x x π=+=+的最大值为4,故14a =,由114n n n n n a a a S a S +-=-,得1()1n n n n a a S S +--=,即11n n n a a a +-=,111n na a +∴=-, 由14a =,可得23431,,443a a a ==-=,故数列{}n a 的周期为3,且31231A a a a ==-,又201736721=⨯+,所以672201720171(1)4A a a =-==15.已知O 为ABC △的外接圆圆心,16,10AB AC ==AO xAB yAC =+,且322525x y +=,则AO = .15.答案:10解析:以点A 为坐标原点,AO 方向为x 轴正方向建立直角坐标系,设直线AO 与圆的另一个交点为D ,设,BAD CAD αβ∠=∠=,则(16cos ,16sin ),(16cos ,16sin )B Cααββ-,在R T A B D△中,16coscos AB AD αα==, 在RT ACD △中,cos cos AC AD ββ==,所以416cos cos cos cos ααββ=∴==,根据数字特征,不妨假设4cos ,cos 52αβ==,然后再进行验证,此时20,10,AD AO ==(10,0),AO =6448,,(10,10)55AB AC ⎛⎫==- ⎪⎝⎭由AO x AB y AC =+,得6448(10,0)10,1055x y x y ⎛⎫=+- ⎪⎝⎭,故6410105481005x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,AO16.已知函数3(),()(),1()(),()ln (),()(),4f x f x g x h x f x x ax g x x g x f x g x ⎧==++=-⎨>⎩≤,若()0h x =在区间(0,)+∞内有三个不同的实数根,则实数a 的取值范围是 .16.答案:53,44⎛⎫-- ⎪⎝⎭解析:()min((),())h x f x g x =,()ln g x x =-有1个零点1x =,2()3f x x a '=+,显然必须0a <,令()0f x '=,得x =()f x 的对称中心为10,4⎛⎫⎪⎝⎭,要想满足题意,只(2)若ABC △22cos 4c ab C a ++=,求a . 17.解:(1)由22cos c a B b -=及正弦定理可得2sin 2sin cos sin C A B B -=, 因为s i n s i n ()s i n c o s c o s s C A B A B A B =+=+,所以2c o s s i n s i nA B B =,因为sin 0B ≠,所以1cos 2A =,又因为0A π<<,所以3A π=. (5分)(2)22cos 4c ab C a ++= (*)又由余弦定理得222cos 2a b c ab C +-=,代入(*)式得22283b c a +=-.1sin 12ABC S bc A bc ===∴=△,由余弦定理得222222cos 1a b c bc A b c =+-=+-,所以22831a a =--,解得a = (12分)18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,211()(2)n n n n a S S S n ---=⋅≥,且11,0.n a a =>(1)求2a 的值,并证明数列{}n S 是等比数列;(2)设212(1)log ,nn n n n b S T b b b =-=+++,求n T .18.解:(1)令2n =,得221121()()a a a a a -=+⋅,将11a =代入并整理得:22230a a -=,因为0n a >,所以23a =.由题意得211(2)(2)n n n n S S S S n ---=⋅≥,整理得11()(4)0,n n n n S S S S ----=1(4)0n n n a S S -∴-=,因为0n a >,所以14(2)n n S S n -=≥,所以数列{}n S 收首项为1,公比为4的等比数列. (7分)(2)由(1)可知14n n S -=,所以2(1)log (1)(22)n n n n b S n =-=--所以1,2[0123456(1)(1)],nn n n T n n n -⎧=⨯+-+-+-++--=⎨⎩为奇数为偶数 (12分) 19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足214(1)(),1n n nS n a n N a *=+∈=.(1)求n a ; (2)设n n n b a =,数列{}n b 的前n 项和为n T ,求证:74n T <. 19.解:(1)由题意得2(1)4nn n a S n += ① 211(2)4(1)n n n a S n n --=-≥ ② ①-②,得:221(1)44(1)n n n n a n a a n n -+=--,所以133(2)(1)nn a a n n n -=-≥, 所以数列3n a n ⎧⎫⎨⎬⎩⎭是一个常数列,所以3131,1n n a a a n n ==∴= (6分) (2)由(1)得21n b n =,所以127571;;444T T =<=< 当3n ≥时,222221111111117171123442334(1)44n T n n n n =+++++<+++++=-<⨯⨯-⨯综上可得7()4n T n N *<∈ (12分)20.(本小题满分12分)已知函数()ln(1)f x x ax =++,其中a R ∈. (1)当1a =-时,求证:()0f x ≤;(2)对任意210x ex >≥,存在(1,)x ∈-+∞,使212212(1)(1)(1)()f x f x a x f x x x x ----->-成立,求a 的取值范围.(其中e 是自然对数的底数, 2.71828e =)20.解:(1)当1a =-时,()ln(1)(1)f x x x x =+->-,则1()111xf x x x -'=-=++, 令()0f x '=,得0x =.当(1,0)x ∈-时,()0f x '>,函数()f x 单调递增;当(0,)x ∈+∞时,()0f x '<,函数()f x 单调递减,所以当0x =时,函数()f x 取得极大值,也是最大值,所以max ()(0)0f x f ==,所以()0f x ≤,得证. (4分)(2)不等式212212(1)(1)(1)()f x f x a x f x x x x ----->-,即为[]221221(1)(1)()x f x f x ax f x a x x ---->---,而[]221221(1)(1)x f x f x ax x x -----[]22212221112221212221212222111ln ()ln (1)ln (1)=ln ln1x x a x x x x a x x a x x ax ax x x x x x x x x x x ax ax x x x x x ⎡⎤+-⎢⎥+----⎣⎦-=---=+-=⋅-- 令21()x t t e x =≥,原命题即故对任意t e ≥,存在(1,)x ∈-+∞,使ln ()1t t f x a t >---恒成立,所以()min minln ()1t t f x a t ⎛⎫>--⎪-⎝⎭, 设ln ()1t t h t t =-,则21ln ()(1)t t h t t --'=-,设()1ln u t t t =--,则11()10t u t t t-'=-=>对于t e ≥恒成立,则()1ln u t t t =--为区间[,)e +∞上的增函数,于是()()20u t u e e =->≥, 所以21ln ()0(1)t t h t t --'=>-对于t e≥恒成立,所以ln ()1t th t t =-为区间[,)e +∞上的增函数, 所以min ()()1eh t h e e ==-.设()()ln(1)p x f x a x ax a =--=-+--, ①当0a ≥时,函数()p x 为区间(1,)-+∞上的单调递减函数,其值域为R ,可知符合题意;②当0a <时,1()1p x a x '=--+,令()0p x '=,得111x a=-->-,由()0p x '>得11x a >--,则函数()p x 在区间11,a ⎛⎫--+∞ ⎪⎝⎭内为增函数;由()0p x '<,得11x a <--,则函数()p x 在区间11,1a ⎛⎫--- ⎪⎝⎭内为减函数,所以min 1()1ln()1p x p a a ⎛⎫=--=-+ ⎪⎝⎭,从而ln()11e a e >-+-,解得110e e a --<<.综上所述,a 的取值范围是11,e e -⎛⎫-+∞ ⎪⎝⎭. (12分)21.(本小题满分12分)设函数2()ln(1)f x x a x =++.(1)若函数()y f x =在区间[1,)+∞内是单调递增函数,求实数a 的取值范围;(2)若函数()y f x =有两个极值点12,x x ,且12x x <,求证:21()10ln 22f x x <<-+. 21.解:(1)由题意知222()2011a x x af x x x x ++'=+=>++在区间[1,)+∞内恒成立(1分) 即222a x x >--在区间[1,)+∞内恒成立,解得4a >- (3分)当4a =-时,22242(2)(1)()011x x x x f x x x +-+-'==>++,当[1,)x ∈+∞时,()0f x '≥,且仅当1x =时,()0f x '=,所以函数()f x 单调递增,所以a 的取值范围是[4,)-+∞ (4分)(2)函数()f x 的定义域为(1,)-+∞,222()1x x a f x x ++'=+,即2()22g x x x a =++,则有480(1)0112a g a ⎧⎪∆=->⎪-=>⎨⎪⎪->-⎩,解得102a <<证法一:因为2122222111,220,,0222x x x x a x x +=-++==-+-<<, 所以222222212()(22)ln(1)=1f x x x x x x x -++--, 令22(22)ln(1)1(),,012x x x x k x x x -++⎛⎫=∈- ⎪--⎝⎭(8分) 则2223262()2ln(1),()(1)(1)x x x k x x k x x x ++'''=++=++,因为()4,(0)2k x k ''''=-=,所以存在01,0x ⎛⎫∈- ⎪,使得()0k x ''=,列表如下:又(0)0,12ln 202k k ⎛⎫''=-=-< ⎪⎝⎭,所以1()0,,02k x x ⎛⎫'<∈- ⎪⎝⎭,所以函数()k x 在1,02⎛⎫- ⎪⎝⎭内为减函数, (11分)所以1(0)()2k k x k ⎛⎫<<- ⎪⎝⎭,即21()10ln 22f x x <<-+. (12分) 证法二:因为2x 是方程2220x x a ++=的解,所以22222a x x =--.因为122110,0,22a x x x <<<<=-+2102x -<<. 先证21()0f x x >,因为120x x <<,即证2()0f x <, 在区间12(,)x x 内,()0f x '<,在区间2(,0)x 内,()0f x '>,所以2()f x 为极小值,2()(0)0f x f <=,即2()0f x <,所以21()0f x x >成立. (8分) 再证21()1ln 22f x x <-+,即证22211()ln 2(1)ln 2(1)22f x x x ⎛⎫⎛⎫>-+--=-+ ⎪ ⎪⎝⎭⎝⎭.令2211()(22)ln(1)ln 2(1),,022g x x x x x x x ⎛⎫⎛⎫=-++--+∈- ⎪ ⎪⎝⎭⎝⎭(10分) 则1()2(21)ln(1)ln 22g x x x ⎛⎫'=-++-- ⎪⎝⎭,因为1ln(1)0,210,ln 202x x +<+>-<, 所以()0g x '>,函数()g x 在区间1,02⎛⎫- ⎪⎝⎭内为增函数, 所以111111()ln ln 20242242g x g ⎛⎫>-=+-+= ⎪⎝⎭, (11分) 所以221()ln 2(1)2f x x ⎛⎫>-+ ⎪⎝⎭成立. 综上可得21()10ln 22f x x <<-+成立. (12分) (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数);在以原点O为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若射线:(0)l y kx x =≥与曲线12,C C 的交点分别为,A B (,A B 异于原点),当斜率k ∈时,求OA OB ⋅的取值范围.22.解:(1)曲线1C 的直角坐标方程为22(1)1x y -+=,即2220x x y -+=,将c o s s i n x y ρθρθ=⎧⎨=⎩代入并化简得曲线1C 的极坐标方程为2cos ρθ=,由2cos sin ρθθ=,两边同时乘以ρ,得22cos sin ρθρθ=,将cos sin x y ρθρθ=⎧⎨=⎩代入得曲线2C 的直角坐标方程为2x y =. (5分)(2)设射线:(0)l y kx x =≥的倾斜角为ϕ,则射线的极坐标方程为θϕ=,且tan k ϕ=∈.联立2cos ρθθϕ=⎧⎨=⎩,得12cos OA ρϕ==, (7分) 联立2cos sin ρθθθϕ⎧=⎨=⎩,得22sin cos OB ϕρϕ== (8分)所以122sin 2cos 2tan 2(2,cos OA OB k ϕρρϕϕϕ⋅=⋅=⋅==∈, 即OA OB ⋅的取值范围是(2, (10分)23.(本小题满分10分)选修4—5:不等式选讲 已知函数()13f x x x =-++的最小值为m .(1)求m 的值;(2)若正实数,,a b c 满足(22)a a c b m bc ++=-,求3a b c ++的最小值.23.解:(1)因为()13(1)(3)4f x x x x x =-++--+=≥,所以4m =. (4分)(2)因为(22)4a a c b bc ++=-,所以2(22)()4a ac ab bc +++=,即(2)()4a b a c ++=所以3(2)()4a b c a b a c ++=+++=≥,当且仅当22a b a c +=+=时取等号,所以3a b c ++的最小值的最小值为4 (10分)。

河北省衡水中学2018届高三下学期全国统一联合考试(3月)——数学理(数学(理))

河北省衡水中学2018届高三下学期全国统一联合考试(3月)——数学理(数学(理))

河北省衡水中学2018届高三下学期全国统一联合考试(3月)数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,,,则集合是( ) A.B.C.D.2.已知复数的实部不为0,且,设,则在复平面上对应的点在( ) A.实轴上B.虚轴上C.第三象限D.第四象限3.将的展开式按的升幂排列,若倒数第三项的系数是,则的值是( ) A.4B.5C.6D.74.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )A.B.C.D.5.设,分别是双曲线()2222:10,0x y C a b a b -=>>的左、右焦点,以为圆心、为半径的圆与双曲线左支的其中一个交点为,若,则该双曲线的离心率是( ) A.B.C.D.6.若函数()()()2sin 20f x a x θθπ=+<<,是不为零的常数)在上的值域为,且在区间上是单调减函数,则和的值是( ) A.,B.,C.,D.,7.已知函数(,,均为常数)的图象关于点对称,则的值是( ) A.B.C.D.28.已知“”,且“”,则“”是“”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较高,他独自一人解决项目M 的概率为;同时,有个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是.现在李某单独研究项目M ,且这个人组成的团队也同时研究项目M ,设这个人团队解决项目M 的概率为,若,则的最小值是( ) A.3B.4C.5D.610.已知向量,,,其中,则的值是( ) A.B.C.D.11.设函数定义如下表:执行如图所示的程序框图,则输出的的值是( )A.4B.5C.2D.312.已知异面直线,所成的角为,直线与,均垂直,且垂足分别为,,若动点在直线上运动,动点在直线上运动,,则线段的中点的轨迹所围成的平面区域的面积是( ) A.2B.4C.8D.12二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线的焦点到它的准线的距离是____________.14.若实数,满足100x y x y +≥-⎧⎪≤⎨⎪≤⎩,则取得最大值时对应的最优解是____________.15.已知在中,角的对边分别是,,,,则____________.16.已知函数,关于的方程()()220f x f x c -+=⎡⎤⎣⎦有以下四个结论:①当时,方程有3个实根;②当时,方程有3个实根;③当时,方程有2个实根;④当时,方程有4个实根.以上结论中正确的有____________(填序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项等比数列满足. (1)求数列的通项公式; (2)设,求数列的前项和.18.如图,在三棱柱中,,过的平面分别交,于点,.(1)求证:四边形为平行四边形;(2)若平面,为中点,为中点,求二面角的余弦值.19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频被转发的天数与点赞的人数进行了统计,数据见下表:根据所给数据,画出了散点图以后,发现演讲视频被转发的天数与点赞的人数的关系可以近似地表示为(均为正常数).(题中所有数据的最后计算结果都精确到) (1) 建立关于的回归方程;(2) 试预测,至少经过多少天,点赞的人数超过12000?附:①对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为()()()121nii i nii xx y yxxβ==--=-∑∑,.②参考数据:20.已知椭圆()22:10x y E a b a b +=>>的左、右焦点分别为、,椭圆上一点在轴上的射影恰好为,且直线的斜率为.(1)求椭圆的离心率;(2)当时,过点的射线与椭圆交于不同的两点,,若点在射线上,且满足,求点的横坐标的取值范围. 21.已知函数.(1)设()()()()'F x f k x k f k =-+(其中),求证:. (2)若曲线与抛物线有两个公共点,求实数的取值范围.22.已知圆的极坐标方程为2sin 104πρθ⎛⎫+++= ⎪⎝⎭,直角坐标系的坐标原点与极点重合,轴的正半轴与极轴重合.(1)求圆的标准方程和它的一个参数方程; (2)设是圆上的任意一点,求的最大值. 23.已知函数. (1)解不等式; (2)若,求的取值范围.。

河北省衡水中学高三第三次调研考试(数学理)

河北省衡水中学高三第三次调研考试(数学理)

衡水中学2008—2009学年度第一学期第三次调研考试高三年级数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。

满分共150分。

考试时间为120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上) 1. 函数xx x y -+=||)1(0的定义域是 ( )A.{}0|>x x B. {}0|<x xC.{}1x ,0|-≠<且x x D.{}R x x x ∈-≠≠,1x ,0|且2.已知点)5,(x A 关于),1(y P 的对称点是)3,2(--B ,则点),(y x 到原点的距离是( )A.13 B. 15 C. 4 D.173.已知不等式9)1)((≥++yax y x ,对任意正实数y x ,恒成立,则正实数a 的最小值是( ) A.2 B.4 C.6 D.84.函数)0)(cos()sin()(>++=ωθωθωx x x f 以2为最小正周期,且能在2=x 时取得最大值,则θ的一个值是( )A. 43π-B. 45π-C. 47πD.2π5.若数列{}n a 的前n 项和公式为)1(log 3+=n S n ,则5a 等于 ( )A.6log 5B. 56log 3C. 6log 3D. 5log 3 6. “04≤<-k ”是“抛物线12--=kx kx y 恒在x 轴下方”的( )条件A.充分不必要条件B. 必要不充分条件C.充要条件D.既非充分又非必要 7.过点)3,2(p 引圆044222=++-+y x yx 的切线,其方程是( )A. 2=xB.09512=+-y xC. 026125=+-y xD. 2=x 或09512=+-y x8.实数x,y 满足不等式⎪⎩⎪⎨⎧≥--≤-≥02240y x y x y ,11+-=x y ω的取值范围是( )A. ]31,1[-B. ]31,21[-C.)2,21[-D. ),21[+∞- 9.若直线b x y += 与曲线21y x -=恰有一个公共点,则b 的取值范围是( )A. ]1,1(-∈bB. 2-=bC. 2±=bD. 2-b ]1,1(=-∈或b 10.过抛物线)0(ax y 2>=a 的焦点F作一直线交抛物线于Q P ,两点,若线段PF 与QF 的长分别是q p ,,则qp 11+等于 ( ) A.a 2 B.a 21 C. a 4 D. a411.设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左、右焦点,过1F 的直线与椭圆交于B A ,两点,且||||,022AF AF ==⋅,则椭圆的离心率为 ( ) A.22 B. 23C.36-D. 26- 12.已知两个非零向量)1,1(--=→n m a 和),3,3(--=→n m b 若0,cos >≤<→→b a ,则n m +的取值范围是( )A. ]23,2[B. ]6,2[C. )23,2(D.)6,2(第Ⅱ卷(主观题 共90分)二、填空题(每题5分,共20分)13.经过两圆072222=-+-+y x y x 和084422=--++y x y x 的两个交点的直线方程是 ?14. 顶点在原点、焦点在直线134=-yx 上的抛物线的标准方程是 ? . 15.21,F F 是椭圆1162522=+y x 的左右焦点,P 是椭圆上的任意一点(除去长轴端点),过点2F 作21PF F ∠的平分线的垂线,垂足为N ,则||ON 的取值范围是 ? 16.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 、n B ,且3635++=n n B A n n ,则使得nnb a 为正数的正整数n 的个数是 ? 三、解答题(共70分)。

河北衡水中学2018年高三下学期期初考试(3月)数学(理)试题Word版

河北衡水中学2018年高三下学期期初考试(3月)数学(理)试题Word版

2018年全国高三统一联合考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5,6,7,8U =,{}3,4,5A =,{}1,3,6B =,则集合{}2,7,8是( ) A.A BB.A BC.()U C A BD.()U C A B2.已知复数z 的实部不为0,且1z =,设1z z ω=+,则ω在复平面上对应的点在( )A.实轴上B.虚轴上C.第三象限D.第四象限3.将()2nx -的展开式按x 的升幂排列,若倒数第三项的系数是40-,则n 的值是( ) A.4B.5C.6D.74.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )B.6πC.9π5.设1F ,2F 分别是双曲线()2222:10,0x y C a b a b -=>>的左、右焦点,以1F 为圆心、12F F 为半径的圆与双曲线左支的其中一个交点为A ,若12120AF F =∠°,则该双曲线的离心率是( )16.若函数()()()2sin 20f x a x θθπ=+<<,a 是不为零的常数)在R 上的值域为[]2,2-,且在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上是单调减函数,则a 和θ的值是( )A.1a =,3πθ=B.1a =-,3πθ=C.1a =,6πθ=D.1a =-,6πθ=7.已知函数()32f x x ax bx c =+++(a ,b ,c 均为常数)的图象关于点()1,0-对称,则b c -的值是( )A.4-B.4C.2-D.28.已知“x a x b ≥⇒>”,且“x a x c <⇒≤”,则“x c ≤”是“x b ≤”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A.3B.4C.5D.610.已知向量()cos ,sin AB αα= ,()cos ,sin BC ββ= ,()cos ,sin CA γγ=,其中02αβγπ<<<<,则AB BC ⋅的值是( )A.12B.12-C. 11.设函数()f x 定义如下表:执行如图所示的程序框图,则输出的x 的值是( )A.4B.5C.2D.312.已知异面直线a ,b 所成的角为90°,直线AB 与a ,b 均垂直,且垂足分别为A ,B ,若动点P 在直线a 上运动,动点Q 在直线b 上运动,4PA QB +=,则线段PQ 的中点M 的轨迹所围成的平面区域的面积是( )A.2B.4C.8D.12二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.抛物线24y x =-的焦点到它的准线的距离是____________.14.若实数x ,y 满足100x y x y +≥-⎧⎪≤⎨⎪≤⎩,则2z x y =+取得最大值时对应的最优解是____________.15.已知在ABC △中,角,,A B C 的对边分别是,,a b c,cos A =cos B =c =a =____________.16.已知函数()xxf x e =,关于x 的方程()()220f x f x c -+=⎡⎤⎣⎦有以下四个结论: ①当0c =时,方程有3个实根;②当221c c e -=时,方程有3个实根;③当2211e c e -<<时,方程有2个实根;④当221e c e -<时,方程有4个实根. 以上结论中正确的有____________(填序号).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知正项等比数列{}n a 满足()*14n n n a a n N +=∈. (1)求数列{}n a 的通项公式; (2)设2211log log n n n b a a +=,求数列{}n b 的前n 项和n S .18.如图,在三棱柱111ABC A B C -中,1AC BC AB AA ===,过1AA 的平面分别交BC ,11B C 于点D ,1D.(1)求证:四边形11ADD A 为平行四边形;(2)若1AA ⊥平面ABC ,D 为BC 中点,E 为1DD 中点,求二面角1A C E C --的余弦值. 19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频被转发的天数x 与点赞的人数y 进行了统计,数据见下表:根据所给数据(),x y ,画出了散点图以后,发现演讲视频被转发的天数x 与点赞的人数y 的关系可以近似地表示为x y a b =⋅(,a b 均为正常数). (题中所有数据的最后计算结果都精确到0.01) (1) 建立y 关于x 的回归方程;(2) 试预测,至少经过多少天,点赞的人数超过12000?附:①对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线 y x aβ=+的斜率和截距的最小二乘估计分别为 ()()()121nii i nii xx y yxxβ==--=-∑∑, ay x β=-. ②参考数据:20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F 、2F ,椭圆E 上一点A 在x 轴上的射影恰好为1F ,且直线2AF 的斜率为(1)求椭圆E 的离心率;(2)当2a =时,过点()0,2Q -的射线与椭圆E 交于不同的两点M ,N ,若点P 在射线QM 上,且满足2QM QN QP ⋅= ,求点P 的横坐标0x 的取值范围.21.已知函数()ln f x x =.(1)设()()()()'F x f k x k f k =-+(其中0k >),求证:()()f x F x ≤.(2)若曲线()y f x =与抛物线()22y ax a x =+-有两个公共点,求实数a 的取值范围.22.已知圆C 的极坐标方程为2sin 104πρθ⎛⎫+++= ⎪⎝⎭,直角坐标系xOy 的坐标原点O 与极点重合,x 轴的正半轴与极轴重合.(1)求圆C的标准方程和它的一个参数方程;(2)设()P x y是圆C上的任意一点,求xy的最大值.,23.已知函数()1=+-.f x x x(1)解不等式()3f x≥;(2)若()()2f x f y+≤,求x y+的取值范围.。

2018届河北省衡水中学高三下学期三调考试理科综合试题及答案

2018届河北省衡水中学高三下学期三调考试理科综合试题及答案

2018学年度下学期高三年级三调考试
理科综合试卷
本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部
分。

总分300分,考试时间150分钟。

可能用到的相对原子质量:H1 016 C12 N i4 S 32
F19 Cl 35.5 Br 80 .1127 Si 28 Na 23 K39 Ca 40 Mg 24 Al 27 Fe 56 Cu 64 Ag108 Zn 65 Ba137
Mn 55 Pb 207 S32 Cr 52 C0 59 Ni 58.7
第I卷(选择题共1 2 6分)
一、选择题(本题共13小题,每小题6分。

在每小题给出的
四个选项中,只有一项是符合题目要求的)
1.下列关于某二倍体哺乳动物同一个体中细胞有丝分裂和减
数第二次分裂的叙述,正确的是 ( )
A.前期时前者细胞内性染色体的数量是后者的两倍
B.后者在后期时细胞内存在大小形态相同的同源染色体
C.中期时前者细胞内染色体组数是后者的两倍
D.着丝点分裂时通过核孔进入细胞核的物
质减少
2.下列各项阐释符合曲线变化趋势的是
( )
- 1 -。

2018届河北省衡水市衡水中学第三次月考理科数学Word版

2018届河北省衡水市衡水中学第三次月考理科数学Word版

2017~2018学年度上学期高三年级三调考试数学(理科)试卷一、选择题(本题共12小题,每小题5分,共60分,从每小题给出的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.已知集合2{|3100},{|ln(2)}A x x x B x y x =--<==-,则()R A B =( )A .(2,5)B .[2,5)C .(2,2]-D .(2,2)-1.答案:C解析:2{|3100}(2,5),{|ln(2)}(2,),A x x x B x y x =--<=-==-=+∞()(,2],(2,2]B AB ∴=-∞=-R R2.已知复数z 满足3(i)(12i)i z -+=(其中i 是虚数单位),则复数z 的虚部等于( ) A .15- B .25-C .45D .352.答案:C解析:3i i(12i)2424(i)(12i)i i,i i,i 12(12i)(12i)5555z z z i ----+==-∴-===--∴=-+++-, 故z 的虚部为453.阅读如图所示的程序框图,若输入的919a =,则输出的k 值是( ) A .9B .10C .11D .123.答案:C 解析:11(21)(21)111(21)(21)2(21)(21)22121k k k k k k k k +--⎛⎫=⨯=- ⎪-+-+-+⎝⎭,所以11111111112335212122121k S k k k k ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 令92119k S k =>+,解得9k >,所以取10k =,再执行一步1k k =+,则输出11k = 4.若数列{}n a 满足122,1a a ==,且1111(2)n n n n n n n n a a a an a a a a -+-+⋅⋅=--≥,则数列{}n a 的第100项为( ) A .10012 B .5012 C .1100D .1504.答案:D 解析:由1111n n n n n n n n a a a a a a a a -+-+⋅⋅=--,两边取倒数,得111111(2)n n n nn a a a a -+-=-≥,故数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,其首项为1112a =,公差为211112a a -=,所以111=+(1),222n n n a -= 100221,10050n a a n ∴===5.已知,x y 满足约束条件020x y x y y -⎧⎪+⎨⎪⎩≥≤≥ ,则3412x y +-的最小值为( )A .5B .12C .6D .45.答案:A解析:作可行域如图所示,则可行域内的任一点(,)x y 到直线34120x y +-=的距离34125x y d +-=,所以3412=5x y d +-,由图可知,点(1,1)A 到直线34120x y +-=的距离最小,所以min 34123141125x y +-=⨯+⨯-=xyOx y -=2x y +=34120x y +-=AB6.放在水平桌面上的某几何体的三视图如图所示,则该几何体的表面积为( ) A .4π+B .3π+C .342π+ D .322π+6.答案:C解析:该几何体可以看成是一个底面是扇形的柱体,其表面积245453222222143603602S πππ⎛⎫=⨯⨯⨯+++⨯⨯⨯⨯=+ ⎪⎝⎭7.在ABC △中,,,a b c 分别是角,,A B C 的对边,若2222014a b c +=,则2tan tan tan (tan tan )A BC A B ⋅+的值为( )A .0B .1C .2013D .20147.答案:C解析:222222013cos ,2cos 201322a b c c C ab C c ab ab+-==∴=,由正弦定理,得: 22sin sin cos 2013sin A B C C =,所以2sin sin cos 2013sin 2A B C B =, 2tan tan 2sin sin cos 2sin sin cos =tan (tan tan )sin (sin cos sin cos )sin sin()A B A B C A B CC A B C A B B A C A B ⋅=+++22sin sin cos 201322013sin 2A B C C ==⨯= 8.若对于数列{}n a ,有任意,m n N *∈,满足2,2m n m n a a a a +=+=,则132013222014a a a a a a ++++++的值为( ) A .10061007B .10081009C .10051006D .100710088.答案:D解析:由2,2m n m n a a a a +=+=,当1m =时,21112,1a a a a =+=∴=;当1m =时,111n n n a a a a +=+=+,所以数列{}n a 是首项为1,公差为1的等差数列,故n a n =,所以132013222014(12013)1007132********(22014)242014100810072a a a a a a +⨯++++++===+++++++⨯ 9.在ABC △中,角,,A B C 所对的边分别为,,a b c ,若32C ππ<<,sin 2,sin sin 2b Ca bA C=--3a =,sin 6B =,则b 等于( ) A B .2CD .9.答案:A 解析:由sin 2sin sin 2b C a b A C =--及正弦定理可得sin sin 2sin sin sin sin 2B CA B A C=--, 即sin sin sin sin 2sin sin 2sin sin 2B A B C A C B C -=-,sin sin sin sin 2B A A C ∴= 又sin 0A ≠,sin sin 2B C ∴=,故2B C =或2B C π+=,又因为3C π>,若2B C =,则23B C C π+=>,故舍去,所以2B C π+=,又因为A B C π++=,所以A C =,所以3c a ==,由sin 6B =可得5cos 6B =,由余弦定理可得 2222cos 99153b a c ac B =+-=+-=,故b =10.如图所示,23ABC π∠=,圆M 与,AB AC 分别相切于,,1D E AD =,若点P 是圆M 及其内部任意一点,且(,)AP x AD y AE x y R =+∈,则x y +的取值范围是( ) A.[1,4+B.[44-+ C.[1,2+D.[22+10.答案:B解析:连接DE ,则当点P 在线段DE 上运动时,1x y +=,连接AM 并延长,交圆于,ST两点,交线段DE 于点N ,则圆的半径r =12,,22AM AN AS AM r===-= 2AT AM r =+=,当点P 位于点T时,x y +取得最大值,最大值为4ATAN=+当点P位于点S 时,x y +取得最小值,最小值为4ASAN=-另一种解释,考虑以,AD AE 方向为x 轴、y 轴,AD 为单位长度建立菱形坐标系,则直线DE 的方程为1x y +=,设z x y =+,作直线0x y +=并平移,当直线过点S 时,z 取得最小值,当直线过点T 时,z 取得最大值.11.已知向量,,αβγ满足()()()1,2,αααβαγβγ=⊥--⊥-,若17,βγ=的最大值和最小值分别为,m n ,则m n +等于( ) A .32B .2C .52D.211.答案:C 解析:()()212,22120,2ααβααβααβαβαβ⊥-∴⋅-=-⋅=-⋅=∴⋅=,()22217255211,442αβααββαβ∴+=+⋅+=++=∴+=, 如图,设,,OA OB OC αβγ===,则,CA CB αγβγ-=-=,所以CA CB ⊥,即点C 在以AB 为直径的圆上,设D 为AB 中点,连接OD 并延长,与圆交于12,C C 两点,则125,,22m OC OD r n OC OD r m n OD αβ==+==-+==+=12.已知定义在(0,)+∞内的函数()f x 的导函数为()f x ',且满足2()(ln )2()f x x x f x '>,则( )A .326()2()3()f e f e f e >> B .236()3()2()f e f e f e << C .236()3()2()f e f e f e >> D .326()2()3()f e f e f e <<12.答案:B解析:由2()(ln )2()f x x x f x '>可得()(ln )()f x x x f x '>,设()()ln f x g x x=,则 221()ln ()()(ln )()()0(ln )(ln )f x x f x f x x x f x x g x x x x '-⋅'-'==>,故()g x 在(0,)+∞上单调递增,所以23()()()g e g e g e <<,即23()()()23f e f e f x <<,即236()3()2()f e f e f e << 二、填空题(本题共4小题,每小题5分,共20分)C 2C 1DABO13.322144x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .13.答案:160解析:22222111144(2)222x x x x x x x x ⎛⎫⎛⎫++=++⋅⋅=+ ⎪ ⎪⎝⎭⎝⎭,故362211442x x x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,展开式中的常数项为333461(2)160T C x x ⎛⎫== ⎪⎝⎭14.已知数列{}n a 的前n 项和为n S,若函数()22()f x x x x R =+∈的最大值为1a ,且满足114n n n n n a a a S a S +-=-,则数列n a 的前2 017项之积2017A = . 14.答案:4解析:()224sin(2)4f x x x x π=+=+的最大值为4,故14a =,由114n n n n n a a a S a S +-=-,得1()1n n n n a a S S +--=,即11n n n a a a +-=,111n n a a +∴=-, 由14a =,可得23431,,443a a a ==-=,故数列{}n a 的周期为3,且31231A a a a ==-, 又201736721=⨯+,所以672201720171(1)4A a a =-==15.已知O 为ABC △的外接圆圆心,16,10AB AC ==AO x AB y AC =+,且322525x y +=,则AO = .15.答案:10解析:以点A 为坐标原点,AO 方向为x 轴正方向建立直角坐标系,设直线AO 与圆的另一个交点为D ,设,BAD CAD αβ∠=∠=,则(16cos ,16sin ),(16cos ,16sin )B C ααββ-,在RT ABD △中,16cos cos AB AD αα==, 在RTACD △中,cos AC ADβ==,所以416cos cos cos cos 2ααββ=∴==,根据数字特征,不妨假设4cos ,cos 5αβ==,然后再进行验证,此时20,10,AD AO ==(10,0),AO =6448,,(10,10)55AB AC ⎛⎫==- ⎪⎝⎭由AO x AB y AC =+,得6448(10,0)10,1055x y x y ⎛⎫=+- ⎪⎝⎭,故6410105481005x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,AO =()0h x =在区间(0,)+∞内有三个不同的实数根,则实数a 的取值范围是 .16.答案:53,44⎛⎫-- ⎪⎝⎭解析:()min((),())h x f x g x =,()ln g x x =-有1个零点1x =,2()3f x x a '=+,显然必须0a <,令()0f x '=,得x =()f x 的对称中心为10,4⎛⎫⎪⎝⎭,要想满足题意,只需0(1)0f f ⎧<⎪⎨⎪>⎩,即21034504a ⎧<⎪⎪⎨⎪+>⎪⎩,解得:5344a -<<-,故实数a 的取值范围是 53,44⎛⎫-- ⎪⎝⎭17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c ,且22cos c a B b -=. (1)求角A 的大小; (2)若ABC △,且22cos 4c ab C a ++=,求a . 17.解:(1)由22cos c a B b -=及正弦定理可得2sin 2sin cos sin C A B B -=, 因为sin sin()sin cos cos sin C A B A B A B =+=+,所以2cos sin sin A B B =,因为sin 0B ≠,所以1cos 2A =,又因为0A π<<,所以3A π=. (5分) (2)22cos 4c ab C a ++= (*)又由余弦定理得222cos 2a b c ab C +-=,代入(*)式得22283b c a +=-.1sin 12ABC S bc A bc ===∴=△,由余弦定理得222222cos 1a b c bc A b c =+-=+-, 所以22831a a =--,解得a = (12分) 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,211()(2)n n n n a S S S n ---=⋅≥,且11,0.n a a =>(1)求2a 的值,并证明数列{}n S 是等比数列;(2)设212(1)log ,nn n n n b S T b b b =-=+++,求n T .18.解:(1)令2n =,得221121()()a a a a a -=+⋅,将11a =代入并整理得:22230a a -=,因为0n a >,所以23a =.由题意得211(2)(2)n n n n S S S S n ---=⋅≥,整理得11()(4)0,n n n n S S S S ----=1(4)0n n n a S S -∴-=,因为0n a >,所以14(2)n n S S n -=≥,所以数列{}n S 收首项为1,公比为4的等比数列. (7分)(2)由(1)可知14n n S -=,所以2(1)log (1)(22)n nn n b S n =-=--所以1,2[0123456(1)(1)],n n n n T n n n -⎧=⨯+-+-+-++--=⎨⎩为奇数为偶数 (12分) 19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足214(1)(),1n n nS n a n N a *=+∈=.(1)求n a ; (2)设n n n b a =,数列{}n b 的前n 项和为n T ,求证:74n T <. 19.解:(1)由题意得2(1)4nn n a S n += ① 211(2)4(1)n n n a S n n --=-≥ ② ①-②,得:221(1)44(1)n n n n a n a a n n -+=--,所以133(2)(1)nn a a n n n -=-≥, 所以数列3n a n ⎧⎫⎨⎬⎩⎭是一个常数列,所以3131,1n n a a a n n ==∴= (6分) (2)由(1)得21n b n =,所以127571;;444T T =<=< 当3n ≥时, 222221111111117171123442334(1)44n T n n n n =+++++<+++++=-<⨯⨯-⨯综上可得7()4n T n N *<∈ (12分) 20.(本小题满分12分)已知函数()ln(1)f x x ax =++,其中a R ∈.(1)当1a =-时,求证:()0f x ≤;(2)对任意210x ex >≥,存在(1,)x ∈-+∞,使212212(1)(1)(1)()f x f x a x f x x x x ----->-成立,求a 的取值范围.(其中e 是自然对数的底数, 2.71828e =) 20.解:(1)当1a =-时,()ln(1)(1)f x x x x =+->-,则1()111x f x x x -'=-=++, 令()0f x '=,得0x =.当(1,0)x ∈-时,()0f x '>,函数()f x 单调递增;当(0,)x ∈+∞时,()0f x '<,函数()f x 单调递减,所以当0x =时,函数()f x 取得极大值,也是最大值,所以max ()(0)0f x f ==,所以()0f x ≤,得证. (4分)(2)不等式212212(1)(1)(1)()f x f x a x f x x x x ----->-, 即为[]221221(1)(1)()x f x f x ax f x a x x ---->---,而[]221221(1)(1)x f x f x ax x x -----[]22212221112221212221212222111ln ()ln (1)ln (1)=ln ln 1x x a x x x x a x x a x x ax ax x x x x x x x x x x ax ax x x x x x ⎡⎤+-⎢⎥+----⎣⎦-=---=+-=⋅-- 令21()x t t e x =≥,原命题即故对任意t e ≥,存在(1,)x ∈-+∞,使ln ()1t t f x a t >---恒成立,所以()min min ln ()1t t f x a t ⎛⎫>--⎪-⎝⎭, 设ln ()1t t h t t =-,则21ln ()(1)t t h t t --'=-,设()1ln u t t t =--,则11()10t u t t t-'=-=>对于t e ≥恒成立,则()1ln u t t t =--为区间[,)e +∞上的增函数,于是()()20u t u e e =->≥,所以21ln ()0(1)t t h t t --'=>-对于t e ≥恒成立,所以ln ()1t t h t t =-为区间[,)e +∞上的增函数, 所以min ()()1e h t h e e ==-. 设()()ln(1)p xf x a x ax a =--=-+--,①当0a ≥时,函数()p x 为区间(1,)-+∞上的单调递减函数,其值域为R ,可知符合题意; ②当0a <时,1()1p x a x '=--+,令()0p x '=,得111x a=-->-,由()0p x '>得 11x a >--,则函数()p x 在区间11,a ⎛⎫--+∞ ⎪⎝⎭内为增函数;由()0p x '<,得11x a <--,则函数()p x 在区间11,1a ⎛⎫--- ⎪⎝⎭内为减函数,所以min 1()1ln()1p x p a a ⎛⎫=--=-+ ⎪⎝⎭, 从而ln()11e a e >-+-,解得110e e a --<<. 综上所述,a 的取值范围是11,e e -⎛⎫-+∞ ⎪⎝⎭. (12分)21.(本小题满分12分)设函数2()ln(1)f x x a x =++.(1)若函数()y f x =在区间[1,)+∞内是单调递增函数,求实数a 的取值范围;(2)若函数()y f x =有两个极值点12,x x ,且12x x <,求证:21()10ln 22f x x <<-+. 21.解:(1)由题意知222()2011a x x a f x x x x ++'=+=>++在区间[1,)+∞内恒成立(1分) 即222a x x >--在区间[1,)+∞内恒成立,解得4a >- (3分) 当4a =-时,22242(2)(1)()011x x x x f x x x +-+-'==>++,当[1,)x ∈+∞时,()0f x '≥,且仅当1x =时,()0f x '=,所以函数()f x 单调递增,所以a 的取值范围是[4,)-+∞ (4分)(2)函数()f x 的定义域为(1,)-+∞,222()1x x a f x x ++'=+,即2()22g x x x a =++,则有480(1)0112a g a ⎧⎪∆=->⎪-=>⎨⎪⎪->-⎩,解得102a << 证法一:因为2122222111,220,0222x x x x a x x +=-++==-+-<<, 所以222222212()(22)ln(1)=1f x x x x x x x -++--, 令22(22)ln(1)1(),,012x x x x k x x x -++⎛⎫=∈- ⎪--⎝⎭(8分) 则2223262()2ln(1),()(1)(1)x x x k x x k x x x ++'''=++=++,因为()4,(0)2k x k ''''=-=,所以存在01,02x ⎛⎫∈- ⎪⎝⎭,使得()0k x ''=,列表如下:又1(0)0,12ln 202k k ⎛⎫''=-=-< ⎪⎝⎭,所以1()0,,02k x x ⎛⎫'<∈- ⎪⎝⎭, 所以函数()k x 在1,02⎛⎫- ⎪⎝⎭内为减函数, (11分) 所以1(0)()2k k x k⎛⎫<<-⎪⎝⎭,即21()10ln 22f x x <<-+. (12分) 证法二:因为2x 是方程2220x x a ++=的解,所以22222a x x =--.因为122110,0,222a x x x <<<<=-+,所以2102x -<<. 先证21()0f x x >,因为120x x <<,即证2()0f x <, 在区间12(,)x x 内,()0f x '<,在区间2(,0)x 内,()0f x '>,所以2()f x 为极小值,2()(0)0f x f <=,即2()0f x <,所以21()0f x x >成立. (8分) 再证21()1ln 22f x x <-+,即证22211()ln 2(1)ln 2(1)22f x x x ⎛⎫⎛⎫>-+--=-+ ⎪ ⎪⎝⎭⎝⎭. 令2211()(22)ln(1)ln 2(1),,022g x x x x x x x ⎛⎫⎛⎫=-++--+∈- ⎪ ⎪⎝⎭⎝⎭(10分) 则1()2(21)ln(1)ln 22g x x x ⎛⎫'=-++-- ⎪⎝⎭,因为1ln(1)0,210,ln 202x x +<+>-<, 所以()0g x '>,函数()g x 在区间1,02⎛⎫-⎪⎝⎭内为增函数, 所以111111()ln ln 20242242g x g ⎛⎫>-=+-+= ⎪⎝⎭, (11分) 所以221()ln 2(1)2f x x ⎛⎫>-+ ⎪⎝⎭成立. 综上可得21()10ln 22f x x <<-+成立. (12分) (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数);在以原点O为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若射线:(0)l y kx x =≥与曲线12,C C 的交点分别为,A B (,A B 异于原点),当斜率k ∈时,求OA OB ⋅的取值范围.22.解:(1)曲线1C 的直角坐标方程为22(1)1x y -+=,即2220x x y -+=,将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得曲线1C 的极坐标方程为2cos ρθ=,由2cos sin ρθθ=,两边同时乘以ρ,得22cos sin ρθρθ=,将cos sin x y ρθρθ=⎧⎨=⎩代入得曲线2C 的直角坐标方程为2x y =. (5分)(2)设射线:(0)l y kx x =≥的倾斜角为ϕ,则射线的极坐标方程为θϕ=,且tan k ϕ=∈.联立2cos ρθθϕ=⎧⎨=⎩,得12cos OA ρϕ==, (7分) 联立2cos sin ρθθθϕ⎧=⎨=⎩,得22sin cos OB ϕρϕ== (8分)所以122sin 2cos 2tan 2(2,cos OA OB k ϕρρϕϕϕ⋅=⋅=⋅==∈,即OA OB ⋅的取值范围是(2, (10分)23.(本小题满分10分)选修4—5:不等式选讲 已知函数()13f x x x =-++的最小值为m .(1)求m 的值;(2)若正实数,,a b c 满足(22)a a c b m bc ++=-,求3a b c ++的最小值.23.解:(1)因为()13(1)(3)4f x x x x x =-++--+=≥,所以4m =. (4分)(2)因为(22)4a a c b bc ++=-,所以2(22)()4a ac ab bc +++=,即(2)()4a b a c ++=所以3(2)()4a b c a b a c ++=+++=≥,当且仅当22a b a c +=+=时取等号,所以3a b c ++的最小值的最小值为4 (10分)。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}A B =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=, 即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D 解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否→输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( ) A . 5 B .3CD.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,5d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3 B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( ) A .3 B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0 B.CD7.答案:B解析:解法1:123410,02a a a a a -======-,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=-⎪⎝⎭在,32ππ⎛⎫⎪⎝⎭内单调递减,则ω的取值范围是( ) A .110,3⎛⎤⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦ C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B 解析:当,32x ππ⎛⎫∈⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D 解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( ) A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞ B.,⎛-∞ ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1 B .2±C .12或3 D .1或212.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x ∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= .13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 .14.答案:(0,)e解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t=-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 .15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0n S>,所以222n S +所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a 的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因2(1)求角A 的大小; (2)求25cos 2sin 22C B π⎛⎫--⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos A ∴=0πA <<,所以6πA =(2)25cos 2sin sin cos 1sin cos()122πC B B C B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin cos 1166226πππB B B B B B ⎛⎫=-+-=--=-- ⎪⎝⎭ 由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦,故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是1⎛⎤ ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B 1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OC OA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,11111300AB m x ACm y ⎧⋅=-=⎪∴⎨⋅=-=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,m =.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA =-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B的法向量(1,0,1)n =, 于是cos ,55m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值. 20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令 2ln ()(0)1x x g x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==,所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >). (1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围; (3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分) (2)()21a f x x a ax '=+-+,依题意,1101212a f a a ⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分) (3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭. 问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+-⎪⎝⎭恒成立, 设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭, 则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤. 当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭. 于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立. 综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的非负半轴重合,直线l 的参数方程为1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c os ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y -+=.由1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t解得10x +=, 所以直线l的普通方程为10x +=……………………(5分)(2)把1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则12125t t t t +==,所以12PQ t t =-==10分) 方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =,所以PQ ==………………(10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:12125,24y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等,()122g x x =-+≥,所以32a +≥,解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}A B =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=, 即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D 解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否→输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( ) A . 5 B .3CD.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,5d ===5.已知ABC △的三个内角,,A B C 依次成等差数列,BC边上的中线2AD AB ==,则ABC S =△( )A .3 B.C.D .65.答案:C解析:因为,,A B C 成等差数列,所以2B A C =+,又因为180A B C ++=︒,所以60B =︒, 在ABD △中,由余弦定理可得2222cos60AD AB BD AB BD =+-⋅⋅︒,即2230BD BD --=,所以(3)(1)0BD BD -+=,所以3BD =,故26BC BD ==,1sin 602ABC S AB BC =⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为( ) A .3 B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD ======所以最长的棱为3ABCD7.已知数列{}n a满足110,()n a a n N *+==∈,则20a =( )A .0 B.CD7.答案:B解析:解法1:123410,02a a a a a -======-,周期3T =,所以202a a == 解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=-⎪⎝⎭在,32ππ⎛⎫⎪⎝⎭内单调递减,则ω的取值范围是( ) A .110,3⎛⎤⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦ C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B 解析:当,32x ππ⎛⎫∈⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D 解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( ) A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞ B.,⎛-∞ ⎝⎭ C .(0,)+∞ D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( ) A .1 B .2±C .12或3 D .1或212.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x ∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= .13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 .14.答案:(0,)e解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t=-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 .15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0n S>,所以222n S +所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a 的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因2(1)求角A 的大小; (2)求25cos 2sin 22C B π⎛⎫--⎪⎝⎭的取值范围.17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos A ∴=0πA <<,所以6πA =(2)25cos 2sin sin cos 1sin cos()122πC B B C B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin cos 1166226πππB B B B B B ⎛⎫=-+-=--=-- ⎪⎝⎭ 由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦,故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是1⎛⎤ ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AOB O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B 1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OC OA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,11111300AB m xAC m y ⎧⋅=-=⎪∴⎨⋅=--=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,m =.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA =-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =, 于是cos ,55m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值. 20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令 2ln ()(0)1x x g x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==,所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >). (1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围; (3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分) (2)()21a f x x a ax '=+-+,依题意,1101212a f a a ⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分) (3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭. 问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+-⎪⎝⎭恒成立, 设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭, 则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤. 当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭. 于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立. 综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的非负半轴重合,直线l 的参数方程为1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c os ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y -+=.由1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t解得10x +=, 所以直线l的普通方程为10x +=……………………(5分)(2)把1,212x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则12125t t t t +==,所以12PQ t t =-==………………(10分) 方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =,所以PQ ==………………(10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:12125,24y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥,解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}AB =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=,即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否 →输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( )A . 5B .3C.5D.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,d===5.已知ABC△的三个内角,,A B C依次成等差数列,BC边上的中线2AD AB==,则ABCS=△()A.3 B.C.D.65.答案:C解析:因为,,A B C成等差数列,所以2B A C=+,又因为180A B C++=︒,所以60B=︒,在ABD△中,由余弦定理可得2222cos60AD AB BD AB BD=+-⋅⋅︒,即2230BD BD--=,所以(3)(1)0BD BD-+=,所以3BD=,故26BC BD==,1sin602ABCS AB BC=⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为()A.3 B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD======所以最长的棱为3ABCD7.已知数列{}na满足110,()na a n N*+==∈,则20a=()A.0 B.CD7.答案:B解析:解法1:123410,02a a a a a-======-,周期3T=,所以202a a==解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( )A .110,3⎛⎤ ⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B解析:当,32x ππ⎛⎫∈ ⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈ 212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( )A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭ B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( )A .(,0)-∞ B.,2⎛-∞- ⎝⎭ C .(0,)+∞ D .(,1)-∞- 11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .2±C .12或3 D .1或2 12.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2 第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= .13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 . 14.答案:(0,)e 解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t =-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于 ()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 . 15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0nS >,所以222n S +=,所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因22⎪⎝⎭17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos A ∴=0πA <<,所以6πA = (2)25cos 2sin sin cos 1sin cos()122πCB BC B A B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin cos 1166226πππB B B B B B ⎛⎫=-+-=--=-- ⎪⎝⎭由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,21162πB ⎛⎤⎛⎫--∈- ⎥ ⎪ ⎝⎭⎝⎦, 故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是1⎛⎤ ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AO B O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OCOA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,得11(0,1,0),3)C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,1111130AB m x AC m y ⎧⋅=-=⎪∴⎨⋅=-=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,3,1)m =-.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA=-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =,于是cos ,5m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值.20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令2ln ()(0)1x xg x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==, 所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >).(1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围;(3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分)(2)()21a f x x a ax '=+-+,依题意,1101212a f a a⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分)(3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭.问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+- ⎪⎝⎭恒成立,设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭,则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤.当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭.于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立.综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—4:坐标系与参数方程x 轴的非负半轴重合,直线l 的参数方程为1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c o s ρρθx y x =+=,得224x y x +=,所以曲线C 的直角坐标方程为22(2)4x y-+=.由1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩消去t 解得10x+=, 所以直线l10x +=……………………(5分)(2)把1,12x y t ⎧=-⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则 12125t t t t +==,所以12PQ t t =-==10分)方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l 的距离32d =,所以PQ ==………………(10分)方法3,将1x =-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:121254y yy y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥,解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

河北省衡水市衡水中学2018届高三年级第一次月考理科数学(解析版)

2017~2018学年度上学期高三年级一调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.从每小题所给的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.设集合2{1,2,4},{|40}A B x x x m ==-+=.若{1}A B =,则B =( )A .{1,3}-B .{1,0}C .{1,3}D .{1,5}1.答案:C解析:由题意可知1B ∈,将1x =代入240x x m -+=,得3m =,所以2430x x -+=,即(1)(3)0x x --=,解得1x =或3x =,所以{1,3}B = 2.已知i 是虚数单位,若复数i12ia -+为纯虚数,则实数a 的值是( ) A .12-B .0C .12D .22.答案:D解析:设ii,12i a b b R -=∈+,则i i(12i)2i a b b b -=+=-+,所以21a b b =-⎧⎨=-⎩,故2a = 3.执行如图所示的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .23.答案:D解析:1,100,0t M S ===→是100,10,2S M t →==-=→是90,1,3S M t →===→否→输出9091S =<,结束,所以正整数N 的最小值为2.4.已知点(2,0)A -,点(,)M x y 为平面区域220,240,33x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤0上的一个动点,则AM 的最小值是( ) A . 5 B .3CD.4.答案:C解析:作可行域如图所示,则AM 的最小值为点A 到直线220x y +-=的距离,d===5.已知ABC△的三个内角,,A B C依次成等差数列,BC边上的中线2AD AB==,则ABCS=△()A.3 B.C.D.65.答案:C解析:因为,,A B C成等差数列,所以2B A C=+,又因为180A B C++=︒,所以60B=︒,在ABD△中,由余弦定理可得2222cos60AD AB BD AB BD=+-⋅⋅︒,即2230BD BD--=,所以(3)(1)0BD BD-+=,所以3BD=,故26BC BD==,1sin602ABCS AB BC=⨯⨯︒=△6.一个几何体的三视图如图所示,则该几何体的所有棱中,最长的棱为()A.3 B.C.D6.答案:A解析:该几何体的直观图如图所示,则1,2,3BC AC CD BD AB AD======所以最长的棱为3ABCD7.已知数列{}n a满足110,()na a n N*+==∈,则20a=()A.0 B.CD.27.答案:B解析:解法1:123410,0a a a a a======,周期3T=,所以202a a==解法2:设tan n n a α=,则1tan 0a =,11tan tan3tan 1tan tan 3n n n a πααπα++-===+tan 3n πα⎛⎫=- ⎪⎝⎭,所以13n n παα+=-,所以数列{}n α是一个首项为0,公差为3π-的等差数列,13n n απ-=-,所以2020201919,tan tan tan tan 3333a ππαπαπ⎛⎫⎛⎫=-==-=-=-= ⎪ ⎪⎝⎭⎝⎭8.已知0ω>,函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( )A .110,3⎛⎤ ⎥⎝⎦B .511,23⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .13,24⎡⎤⎢⎥⎣⎦8.答案:B解析:当,32x ππ⎛⎫∈ ⎪⎝⎭时,,33323x πππππωωω⎛⎫-∈-- ⎪⎝⎭,根据题意可得3,2,2,332322k k k Z ππππππωωππ⎛⎫⎛⎫--⊆++∈ ⎪ ⎪⎝⎭⎝⎭,所以2332,32232k k Z k πππωππππωπ⎧-+⎪⎪∈⎨⎪-+⎪⎩≥≤, 解得:125121123k k ω++≤≤,所以1251211023k k ++<≤,所以571212k -<≤,又因为k Z ∈,所以0k =,所以511,23ω⎡⎤∈⎢⎥⎣⎦9.设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><.若5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则( )A .17,224πωϕ==B .211,312πωϕ==-C .111,324πωϕ==-D .2,312πωϕ==9.答案:D解析:根据题意1153(21),8844k T k Z πππ+-==∈,所以3,21T k Z k π=∈+,又因为2T π>,所以220,3,3k T T ππω====,当58x π=时,52,,122x k k Z ππωϕϕπ+=+=+∈212k πϕπ∴=+,又因为ϕπ<,所以12πϕ=10.已知函数31()xxf x e x e ⎛⎫=- ⎪⎝⎭,若实数a 满足()()20.5log log 2(1)f a f a f +≤,则实数a 的取值范围是( ) A .1,(2,)2⎛⎫-∞+∞ ⎪⎝⎭ B .1,[2,)2⎛⎤-∞+∞ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,22⎛⎫ ⎪⎝⎭10.答案:C解析:函数()f x 为偶函数,且在(0,)+∞上单调递增,0.52log log a a =-,所以()22log 2(1)f a f ≤,所以()2log (1)f a f ≤,所以21log 1a -≤≤,所以122a ≤≤11.已知函数32()1f x x ax =++的图像的对称中心的横坐标为00(0)x x >,且()f x 有三个零点,则实数a 的取值范围是( ) A .(,0)-∞ B.,⎛-∞ ⎝⎭C .(0,)+∞D .(,1)-∞-11.答案:B解析:2()32f x x ax '=+,()f x '的对称轴为3a x =-,所以003ax =->,所以0a <,令 ()0f x '=,得1220,03a x x ==->,所以当0x =时,()f x 取得极大值1,当23ax =-时,()f x 取得极小值34127a +,要想使()f x 有三个零点,则必须341027a +<,解得2a <-12.定义在[1,)+∞内的函数()f x 满足:①当24x ≤≤时,()13f x x =--;②(2)()f x c f x =(c 为正常数).若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .2±C .12或3 D .1或2 12.答案:D解析:在区间[2,4]上,当3x =时,()f x 取得极大值1,极大值点为(3,1)A ,当[4,8]x ∈时,[2,4]2x∈,()2x f x cf ⎛⎫= ⎪⎝⎭,所以在区间[4,8]上,当32x =,即6x =时,()f x 取得极大值c ,极大值点为(6,)B c ,当[1,2]x ∈时,2[2,4]x ∈,所以1()(2)f x f x c=,所以在区间[1,2]上,当23x =,即32x =时,()f x 取得极大值1c ,所以极大值点为31,2C c ⎛⎫⎪⎝⎭,根据题意,(3,1)A ,(6,)B c ,31,2C c ⎛⎫⎪⎝⎭三点共线,所以111332c c --=,解得1c =或2第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分)13.如图,正方形ABCD 中,,M N 分别是,BC CD 的中点,若AC AM BN λμ=+,则λμ+= . 13.答案:85解析:不妨设正方形边长为2,以A 为坐标原点建立如图所示平面直角坐标系,则(2,2)AC =,(2,1),(1,2)AM BN ==-,因为AC AM BN λμ=+,所以(2,2)(2,2)λμλμ-+=,所以2222λμλμ-=⎧⎨+=⎩,解得685,255λλμμ⎧=⎪⎪∴+=⎨⎪=⎪⎩AMx14.已知定义在实数集R 上的函数()f x 满足(1)4f =,且()f x 的导函数()3f x '<,则不等式(ln )3ln 1f x x >+的解集为 . 14.答案:(0,)e 解析:设ln t x =,则()31f t t >+,即()31f t t ->,设()()3g t f t t =-,则(1)(1)31g f =-=,且()()30g t f t ''=-<,所以函数()g t 是一个单调递减函数,不等式()31f t t ->等价于 ()(1)g t g >,所以1t <,即ln 1x <,解得(0,)x e ∈15.已知数列{}n a 的前n 项和为n S ,126,4,0n S S S ==>,且22122,,n n n S S S -+成等比数列,212221,,n n n S S S -++成等差数列,则2016a 等于 . 15.答案:1009-解析:由题意可得2212222221212n n n n n n S S S S S S -++-+⎧=⎪⎨=+⎪⎩,因为0nS >,所以222n S +所以)n N *=∈,故数列为等差数列,又由126,4S S ==,2124S S S =⋅,可得49S =;4132S S S =+,可得312S =,所以数列2=为首1=1n =+,即22(1)n S n =+,故21(1)(2)n S n n -==++,故2201620151009,10091010S S ==⨯,所以2016201620151009a S S =-=-16.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时,5sin ,01,42()11, 1.4xx x f x x π⎧⎛⎫⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩≤≤, 若关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,则实数a的取值范围是 . 16.答案:01a <≤或54a =解析:由25[()](56)()60f x a f x a -++=可得[5()6][()]0f x f x a -⋅-=,所以6()5f x =或()f x a =,画出()y f x =的图像,当6()5f x =时,因为65154<<,所以该方程有4个根;因为关于x 的方程25[()](56)()60()f x a f x a a R -++=∈有且仅有6个不同的实数根,所以22⎝⎭17.解:(1cos (2)cos C b A =-及正弦定理可得:cos (2sin )cos 2sin cos cos A C B C A B A C A ==,故2sin cos cos sin cos ))B A A C C A A C B =+=+=,0πB <<,sin 0B ∴≠,cos 2A ∴=,又因为0πA <<,所以6πA = (2)25cos 2sin sin cos 1sin cos()122πC B B C BA B ⎛⎫--=+-=-+-⎪⎝⎭3sin coscos sinsin 1sin 116626πππB B B B B B⎛⎫=-+-=-=-- ⎪⎝⎭由6πA =,可得50,6πB ⎛⎫∈ ⎪⎝⎭,所以2,663πππB ⎛⎫-∈- ⎪⎝⎭,从而1sin ,162πB ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,116πB ⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦, 故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围是1⎛⎤ ⎥ ⎝⎦18.(本小题满分12分)高三某班12月月考语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如图,如果成绩大于135分,则认为特别优秀.(1)这500名学生中本次考试语文、数学特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有6人,从(1)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. 参考数据:若2(,)XN μσ,则()0.68,(22)0.96P X P X μσμσμσμσ-<<+=-<<+=18.解:因为语文成绩服从正态分布2(100,17.5)N ,所以语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =>=-⨯=,数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯= 所以语文成绩特别优秀的同学有5000.0210⨯=(人),数学特别优秀的同学有5000.02412⨯=(人)……………………(5分)(2)因为语文、数学两科都优秀的有6人,单科优秀的有10人,X 的所有可能取值为0,1,2,3321123101061066333316161616327151(0),(1),(2),(3),14565628C C C C C C P X P X P X P X C C C C ============()0123145656288E X =⨯+⨯+⨯+⨯=…………………………(12分)19.(本小题满分12分)如图①,在平行四边形11ABB A 中,11160,4,2,,ABB AB AA C C ∠=︒==分别为11,AB A B 的中点,现把平行四边形11AAC C 沿1CC 折起,如图②所示,连接1111,,B C B A B A ①②ACBA 1C 1B 1ACBA 1C 1B 1(1)求证:11AB CC ⊥;(2)若1AB 11C AB A --的余弦值.19.(1)证明:由已知可得,四边形1111,ACC A BCC B 均为边长为2的菱形,且11160ACC B C C ∠=∠=︒,取1CC 的中点O ,连接11,,AO B O AC ,则1ACC △是等边三角形,所以1AO CC ⊥,同理可得11B O CC ⊥.又因为1AO B O O =,所以1CC ⊥平面1AOB ,又因为1AB ⊂平面1AOB ,所以11AB CC ⊥.…………………………(5分)AC BA 1C 1B1O(2)由已知得1OA OB AB ===2221OA OB AB +=,故1OA OB ⊥,分别以11,,OB OC OA的方向为x 轴,y 轴,z轴的正方向建立空间直角坐标系,得11(0,1,0),3)C B A A -.设平面1CAB 的法向量111(,,)m x y z =,1(3,0,3),(0,1,AB AC =-=-,1111130AB m x AC m y ⎧⋅=-=⎪∴⎨⋅=-=⎪⎩,令11x =,得 111,z y ==1CAB 的法向量(1,3,1)m =-.设平面11AA B 的法向量222(,,)n x y z =,11(3,0,3),(0,2,0)AB AA=-=,由122123020AB n x AA n y ⎧⋅==⎪⎨⋅==⎪⎩,令21x =,得221,0z y ==, 所以平面11AA B 的法向量(1,0,1)n =,于是cos ,5m n m n m n⋅===⨯⋅.因为二面角11C AB A --的平面角为钝角,所以二面角11C AB A --的余弦值为5-20.(本小题满分12分)已知曲线2()ln f x ax bx x =+在点(1,(1))f 处的切线方程是21y x =-. (1)求实数,a b 的值;(2)若2()(1)f x kx k x +-≥对任意(0,)x ∈+∞恒成立,求实数k 的最大值.20.解:(1)()2ln f x a bx x bx '=++,由(1)1(1)2f a f a b ==⎧⎨'=+=⎩,可得1a b ==……(4分)(2)由22ln (1)x x x kx k x ++-≥对任意(0,)x ∈+∞恒成立,即2ln 1x x k x ++≤恒成立,令2ln ()(0)1x xg x x x +=>+,则22(ln 1)(1)2ln ln 1()(1)(1)x x x x x x g x x x ++--+-'==++, 显然ln 1y x x =+-单调递增,且有唯一零点1x =,所以()g x 在(0,1)内单调递减,在(1,)+∞内单调递增,所以min ()(1)1g x g ==, 所以1k ≤,故k 的最大值为1………………………………(12分)21.(本小题满分12分)已知函数211()ln 22f x ax x ax ⎛⎫=++- ⎪⎝⎭(a 为常数,0a >).(1)当1a =时,求函数()f x 的图像在1x =处的切线方程;(2)当()y f x =在12x =处取得极值时,若关于x 的方程()0f x b -=在[0,2]上恰有两个不相等的实数根,求实数b 的取值范围;(3)若对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立,求实数m 的取值范围.21.解:(1)当1a =时,211()ln 22f x x x x ⎛⎫=++- ⎪⎝⎭,所以13()21,(1)12f x x f x ''=+-=+,又(1)0f =,即切点为(1,0),所以切线方程为3(1)2y x =-,即3230x y --=.……(3分)(2)()21a f x x a ax '=+-+,依题意,1101212a f a a⎛⎫'=+-= ⎪⎝⎭+,即220a a --=,因为 0a >,所以2a =,此时2(21)()12x x f x x -'=+,所以()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,22⎡⎤⎢⎥⎣⎦上单调递增,又1135(0)ln ,,(2)ln 2242f f f ⎛⎫==-= ⎪⎝⎭,所以31ln 42b -<≤.…………(6分)(3)2222(2)2(2)()2111x ax a a ax a x f x x a ax ax ax⎡⎤--+-⎣⎦'=+-==+++, 因为12a <<,所以221(2)(1)0222a a a a a --+-=<,即22122a a -<,所以()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以max 11()(1)ln 122f x f a a ⎛⎫==++- ⎪⎝⎭.问题等价于对任意的(1,2)a ∈,不等式211ln 1(23)22a a m a a ⎛⎫++->+- ⎪⎝⎭恒成立,设211()ln 1(23)(12)22h a a a m a a a ⎛⎫=++--+-<< ⎪⎝⎭,则212(41)2()12211ma m a m h a ma m a a --+-'=---=++,又(1)0h =,所以()h a 在1a =右侧需先单调递增,所以(1)0h '≥,即18m -≤.当18m -≤时,设2()2(41)2g a ma m a m =--+-,其对称轴为1114a m=--<,又20m ->,开口向上,且(1)810g m =--≥,所以在(1,2)内,()0g a >,即()0h a '>,所以()h a 在(1,2)内单调递增,()(1)0h a h >=,即211ln 1(23)(12)22a a m a a a ⎛⎫++->+-<< ⎪⎝⎭.于是,对任意的(1,2)a ∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(23)f x m a a >+-成立.综上可知,18m -≤…………………………(12分)(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—4:坐标系与参数方程x 轴的非负半轴重合,直线l 的参数方程为1,212x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点,求PQ 的值.22.解:(1)将4c o s ρθ=化为24cos ρρθ=,由222,c os ρρθx y x =+=,得224x y x +=,所以曲线C22(2)4x y -+=.由1,212x t y t⎧=-+⎪⎪⎨⎪=⎪⎩消去t解得10x +=, 所以直线l 的普通方程为10x +=……………………(5分)(2)把1,12x y t ⎧=-+⎪⎪⎨⎪=⎪⎩代入22(2)4x y -+=,整理得250t -+=,设其两根为12,t t ,则12125t t tt +==,所以12PQ t t =-==10分)方法2,圆C 的圆心为(2,0)C ,半径2r =,圆心C 到直线l的距离32d =,所以PQ ==………………(10分)方法3,将1x=-代入22(2)4x y -+=,化简得:2450y -+=,由韦达定理得:12125,24y y y y +==,PQ === 23.(本小题满分10分)选修4—5:不等式选讲 已知函数()223,()12f x x a x g x x =-++=-+.(1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.23.解:(1)由125x -+<,得5125x -<-+<,所以13x -<,即313x -<-<,解得: 24x -<<,所以原不等式的解集为{|24}x x -<<(2)因为对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,又()223(2)(23)3f x x a x x a x a =-++--+=+≥,当且仅当(2)(23)0x a x -+≤时取等号,()122g x x =-+≥,所以32a +≥, 解得:1a -≥或5a -≤,所以实数a 的取值范围是(,5][1,)-∞--+∞。

河北省衡水中学2018届高三下学期全国统一联合考试(3月)理综试题+扫描版含答案

河北省衡水中学2018届高三下学期全国统一联合考试(3月)理综试题+扫描版含答案

河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联合考试(3 月)理综试题+扫描版含答案
河北省衡水中学 2018 届高三下学期全国统一联

河北省衡水中学高三理综下学期全国统一联合考试(3月)试题(扫描版)(2021学年)

河北省衡水中学高三理综下学期全国统一联合考试(3月)试题(扫描版)(2021学年)

河北省衡水中学2018届高三理综下学期全国统一联合考试(3月)试题(扫描版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省衡水中学2018届高三理综下学期全国统一联合考试(3月)试题(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省衡水中学2018届高三理综下学期全国统一联合考试(3月)试题(扫描版)的全部内容。

以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。

The above is the whole content of this article,Gorky said: "the book is the ladder of human progress." I hope you can make progress withthe help of this ladder. Material life is extremely rich, science and technology are developing rapidly, all of which gradually change the way of people'sstudy and leisure. Many people are no longer eager to pursue a document, but as long as you still have such a small persistence, yo uwill continue togrow andprogress. When the complex worldleads ustochaseout, reading an article or doing a problem makes us calm down and return to ourselves. W ith learning, we can activate our imagination and thinking, establish our belief, keep our pure spiritual worldand resist the attack of the external world.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年全国高三统一联合考试
理科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知全集{}1,2,3,4,5,6,7,8U =,{}3,4,5A =,{}1,3,6B =,则集合{}2,7,8是( ) A.A
B
B.A B
C.()U C A
B
D.()U C A B
2.已知复数z 的实部不为0,且1z =,设1
z z ω=+,则ω在复平面上对应的点在( )
A.实轴上
B.虚轴上
C.第三象限
D.第四象限
3.将()2n
x -的展开式按x 的升幂排列,若倒数第三项的系数是40-,则n 的值是( ) A.4
B.5
C.6
D.7
4.如图所示是三棱柱与球的组合体的三视图,则三棱柱的体积与球的体积之比是( )
B.

C.

5.设1F ,2F 分别是双曲线()22
22:10,0x y C a b a b
-=>>的左、右焦点,以1F 为圆心、12F F 为半径的圆与双曲
线左支的其中一个交点为A ,若12120AF F =∠°,则该双曲线的离心率是( )
1
6.若函数()()()2sin 20f x a x θθπ=+<<,a 是不为零的常数)在R 上的值域为[]2,2-,且在区间5,1212ππ⎡⎤
-⎢⎥
⎣⎦
上是单调减函数,则a 和θ的值是( ) A.1a =,3
π
θ=
B.1a =-,3
π
θ=
C .1a =,6
π
θ=
D.1a =-,6
π
θ=
7.已知函数()32f x x ax bx c =+++(a ,b ,c 均为常数)的图象关于点()1,0-对称,则b c -的值是( ) A.4-
B.4
C.2-
D.2
8.已知“x a x b ≥⇒>”,且“x a x c <⇒≤”,则“x c ≤”是“x b ≤”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
9.“三个臭皮匠,楔个诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大,假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A.3
B.4
C.5
D.6
10.已知向量()cos ,sin AB αα=,()cos ,sin BC ββ=,()cos ,sin CA γγ=,其中02αβγπ<<<<,则AB BC ⋅的值是( )
A.
1
2
B.1
2
-
C. 11.设函数()f x 定义如下表:
执行如图所示的程序框图,则输出的x 的值是( )
A.4
B.5
C.2
D.3
12.已知异面直线a ,b 所成的角为90°,直线AB 与a ,b 均垂直,且垂足分别为A ,B ,若动点P 在直线
a 上运动,动点Q 在直线
b 上运动,4PA QB +=,则线段PQ 的中点M 的轨迹所围成的平面区域的面积是
( ) A.2
B.4
C.8
D.12
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.抛物线24y x =-的焦点到它的准线的距离是___________.
14.若实数x ,y 满足100x y x y +≥-⎧⎪
≤⎨⎪≤⎩
,则2z x y =+取得最大值时对应的最优解是____________.
15.已知在ABC △中,角,,A B C 的对边分别是,,a b c
,cos A =
,cos B =
c =a =____________.
16.已知函数()x
x
f x e =
,关于x 的方程()()2
20f x f x c -+=⎡⎤⎣⎦有以下四个结论: ①当0c =时,方程有3个实根;②当221c c e -=时,方程有3个实根;③当221
1e c e -<<时,方程有2个实
根;④当2
21
e c e -<
时,方程有4个实根. 以上结论中正确的有____________(填序号).
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.已知正项等比数列{}n a 满足()
*14n n n a a n N +=∈. (1)求数列{}n a 的通项公式; (2)设221
1
log log n n n b a a +=
,求数列{}n b 的前n 项和n S .
18.如图,在三棱柱111ABC A B C -中,1AC BC AB AA ===,过1AA 的平面分别交BC ,11B C 于点D ,1D
.
(1)求证:四边形11ADD A 为平行四边形;
(2)若1AA ⊥平面ABC ,D 为BC 中点,E 为1DD 中点,求二面角1A C E C --的余弦值.
19.最近,在“我是演说家”第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,点赞的人数更是不断增加,对一周(7天)内演讲视频被转发的天数x 与点赞的人数y 进行了统计,数据见下表:
根据所给数据(),x y ,画出了散点图以后,发现演讲视频被转发的天数x 与点赞的人数y 的关系可以近似地表示为x y a b =⋅(,a b 均为正常数).
(题中所有数据的最后计算结果都精确到0.01) (1) 建立y 关于x 的回归方程;
(2) 试预测,至少经过多少天,点赞的人数超过12000?
附:①对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y x a β=+的斜率和截距的最小二乘估计
分别为()()
()
1
2
1
n
i
i i n
i
i x
x y y
x
x
β==--=
-∑∑,a y x β=-.
②参考数据:
20.已知椭圆()22
22:10x y E a b a b
+=>>的左、右焦点分别为1F 、2F ,椭圆E 上一点A 在x 轴上的射影恰好为
1F ,且直线2AF 的斜率为
. (1)求椭圆E 的离心率;
(2)当2a =时,过点()0,2Q -的射线与椭圆E 交于不同的两点M ,N ,若点P 在射线QM 上,且满足
2
QM QN QP ⋅=,求点P 的横坐标0x 的取值范围.
21.已知函数()ln f x x =.
(1)设()()()()'F x f k x k f k =-+(其中0k >),求证:()()f x F x ≤.
(2)若曲线()y f x =与抛物线()22y ax a x =+-有两个公共点,求实数a 的取值范围.
22.已知圆C 的极坐标方程为2sin 104πρθ⎛
⎫+++= ⎪⎝
⎭,直角坐标系xOy 的坐标原点O 与极点重合,x 轴
的正半轴与极轴重合.
(1)求圆C 的标准方程和它的一个参数方程; (2)设(),P x y 是圆C 上的任意一点,求xy 的最大值. 23.已知函数()1f x x x =+-. (1)解不等式()3f x ≥;
(2)若()()2f x f y +≤,求x y +的取值范围.。

相关文档
最新文档