八年级数学第一学期期中试卷

合集下载

八年级期中试卷数学及答案

八年级期中试卷数学及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 下列各数中,无理数是()A. √4B. √25C. √2D. √03. 下列各数中,整数是()A. -3B. 2.5C. √9D. √-44. 下列各数中,正数是()A. -3B. 0C. 2D. √-95. 下列各数中,负数是()A. -3B. 0C. 2D. √96. 已知x是实数,且x^2 = 4,则x的值是()A. 2B. -2C. 2或-2D. 无法确定7. 已知a、b是实数,且a + b = 0,则a和b互为()A. 相等B. 相反数C. 绝对值相等D. 无法确定8. 下列等式中,正确的是()A. (-2)^2 = 4B. (-3)^3 = -27C. (-4)^4 = 256D. (-5)^5 = -31259. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 110. 已知a、b是实数,且a^2 + b^2 = 0,则a和b的关系是()A. a = 0且b = 0B. a = 0或b = 0C. a和b都是正数D. a和b都是负数二、填空题(每题3分,共30分)11. 有理数a的相反数是______。

12. 绝对值小于2的有理数有______。

13. 若|a| = 5,则a的值为______。

14. 已知a、b是实数,且a - b = 3,则a + b的值为______。

15. 已知x是实数,且x^2 - 4x + 3 = 0,则x的值为______。

16. 若|a| = |b|,则a和b的关系是______。

17. 若a^2 = b^2,则a和b的关系是______。

18. 若a、b是实数,且a + b = 0,则a和b互为______。

19. 已知x是实数,且x^2 + 4x + 3 = 0,则x的值为______。

20. 若|a| > |b|,则a和b的关系是______。

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析1.已知三角形两边长分别为7、10,那么第三边的长可以是()A.2B.3C.17D.52.n边形的每个外角都为15o,则边数n为()A.20B.22C.24D.263.如图,要测量湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得ΔABC≌ΔEDC.判定全等的依据是()A.ASAB.SASC.SSSD.HL4.已知,如图,AD=AC,BD=BC,O为AB上一点,则图中共有全等三角形的对数是()A.1对B.2对C.3对D.4对5.如图,ΔABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.LB=LCB.AD平分LBACC.AD L BCD.AB=2BD6.和点p(—3,2)关于x轴对称的点是()A.(3,2)B.(—3,2)C.(—3,—2)D.(3,—2)7.如图所示,人字梯中间一般会设计一“拉杆”,这样做的依据是.8.八边形的对角线共有条.9.如图,在ΔABC中,LC=40。

,将ΔABC沿着直线l折叠,点C落在点D的位置,则L1—L2的度数是.10.如图,小虎用10块高度都是4cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,LACB=90。

),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离DE为cm.11.RtΔABC中,CD是斜边AB上的高,LB=30。

,AD=2cm,则AB的长度是cm.12.已知等腰三角形的一个内角等于40。

,则它的顶角是。

.13.如图点P是LBAC的平分线AD上一点,PE L AC于点E.已知PE=3,则点P到AB的距离是.14.如图,等腰ΔABC中,AB=AC,AB的垂直平分线MN交AC于点D,LDBC=15。

,则LA 的度数是度.15.如图,在ΔABC中,AD L BC于D,AE平分LDAC,LBAC=80。

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。

第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。

2023-2024学年山东省烟台市海阳市八年级上学期期中数学试卷及参考答案

2023-2024学年山东省烟台市海阳市八年级上学期期中数学试卷及参考答案

烟台市海阳市2023—2024学年度第一学期期中检测初三数学试题本试卷共6页,共120分;考试时间120分钟.一、选择题(本题共10个小题,每小题3分,共计30分).下列每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的.1.下列因式分解正确的是( ) A .()mx my m m x y m -+=-+ B .()2296332xyz x y xyz xy -=-C .()2236332a x bx x x a b -+=-D .()22111222xy x y xy x y +=+ 2.下列多项式不能用公式法分解因式的是( ) A .22x y -+B .222y xy x ---C .222x xy y -+D .22x y +3.将多项式2161m +加上一个单项式后,使它能够进行因式分解,则此单项式不能是( ) A .8m B .8m - C .215m -D .2-4.()()2022202322-+-等于( ) A .20222-B .20232-C .()20222- D .2-5.若ABC △的三边长a ,b ,c 满足()()2222a b a b ac bc -+=-,则ABC △的形状是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.在“经典诵读”比赛活动中,某校10名学生参赛成结如图所示,对于这10名学生的参赛成织,下列说法不正确的是( )A .众数是90分B .中位数是90分C .平均数是91分D .方差是15 7.若一组数据13,14,15,16,x 的方差比另一组数1,2,3,4,5的方差大,则x 的值可能是( )A .12B .16C .17D .188.若分式方程11222kx x x-+=--无解,则k 的值为( )A .1±B .2C .1或2D .1-或29.一项工作由甲单独做,需a 天完成;若由甲、乙两人合作,则可提前2天完成,则乙单独完成该项工作需要的天数为( ) A .()22a a -天 B .()22a a -天C .22a -天 D .无法判断10.如图,标号为①,②,③,④的长方形不重叠地围成长方形PQMN ,已知①和②能够重合,③和④能够重合,且这四个长方形的面积相等.若4AE DE =,则PQMN ABCDS S 长方形长方形的值为( )A .35 B .925C .34D .916 二、填空题:(本题共6个小题,每小题3分,共计18分)11.若分式21x +在实数范围内有意义,则x 的取值范围是______.12.一个长为a ,寨为b 的长方形的周长为10,面积为5,则22a b ab +的值为______.13.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,所求得的平均数为83,则实际平均数是______. 14.若21237y y ++的值为19,则21468y y +-的值是______.15.已知关于x 的分式方程3211m x x+=---的解为非负数,则符合条件的正整数m 的个数为______个. 16.已知:111y x =-,2111y y =-,3211y y =-,4311y y =-,…,111n n y y -=-,则2023y =______.(用含x 的代数式表示).三、解答题(本大题共8个小题,满分72分)17.(本题满分8分,每小题4分)把下列各式因式分解:(1)2231212x xy y -+-;(2)()222416x x +-.18.(本题满分7分)某个电脑程序:每按一次按键,屏幕的A 区就会自动加上2a ,同时B 区就会自动减去3a ,且均显示最简结果.已知A ,B 两区初始显示的分别是25和16-(如图1),第1次按键后,A ,B 两区显示的内容如图2所示.(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,并说明这个和能合为负数. 19.(本题满分8分) 先化简,再求值:2225321121x x x x x x +-⎛⎫-÷⎪---+⎝⎭,从22x -<<中选出合适的x 的整数值,代入求值. 20.(本题满分8分)已知分式方程21211xx x -=+-■有解,其中“■”表示一个数.小明对此表示,“■”可以是0.小明的说法正确吗?请通过计算说明理由.21.(本题满分8分)近年来,网约车已逐步成为人们日常出行的选择之一.某校学生对甲、乙两家网约车公司各10名司机的月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:(1)填空:①______,②______,③______;(2)王叔叔想从两家公司中选择一家做网约车司机,请你帮他做出选择并说明理由.22.(本题满分10分)“秋风响,蟹脚痒,正是食蟹好时节.”在我市丁字湾海域的一处螃蟹养殖区,某蟹农在今年五月中旬向自家蟹田投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹田随机试捕了四次,获得如下数据:(1)求四次试捕中平均每只蟹的质量;(2)若蟹苗的成活率为75%,请估计在九月中旬试捕期间,该蟹田中螃蟹的总质量为多少千克?(3)若第三次试捕的蟹的质量(单位:g )分别为:169,170,a ,174,168.求a 的值及该次试捕所得蟹的质量数据的方差.23.(本题满分10分)科研机构试验采集的某样本须在4小时内(含采集时问)送达检测中心,使超过时问,样本就会失效.已知甲、乙两科研机构到检测中心的路程分别为30下米,36下米,两科研机构的送检车有如图所示的信息.根据信息,请解答下列问题:(1)求甲科研机构送检车的平均速度;(2)若乙科研机构从开始采集样本到送检车出发用了3.2小时,则它采集的样本会不会失效? 24.(本题满分13分)用数学的眼光观察: 同学们,在学习中,你会发现“1x x +”与“1x x-”有着紧密的联系,请你认真观察等式:222112x x x x ⎛⎫+=++ ⎪⎝⎭,222112x x x x ⎛⎫-=-+ ⎪⎝⎭. 用数学的思维思考并解决如下问题:(1)填空:2211a a a a ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭______;(2)计算:①若2120a a ⎛⎫+= ⎪⎝⎭,求1a a -的值;②若210a a +-=,求1a a+的值; ③已知11a a -=,求1a a+的值.烟台市海阳市2023—2024学年度第一学期期中检测初三数学试题参考答案及评分意见一、本题满分30分,每题3分二、本题满分18分,每小题3分11.1x ≠- 12.25 13.86 14.14-15.4 16.11x - 三、本大题共8个小题,满分72分17.(本题满分8分,每小题4分)解:(1)22223121231212x xy y x xy y -+--+-()()22234432x xy y x y =--+--;(2)()()()()()2222222416444422x x x x x x x x +-+++=+-=-.18.(本题满分7分)解:(1)A 区显示结果为:22225252a a a ++=+.B 区显示结果为:1633166a a a -----.(2)由题意得,A ,B 两区代数式的和为:()()222225416342541612412923a a a a a a a +⨯+--⨯=+--=-+=-∵()2230a -≥,所以,这个和不能为负数. 19.(本题满分8分)解:原式()()()()()()23112511112x x x x x x x x⎡⎤+-+=-⋅⎢⎥+-+--⎣⎦ ()()()2121111211x x x x x x x x x --+--=⋅==+--++ ∵分式中分母()()11x x +-,2x -均不为0,∴1,1,2x ≠-. 由题意得,x 的取值为0. 当0x =时,原式01101-==-+ 20.(本题满分8分) 解:不正确.理由如下:当“■”为0时,原方程为212011x x x -=+-. 两边都乘以()()11x x +-,得120x x --=. 解这个方程,得1x =-. 检验:当1x =-时,原方程中分式11x +和221x x -的分时的值为零, 所以1x =-是原方程的说根,应舍去. 因此,原方程无解.这与题意“方程有解”不符,故“■”不能为0,所以小明的说法不正确. 21.(本题满分8分) 解:(1)6;4.5;4. (2)选甲公司.理由如下:甲、乙公司司机月收入的平均数一样,但甲公司司机月收入的中位数、众数均大于乙公司,且方差小于乙公司,收入更稳定.22.(本题满分10分)解:(1)平均每只蟹的质量为:()()()171170101681705170170g 4556-⨯+-⨯+=+++.(2)()()170120075%153000g 153kg ⨯⨯==. 所以,蟹田中螃蟹的总质量约为153千克.(3)1691701741681705a ++++=⨯,可得169a =.()()()()222222169170170170174170168170 4.45S ⨯-+-+-+-==.所以,该次试捕所得蟹的质量数据的方差为4.4. 23.(本题满分10分)解:(1)设甲科研机构送检车的平均速度为x 千米/小时, 则乙科研机构送检车的平均速度为1.2x 千米/小时,根据题意,得303621.2x x+=. 解这个方程,得30x =.经检验,30x =是所列方程的根.所以,甲科研机构送检车的平均速度为30千米/小时. ∵3.214+>,所以,它采集的样本会失数. 24.(本题满分13分) 解:(1)4.(2)①∵2211420416a a a a ⎛⎫⎛⎫-=+-=-= ⎪ ⎪⎝⎭⎝⎭,∴14a a -=±.②将210a a +-=两边都除以a ,得11a a-=-.∴()222114145a a a a ⎛⎫⎛⎫+=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴1a a +=(3)当10a >时,此时0a >,则111a a a a-=-=,得11a a -=-.∵()222114145a a a a ⎛⎫⎛⎫+=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴1a a +=∵0a >,∴1a a+=.∴11a a a a+=+= 当10a <时,此时0a <,则111a a a a-=--=,得11a a +=-. ∵()2221141430a a a a ⎛⎫⎛⎫-=+-=--=-< ⎪ ⎪⎝⎭⎝⎭,故舍去.综上,1a a+。

2022-2023学年八年级第一学期期中考试数学试卷附详细答案

2022-2023学年八年级第一学期期中考试数学试卷附详细答案

2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )2.在平面直角坐标系中,点A(−1,4)关于x轴对称的点的坐标为( )A.(1,4)B.( −1,4)C.(0,−4)D.(−1,−4)3.下列正多边形中,内角和是540°的是( )4.如图,用纸板挡住部分三角形后,能用尺规画出与此三角形全等的三角形,其全等的依据是( )A.ASAB.AASC.SASD.HL5.若α为正六边形的一个外角,则α的度数为( )A.45°B.50°C.60°D.72°4题图A5题图B E F C6.如图,△ABF ≌△ACE ,点B 和点C 是对应顶点,则下列结论中不一定...成立的是() A.∠B=∠C B.BE=CF C.∠BAE=∠CAF D.AE=EF7.如图,物业公司计划在小区内修建一个电动车充电桩,要求到A ,B ,C 三个出口的距离都相等,则充电桩应建在( )A.△ABC 的三条高的交点处B.△ABC 的三条角平分线的交点处C.△ABC 的三条中线的交点处D.△ABC 的三条边的垂直平分线的交点处 8.如图,E 是△ABC 的边AC 的中点,CF ∥AB ,连接FE 并延长交AB 于点D ,若AB=9,CF=6,则BD 的长为( )A.1.5B.2C.3D.3.59.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,若BC=10,DE=3,则△BCE 的面积为( )A.14B.15C.18D.30 10.具备下列条件的△ABC ,不是..直角三角形的是( ) A.∠A ︰∠B ︰∠C=5︰2︰3 B.∠A −∠C=∠B C.∠A=∠B=2∠C D.∠A=12∠B=13∠C11.如图,△ABC 与△A 1B 1C ,关于直线MN 对称,P 为MN 上任一点(P 不与AA 1共线),下列结论不正确...的是( ) A.AP=A 1P B.△ABC 与△A 1B 1C 1的面积相等 C.MN 垂直平分线段AA 1 D.直线AB ,A 1B 1的交点不一定在MN 上 12.如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,A8题图BCEFD 7题图ABC9题图则∠AEC=( )A.28°B.59°C.60°D.62°13.如图,将三角形纸片ABC 翻折,点A 落在点A ´的位置,折痕为DE.若∠A=30°,∠BDA ´=80°,则∠CEA ´的度数为( )A.15°B.20°C.30°D.40°14.如图,小亮和小明分别用尺规作∠APB 的平分线PQ ,则关于两人的作图方法,下列判断正确的是( )A.小亮、小明均正确B.只有小明正确C.只有小亮正确D.小亮、小明均不正确15.如图,AD 为△ABC 的中线,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,下列结论正确的有( )①∠EDF=90°;②∠BAD=∠CAD ;③△BDE ≌△DCF ;④EF ∥BC. A.4个 B.3个 C.2个 D.1个16.有一道题目:“如图,∠AOB=60°,点M ,N 分别在OA ,OB 上运动(不与点O 重合),13题图A CBDE A ´A14题图APP B BQQ小明小亮11题图A MN CBP A 1B 1C 112题图ME 平分∠AMN ,ME 的反向延长线与∠MNO 的平分线交于点F ,在点M ,N 的运动过程中,求∠F 的度数.”甲的解答:∠F 的度数不能确定,它随着点M ,N 的运动而变化,且随∠OMN 的增大而减小;乙的解答:∠F 始终等于45°,下列判断正确的是( )A.甲说的对B.乙说的对C.乙求的结果不对,∠F 始终等于30°D.两人说的都不对,凭已知条件无法确定∠F 的值或变化趋势二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.如图,AB=AC ,点D ,E 分别在AB ,AC 上,连接BE ,CD ,要使△ABE ≌△ACD ,则添加的条件是_______.(只需填一个即可)18.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,若△BCD 的周长为5,BC=2,则AC 的长为_______,边AB 长的取值范围是_______.19.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E.17题图ACEDB18题图19题图ABCD E16题图A EBFMON 15题图(1)若∠C=50°,∠BAC=60°,则∠ADB的度数为_______.(2)若∠BED=45°,则∠C的度数为_______.(3)猜想∠BED与∠C的数量关系为_______.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.已知一个多边形的边数为n.(1)若n=7,求这个多边形的内角和.比一个四边形的外角和多90°,求n的值.(2)若这个多边形的内角和的1421.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−4),B(3,−3),C(1,−1).(1)画出△ABC关于y轴对称的△A1B1C1.(2)写出(1)中所画的△A1B1C1的各顶点坐标.(3)连接CC1,BB1,则四边形BCC1B1的面积为_______.22.如图,在Rt△ABC中,∠ACB=90°,D为边AB上一点.将△ACB沿CD折叠,使点A恰好落在边BC上的点E处.(1)若AC=6,BC=8,AB=10,求△BDE 的周长. (2)若∠B=37°,求∠CDE 的度数.23.已知:如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点P ,且PE ⊥AB ,PF ⊥AC ,垂足分别为E 、F. (1)求证:PE=PF.(2)若∠BAC=60°,连接AP ,求∠EAP 的度数.24.在△ABC 中,AF 平分∠BAC ,CD ⊥AF ,垂足为F ,与AB 交于点D.(1)如图1,若∠BAC=80°,∠B=40°,求∠BCD 的度数. (2)如图2,在△ABC 内部作∠ACE=∠B ,求证:∠BCD=∠DCE.A图2图1AAD BEC25.如图,AE=AF ,AE ⊥AF ,点E ,F ,B 在同一直线上,AB=AC ,∠BAC=90°.(1)判断△AEB 与△AFC 是否全等?若全等,请给出证明;若不全等,请说明理由. (2)当EF 和BF 满足什么数量关系时,CE=CB?请给出结论并说明理由.26.【问题提出】如图1,△ABC 是直角三角形,∠BAC=90°,AB=AC ,直线l 经过点A ,分别过点B ,C 向直线l 作垂线,垂足分别为D ,E.求证:△ABD ≌△CAE.【变式探究】若图1中的点B ,C 在直线l 的两侧,其他条件不变(如图2所示),判断△ABD 与△CAE 是否依然全等,并说明理由.【深入思考】如图3,在△ABC 中,AB=AC ,直线l 经过点A ,且点B ,C 位于直线l 的两侧,若∠BDA+∠BAC=180°,∠BDA=∠AEC ,判断线段BD ,CE ,DE 之间的数量关系,并加以说明.图1l图2图3ACD E BlF2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )1.解:D 是轴对称图形,关于对称轴两侧对称且能完全重合,故选D 。

2023-2024学年广东省广州市增城区八年级上学期期中考数学试卷含答案精选全文

2023-2024学年广东省广州市增城区八年级上学期期中考数学试卷含答案精选全文

2023学年第一学期期中质量检测问卷八年级数学一、选择题(共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A. B. C. D.2.下面四个图形中,线段BE 是ABC △的高的图是()A.B.C.D.3.ABC △中,D 是BC 延长线上一点,40B ∠=︒,120ACD ∠=︒,则A ∠等于()A.60︒B.70︒C.80︒D.90︒4.如图,用直尺和圆规作已知角的平分线的示意图,则说明CAD DAB ∠=∠的依据()A.SSSB.SASC.ASAD.AAS5.如图,CD ,CE ,CF 分别是ABC △的高、角平分线、中线,则下列各式中错误的是()A.2AB BF =B.12ACE ACB ∠=∠C.AE BE= D.CD BE⊥6.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下条件仍不能判定ABE ACD ≌△△的是()A.B C ∠=∠B.AD AE =C.BD CE= D.BE CD =7.等腰三角形的一个角是80︒,则它的底角是()A.50︒B.80︒C.20︒或80︒D.50︒或80︒8.如图,ABC AED ≌△△,点E 在线段BC 上,140∠=︒,则AED ∠的度数是()A.70︒B.68︒C.65︒D.60︒9.如图,在ABC △中,90C ∠=︒,15A ∠=︒,60DBC ∠=︒,1BC =,则AD 的长为()A.1.5B.2C.3D.410.如图,已知ABC △中,24cm AB AC ==,B C ∠=∠,16cm BC =,点D 为AB 的中点,如果点P 在线段BC 上以4cm /s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,当点Q 的运动速度为()cm /s 时,能够在某一时刻使BPD △与CQP △全等.A.4B.3C.4或3D.4或6二、填空题(共6小题,每小题3分,满分18分)11.已知点(3,2)P -与点Q 关于x 轴对称,则点Q 的坐标为__________.12.已知一个三角形的三边长为3,8,a ,则a 的取值范围是__________.13.一个多边形的内角和等于1080︒,这个多边形的边数为__________.14.如图,在ABC △中,AB AC =,D 为BC 中点,35BAD ∠=︒,则B ∠的大小为__________度.15.如图,AO 、BO 分别平分CAB ∠、CBA ∠.点O 到AB 的距离4OD =,若ABC △的周长为28,则ABC △的面积为__________.16.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E 、F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM △周长的最小值为__________.三、解答题:(本题有8个小题,共72分,解答要求写出文字说明、证明过程或计算步骤.)17.(满分4分)如图,已知//AB CD ,42B ∠=︒,64ACD ∠=︒,求ACB ∠的度数.18.(满分4分)如图,点E 、F 在BC 上,BE FC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.19.(满分6分)如图,在平面直角坐标系中,ABC △的三个顶点均在格点上.(1)在网格中作出ABC △关于y 轴对称的图形111A B C △;(2)若网格的单位长度为1,求111A B C △的面积.20.(满分6分)如图,在ABC △中,AD BC ⊥于点D ,ABC △的角平分线BE 交AD 于点O ,已知40ABC ∠=︒,求AOB ∠度数.21.(满分8分)如图,在ABC △,AB AC =.(1)作AB 垂直平分线DE ,交AC 于点D ,交AB 于点E (保留作图痕迹,不写作法);(2)连接BD ,若5AE =,BCD △的周长是17,求ABC △的周长.22.(满分10分)如图,ABC △中,90ACB ∠=︒,DC AE =,AE 是BC 边上的中线,过点C 作CF AE ⊥,垂足为点F ,过点B 作BD BC ⊥交CF 的延长线于点D .(1)求证:AC CB =.(2)若12cm AC =,求BD 的长.23.(满分10分)如图,在四边形ABDC 中,90D B ∠=∠=︒,O 为BD 的中点,且AO 平分BAC ∠.求证:(1)CO 平分ACD ∠.(2)AB CD AC +=.24.(满分12分)如图1,点A 、D 在y 轴正半轴上,点B 、C 在x 轴上,CD 平分ACB ∠与y 轴交于D 点,90CAO BDO ∠=︒-∠.图1图2图3(1)求证:AC BC =;(2)如图2,点C 的坐标为(4,0),点E 为AC 上一点,且AD DE =,求BC EC +的长;(3)在(1)中,过D 作DF AC ⊥于F 点,点H 为FC 上一动点,点G 为OC 上一动点,(如图3),当H 在FC 上移动、点G 点在OC 上移动时,始终满足GDH GDO FDH ∠=∠+∠,试判断FH 、GH 、OG 这三者之间的数量关系,写出你的结论并加以证明.25.(满分12分)如图,在等边ABC △中,线段AM 为边BC 上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE △,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:CAM CBE ∠=∠;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.2023学年第一学期期中质量检测八年级数学评分标准一、选择题(本大题满分30分,每题3分)题号12345678910答案DBCACDDABD二、填空题(本大题满分18分,每题3分)题号111213141516答案(3,2)511a <<8555610三、解答题(本大题有8小题,共72分,解答要求写出文字说明,证明过程或计算步骤)17.(本题满分4分)解://AB CD ,64ACD ∠=︒,64ACD A ∴∠=∠=︒,在ABC △中,180A B ACB ∠+∠+∠=︒,42B ∠=︒,18074ACB A B ∴∠=︒-∠-∠=︒.18.(本题满分4分)证明:BE CF = ,BE EF EF CF ∴+=+,BF EC ∴=,在ABF △和DCE △中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABF DCE ∴≌△△,A D ∴∠=∠.19.(本题满分6分)解:(1)如图所示,111A B C △即为所求(2)111111432322145222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△.20.(本题满分6分)解:AD BC ⊥ ,90ADB ∴∠=︒,9050BAD ABC ∴∠=︒-∠=︒,40ABC ∠=︒ ,BE 平分ABC ∠,1202ABO ABC ∴∠=∠=︒.180110AOB ABO BAD ∴∠=︒-∠-∠=︒.21.(本题满分8分)解:(1)如图所示,DE 为所求.(2)DE 是AB 的垂直平分线,5AB BE ∴==,AD BD =,10AB AE BE ∴=+=.17BCD C BD DC BC =++= △,17AD DC BC ∴++=,17AC BC ∴+=,101727ABC C AB AC BC ∴=++=+=△.22.(本题满分10分)(1)AF DC ⊥ ,90ACF FAC ∴∠+∠=︒,90ACF FCB ∠+∠=︒ ,EAC FCB ∴∠=∠.BD BC ⊥ ,90ACB ∠=︒,90CBD ACB ∴∠=∠=︒.在DBC △和ECA △中EAC FCBACE CBD DC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DBC ECA ∴≌△△,AC BC ∴=.(2)DBC ECA ≌△△,12cm AC =,BD CE ∴=,12cm AC BC ==.E 是BC 的中点,11126cm 22EC BC ∴==⨯=.6cm BD CE ∴==.23.(本题满分10分)解:(1)证明:过点O 作OE AC ⊥于E ,90B ∠=︒ ,OA 平分BAC ∠,OB OE ∴=.点O 为BD 的中点,OB OD ∴=,OE OD ∴=,又90D ∠=︒ ,OC ∴平分ACD ∠.(2)证明:由(1)得OB OE OD ==,在Rt ABO △和Rt AEO △中,AO AOOB OE =⎧⎨=⎩,Rt Rt ABO AEO ∴≌△△,AB AE ∴=.在Rt CEO △和Rt CDO △中,CO COOE OD=⎧⎨=⎩,Rt Rt CEO CDO ≌△△,CD CE ∴=,AE CE AC += ,AB CD AC ∴+=.24.(本题满分12分)(1)解:(1)CD 平分ACB ∠,ACD BCD ∴∠=∠.90AOB AOC ∠=∠=︒ ,90CAO BDO ∠=︒-∠,90DBO BDO ∠=︒-∠ ,CAO DBO ∴∠=∠.在ACD △和BCD △中,CAO DBOACD BCD CD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ACD BCD ∴≌△△,AC BC ∴=.(2)解:如图2,过点D 作DM AC ⊥于M ,CD 平分ACB ∠,OD BC ⊥,DO DM ∴=.在BOD △和AMD △中,90DBO DAM BOD AMD DO DM ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,(AAS)BOD AMD ∴≌△△,OB AM ∴=.在Rt DOC △和Rt DMC △中,DO DMDC DC=⎧⎨=⎩,Rt Rt (HL)DOC DMC ∴≌△△,OC MC ∴=.CAO DBO ∠=∠ ,DEA DBO ∠=∠,DAE DEA ∴∠=∠,DM AC ⊥ ,AM EM ∴=,OB EM ∴=.(4,0)C ,4OC ∴=,28BC CE OB OC MC EM OC ∴+=++-==.图2(3)解:GH OG FH=+证明:如图3,在GO 的延长线上取一点N ,使ON FH =,CD 平分ACO ∠,DF AC ⊥,OD OC ⊥,DO DF ∴=.在DON △和DFH △中,90DO DF DON DFH ON FH =⎧⎪∠=∠=︒⎨⎪=⎩,(SAS)DON DFH ∴≌△△,DN DH ∴=,ODN FDH ∠=∠,GDH GDO FDH ∠=∠+∠ ,GDH GDO ODN GDN ∴∠=∠+∠=∠,在DGN △和DGH △中,DN DH GDN GDH DG DG =⎧⎪∠=∠⎨⎪=⎩,(SAS)DGN DGH ∴≌△,GH GN ∴=,ON FH = ,GH GN OG ON OG FH ∴==+=+.图325.(本题满分12分)解:(1)ABC △是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠,30CAM ∴∠=︒.(2)ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∴∠=∠.在ADC △和BEC △中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ADC BEC ∴≌△△,MAC MBE ∴∠=.(3)AOB ∠是定值,60AOB ∠=︒.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≌△△,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC △是等边三角形,线段AM 为BC 边上的中线,AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒,903060BOA ∴∠=︒-︒=︒.图1②当点D 在线段AM 的延长线上时,如图2,ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∴∠=∠,在ACD △和BCE △中,AC BCACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ACD BCE ∴≌△△,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.图2③当点D 在线段MA 的延长线上时,如图3,ABC △与DEC △都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∴∠=∠,在ACD △和BCE △中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,(SAS)ACD BCE ∴△△,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒,150CBE CAD ∴∠=∠=︒,30CBO ∴∠=︒,30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.图3。

八年级数学上册期中考试试卷及答案

八年级数学上册期中考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. 3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。

()2. 0是最小的自然数。

()3. 1是最大的质数。

()4. 两条对角线相等的四边形一定是矩形。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 一个正方形的边长是4,那么它的面积是______。

2. 如果 a = 2,那么 a 的平方是______。

3. 下列数中,最大的偶数是______。

4. 如果一个等边三角形的边长是3,那么它的周长是______。

5. 下列数中,最小的负数是______。

四、简答题(每题2分,共10分)1. 请解释什么是质数。

2. 请解释什么是偶数。

3. 请解释什么是等边三角形。

4. 请解释什么是自然数。

5. 请解释什么是正方形。

五、应用题(每题2分,共10分)1. 一个长方形的长是6,宽是4,求它的面积。

2. 如果 a = 3,b = 5,那么 a + b 的和是多少?3. 一个等腰三角形的底边长是8,腰长是5,求它的周长。

4. 一个正方形的边长是5,求它的对角线长度。

5. 如果一个数的平方是36,那么这个数可能是多少?六、分析题(每题5分,共10分)1. 请分析一个长方形的长和宽分别是多少时,它的面积最大。

2. 请分析一个等腰三角形的底边长和腰长分别是多少时,它的周长最小。

七、实践操作题(每题5分,共10分)1. 请画出一个边长为5的正方形,并标出它的对角线长度。

2. 请画出一个底边长为6,腰长为8的等腰三角形,并标出它的周长。

八年级上学期期中考试数学试卷(附带答案)

八年级上学期期中考试数学试卷(附带答案)

八年级上学期期中考试数学试卷(附带答案)(满分:150分时间:120分钟)学校班级姓名学号一.选择题。

(本大题共10个小题,每小题4分,共40分)1.在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,湖的两岸有A,C两点,在与AC成直角的BC方向上的点C处测得AB=15米,BC =12米,则A,C两点间的距离为()A.3米B.6米C.9米D.10米(第2题图) (第10题图)3.下列各数中是无理数的是()A.3.14B.−227C.8D.√64.一次函数y=﹣x+4的图象经过()A.第一、二、三象限B.第二、三、象限.第一、二、四象限 D.第二、三、四象限5.若{x=2y=1是关于x、y的方程x﹣ay=3的一个解,则a的值为()A.﹣1B.﹣3C.1D.36.点A(x,y)满足二元一次方程组{x-2y=5x+4y=﹣13的解,则点A在第()象限.A.一B.二C.三D.四7.已知二元一次方程组{2m-n=3m-2n=4,则m+n=()A.1B.7C.﹣1D.﹣78.估计2+√7的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间9.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(2,4),则点A2023的坐标为()A.(3,﹣1)B.(﹣2,﹣2)C.(﹣3,3)D.(2,4)10.如图,△ABC和△ECD都是等腰直角三角形,△ABC的顶点A在△ECD的斜边DE上.下列结论:①△ACE△△BCD;②△DAB=△ACE;③AE+AC=CD;④ED△BD;⑤AE2+AD2=2AC2.其中正确的有()A.2个B.3个C.4个D.5 个二.填空题。

(本大题共6个小题,每小题4分,共24分)11.已知一次函数y=2x﹣1的图象经过点(3,m),则m的值是.12.把方程2x﹣y=4变形,用含x的代数式表示y,则y=.13.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴于一点,则这个点表示的实数是.(第13题图) (第15题图)(第16题图)14.计算:√18−√32+2√2= .15.如图,直线l1与x轴、y轴分别交于A(﹣2,0),B(0,6),直线l2经过点B且与x 轴负半轴交于点C,△ABC=45°.若线段BC上存在一点P,使△ABP是以A为直角顶点的等腰直角三角形,则P点坐标为.16.如图,在△ABC中,AC=5,BC=12,AB=13,将△ABC沿AD折叠,使点C落在AB上的点E处,则BD的长为.三.解答题。

山西省晋中市榆次区2023-2024学年八年级上学期期中学业水平质量监测数学试卷(含解析)

山西省晋中市榆次区2023-2024学年八年级上学期期中学业水平质量监测数学试卷(含解析)

榆次区2023-2024学年第一学期期中学业水平质量监测题(卷)八年级数学注意事项:1.本试卷共8页,满分100分,考试时间90分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 64的平方根是()A. 8B.C.D. 4答案:C解析:解:64的平方根是:,故选:C.2. 在平面直角坐标系中,点的位置在()A. 第二象限B. 第四象限C. 轴上D. 轴上答案:D解析:解:平面直角坐标系中,点所在的位置是轴上,故选:D.3. 下列实数中的无理数是()A. B. C. D.答案:A解析:解:开方开不尽,是无理数;,是分数,是整数,都属于有理数;故选:A.4. “赵爽弦图”(图1)通过对图形的切割、拼接,巧妙地利用面积关系证明了一个重要的数学定理,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲,这个图案被选为2002年国际数学家大会的会徽(图2).利用这个图形证明的重要数学定理是()A. 三角形内角和定理B. 勾股定理C. 勾股定理的逆定理D. 全等三角形的判定定理答案:B解析:解:由勾股定理相关的数学背景可知:“赵爽弦图”是对勾股定理的验证.故选:B.5. 下列计算正确的是()A. B. C. D.答案:D解析:解:A、,此选项不符合题意;B、,此选项不符合题意;C、,此选项不符合题意;D、,此选项符合题意.故选:D.6. 以下四组数据中不能作为直角三角形的三边长的是()A. B. C. D.答案:D解析:解:A、,故不符合题意;B、,故不符合题意;C、,故不符合题意;D、,故符合题意;故选:D.7. 某校开展了主题为“生活中的一次函数”的项目学习,同学们找到了许多生活中的函数.下面实例中,变量之间的关系不是一次函数的是()A. 家庭用水的单价为4.1元,每月的水费支出与用水量之间的关系B. 百米赛跑中,时间与速度之间的关系C. 相同规格的A4纸整齐放置,纸的厚度与纸的张数之间的关系D. 普通钟表指针转动的角度与所用时间的关系答案:B解析:解:A、家庭用水的单价为4.1元,每月的水费支出与用水量之间的关系是一次函数关系,不符合题意;B、百米赛跑中,时间与速度之间的关系是不是一次函数关系,符合题意;C、相同规格的A4纸整齐放置,纸的厚度与纸的张数之间的关系是一次函数关系,不符合题意;D、普通钟表指针转动的角度与所用时间的关系是一次函数关系,不符合题意.故选:B.8. 如图1,大树移植后常用木头支撑.将其中一根木头的支撑情况抽象为数学图形(图2),如果木头的长为1.8米,木头底端A到树底端C的距离长为1米,则的长度在()A. 1.2米到1.3米之间B. 1.3米到1.4米之间C. 1.4米到1.5米之间D. 1.5米到1.6米之间答案:C解析:解:由勾股定理,得(米)∵,,∴∴长度在1.4米到1.5米之间故选:C.9. 如图是一个数值转换器,如果输入的为81,则输出的值为()A. B. C. D.答案:A解析:当时,取算术平方根为9,是有理数,代入,取算术平方根为3,是有理数,代入,取算术平方根为,是无理数,则输出为.故选:A.10. 小磊在画一次函数的图象时列出了如下表格,小颖看到后说有一个函数值求错了.这个错误的函数值是…012……852…A. 5B. 2C.D.答案:C解析:解:设一次函数的表达式为:,由表得:,解得:,,当时,,当时,,当时,,当时,,这个错误函数值为,故选C.二、填空题(本大题共5个小题,每小题3分,共15分)11. 的绝对值是_____.答案:12. 如图是杭州亚运会火炬传递线路图,小红和小亮想利用平面直角坐标系的相关知识标记各站点.他们将其置于正方形网格中,宁波站的坐标为,舟山站的坐标为,则丽水站的坐标为________.答案:解析:解:由,可建立如图所示的平面直角坐标系:∴点C的坐标是.故答案为:.13. 复习课上,同学们根据一次函数所满足的性质写表达式.小华说:“一次函数图象经过点,小丽说:“该函数中,的值随着值的增大而减小”,则该一次函数表达式可以是________.(写出一种即可)答案:(答案不唯一)解析:解:设一次函数的解析式为,∵y随着x的增大而减小,∴,∵图象过点,∴,∴符合条件的解析式可以为:.故答案为:(答案不唯一).14. 如图,长方体的长为,宽为,高为,点与点的距离是,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短路程是________ .答案:15解析:解:由题意得:①当把长方体按照正面和右侧进行展开时,如图所示:,∴在中,;②当沿长方体的右侧和上面进行展开时,如图所示:,∴在中,;∵,∴一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是15,由长方体的特征可得其他途径必定比①②两种更远,故不作考虑;故答案为:15.15. 如图,在中,,动点在射线上移动,连接.如果,则线段的长为________.答案:或解析:解:由勾股定理,得,①当点P在线段上时,如图,∵,,∴∴,设,则,在中,由勾股定理,得解得:;②当点P在线段延长线上时,如图,在上截取,连接,∵,∴,∵,∴∴,∵,,∴∴∴,由①可得,∴,∴,综上,线段的长为或.三、解答题(本大题共8个小题,共55分.解答题应写出文字说明、证明过程或演算步骤)16. 计算:(1);(2);(3).答案:(1)(2)(3)小问1解析:解:原式;小问2解析:解:原式;小问3解析:解:原式17. 如图,平面直角坐标系中,正方形的顶点均在格点上,且.(1)请在图中画出与正方形关于轴对称正方形;(2)直接写出正方形与正方形的对应顶点的坐标满足的关系:横坐标,纵坐标;(3)正方形的面积为.答案:(1)见解析(2)互为相反数,相同(3)20小问1解析:如图所示;小问2解析:直接写出正方形与正方形的对应顶点的坐标满足的关系:横坐标互为相反数,纵坐标相同;小问3解析:正方形的面积.18. 某地气象资料表明,当地雷雨持续的时间可以用下面的公式“”来估计,其中是雷雨区域的直径.(1)如果雷雨区域直径为,那么这场雷雨大约持续多长时间?(结果精确到)(2)如果一场雷雨持续了,那么这场雷雨区域的直径是否超过?答案:(1)如果雷雨区域直径为,那么这场雷雨大约能持续大约持续(2)如果一场雷雨持续了,那么这场雷雨区域的直径没有超过小问1解析:当时,,根据题意,得,答:如果雷雨区域直径为,那么这场雷雨大约能持续大约持续.小问2解析:当时,,即,所以.又因为,且,所以.答:如果一场雷雨持续了,那么这场雷雨区域的直径没有超过.19. 已知,,,(为大于1的正整数).试问是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.答案:是直角三角形,且边所对角是直角,理由见解析解析:解:∵,;∴;∵;∴为最长边;,且,.是直角三角形,且边所对角是直角.20. 如图,正比例函数的图象经过点.(1)求的值;(2)请在如图的坐标系中画出一次函数的图象;(3)根据图象,写出与一次函数有关的一个结论:.答案:(1)(2)见解析(3)随的增大而增大小问1解析:解:将代入,得:,解得:.小问2解析:将的图象向上平移3个单位得到的图象,函数图象如图所示:小问3解析:,随的增大而增大(答案不唯一).21. 如图,某学校劳动实践基地有一块正方形空地,七、八年级分别在空地上开垦出两块面积为和的正方形区域进行种植试验.求这块正方形空地(正方形)的面积.答案:这块正方形空地的面积为解析:解:答:这块正方形空地的面积为.解法二:答:这块正方形空地的面积为.22. 阅读下列材料,并完成相应任务.巧用勾股定理测算旗杆高度数学活动课上,老师让同学们利用升旗的绳子、卷尺设计一个方案,测算出学校旗杆的的高度.小李同学将升旗的绳子拉直到其末端刚好接触地面,测得此时绳子末端距旗杆底端的距离为(如图1).小李同学发现无法求出旗杆的高度.小明同学将绳子拉直到其末端距离旗杆处,测得此时绳子末端距离地面的高度为(如图2).小明同学也发现无法求出旗杆的高度.他俩去请教老师,老师给出提示:你俩的方法结合一下便可以解决问题,因为不管怎么拉动绳子,绳子的长度不变,…任务:请你按照老师的提示帮小李和小明求出旗杆的高度.答案:旗杆的高度为解析:解:设旗杆的高度为,由图1得,绳子的平方为:,由图2得,绳子的平方为:,∴,解得:,答:旗杆的高度为.23. 如图,在平面直角坐标系中,一次函数的图象分别交轴,轴于两点,一次函数的图象经过点,并与轴交于点.(1)求两点的坐标;(2)求的面积;(3)在平面内是否存在点,使得是以点为直角顶点的等腰直角三角形?若存在,直接写出点的坐标;若不存在,说明理由.答案:(1),(2)(3)存在,点的坐标为或小问1解析:令,得,解得,.令,得.小问2解析:将代入中,得,所以.令,得,所以,所以.所以.小问3解析:如图所示,当是等腰直角三角形时,过点B作,过点P作,过点A作,∵,∴,∵∴∵∴∵,∴∴,∴点的横坐标为,点的纵坐标为,∴点的坐标为;当是等腰直角三角形时,同理可得,∴,∴∴点的坐标为综上所述,当点P的坐标为或时,是以点为直角顶点的等腰直角三角形.。

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。

2024-2025学年度第一学期期中学业质量检测八年级数学试卷

2024-2025学年度第一学期期中学业质量检测八年级数学试卷

2024-2025学年度第一学期期中学业质量检测八年级数学试卷一.选择题(共8小题)1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录.北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是中心对称图形的是()A.B.C.D.2.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.5,6,73.如图所示,两个三角形全等,则∠α等于()A.72°B.60°C.58°D.50°4.等腰三角形一边长等于2,一边长等于3,则它的周长是()A.5 B.7 C.8 D.7或85.如图①是两位同学玩跷跷板的场景,如图②跷跷板示意图,支柱OC与地面垂直,点O是AB的中点,AB绕着点O上下转动.若A端落地时,∠OAC=25°,则跷跷板上下可转动的最大角度(即∠A’OA是()A.45°B.50°C.60°D.75°6.如图,在ABC ∆中,CD 是边AB 上的高,BE 平分ABC ∠,交CD 于点E ,10BC =,3DE =,则BCE ∆的面积为( )A .16B .15C .14D .137.已知ABC ∆的三边长分别为3,5,7,DEF ∆的三边长分别为3,32x -,21x -,若这两个三角形全等,则x 为( )A .73B .4C .3D .不能确定8.如图,在Rt ABC ∆中,90C ∠=︒,20A ∠=︒.若某个三角形与ABC ∆能拼成一个等腰三角形(无重叠),则拼成的等腰三角形有( )A .4种B .5种C .6种D .7种二.填空题(共8小题)9.小强从镜子中看到的电子表的读数如图所示,则电子表的实际读数是 .10.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,90)AC BC ACB =∠=︒,点C 在DE 上,点A 和B 分别与木墙的顶端重合.则两堵木墙之间的距离DE 是 .A .10cmB .15cmC .20cmD .25cm11.如果ABC DEF ∆≅∆,则AB 的对应边是 .12.如图,已知B C ∠=∠,在不添加任何字母的情况下,添加一个合适的条件 使ABD ACD ∆≅∆.(只需填写一个符合题意的条件即可)13.如图,在Rt ABC ∆中,90ACB ∠=︒.以AB 、AC 为边的正方形的面积分别为1S 、2S .若120S =,211S =,则BC 的长为 .14.如图,在ABC ∆中,90C ∠=︒,2AB =,1BC =,射线AM AC ⊥,P 为AC 上的动点,Q 为射线AM 上的动点,点P 、Q 分别在AC 、AM 上运动,且始终保持PQ AB =,当ABC ∆与APQ ∆全等时,此时AP 的长为 .15.如图,将直角三角形纸片ABC 折叠,恰好使直角顶点C 落在斜边AB 的中点D 的位置,EF 是折痕,已知3DE =,4DF =,则AB = .16.如图,△ABC 中,10BC =,6AC AB -=.过C 作BAC ∠的角平分线的垂线,垂足为D ,点E 为DC 边的中点,连结BD ,CD ,则BEC S 的最大值为 .三.解答题(共10小题)17.如图,点D在AB上,点E在AC上,AB AC∠=∠.=,B C求证:ABE ACD∆≅∆;18.“儿童散学归来早,忙趁东风放纸莺”.又到了放风筝的最佳时节,某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.求风筝的垂直高度CE.19.在边长为1的小正方形组成的1010⨯网格中(我们把组成网格的小正方形的顶点称为格点),ABC∆的三个顶点都在格点上,请利用网格线和直尺画图.(1)在图中画出ABC ∆关于直线l 成轴对称的△A B C ''';(2)在直线l 上找一点P ,使PA PB +的长最短.20.如图,ABC ∆与DEF ∆中,B 、E 、C 、F 在同一条直线上,BE CF =,A D ∠=∠,//AC DF ,求证:AC DF =.21.如图,已知ABC ∆,90B ∠=︒,AB BC <,D 为AC 上一点,且到A 、B 两点的距离相等.(1)用直尺和圆规作点D 的位置(不写作法,保留作图痕迹);(请用2B 铅笔作图)(2)连接BD ,若48A ∠=︒,则DBC ∠的度数为 .22.写出下面定理的已知、求证,并完成证明过程.定理:有两个角相等的三角形是等腰三角形(简称:“等角对等边” ).已知:如图,在△ABC中,.求证:.证明:23.如图,在ABC∠的平分线AD交BC于点D,E为AB的中点,若6BC=,=,BAC∆中,AB ACAD=,求DE的长.424.在边长为9的等边三角形ABC中,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B运动,设运动时间为t秒.(1)如图1,若点Q是BC上一定点,6PQ AC,求t的值;BQ=,//(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C 向点A运动,当t为何值时,APQ∆为等边三角形?25.定义:若过三角形的一个顶点作射线与其对边相交,将这个三角形分成的两个三角形中有等腰三角形,那么这条射线就叫做原三角形的“等腰分割线”.(1)如图1,ABC∆的等腰分割线:∠=︒,若O为AB的中点,则射线OC ABCC∆中,90(填“是”或“不是”)(2)如图2,ABCBC=,ABCAC=,6∆的一条等腰分割线BP交AC边于∠=︒,8∆中,90C点P,且PA PB=,请求出CP的长度.(3)如图3,ABC∆中,CD为AB边上的高,F为AC的中点,过点F的直线l交AD于点E,作CM l∠<︒.若射线CD为ABCA∆的“等⊥,DN IAC=,且45⊥,垂足为M,N,3BD=,5腰分割线”,求CM DN+的最大值.26.如图1,在ABC∆中,延长AC到D,使CD AB∠=∠=∠,=,E是AD上方一点,且A BCE D 连接BE.(1)线段BC与CE的大小关系是:BC_______CE(填“>”或“<”或“=”)(2)如图2,若90ACB ∠=︒,将DE 沿直线CD 翻折得到DE ',连接BE '交CE 于F ,若//BE ED ',求证:F 是BE '的中点;(3)在如图3,若90ACB ∠=︒,AC BC =,将DE 沿直线CD 翻折得到DE ',连接BE '交CE 于F ,交CD 于G ,若AC n =,(0)AB m m n =>>求线段CG 的长度.。

陕西省咸阳市秦都中学2024—2025学年八年级上学期11月期中数学试题(含答案)

陕西省咸阳市秦都中学2024—2025学年八年级上学期11月期中数学试题(含答案)

2024~2025学年度第一学期期中调研试题(卷)八年级数学注意事项:1.本试卷共6页,满分120分,时间120分钟,学生直接在试题上答卷;2.答卷前将装订线内的项目填写清楚.一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列四个实数中,是无理数的为()A.0B.C.D.2.下列各组数据,是勾股数的是()A.B.C.D.3.化简正确的是()A.5B.C.D.4.将直线向上平移2个单位长度,则平移后的直线为()A.B.C.D.5.下列说法正确的是()A.-27的立方根是3B.C.4的算术平方根是2D.1的平方根是16.已知,则直线的图象是下列选项中的()A.B.C.D.7.如图,分别以的三边为斜边向外作,,,且,这三个直角三角形的面积分别为,且,则()A.25B.C.30D.358.在物理实验探究课上,小明利用滑轮组及相关器材进行实验,不计绳重和摩擦,他把得到的拉力和所悬挂重物的重力的几组数据用电脑绘制成如图所示的图象,请你根据图象判断以下结论错误的是()A.当拉力时,物体的重力B.拉力随着重物重力的增加而增大C.拉力与重力成正比例函数关系D.当滑轮组不挂重物时,所用拉力为0.5N二、填空题(共5小题,每小题3分,计15分)9.若,写出一个满足条件的的值为_________.(写出一个即可)10.在中,,若,则的长为_________.11.若一次函数的图象经过点和点,则的大小关系为(填“”“”或“”).12.在平面直角坐标系中,已知点和点关于轴对称,则的值是_________.13.如图,圆柱形杯子(无盖)的高为18cm,底面周长为24cm,已知蚂蚁在外壁处(距杯子上沿2cm )发现一滴蜂蜜在杯子内壁处(距杯子下沿4cm),则蚂蚁从处爬到处的最短距离(杯子厚度忽略不计)为_________cm.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.15.(5分)在平面直角坐标系中,已知点的坐标为,则点到坐标原点的距离是多少? 16.(5分)已知与成正比例,当时,.(1)求与之间的函数表达式;(2)请判断点是否在这个函数的图象上,并说明理由.17.(5分)在平面直角坐标系中,已知点,根据条件解决下列问题:(1)若点在轴上,求点的坐标;(2)若点在过点且与轴平行的直线上,求点的坐标.18.(5分)已知实数的平方根为,求实数的算术平方根和立方根.19.(5分)如图,在平面直角坐标系中,的三个顶点的坐标分别为,.(1)作出关于轴对称的,点的对应点分别为点;(2)在(1)的条件下,写出点的坐标。

八年级数学上册期中考试卷(附含答案)

八年级数学上册期中考试卷(附含答案)

八年级数学上册期中考试卷(附含答案)(满分:120分;考试时间:120分钟)第Ⅰ卷 (选择题 共30分)一、选择题(本大题共10小题,共30.0分)1.下列因式分解正确的是( )A. x 2−x =x(x +1)B. a 2−3a −4=(a +4)(a −1)C. a 2+2ab −b 2=(a −b)2D. x 2−y 2=(x +y)(x −y)2.下列分式变形中,正确的是( )A . B.C. D. 3.已知(x ﹣y )(2x ﹣y )=0(xy ≠0),则+的值是( ) A .2 B .﹣2C .﹣2或﹣2D .2或24.某学校规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( )A. 88.5B. 86.5C. 90D. 90.5 5.下列多项式中,不能用完全平方公式分解因式的是( ) A .B .﹣x 2+2xy ﹣y 2C .﹣a 2+14ab +49b 2D .6.解分式方程1x−1-2=31−x,去分母得( )A. 1−2(x −1)=−3B. 1−2(x −1)=3C. 1−2x −2=−3D. 1−2x +2=37.若多项式4x 2﹣kxy +y 2是完全平方式,则k 的值是( ) A .4 B .4 C .-4 D .28.已知:关于x 的分式方程无解,则m 的值为( ) A -4或6 B -4或1 C 6或1 D -4或6或1b a b a b a +=++221-=++-y x yx ()()m n n m m n -=--23bm am b a =±234222+=-+-x x mx x9.某老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A. 5,4B. 3,5C. 4,4D. 4,510.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x公里,根据题意列出的方程正确的是()A. 60×(1+25%)x −60x=60 B. 60x−60×(1+25%)x=60C. 60(1+25%)x −60x=60 D. 60x−60(1+25%)x=60第Ⅱ卷(非选择题共90分)二、填空题(本大题共8小题,共28.0分,11-14题每题3分,15-18题每题4分)11.分解因式:ma2-6ma+9m=______;分式方程3x−3= 2x的解为______.12.甲、乙两地相距s千米,汽车从甲地到乙地按v千米/时的速度行驶,可按时到达,若按(v+2)千米/时的速度行驶,可提前_________小时到达.13.若1m +1n=2,则分式5m+5n−2mn−m−n的值为______.14.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S甲2、S乙2,且S甲2>S乙2,则队员身高比较整齐的球队是______.15.关于x的分式方程=﹣1的解是负数,则m的取值范围是.16.取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程xx−1-1=m(x−1)(x+2)无解的概率为______.17.定义:a*b=ab,则方程2*(x+3)=1*(2x)的解为______.18.已知整数a,使得关于x的分式方程3−axx−3+3=x3−x有整数解,且关于x的一次函数y=(a-1)x+a-10的图象不经过第二象限,则满足条件的整数a的值有______个.三、解答题(本大题共7小题,共62.0分)19.分解因式(5×2共10分)(1)a2+1-2a+4(a-1)(2)(y+2x)2-(x+2y)2.20.(8分)先化简,再求值:已知:,求:的值.21.(5×2共10分)解方程: (1) (2)22.(8分)为了推动阳光体育运动的广泛开展,引导学生走向操场, 走进大自然、走到阳光下, 积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图 ①和图 ②,请根据相关信息,解答下列问题:23|21|302a b a b ⎛⎫-+++= ⎪⎝⎭221b a a a a b a b a b ⎡⎤⎛⎫⎛⎫÷--⎢⎥ ⎪ ⎪+-+⎝⎭⎝⎭⎣⎦22416222-+=--+-x x x x x 112142-=-++-xx x(1)本次接受随机抽样调查的学生人数为 ,图 ①中m的值为 ;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双.23.(6分)由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+______)(x+______);(2)应用:请用上述方法解方程:x2-3x-4=0.24.(8分)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?25.(12分)某商店准备购进A、B两种商品,A种商品毎件的进价比B种商品每件的进价多20元,用3000元购进A种商品和用1800元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B 种商品每件的售价定为45元. (1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.参考答案一.1.D, 2.C, 3.D, 4.A, 5.C, 6. A, 7.B, 8.D, 9.A, 10.D 二.11. m (a -3)2 , x =-6; 12. 2sv(v+2); 13.-4 ; 14. 乙; 15.m>-1且m 0; 16. 15; 17. x =1 ;18. 5三.19. (1)a 2+1-2a +4(a -1)=(a -1)2+4(a -1)=(a -1)(a -1+4)=(a -1)(a +3).(2)原式=[(y +2x )+(x +2y )][(y +2x )-(x +2y )] =3(x +y )(x -y ).20. 化简为原式=321. (1)x=-2是增根 原方程无解; (2)x=;22. 解:(1)40;15(2)∵在这组样本数据中,35出现了12次,出现的次数最多,∴这 组样本数据的众数为35.≠a ba -21,41=-=b a 31∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个 数都是36,∴36+362=36∴这组样本数据的中位数为36(3)∵在40名学生中,鞋号为35号的学生人数比例为30% ∴由样本数据,估计学校各年级学生中鞋号为35号的人数比例约 为30%,200×30%=60于是,计划购买200双运动鞋时,建议购买35号运动鞋60双 23. 解:(1)2;4 (2)∵x 2-3x -4=0 x 2+(-4+1)x +(-4)×1=0 ∴(x -4)(x +1)=0 则x +1=0或x -4=0 解得:x =-1或x =424. 解:设每件产品的实际定价是x 元,则原定价为(x +40)元 由题意,得5000x+40=4000x解得x =160经检验x =160是原方程的解,且符合题意 答:每件产品的实际定价是160元25. 解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x -20)元 由题意得:3000x=1800x−20解得:x =50经检验,x =50是原方程的解,且符合题意 50-20=30答:A 种商品每件的进价是50元,B 种商品每件的进价是30元 (2)设购买A 种商品a 件,则购买B 商品(40-a )件 由题意得:{50a +30(40−a)≤1560a ≥40−a 2解得:403≤a ≤18 ∵a 为正整数∴a =14、15、16、17、18∴商店共有5种进货方案;(3)设销售A、B两种商品共获利y元由题意得:y=(80-50-m)a+(45-30)(40-a)=(15-m)a+600①当10<m<15时,15-m>0,y随a的增大而增大∴当a=18时,获利最大,即买18件A商品,22件B商品②当m=15时,15-m=0y与a的值无关,即(2)问中所有进货方案获利相同③当15<m<20时,15-m<0,y随a的增大而减小∴当a=14时,获利最大,即买14件A商品,26件B商品.。

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等腰三角形的底边相等,则这两个三角形全等。

()2. 任何两个奇数之和都是偶数。

()3. 一个数的平方和它的立方一定相等。

()4. 任何两个负数相乘的结果都是正数。

()5. 若一个数的平方是36,则这个数一定是6。

()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积是______平方厘米。

2. 若一个等差数列的首项为3,公差为2,则第5项是______。

3. 一个圆的直径是10cm,则这个圆的周长是______厘米。

4. 若一个数的立方是64,则这个数的平方根是______。

5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______立方厘米。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是等差数列?给出一个等差数列的例子。

3. 简述圆的周长和面积的计算公式。

4. 什么是质数?给出5个质数的例子。

5. 什么是因式分解?给出一个多项式因式分解的例子。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的周长。

2023-2024学年北京理工大学附属中学八年级上学期期中考试数学试卷含详解

2023-2024学年北京理工大学附属中学八年级上学期期中考试数学试卷含详解

2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6 B.3,5,7 C.4,5,10 D.3,3,83.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒4.画ABC 边BC 上的高,下列画法正确的是()A . B.C. D.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A.6B.7C.8D.910.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.2023—2024学年度第一学期八年级数学学科期中练习一、选择题(每题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.1.下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.【答案】D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【详解】解:A .不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意;故选:D .【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2.下列三条线段的长度,可以构成三角形的是()A.2,4,6B.3,5,7C.4,5,10D.3,3,8【答案】B【分析】根据三角形的三边关系,进行判断即可.【详解】解:A 、246+=,不能构成三角形;B 、357+>,能构成三角形;C 、4510+<,不能构成三角形;D 、338+<,不能构成三角形;故选B .【点睛】本题考查构成三角形的条件.解题的关键是掌握两条短的线段之和大于第三条线段的长时,三条线段能构成三角形.3.如图,ABC DCB △≌△,若73,38D DBC ∠=︒∠=︒,则ABC ∠的度数是()A.63︒B.69︒C.73︒D.82︒【答案】B 【分析】三角形内角和定理,求出BCD ∠,再根据全等三角形对应角相等,即可得出结果.【详解】解:∵73,38D DBC ∠=︒∠=︒,∴10689D D CD BC B ∠︒-∠-=∠=︒;∵ABC DCB △≌△,∴69B ABC CD ∠∠==︒;故选B .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的对应角相等,是解题的关键.4.画ABC 边BC 上的高,下列画法正确的是()A. B.C. D.【答案】D【分析】根据三角形的高的定义:从三角形的一个顶点出发,向对边引垂线,顶点与垂足形成的线段即为三角形的高,进行判断即可.【详解】解:画ABC 边BC 上的高,如图所示:故选D .【点睛】本题考查画三角形的高.熟练掌握三角形的高的定义,是解题的关键.5.如图,已知90BCA BDA ∠=∠=︒,BC BD =.则证明BAC BAD ≌的理由是()A.SASB.ASAC.AASD.HL【答案】D 【分析】根据题意得到两个三角形是直角三角形,结合给出的条件:直角边和斜边分别相等,从而得出结论.【详解】∵90BCA BDA ∠=∠=︒,∴BAC 和BAD 是直角三角形,∵BC BD =,AB AB =,∴()BAC BAD HL ≌,故选:D .【点睛】此题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法及其应用.6.如图,五边形ABCDE 的一个内角120BAE ∠=︒,则1234∠+∠+∠+∠等于()A.100︒B.180︒C.280︒D.300︒【答案】D 【分析】先根据邻补角的定义计算出5∠的度数,再根据多边形的外角和为360︒,计算即可得到答案.【详解】解:如图,120BAE ∠=︒ ,518018012060BAE ∴∠=︒-∠=︒-︒=︒,12345∠∠∠∠∠ 、、、、是五边形ABCDE 的五个外角,12345360∴∠+∠+∠+∠+∠=︒,1234360536060300∴∠+∠+∠+∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查了利用邻补角求角的度数、多边形的外角和,熟练掌握多边形的外角和为360︒是解此题的关键.7.如图,点A ,B 在直线l 同侧,在直线l 上取一点P ,使得PA PB +最小,对点P 的位置叙述正确的是()A.作线段AB 的垂直平分线与直线l 的交点,即为点PB.过点A 作直线l 的垂线,垂足即为点PC.作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点PD.延长BA 与直线l 的交点,即为点P【答案】C【分析】本题考查了两点之间线段最短、轴对称的性质,熟练掌握轴对称的性质是解此题的关键.先找出点B 对称点B ',连接AB ',再根据两点之间线段最短即可得到答案.【详解】解:正确作法如下:如图,作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点,即为点P ,,理由如下:在l 上异于点P 的位置任取一点H ,连接AH ,BH ,B H ',,B 、B '关于直线l 对称,BH B H '∴=,AH BH AH B H AB AP B P AP BP '''∴+=+>=+=+,PA PB ∴+最短,故选:C .8.如图,在ABC 中,70AB AC C =∠=︒,,线段AB 的垂直平分线EF 交AC 于点D ,交AB 于点E ,连接BD ,则DBC ∠的度数是()A.20︒B.30︒C.40︒D.25︒【答案】B 【分析】根据等腰三角形的性质可得70ABC C ∠=∠=︒,根据三角形内角和定理可得40A ∠=︒,根据线段垂直平分线的性质可得AD BD =,从而得到40ABD A ==︒∠∠,最后由DBC ABC ABD ∠=∠-∠进行计算即可得到答案.【详解】解: 70AB AC C =∠=︒,,70ABC C ∴∠=∠=︒,180ABC C A ∠+∠+∠=︒ ,18040A ABC C ∴∠=︒-∠-∠=︒,DE 是AB 的垂直平分线,AD BD ∴=,40ABD A ∴∠=∠=︒,704030DBC ABC ABD ∴∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质、三角形内角和定理,熟练掌握以上知识点是解此题的关键.9.如图,在ABC 中,AD 是BAC ∠的平分线,2,5,3C B AC CD ∠=∠==,则AB 的长为()A .6 B.7 C.8 D.9【答案】C【分析】在AB 上截取AE AC =,证明ADE ADC △△≌,得到3DE CD ==,2AED C B ∠=∠=∠,推出EDB B ∠=∠,得到3BE DE ==,再利用AB AE BE =+,求解即可.【详解】解:在AB 上截取AE AC =,∵AD 平分CAE ∠,∴DAE DAC ∠=∠,∵AD AD =,∴ADE ADC △△≌,∴3DE CD ==,2AED C B ∠=∠=∠,∵AED B EDB ∠=∠+∠,∴EDB B ∠=∠,∴3BE DE ==,∴8AB AE BE =+=;故选C .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是添加辅助线,构造全等三角形和特殊三角形.10.如图,将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,折痕为BD ,连接CE DE ,,现有以下结论:①DE AB ⊥;②BD 垂直平分CE ;③DE 平分ADB ∠;④若60ADE ∠=︒,则BCE 是等边三角形;其中正确的有()A.①②③B.①②④C.①③④D.②③④【答案】B 【分析】由折叠的性质可得90BCD BED ∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,即可判断①②,由BD 不一定等于AD ,可得BDE ∠不一定等于ADE ∠,即可判断③;根据等边三角形的判定即可判断④.【详解】解: 将Rt ABC △沿过点B 的直线翻折,使直角顶点C 落在斜边AB 上的点E 处,BCD BED ∴ ≌,90BCD BED ∴∠=∠=︒,BC BE =,CBD EBD ∠=∠,DE DC =,CDB EDB ∠=∠,DE AB ⊥∴,BD 垂直平分CE ,故①②正确,符合题意;BD Q 不一定等于AD ,∴BDE ∠不一定等于ADE ∠,∴DE 不一定平分ADB ∠,故③错误,不符合题意;60ADE ∠=︒ ,180120CDE ADE ∴∠=︒-∠=︒,CDB EDB ∠=∠ ,1602CDB EDB CDE ∴∠=∠=∠=︒,9030CBD BDE ∠=︒-∠=∴︒,30EBD CBD ∠∴∠==︒,即60CBE ∠=︒,BC BE = ,BCE ∴△是等边三角形,故④正确,符合题意;综上所述,正确的有①②④,故选:B .【点睛】本题考查了折叠的性质、线段垂直平分线的判定与性质、等边三角形的判定等知识点,熟练掌握以上知识点是解此题的关键.二、填空题(每题2分,共12分)11.如图,已知12∠=∠,要证明ABC CDA △△≌,还需添加的一个条件是______.【答案】BC AD =(答案不唯一)【分析】当BC AD =时,可证()SAS ABC CDA ≌,然后作答即可.【详解】解:当BC AD =时,∵BC AD =,21∠=∠,AC CA =,∴()SAS ABC CDA ≌,故答案为:BC AD =.【点睛】本题考查了全等三角形的判定定理.解题的关键在于熟练掌握根据ASA SAS AAS 、、证明三角形全等.12.如图,BD 是ABC 的角平分线,过点D 作DE BC ∥交AB 于点E .若36A ∠=︒,76BDC ∠=︒,则BDE ∠=______°.【答案】40【分析】此题主要考查了三角形的外角性质,平行线的性质,角平分线的定义,首先根据三角形的外角定理求出40ABD ∠=︒,再根据角平分线的定义得40CBD ABD ∠=∠=︒,然后根据平行线的性质即可得BDE ∠的度数.【详解】解:∵36A ∠=︒,76BDC ∠=︒,∴BDC A ABD ∠=∠+∠,即7636ABD ︒=︒+∠,∴763640ABD ∠=︒-︒=︒,∵BD 是ABC 的角平分线,∴40CBD ABD ∠=∠=︒,∵DE BC ∥,∴40BDE CBD ∠=∠=︒.故答案为:40.13.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,,AB AC =BC x ∥轴,若()()2,4,5,1A C ,则点B 的坐标为______.【答案】()1,1-【分析】根据平行于x 轴的直线上的点的纵坐标相同,得到点B 的纵坐标,过点A 作AD BC ⊥,利用等腰三角形的三线合一,求出点B 的横坐标即可.【详解】解:∵BC x ∥轴,()5,1C ,∴点B 的纵坐标为1,过点A 作AE x ⊥,交x 轴于点E ,交BC 于点D ,则:()2,1D ,∵,AB AC =∴BD CD =,∴点B 的横坐标为2251⨯-=-,∴()1,1B -.故答案为:()1,1-.【点睛】本题考查坐标与图形,等腰三角形的性质.熟练掌握平行于x 轴的直线上的点的纵坐标相同,等腰三角形三线合一,是解题的关键.14.如图,在ABC 中,AD 平分,BAC DE AC ∠⊥于点E ,若3,2AB DE ==,则ABD △的面积是______.【答案】3【分析】过点D 作DF AB ⊥于点F ,角平分线的性质得到DF DE =,再利用三角形的面积公式进行计算即可.【详解】解:过点D 作DF AB ⊥于点F ,∵AD 平分,BAC DE AC∠⊥∴2DF DE ==,∴ABD △的面积是1132322AB DF ⋅=⨯⨯=;故答案为:3.【点睛】本题考查角平分线的性质.熟练掌握到角平分线上的点到角两边的距离相等,是解题的关键.15.如图,ABC 为等腰直角三角形,,AD BD CE BD ⊥⊥于点,E AC 与BD 交于点F ,若70BAD ∠=︒,则AFB ∠=______︒;若2,7BE CE ==,则DE =______.【答案】①.115②.5【分析】先证明ABD BCE ≌,得到BD CE =,BAD CBE ∠=∠,利用三角形外角的性质,求出AFB ∠,利用BD BE -即可得到DE 的长.【详解】解:∵ABC 为等腰直角三角形,∴90,,45ABC AB BC ACB ∠=︒=∠=︒,∵,AD BD CE BD ⊥⊥,∴90ADB CEB ∠=∠=︒,∴90ABD BCE CBE ∠=∠=︒-∠,∴ABD BCE ≌,∴70BAD CBE ∠=∠=︒,7BD CE ==,∴115AFB DBC BCD ∠=∠+∠=︒,5DE BD BE =-=;故答案为:115,5.【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,三角形的外角.解题的关键是证明ABD BCE ≌.16.已知平面直角坐标xOy 中的等腰直角三角形ABC ,点()5,5A ,点(),0B m ,点()0,C n ,m 与n 均是正整数.(1)找出一个符合条件的ABC ,写出它对应的m 与n 的值:m =______,n =______;(2)满足上述条件的ABC 共有______个.【答案】①.5(答案不唯一)②.5(答案不唯一)③.9【分析】(1)根据题意,画出图形,进行求解即可.(2)根据题意,分,,A B C ∠∠∠分别为直角,进行讨论求解即可.【详解】解:(1)如图,当5,5m n ==时,此时:()5,5A ,()5,0B ,()0,5C ,由图可知,三角形ABC 为等腰直角三角形,满足题意,故答案为:5,5(答案不唯一);(2)∵点(),0B m ,点()0,C n ,m 与n 均是正整数,∴点,B C 分别在,x y 轴的正半轴上,∵()5,5A ,∴()()2222222225555AB m AC n BC m n =+-=+-=+,,,当A ∠为直角时,222AB AC BC +=,即:()()2222225555m n m n +-++-=+,整理得:10m n +=,∴10m n =-,∴()()222222551055AB n n AC =+-+=+-=,满足ABC 为等腰直角三角形,∴1,2,3,4,5,6,7,8,9m =,9,8,7,6,5,4,3,2,1n =,满足上述条件的ABC 共有9个;当B ∠为直角或C ∠为直角,不存在点,B C 分别在,x y 轴的正半轴上,m 与n 均是正整数时,ABC 为等腰直角三角形;故答案为:9.【点睛】本题考查坐标与图形.熟练掌握等腰直角三角形的性质,利用数形结合和分类图讨论的思想进行求解,是解题的关键.三、解答题(共58分,第17,19,21题每题5分,第18题每问5分,第20,22,23题每题6分,第24题7分,第25题8分)解答应写出文字说明、演算步骤或证明过程.17.解方程组:32341x y x y -=⎧⎨+=⎩.【答案】1x y =⎧⎨=⎩【分析】利用加减消元法求解即可.【详解】解:32341x y x y -=⎧⎨+=⎩①②,2⨯+①②得,77x =,解得,1x =,将1x =代入②得,141y +=,解得,0y =,∴10x y =⎧⎨=⎩.【点睛】本题考查了加减消元法解二元一次方程组.解题的关键在于正确选取合适的方法解方程组.18.(1)解不等式:4113x x -≥-,并把解集在数轴上表示出来.(2)求不等式组()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩的整数解.【答案】(1)2x ≥-,图见解析(2)3,4【分析】(1)根据解不等式的步骤,进行求解,再在数轴上表示出解集,即可;(2)分别求出每一个不等式的解集,找到它们的公共部分,即可.【详解】解:(1)4113x x -≥-,去分母,得:4133x x -≥-,移项,合并,得:2x ≥-;数轴表示解集,如图:(2)()52311312x x x ⎧-≥+⎪⎨-≥⎪⎩①②,由①,得:52x ≥;由②,得:4x ≤;∴不等式的解集为:542x ≤≤.∴整数解为:3,4.【点睛】本题考查解一元一次不等式和一元一次不等式组.熟练掌握解一元一次不等式的步骤,正确的计算,是解题的关键.19.知:如图,AB 平分CAD ∠,AC AD =.求证:C D ∠=∠.【答案】见解析【分析】利用SAS 证明CAB DAB ∆∆≌,即可证明C D ∠=∠.【详解】解:AB 平分CAD ∠,CAB DAB ∴∠=∠,在CAB ∆和DAB ∆中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()SAS CAB DAB ∴∆∆≌,C D ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握SAS 、AAS 、ASA 、SSS 等全等三角形的判定方法是解题的关键.20.如图,AD 是ABC 中BC 边上的高,AE 平分BAC ∠,若32,60B C ∠=∠=︒︒.求AEC ∠和DAE ∠的度数.【答案】76AEC ∠=︒,14DAE ∠=︒【分析】三角形的内角和定理,求出,CAD BAC ∠∠的度数,角平分线求出,CAE BAE ∠∠的度数,利用CAE CAD ∠-∠求出DAE ∠,三角形的外角求出AEC ∠即可.【详解】解:∵AD 是ABC 中BC 边上的高,∴90ADC ∠=︒,∵32,60B C ∠=∠=︒︒,∴18088BAC B C ∠=︒-∠-∠=︒,18030CAD ADC C ∠=︒-∠-∠=︒,∵AE 平分BAC ∠,∴1442CAE BAE BAC ∠=∠=∠=︒,∴76AEC B BAE ∠=∠+∠=︒,14DAE CAE CAD ∠=∠-∠=︒.【点睛】本题考查与角平分线有关的三角形的内角和定理,三角形的外角.熟练掌握相关知识点,是解题的关键.21.下面是“作钝角三角形一边上的高”的尺规作图过程.已知:ABC .求作:ABC 的边AB 上的高CD .作法:①作直线AB ;②以点C 为圆心,适当长为半径画弧,交直线AB 于点,M N ;③分别以点,M N 为圆心,以大于12MN 的长为半径画弧,两弧相交于点P ;④作直线CP 交AB 于点D ,则线段CD 即为所求.根据以上的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:,CM CN MP == ______,∴点,C P 在线段MN 的垂直平分线上(______).(填推理的依据)CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.【答案】(1)图见解析(2)NP ,到线段两端距离相等的点在线段的垂直平分线上【分析】(1)根据作图步骤,作图即可;(2)根据中垂线的判定,进行作答即可.【小问1详解】解:如图,线段CD 即为所求【小问2详解】证明:,CM CN MP NP == ,∴点,C P 在线段MN 的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上).CP ∴是线段MN 的垂直平分线,CD AB ∴⊥于D ,即线段CD 为ABC 的边AB 上的高.故答案为:NP ,到线段两端距离相等的点在线段的垂直平分线上【点睛】本题考查基本作图——作垂线.熟练掌握垂线的尺规作图方法,中垂线的判定方法,是解题的关键.22.如图,在等腰直角三角形ABC 和等腰直角三角形ADE 中,90BAC DAE ∠=∠=︒,连接BD CE ,.(1)求证:BD CE =;(2)求证:CE BD ⊥.【答案】(1)见解析(2)见解析【分析】(1)由题意得,AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,证明()SAS ABD ACE △≌△,进而可证BD CE =;(2)如图,延长CE 交BD 于F ,交AB 于G ,由()SAS ABD ACE △≌△,可得ABD ACE ∠=∠,由180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,可得90BFC CAB ∠=∠=︒,进而结论得证.【小问1详解】证明:∵等腰直角三角形ABC 和等腰直角三角形ADE ,90BAC DAE ∠=∠=︒,∴AB AC =,AD AE =,90DAB BAE BAE EAC ∠+∠=︒=∠+∠,即DAB EAC ∠=∠,∵AB AC =,DAB EAC ∠=∠,AD AE =,∴()SAS ABD ACE △≌△,∴BD CE =;【小问2详解】证明:如图,延长CE 交BD 于F ,交AB 于G ,∵()SAS ABD ACE △≌△,∴ABD ACE ∠=∠,∵180BFC ABD BGF CAB ACE CGA ∠+∠+∠=︒=∠+∠+∠,BGF CGA ∠=∠,∴90BFC CAB ∠=∠=︒,∴CE BD ⊥.【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,三角形内角和定理,对顶角相等.解题的关键在于明确全等的判定条件.23.(1)下图三角形网格由若干个边长为1的小等边三角形组成,每个小等边三角形的顶点叫做格点.若一个三角形的三个顶点都落在格点上,则这个三角形叫做格点三角形.已知ABC 是格点三角形,线段,BC BR 如图1所示.在三角形网格中分别画出符合条件的三角形.①点A 在线段BR 上,90ACB ∠=︒,画出ABC ;②在第①问的基础上,格点,150,DEA ABC CAE AE BC ∠=︒=≌△△,画出ADE V .(2)尺规作图:如图2,DEF 为等边三角形,作等边三角形PQR ,其顶点分别在等边三角形DEF 的三条边上,且不与这三边的中点重合.(请保留作图痕迹)【答案】(1)①图见解析②图见解析(2)图见解析【分析】(1)作以点C 为顶点的等边三角形的中线与BR 的交点即为点A ,利用三线合一以及等边三角形的角为60︒,即可得到ABC 是以90ACB ∠=︒的直角三角形;②根据150,CAE AE BC ∠=︒=,得到点E 在线段BR 上,点A 的下方3个单位长度的位置,再根据DE AB =确定点D 的位置,即可;(2)分别以点,,A B C 为原心,以小于AB 长度的一半为半径画弧,与三边的交点为,,P Q R ,连接即可得到等边三角形PQR .【详解】解:(1)①如图所示:ABC 即为所求,②如图所示,ADE V 即为所求;(2)如图,PQR 即为所求;【点睛】本题考查作图—复杂作图.熟练掌握等边三角形的性质,全等三角形的判定,是解题的关键.24.如图,AH 平分PAQ M ∠,为射线AH 上任意一点(不与点A 重合),过点M 作AH 的垂线分别交AP AQ ,于点B C ,.(1)求证:BM CM =;(2)作点M 关于射线AP 的对称点N ,连接BN ,在线段BN 上取一点D (不与点B ,点N 重合),作12DAE PAQ ∠=∠,交线段BM 于点E ,连接DE .①依题意补全图形;②用等式表示线段EC BD DE ,,之间的数量关系,并证明.【答案】(1)证明见解析(2)①补图见解析;②EC BD DE =+,证明见解析【分析】(1)由AH 平分PAQ ∠,可得BAM CAM ∠=∠,由BC AH ⊥,可得90AMB AMC ∠=∠=︒,证明()ASA ABM ACM ≌,进而可证BM CM =;(2)①如图1,即为所求;②如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,则ABN ACM ∠=∠,证明()SAS ABD ACF △≌△,则AD AF =,BAD CAF ∠=∠,由12DAE PAQ BAM CAM ∠=∠=∠=∠,可得BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,则BAD EAM ∠=∠,BAE FAM ∠=∠,由BAD BAE EAM FAM ∠+∠=∠+∠,可得DAE FAE ∠=∠,证明()SAS ADE AFE △≌△,则DE EF =,根据EC CF EF =+,等量代换可得EC BD DE =+.【小问1详解】证明:∵AH 平分PAQ ∠,∴BAM CAM ∠=∠,∵BC AH ⊥,∴90AMB AMC ∠=∠=︒,∵BAM CAM ∠=∠,AM AM =,90AMB AMC ∠=∠=︒,∴()ASA ABM ACM ≌,∴BM CM =;【小问2详解】①解:如图1,②解:EC BD DE =+,证明如下:如图2,连接AN ,则CE 截取CF ,使得CF DB =,连接AF ,由轴对称的性质可知,AN AM =,BAN BAM ∠=∠,ABN ABM ∠=∠,∴ABN ACM ∠=∠,∵AB AC =,ABD ACF ∠=∠,DB CF =,∴()SAS ABD ACF △≌△,∴AD AF =,BAD CAF ∠=∠,∵12DAE PAQ BAM CAM ∠=∠=∠=∠,∴BAD BAE BAE EAM CAF FAM ∠+∠=∠+∠=∠+∠,∴BAD EAM ∠=∠,BAE FAM ∠=∠,∴BAD BAE EAM FAM ∠+∠=∠+∠,即DAE FAE ∠=∠,∵AD AF =,DAE FAE ∠=∠,AE AE =,∴()SAS ADE AFE △≌△,∴DE EF =,∵EC CF EF =+,∴EC BD DE =+.【点睛】本题考查了角平分线的定义,全等三角形的判定与性质,轴对称的性质.解题的关键在于确定全等三角形的判定条件.25.在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,则称点P 为线段AB 的垂直对称点.(1)已知点()0,3A ,()0,0B .①在点()13,3P ,()21,1P ,点()33,0P中,线段AB 的垂直对称点是______;②若P 是线段AB 的垂直对称点,直接写出点P 的纵坐标P y 的取值范围______;(2)已知()0,A a ,(),0B b ,P 是线段AB 的垂直对称点,AB BP ⊥.①当3a =,14b ≤≤时,直接写出点P 的横坐标P x 的取值范围______;②若A ,B 为坐标轴上两个动点,a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,动点P 形成的轨迹组成的图形面积为10,直接写出m 与n 的数量关系表达式______.【答案】(1)①1P ,3P ,②36P y -≤≤,且0P y ≠,3P y ≠(2)①47P x ≤≤,②()()1110m n --=【分析】(1)①画出图形,再根据垂直对称点的定义判断即可;②先判断ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,所得图形即为点P 的轨迹,再根据垂直对称点的定义判断即可;(2)①根据垂直对称点的定义,结合AB BP ⊥可得线段PA 垂直平分线过点B ,即有AB BP =,过P 点作PT x ⊥轴于点T ,证明AOB BTP ≌V V ,问题随之得解;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段;同理当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,即可判断出动点P 形成的轨迹组成的图形为平行四边形,问题随之得解.【小问1详解】①如图,∵()0,3A ,()0,0B ,()13,3P ,()21,1P ,()33,0P,∴133AB AP BP ===,3AB BP ⊥,1AP AB ⊥,22P B =,25AP =,∴点B 在3AP 的垂直平分线上,点A 在1BP 的垂直平分线上,∴线段AB 的垂直对称点是1P ,3P ;②∵对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 恰好交于点A 或点B ,∴AB PB =或者AB PA =,∴ABP 是等腰三角形,分别以点A 和点B 为圆心,以AB 为半径画圆,如图,当AB PA =时,点P 位于点P '处,∴根据等腰三角形的性质可得顶点A 在BP '的垂直平分线上,当AB PB =时,点P 位于点P ''处,∴根据等腰三角形的性质可得顶点B 在AP ''的垂直平分线上,当点P 位于点A 或者点B 时,点P 不是线段AB 的垂直对称点,∵()0,3A ,()0,0B ,3AB =,∴()0,6M ,()0,3N -,∴点P 的纵坐标P y 的取值范围:36P y -≤≤,且0P y ≠,3P y ≠;【小问2详解】①过P 点作PT x ⊥轴于点T ,如图,∵P 是线段AB 的垂直对称点,AB BP ⊥,∴点B 在AP 的垂直平分线上,90ABP ∠=︒,∴AB BP =,即ABP 是等腰直角三角形,∵90ABP AOB ∠=︒=∠,∴OAB OBA OBA PBT ∠+∠=∠+∠,∴OAB PBT ∠=∠,∵PT x ⊥轴,∴90BTP AOB ∠=︒=∠,∴BTP AOB ≌,∴AO BT =,∵()0,A a ,(),0B b ,3a =,14b ≤≤,∴3AO a ==,BO b =,∴3AO BT ==,∴3OT OB BT b =+=+,∵14b ≤≤,∴437b ≤+≤,∴47OT ≤≤,∴点P 的横坐标P x 的取值范围:47P x ≤≤;②当1a =,或者a m =时,b 的取值由1变化至n 时,点P 的轨迹为两条线段,且两条线段相等;当1b =,或者b n =时,a 的取值由1变化至m 时,点P 的轨迹为两条线段,且两条线段相等;∵两组对边分别相等的四边形是平行四边形,∴动点P 形成的轨迹组成的图形为平行四边形,如图,∵a 的取值范围是1a m ≤≤,b 的取值范围是1b n ≤≤,∴点A 垂直移动的距离为()1m -,点B 水平移动的距离为()1n -,∴动点P 形成的轨迹组成的图形为平行四边形的底为()1n -,高为()1m -,∵动点P 形成的轨迹组成的图形面积为10,∴()()1110n m --=.【点睛】本题主要考查了坐标与图形,平行四边形的判定与性质,等腰三角形的判定与性质,全等三角形的判定与性质,垂直平分线的性质等知识,正确理解线段垂直对称点的含义是解答本题的关键.。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

八年级第一学期期中数学试卷参考答案

八年级第一学期期中数学试卷参考答案

八年级第一学期期中数学参考答案及评分标准(满分100分,考试时间90分钟)一、选择题【本大题共4个小题,每小题3分,满分12分】1.B . 2.A . 3.C . 4.B.二、填空题【本大题共14个小题,每小题2分,满分28分】5.2 6.5x ≠. 7. 8.121122x x ==.9.12x >-- 10.1 . 11.904a a <≠且. 12. 20% 13. 1. 14. 7. 15.2y x =-. 16.4.17.<. 18.3 . 三、简答题【本大题共8个小题,其中19~24每小题6分,25、26每题7分,满分50分】19.解:(5(2=++原式 ………………3分52=-+…………………………2分3=-……………………………………1分20. 解:=原式……………2分=3分=1分21.解:2287x x +=2742x x += ……………………………………1分 22274222x x ++=+………………………1分 21522x +=()……………………………………1分22x +=±……………………………………1分得 22x =-+ 或 22x =-- …………1分所以原方程的解为12x =-+,22x =-.…………1分22. 解: (5)(54)0x x x --+= ……………………………2分(5)(55)0x x --= ………………………………1分得 5x = 或 1x = …………………………………2分所以原方程的解为 11x = ,25x =……………………1分(其他方法对应给分)23.解:令22240x xy y -+=,则2221688y y y ∆=-=, ………………1分所以1,24242y x y ±±==,……………2分所以2224x xy y -+22222x y x y ⎛⎫⎛⎫+=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭……3分24. 解:1x = ;1y =……………………2分将x,y 的值代入得222231)1)1)x xy y -+=-+.…1分333=-++2分3=………………………………………………1分25. 解:由题意,设21110);y k x k =≠(2220);1k y k x =≠+(……………1分∵12y y y =+ ∴22112(0,0)1k y k x k k x =+≠≠+…………1分根据题意得21120264k k k k ⎧=+⎪⎨⎪-=-⎩………………………………2分解得1212.k k =-⎧⎨=⎩,……………………………………………………2分 所以221y x x =-++.……………………………………………………1分 26. 解:(1)设AB 的长为x m ,则宽(1202)BC x m =-,根据题意,得(1202)1152x x -= …………………………2分解得 124812x x ==,;…………………………1分所以 481202120248=24x BC x ==-=-⨯当时,;121202120212=9690x BC x ==-=-⨯>当时,(不合题意,舍去)…1分 答:长方形两条邻边的长分别为48m ,24m 。

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。

八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季

八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季

八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列图形中是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为3,x,7,则x的值可能是()A.3B.5C.10D.113.下列判断错误的是()A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合4.下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点确定一点直线B.两点之间线段最短C.同角的余角相等D.三角形具有稳定性6.如图,已知∠C=∠C1=90°,能直接用“HL”判定Rt△ABC≌Rt△A1B1C1的条件是()A.∠C=∠C1,AB=A1B1 B.AB=A1B1,AC=A1C1C.AC=A1C1,BC=B1C1 D.∠B=∠B1,BC=B1C17.如图,△ABC≌△DCB,∠DBC=40°,则∠BOC的度数为()A.100°B.80°C.40°D.140°8.A、B、C为三个小区,A、B、C三个小区的学生人数比为3:7:4,现在要在△ABC所在的平面上建造一个学校P,使得所有学生走的路程和最短,则学校P应该选在()A.点C处B.△ABC三条中线的交点处C.点B处D.∠A和∠B的角平分线的交点处9.如图,△ABC的外角∠DAC和∠FCA的平分线交于点E,∠EAC和∠ECA 的平分线交于点M,若∠B=48°,则∠M的度数为()A.114°B.122°C.123°D.124°10.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.8二、填空题(每小题3分,满分18分)11.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于.12.点A(a,b)与点B(3,﹣4)关于y轴对称,则a+b的值为.13.某多边形的内角和与外角和相等,这个多边形的边数是.14.等腰三角形的一个角是70°,则等腰三角形的顶角的度数是.15.已知a,b,c为△ABC的三边,化简:3|a+b﹣c|+2|a﹣b﹣c|=.16.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?18.如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,则∠NMA的度数是;(2)连接MB,若BC=6,△MBC的周长是14.①求△ABC的周长;②若P是直线MN上一个动点,则PB+PC的最小值是.20.已知点C在线段BE上,且△ABC和△DCE都是等边三角形,连接BD,AE,分别交AC,DC于点M,N.(1)求证:△AEC≌△BDC;(2)求证:CM=CN.21.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.22.如图1,在四边形ABCD中,∠A=∠C=90°,AB=CD,将四边形ABCD沿对角线BD翻折,点C落到点F处,BF交AD于点E.(1)求证:EB=ED;(2)如图2,延长BA,DF交于点G,连接GE并延长交BD于点H.求证:∠ADB=∠BGH.23.如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=105°时,∠BAD=°,∠DEC=°;(2)若DC=AB,求证:△ABD≌△DCE;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知三点A(0,a)(a>0),B(0,b)(b≤0),C(c,0)(c<0),且(a﹣b)2=c2.(1)试判断线段AB与OC的数量关系,并证明;(2)如图1,当b=0时,连接AC,点P是线段AC上一点,CQ⊥OP于Q,连接AQ.若∠AQP=45°,试探究CQ和OQ之间数量关系;(3)如图2,当b<0时,点D在x轴负半轴上,位于点C的左侧,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠CED的度数是否为定值?如果是,请求出∠CED的度数;如果不是,请说明理由.25.如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a﹣2b+2|=0.E为线段上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:(1)判断△OAB的形状,并说明理由;(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC与BD的数量关系,证明你的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档