2010年数学一考试大纲考试内容和考试要求

合集下载

《数学分析》考试大纲

《数学分析》考试大纲

《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。

六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。

2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。

七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。

应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。

能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。

八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。

区间与邻域,有界集与确界原理。

函数概念,函数的表示法。

函数的四则运算,复合函数,反函数,初等函数。

具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。

(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。

(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第二章数列极限(一)考核内容数列。

数列极限的定义,无穷小数列。

收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。

子列及子列定理。

2010考研数学2大纲

2010考研数学2大纲

2010年全国硕士研究生入学统一考试数学考试大纲--数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学78%线性代数22%四、试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

高中数学教师资格考试大纲(3科)

高中数学教师资格考试大纲(3科)

高中数学教师资格考试大纲(3科)《数学学科知识与教学能力》(高级中学)笔试大纲一、考试目标1.数学学科知识的掌握和运用。

掌握大学本科数学专业基础课程的知识和高中数学知识。

具有在高中数学教学实践中综合而有效地运用这些知识的能力。

2.高中数学课程知识的掌握和运用。

理解高中数学课程的性质、基本理念和目标,熟悉《普通高中数学课程标准(实验)》(以下简称《课标》)规定的教学内容和要求。

3. 数学教学知识的掌握和应用。

理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。

二、考试内容模块与要求1.学科知识数学学科知识包括大学本科数学专业基础课程和高中课程中的数学知识。

大学本科数学专业基础课程的知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学课程中与中学数学密切相关的内容,包括数列极限、函数极限、连续函数、一元函数微积分、向量及其运算、矩阵与变换等内容及概率与数理统计的基础知识。

其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。

高中数学知识是指《课标》中所规定的必修课全部内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)。

其内容要求是:理解高中数学中的重要概念,掌握高中数学中的重要公式、定理、法则等知识,掌握中学数学中常见的思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。

2.课程知识了解高中数学课程的性质、基本理念和目标。

熟悉《课标》所规定教学内容的知识体系,掌握《课标》对教学内容的要求。

了解《课标》各模块知识编排的特点。

能运用《课标》指导自己的数学教学实践。

3.教学知识了解包括备课、课堂教学、作业批改与考试、数学课外活动、数学教学评价等基本环节的教学过程。

掌握讲授法、讨论法、自学辅导法、发现法等常见的数学教学方法。

2010年考研数学真题点评(李永乐、李正元、王式安)

2010年考研数学真题点评(李永乐、李正元、王式安)

主持人:各位网友大家好,欢迎大家关注腾讯网教育频道联合万学共同制作的2010考研真题解析系列访谈节目。

今天我们非常容幸的邀请到了万学海文的顶级辅导名师,李正元、王式安、李永乐三位老师作客我们的访谈街,为大家第一时间解读2010年的数学考研真题。

李正元老师是北大的教授,李永乐老师是清华的教授。

王式安老师是北京理工大学的教授。

今天三位老师来到我们这里,一定能够给大家带来很大的收获。

希望大家能够受益匪浅。

现在就开始进入正题。

今年的考研题目,考试大纲和09年年的考试大纲是一致的,三位老师认为10年和09年考研的命题思路有什么变化?考试的难度有什么区别?李正元:我觉得从高数来说,大部分题目跟原来的命题思路是一致的,它还是一个基本的题目,难以程度也是适中。

比如说,大的解答题里,15题。

通解,这是一个基本题。

第16题是求一个变限积分。

求一次倒数就可以。

马上就可以回答它的结论。

第三道17道题,两道小题,第一个是比较两个积分题的大小。

积分曲线是一样的。

只要比较里面的函数,这里实际上就归结到L,大于区间上。

有了这个,这个题就非常容易得到了,第二个求极限利用第一道题。

第18道题,这个题目我们说只要利用一下求奇数无奇数合的基本方法就可以得到的,所以这个难以程度,当然最后一道题稍微难一点。

是一个全面积分比较复杂。

在一些少量的题目,我觉得它并不是非常基本,跟以前的题型大家不多见。

主要体现在选择题里,有四道选择题,一道是两个和号的取极限。

要是选择下面四道累计几分,是哪一个,这个题目应该说不那么基本。

大家基本的可能多数同学应该没有做过这个问题。

另外一个,就是关于狭积分的,它不是通过非常简单的计算就可以判断的,所以这两道稍微难一点。

四道选择题里占了两道题比较难的。

恩在基本题的方面在这一点上是和去年不同的地方。

总体上来说大部分题目还是适中的,有少量题目是难的。

高数是这样的情况。

主持人:李老师王老师呢?李永乐:今年的命题和以往的命题思路思想方法都是连贯的。

公务员考试----数量关系

公务员考试----数量关系

数学运算
备考策略 首先应该尽可能多地学习新题型,掌握应 对新题型的基本知识,如工程、路程、排列 组合、年龄、数值和集合等问题。 同时,报考者应加强思维训练,尽量不采 用方程法来解题,以节约解题时间。 在此基础上,考生应提高自己使用代入法 和排除法来解答习题的能力。要注重分类把 握,并在练习中不断丰富和完善,发现一个 新的类型就归类分析,直至烂熟于胸。
数学运算
例1 甲、乙两人练习跑步,若让乙先跑12米, 则甲经6秒追上乙,若乙比甲先跑2秒,则甲要 5秒追上乙,如果乙先跑9秒,甲再追乙,那么 10秒后,两人相距多少米? a.15 b.20 c.25 d.30 例2 兄弟两人早晨6时20分从家里出发去学校, 哥哥每分钟行100米,弟弟每分钟行60米,哥 哥到达学校后休息5分钟,突然发现学具忘带 了,立即返回,中途碰到弟弟,这时是7时15 分。从家到学校的距离是多少米? a.3500 b.3750 c.4150 d.4250
数学运算之牛吃草问题
牛吃草问题常用到四个基本公式,分别是︰ (1)草的生长速度=(相应的牛头数×吃草速度) ×吃的较多天数-(相应的牛头数×吃草速度)×吃 的较少天数÷(吃的较多天数-吃的较少天数); (2)原有草量=(相应的牛头数×吃草速度)×吃 的天数草的生长速度×吃的天数;` (3)吃的天数=原有草量÷(相应的牛头数×吃草 速度-草的生长速度); (4)牛头数=(原有草量÷吃的天数+草的生长速 度)÷吃草速度。
数字推理
数字推理的常见题型
9.平方型及其变式 例如 1, 4, 9, ( ),25, 36 a.10 b.14 c.20 d.16 例如 66,83,102,123,( ) a.144 b.145 c.146 d.147
数字推理
数字推理的常见题型

河南师范大学2010年硕士招生考试科目参考书

河南师范大学2010年硕士招生考试科目参考书

河南师范大学2010年硕士招生考试科目参考书目
说明:统考科目考试范围参照教育部发布的考试大纲;自命题科目没有列在该表中的不限参考书,显示为暂未定的科目,随后根据有关规定补充修正
音乐学专业复试科目内容及要求:
一、专业主科方向01考试内容:
1.技术性练习曲一首(相当于车尔尼740以上程度);
2.复调乐曲一首(巴赫平均律曲集中任选赋格一首);
3.古典时期奏鸣曲或变奏曲一首(相当于贝多芬奏鸣曲快板乐章程度;手风琴方向不复试此项);
4.中外大型乐曲任选一首(手风琴方向复试要求中外大型乐曲各一首)。

所有乐曲应为独奏作品,背谱演奏。

二、专业主科方向02考试内容:
1、笔试(中国音乐史全程内容,形式为卷面考试)。

2、报名时须提交本人撰写的、所报考专业研究方向的论文一篇(大学毕业论文或相当于大学毕业论文)。

应届普通本科毕业生可以以习作(学期论文)替代学位论文。

所提交的论文仅做参考。

三、专业主科方向03考试内容:
演唱四首作品,复试时由主考指定演唱相应曲目的部分或整个曲目。

1、民族唱法:中国作品四首(艺术歌曲一首,民歌一首,民族歌剧曲目二首);
2、美声唱法:咏叹调二首,艺术歌曲二首(不得演唱外国民歌和流行歌曲)。

四、专业主科方向04考试内容:
合唱指挥(指挥不同风格中外合唱作品四首)
学科教学(音乐)复试科目内容及要求:
专业主科可根据自己的主科方向任选一项,钢琴、声乐、器乐、舞蹈、指挥任选作品两首,作品形式不限。

考研数学(一二三)大纲对比

考研数学(一二三)大纲对比

的关系,理解导数的几何意义,会求平面曲线 的关系,理解导数的几何意义,会求平面曲线 关系,了解导数的几何意义与经济意义(含边
的切线方程和法线方程,了解导数的物理意 的切线方程和法线方程,了解导数的物理意 际与弹性的概念),会求平面曲线的切线方程
义,会用导数描述一些物理量,理解函数的可 义,会用导数描述一些物理量,理解函数的可 和法线方程.了解微分的概念、导数与微分之
7.理解函数的极值概念,掌握用导数判断函 7.理解函数的极值概念,掌握用导数判断函 7.掌握函数单调性的判别方法,了解函数极
数的单调性和求函数极值的方法,掌握函数最 数的单调性和求函数极值的方法,掌握函数的 值的概念,掌握函数极值、最大值和最小值的
大值和最小值的求法及其应用.
最大值和最小值的求法及其应用.
导性与连续性之间的关系.
导性与连续性之间的关系.
间的关系以及一阶微分形式的不变性.
2.掌握导数的四则运算法则和复合函数的求 2.掌握导数的四则运算法则和复合函数的求 2.掌握基本初等函数的导数公式、导数的四
导法则,掌握基本初等函数的导数公式.了解 导法则,掌握基本初等函数的导数公式.了解 则运算法则及复合函数的求导法则,会求函数
分的概念.
分的概念.
积分的基本性质和基本积分公式,掌握不定积
分的换元积分法与分部积分法.
2.掌握不定积分的基本公式,掌握不定积分 2.掌握不定积分的基本公式,掌握不定积分 2.了解定积分的概念和基本性质,了解定积 和定积分的性质及定积分中值定理,掌握换元 和定积分的性质及定积分中值定理,掌握换元 分中值定理,理解积分上限的函数并会求它的
理量(平面图形的面积、平面曲线的弧长、旋 理量(平面图形的面积、平面曲线的弧长、旋

考研数学一考试大纲

考研数学一考试大纲

考研数学一考试大纲一、考试性质考研数学一是全国硕士研究生招生考试的重要组成部分,旨在考查考生对高等数学、线性代数、概率论与数理统计等数学知识的掌握程度,以及运用这些知识解决实际问题的能力。

二、考试目标通过考查考生对高等数学、线性代数、概率论与数理统计等数学知识的理解与运用,重点检测考生的运算能力、逻辑推理能力、空间想象能力以及运用数学知识解决实际问题的能力。

三、考试内容1、高等数学:函数、极限、连续;一元函数微积分学;多元函数微积分学;常微分方程;无穷级数;向量代数与空间解析几何等。

2、线性代数:行列式;矩阵;向量;线性方程组;矩阵的特征值和特征向量;二次型等。

3、概率论与数理统计:随机事件及其概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理;数理统计的基本概念;参数估计等。

四、考试形式与试卷结构1、考试形式:笔试,考试时间为180分钟,满分150分。

2、试卷结构:题型包括选择题、填空题和解答题。

其中,选择题和填空题分值约占40%,解答题分值约占60%。

五、考试难度与要求1、考试难度:考研数学一的考试难度较大,主要表现在对知识点的综合运用能力和解题技巧的要求较高。

2、考试要求:考生应全面掌握考试大纲所要求的知识点,并能够灵活运用,具备综合分析问题和解决问题的能力。

在解题过程中,要求思路清晰、运算准确、表达规范。

六、备考建议1、系统复习:考生应首先对考试大纲所涉及的知识点进行系统复习,建立完整的知识体系,不留死角。

2、强化训练:通过大量的练习题和模拟试题进行强化训练,提高解题能力和速度。

3、注重方法:在复习和解题过程中,要注重方法和思路,善于总结和归纳。

4、合理安排时间:在备考过程中,要合理安排时间,尤其是对于知识点较多、难度较大的章节,要适当增加复习时间。

5、多交流:可以参加考研辅导班或者与其他考生进行交流,分享经验和心得。

七、总结考研数学一是硕士研究生招生考试中重要的一环,对于想要继续深造的学子来说至关重要。

数学一考试大纲

数学一考试大纲

数学一考试大纲
数学一考试大纲通常包括以下几个方面的内容:
1. 几何学:包括平面几何和空间几何的基本概念、定理和证明方法,如点、直线、平面的性质、相交关系,三角形、四边形和多边形的性质,圆的性质等。

2. 代数学:包括代数运算、方程和不等式的解法,如多项式的加减乘除、因式分解、根与系数的关系,一次、二次和高次方程的解法,一元和多元不等式的解法等。

3. 函数与分析:包括函数的基本概念和性质,如函数的定义域、值域、奇偶性、周期性等,常见函数的图像、性质和变换,函数的极限和连续性,导数和微分的概念和计算方法等。

4. 数学推理与证明:包括数学证明的基本方法和技巧,如数学归纳法、反证法、逆否命题等,以及利用这些方法证明问题的正确性和推理过程的严谨性。

考生需要熟悉并掌握以上内容,并在考试中能够灵活应用所学的知识解决各类数学问题。

此外,还需要培养良好的数学思维能力、逻辑推理能力和问题解决能力,以及良好的数学模型建立和问题抽象能力。

2010年辽宁省高考数学试题分析

2010年辽宁省高考数学试题分析

2010年辽宁省高考数学试题分析2010年高考,作为辽宁省实施新课程改革后的第二次高考,引起了广大中学数学教师的高度关注。

文理科数学难度较2009年稳中有升。

一、试题总体概述1 、立足基础,突出主干2010年辽宁数学试题注重考查双基,多数试题的综合性不强。

如理科选择题的第1—10题、所有的填空题,都只是单纯地考查1~2个知识点,没有知识间的交叉;所有解答题及选作题也都只考查基本的知识和技能,这些题约占整个试卷的90%。

这些试题突出体现了考试大纲中“平稳过渡”指导思想。

2、关注课改,注重教材2010年辽宁数学试卷中,对课改中新增内容给予了足够的重视。

诸如算法、三视图、统计知识、2×2列联表及卡方、简单逻辑用语,以及理科的空间向量、等知识在试卷中都有所体现。

今年我省理科和文科数学试卷中新增内容都约占25%。

可以说,对新增内容基本上做到了全面覆盖,但对这些内容考查的难度要求都比09年的略高一些。

另外,试卷中相当数量的试题在教材中都有原型,例如理第8题是由必修4第113页的例3变式迁移得来的;理第14题和文科第15题就由必修5中第95页的思考与讨论改编而成;理第13题是由选修2—3中第35页的一道求解题改编过来的。

3 、注重通法,淡化技巧全卷没有直接考查纯记忆的陈述性知识,注重考查知识的运用能力及学生的计算能力和推理论证能力等等。

由于立足基本方法和通性通法,整卷试题的坡度较好地实现了由易到难,并且实现了解答题低起点、宽入口、逐步深入的格局。

4、注重知识交汇点本套试卷具有较为合理的覆盖面,集合、复数、常用逻辑、线性规划、向量、算法与框图、排列组合等内容在选择、填空题中得到了有效的考查;三角函数、概率统计、立体几何、解析几何、函数与导数、数列等主干知识在解答题中得到考查,构成试卷的主体内容。

同时,文、理科试卷都注重了考查知识间的内在联系,在知识点的交汇处设计试题,如理科第10题,将算法与排列组合相结合;理第16题将数列与不等式相结合;理第18题,将概率知识和实际背景相结合,并把必修3和选修系列2-3的统计概率知识结合起来;如文科4题和理科11题将简单逻辑用语同二次函数的最值知识融为一体。

2010年高考大纲全国卷 II文科数学试题及答案 (云南、贵州、甘肃、青海、新疆、内蒙古)

2010年高考大纲全国卷 II文科数学试题及答案 (云南、贵州、甘肃、青海、新疆、内蒙古)

2010年高考大纲全国卷 II 理科数学试题及答案文科数学(必修+选修)(云南、贵州、甘肃、青海、新疆、内蒙古)一、选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()AB =ð( )(A ){}1,4 (B ){}1,5 (C ){}2,4 (D ){}2,5【解析】 C :本题考查了集合的基本运算. 属于基础知识、基本运算的考查.∵ A={1,3}。

B={3,5},∴ {1,3,5}AB =,∴(){2,4}UC A B =故选 C .(2)不等式32x x -+<0的解集为(A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x >【解析】A :本题考查了不等式的解法∵302x x -<+,∴ 23x -<<,故选A (3)已知2sin 3α=,则cos(2)x α-=(A)3-B )19-(C )19(D)3【解析】B :本题考查了二倍角公式及诱导公式,∵ SINA=2/3,∴21cos(2)cos 2(12sin )9πααα-=-=--=-(4)函数y=1+ln(x-1)(x>1)的反函数是 (A )y=1x e +-1(x>0) (B) y=1x e-+1(x>0)(C) y=1x e+-1(x ∈R) (D )y=1x e -+1 (x ∈R)【解析】D :本题考查了函数的反函数及指数对数的互化,∵函数Y=1+LN (X-1)(X>1),∴ 11ln(1)1,1,1y x x y x ey e ---=--==+另法(一点定乾坤――反函数选择题最快捷的方法):原函数过点(11e -+,0),反函数必过点(0,11e -+),符合条件的只有选项D.(5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。

2010年考研数学一考题分析及复习建议

2010年考研数学一考题分析及复习建议

2010年考研数学一考题分析及复习建议通过2010年研究生入学考试数学一试卷的双向细目表分析,可以看出今年考点分布比较均匀,而且一些较少考查的知识点也进行了考查。

如果说09年研究生数学考试提醒我们复习要注重基础,注重课本,则今年的试卷提醒我们复习的时候要全面,做到不遗漏,不偏重。

这两年的试卷引导我们进行考研数学复习的时,首先要注重基础,其次要全面复习,最后在此基础上再抓住重点。

下面就2010年的试卷进行分析。

下图是根据2010年的双向细目表分析(见附录)画出的统计分析图。

一二三四五六七八九十十一十二十三通过上面的统计分析图和考题难度,可以看出今年的数学一试卷有以下几个特点:一、从图表可以看出,今年的考点分布比较均匀,从一到十三都有考题。

二、今年的重点出题部分为三(一元函数积分学)、十(方程组、特征值和特征向量、二次型)和十一(随机变量)。

第三部分和第十部分属于考试常规考点,基本上每年都有大题出现,而十一的随机变量部分属于概率轮换出考题的章节,这是不是难点。

三、今年的考题高等数学部分没有出现证明题。

历年来,研究生数学考试高等数学部分都会出一道证明题,而今年没有考查证明题。

因此我们可以看出,虽然今年考题出的知识点覆盖比较全面,不过有点“偏”,但是这仍然属于我们考研大纲要求的范围。

从以上的分析,我们给出考研复习的一些建议:一、严格以考试大纲为基准,注重课本基础内容的复习。

复习过程中注意要覆盖所有大纲要求的知识点,以不变应万变。

二、注重重点章节的复习。

重点章节的分数一般比较大,而且每年基本上都会出考题,是拿分的重点。

复习的后期一定要加强这些重点章节的复习。

三、做题要适量,注重计算。

适量的做题,保证做题的正确率和速度,同时做到举一反三,更好的去理解概念和解决同类型的题。

今年高等数学部分没有出证明题,应该就是有这样一个导向。

(娄岳东)海天考研/附表:2010双向细目表(数学一)。

青岛市2010年初中学业水平考试大纲解析

青岛市2010年初中学业水平考试大纲解析

青岛市2010年初中学业水平考试■数学增加中高档题思维含量考试时间120分钟,试题满分120分。

数学试题的难度,原则上掌握在低、中、高三档题目的比例为4∶4∶2,适当增加中、高档题目部分的思维含量。

数学试题将由客观性试题和主观性试题两部分组成。

其中,客观性试题包括8道选择题、6道填空题,每题3分,共42分;主观性试题包括1道作图题和9道解答题,共78分。

“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”四个学习领域所占分值的百分比约为37.5%、37.5%、16.5%、8.5%。

17题考查学生能否在具体的现实背景中,从统计的角度思考与数据有关的问题,描述、分析、选择、处理数学信息,做出合理的推断或大胆的猜想。

18题考查学生的随机概念。

关注学生对概率的意义、概率与频率关系的理解,以及运用概率的相关知识解决实际问题的能力。

19题主要考查学生的空间观念以及数学应用意识,考查学生的几何直觉和合情推理能力。

20题考查学生面对实际问题,尝试从数学的角度运用所学的知识和方法建立模型解决问题的能力,关注学生对一些重要的数学思想方法,如方程思想、化归思想的应用。

21题考查学生对证明的思路、证明的方法的掌握情况和推理论证能力,关注学生能否运用规范的语言从多种角度表述论证过程。

22题考查学生结合实际问题情境建立数学模型、分析和解决问题的能力,关注学生对变量之间关系的刻画和数形结合思想方法的应用。

23题考查学生的实践能力和创新意识,以及结合问题情境,综合运用所学知识解决开放性问题和探究性问题的能力。

24题考查学生的抽象能力、推理能力及综合运用一些重要数学思想方法,如分类讨论思想、数形结合思想等解决实际问题能力。

■语文命题不受教材限制考试时间120分钟,试题满分120分。

语文试题命题将不受语文教材的限制,不仅注重考查学生的语文知识、能力水平、基本语文素养,还要注重考查学生对语文学科知识的探究能力、对语文学科思想方法的理解能力以及综合运用语文知识分析和解决实际问题的能力。

2010年高考理科数学大纲-2

2010年高考理科数学大纲-2

2010年高考理科数学大纲/理科数学考试大纲-27.直线和圆的方程考试内容:直线的倾斜角与斜率。

直线方程的点斜式和两点式。

直线方程的一般式。

两条直线平行与垂直的条件。

两条直线的交角。

点到直线的距离。

用二元一次不等式表示平面区域。

简单的线性规划问题。

曲线与方程的概念。

由已知条件列出曲线方程。

圆的标准方程和一般方程。

圆的参数方程。

考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式。

掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。

(3)了解二元一次不等式表示平面区域。

(4)了解线性规划的意义,并会简单的应用。

(5)了解解析几何的基本思想,了解坐标法。

(6)掌握圆的标准方程和一般方程,了解参数方程的概念。

理解圆的参数方程。

8.圆锥曲线方程考试内容:椭圆及其标准方程。

椭圆的简单几何性质。

椭圆的参数方程。

双曲线及其标准方程。

双曲线的简单几何性质。

抛物线及其标准方程。

抛物线的简单几何性质。

考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程。

(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。

(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。

(4)了解圆锥曲线的初步应用。

9(A)。

直线、平面、简单几何体(考生可在9(A)和9(B)中任选其一)考试内容:平面及其基本性质。

平面图形直观图的画法。

平行直线。

对应边分别平行的角。

异面直线所成的角。

异面直线的公垂线。

异面直线的距离。

直线和平面平行的判定与性质。

直线和平面垂直的判定与性质。

点到平面的距离。

斜线在平面上的射影。

直线和平面所成的角。

三垂线定理及其逆定理。

平行平面的判定与性质。

平行平面间的距离。

二面角及其平面角。

两个平面垂直的判定与性质。

多面体。

正多面体。

棱柱。

棱锥。

全国硕士研究生入学统一考试数学一考试大纲

全国硕士研究生入学统一考试数学一考试大纲

全国硕士研究生入学统一考试数学一考试大纲标准化管理部编码-[99968T-6889628-J68568-1689N]全国硕士研究生入学统一考试数学一考试大纲高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶系数与傅里叶级数狄利克雷定理函数的傅里叶级数函数的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sinx, cosx,ln(1+x) 及(1+x)α的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将函数展开为傅里叶级数,会将函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解概念. 2.掌握变量可分离的微分方程及一阶线性微分方程解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程:.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容: 线性方程组的克莱姆法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考研老师私人扣扣:概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫不等式切比雪夫大数定律伯努利大数定律辛钦大数定律棣莫弗-拉普拉斯定理列维-林德伯格定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩卡方分布 T分布 F分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解卡方分布、T分布 F分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容:显着性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显着性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考研老师私人扣扣:。

全国高中数学联赛考纲

全国高中数学联赛考纲

全国高中数学联赛考纲竞赛概况自2010年起,全国高中数学联赛试题新规则如下:联赛分为一试、加试(即俗称的“二试”)。

各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。

一试和加试均在每年9月第二个周日举行。

一试考试时间为上午8:00-9:20,共80分钟。

试题分填空题和解答题两部分,满分120分。

其中填空题8道,每题8分;解答题3道,分别为16分、20分、20分。

(2009年的旧规则和2008年之前的旧规则略去。

)加试(二试)考试时间为9:40-12:10,共150分钟。

试题为四道解答题,前两道每题40分,后两道每题50分,满分180分。

试题内容涵盖平面几何、代数、数论、组合数学等。

(2009年的旧规则和2008年之前的旧规则略去。

)依据考试结果评选出各省级赛区级一、二、三等奖。

其中一等奖由各省负责阅卷评分,然后将一等奖的考卷寄送到主办方(当年的主办方),由主办方复评,最终由主管单位(中国科协)负责最终的评定并公布。

二、三等奖由各个省自己决定。

各省、市、自治区赛区一等奖排名靠前的同学可参加中国数学奥林匹克(CMO)。

根据最新消息,2011年数学联赛的试题规则与2010年相同。

考试范围全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试在知识方面有所拓展,增加如下知识点的考察。

基本要求:掌握初中竞赛大纲所确定的所有内容。

补充要求:面积和面积方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点距离之和最小的点——费马点。

到三角形三顶点距离的平方和最小的点——重心。

三角形内到三边距离之积最大的点——重心。

几何不等式。

简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

江西省2024年中小学教师招聘考试大纲小学数学考试大纲

江西省2024年中小学教师招聘考试大纲小学数学考试大纲

江西省2024年中小学老师聘请考试大纲小学数学考试大纲第一部分学科专业基础一、集合和简易逻辑(一)考试内容集合;子集;交集、并集;补集;逻辑联结词;四种命题;充分条件和必要条件(二)考试要求1.理解集合、子集、交集、并集、补集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;驾驭有关的术语和符号,并会用他们正确表示一些简洁的集合。

2.理解逻辑联接词“或”、“且”、“非”的含义;理解四种命题及其相互关系;驾驭充分条件、必要条件及充要条件的意义二、函数(一)考试内容对应于映射;函数概念;函数表示法和函数图象;函数的单调性、奇偶性;反函数;互为反函数的函数图象间的关系;分数指数幂;有理数指数幂的运算性质;幂函数;指数函数;对数;对数的运算性质;对数函数;函数的应用(二)考试要求1.了解对应于映射的概念;理解函数的概念;驾驭函数的表示法。

2.了解函数的单调性、奇偶性的概念;驾驭推断一些简洁函数的单调性、奇偶性的方法3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简洁函数的反函数4.理解分数指数幂的概念;驾驭有理数指数幂的运算性质;了解幂函数、指数函数的概念、图象和性质5.理解对数的概念,驾驭对数的运算性质;了解对数函数的概念、图象、性质6.能够运用函数的性质、指数函数和对数函数的性质解决某些简洁的实际问题三、数列(一)考试内容数列;等差数列及其通项公式;等差数列前n项和公事;等比数列及其通项公式;等比数列前n项和公式(二)考试要求1.理解数列的概念;理解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能依据递推公式写出数列的前几项2.理解等差数列的概念;驾驭等差数列的通项公式与前几项和公式,并能解决简洁的实际问题3.理解等比数列的概念;驾驭等比数列的通项公式与前n项和公式,并能解决简洁的实际问题四、三角函数(一)考试内容角的概念的推广;弧度制;随意角的三角函数;单位圆中的三角函数线;同角三角函数的基本关系式:tanα cotα=1 ;正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切;正弦函数、余弦函数的图象和性质;周期函数;函数的图象;正切函数的图象和性质;已知三角函数值求角;正弦定理、余弦定理;斜三角形解法(二)考试要求1.了解随意角的概念、弧度的意义;能正确地进行弧度与角度的换算2.理解随意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;驾驭同角三角函数的基本关系式;3.驾驭两角和与两角差的正弦、余弦、正切公式;驾驭二倍角的正弦、余弦、正切公式4.能正确运用三角公式进行简洁三角函数式的化简、求值和恒等式证明5.了解正弦函数、预选函数、正切函数的图象和性质、会用“五点法”画正弦函数、预先函数和函数y=Asin(wx+Φ)的简图6.会由已知三角函数值求角,并会用符号arcsinx , arccosx , arctanx ,表示7.驾驭正弦定理、余弦定理,并能初步运用他们解斜三角形五、不等式(一)考试内容不等式;不等式的基本性质;不等式的证明;含肯定值的不等式;不等式的解法(二)考试要求1.理解不等式的性质及其证明2.驾驭两个正数的算数平均数不小于它们的几何平均数的定理,并会简洁的应用3.驾驭分析法、综合法、比较法证明简洁的不等式4.驾驭简洁不等式的解法5.理解不等式|a|-|b|≤a+b≤|a|+|b|六、复数(一)考试内容复数的概念;复数的向量表示;复数的加法与减法;复数的乘法和除法;复数的三角形形式(二)考试要求1.了解引入复数的必要性;理解复数的有关概念;驾驭复数的代数表示、几何表示;了解复数的向量表示2.驾驭复数的代数形式的加法、减法、乘法、除法的运算3.驾驭复数的三角形式七、数集(一)考试内容数的概念的发展;整数集;有理数集;无理数的引入;复数集(二)考试要求1.驾驭自然数集、整数集、有理数集、实数集和复数集之间的关系2.理解自然数集、整数集和有理数集的性质;了解实数集、复数集的性质八、向量代数与空间解析几何(一)考试内容空间直角坐标系与向量的概念;向量的向量积与数量积;线段的定比分点;平面与直线;曲面与空间曲线(二)考试要求1.理解空间直角坐标系的概念;娴熟驾驭两点间距离公式;会确定空间点的坐标2.理解向量的概念;驾驭向量的线性运算、数量积及向量积等运算方法;驾驭推断向量平行或垂直的条件;会求向量的模、方向余弦及两向量间的夹角3.驾驭线段的定比分点和中点坐标公式4.理解平面方程的概念;娴熟驾驭平面的点法式方程、一般方程;会推断两平面间的位置关系,并会建立平面方程5.理解空间直线的概念;娴熟驾驭直线的标准方程、参数方程及一般方程;会推断两直线的位置关系、并会建立直线方程6.了解一些常见的曲线方程、曲面方程九、直线和圆的方程(一)考试内容直线的倾斜角与斜率;直线的方程(点斜式、两点式、直线方程的一般式);两条直线的位置关系(平行与垂直的条件、两条直线的交角、点到直线的距离);简洁的线性规划问题;曲线与方程的概念;由已知条件求曲线方程;圆的标准方程和一般方程;圆的参数方程(二)考试要求1.理解直线的倾斜角和斜率的概念;驾驭过两点的直线的斜率公式;驾驭直线方程的点斜式、两点式、一般式,并能依据条件娴熟地求出直线方程2.驾驭两条直线平行于垂直的条件,两条直线所称的角和颠倒直线的举例公式;能改也依据直线的翻唱歌和那个推断两条直线的位置关系3.了解二院一次不等式表示平面区域及线性规划的意义,并会简洁的应用。

数学一考试大纲

数学一考试大纲

数学一考试大纲
数学一考试大纲。

一、考试内容。

1、古典数学:算术、平面几何、立体几何等。

2、基础数学:数学分析、微积分、线性代数等。

二、考试形式。

1、单选题:客观题,要求学生熟练掌握考查的知识点,明确选择的答案。

2、应用题:主观题。

考查学生运用知识点解决问题的能力、步骤是否正确,结果是否正确等。

三、复习要求。

1、注重基础知识的掌握,要重点复习书本中考查的知识点。

2、注重法则、技巧的掌握,复习书本中的例题,掌握解题方法。

3、坚持刷题,将书本中的例题练习,完成真题。

四、时间安排。

1、通过课堂学习及认真复习,巩固基础知识,掌握知识点要点。

2、多练习,做题,记住知识,掌握答题技巧和步骤。

3、最后一周,复习好真题,熟悉考试大纲,准备考试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年数学一考试大纲考试内容和考试要求高等数学一、函数、极限、连续考试内容函数的概念及表示法2010年数学一考试大纲考试内容和考试要求高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立 数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限: 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.2.了解函数的有界性、单调性、周期性和奇偶性.3.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.6.掌握极限的性质及四则运算法则.7.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.6.掌握用洛必达法则求未定式极限的方法.7.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积 向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3..理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4..掌握平面方程和直线方程及其求法.5.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6. 6.会求点到直线以及点到平面的距离.7.7.了解曲面方程和空间曲线方程的概念.8.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3. 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.4.理解方向导数与梯度的概念,并掌握其计算方法.5. 5.掌握多元复合函数一阶、二阶偏导数的求法.6. 6.了解隐函数存在定理,会求多元隐函数的偏导数.7. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8. 8.了解二元函数的二阶泰勒公式.9.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4. 4.掌握计算两类曲线积分的方法.5. 5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.7.了解散度与旋度的概念,并会计算.8.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念 级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.2.掌握几何级数与级数的收敛与发散的条件.3.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.4.掌握交错级数的莱布尼茨判别法.5. 5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.6.了解函数项级数的收敛域及和函数的概念.7.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.9.了解函数展开为泰勒级数的充分必要条件.10.0.掌握的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数. 11.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4. 4.会用降阶法解下列形式的微分方程:5.. 5.理解线性微分方程解的性质及解的结构.6. 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7. 8.会解欧拉方程.8. 9.会用微分方程解决一些简单的应用问题.线性代数部分一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4. 4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.6.了解基变换和坐标变换公式,会求过渡矩阵.7.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8. 8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.4.理解非齐次线性方程组解的结构及通解的概念.5.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵 考试要求:.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计部分一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式. 3. 3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3. 3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.5.会求随机变量函数的分布三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3. 3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.4.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、 协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.2. 会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容 切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律) .3.3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理) .六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布t分布F分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解分布、t 分布和F分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.2.掌握单个及两个正态总体的均值和方差的假设检验.。

相关文档
最新文档