数学七年级上华东师大版第4章4.7 相交线同步练习
数学课件 华东师大版七年级上册 同步教学第5章相交线与平行线第二节平行线
12.在写艺术字时,常常运用画“平行线段”这种基本方法,如图 所示写的是字母“M”.
(1)请从正面、上面、右面三个不同方向上各找出一组平行线段, 并用字母表示出来;
解:正面:AB∥EF;上面:A′B′∥AB; 右面:DD′∥HI.(答案不唯一)
(2)EF 与 A′B′有何位置关系? 解:EF∥A′B′.
8 如图,平面内有A,B,C三点,且三点不在同一条直 线上,过这三点画两条平行线,这样的平行线能画几 种?画图说明.
解:能画三种,如图所示.
9 如图,(1)过BC上一点P画AB的平行线交AC于T; (2)过点C画MN∥AB; 解:(1)如图.(2)如图.
(3)直线PT,MN具有何种位置关系?试说明理由. 解:PT∥MN,理由如下:因为PT∥AB,MN∥AB, 所以PT∥MN.
8 如图,P是线段AB的中点,过点P画BC的平行线交AC 于点Q,再过点Q画AB的平行线交BC于点S. 解:所画图形如图所示.
(1)用刻度尺测量后确定AQ与QC,CS与BS的数量关系; 解:经测量得到AQ=QC,CS=BS.
(2)用刻度尺测量后确定PQ与BC,QS与AB的数量关系,你 发现了什么?用简洁的语言把你发现的规律叙述出来. 经测量得到 PQ=12BC,QS=12AB. 经过三角形一边的中点,画另一边的平行线,则这条
3 如图,将一张长方形纸对折三次,则产生的折痕与折 痕间的位置关系是( C )
A.平行 C.平行或垂直
B.垂直 D.无法确定
4 【原创题】如图,能相交的是___②___,平行的是 __③____.
5 在如图所示的方格纸中,经过点C画与线段AB平行的 直线l1. 略
6 读下列语句,并画出图形. P是直线AB外一点,直线CD经过点P且与直线AB平行, 直线EF也经过点P且与直线AB垂直. 解:如图所示.
七年级数学上册4.5最基本的图形——点和线4.5.1点和线跟踪训练(含解析)(新版)华东师大版
4.5.1点和线一.选择题(共9小题)1.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A. 6 B.12 C.15 D.302.如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()A.L2处B.L3处C.L4处D.生产线上任何地方都一样3.下列说法错误的是()A.两点确定一条直线B.线段是直线的一部分C.一条直线是一个平角 D.把线段向两边延长即是直线4.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条5.下列语句正确的是()A.画直线AB=10厘米 B.画直线l的垂直平分线C.画射线OB=3厘米 D.延长线段AB到点C,使得BC=AB6.有三个点A,B,C,过其中每两个点画直线,可以画出直线()A.1条B.2条C.1条或3条D.无法确定7.要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()A.两点之间,线段最短 B.两点确定一条直线C.线段只有一个中点 D.两条直线相交,只有一个交点8.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚9.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B. C.D.10.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因_________ .11.如图,从A到B有多条道路,人们往往走中间的直路,而不会走其他的曲折的路,这是因为_________ .12.要把木条固定在墙上至少需要钉 _________ 颗钉子,根据是_________ .13.在同一平面内,三条直线两两相交,最多有3个交点,那么4条直线两两相交,最多有_________ 个交点,8条直线两两相交,最多有_________ 个交点.14.一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,则表中n= _________ .点的个数 2 3 4 5 6 7线段的条数 1 3 6 10 15 n15.往返于甲、乙两地的火车中途要停靠三个站,则有_________ 种不同的票价(来回票价一样),需准备_________ 种车票.三.解答题(共7小题)16.(1)如图①当线段AB上标出1个点时(A、B除外),图中共有_________ 个不同的线段;(2)如图②当线段AB上标出2个点时(A、B除外),图中共有_________ 个不同的线段;(3)如图③当线段AB上标出3个点时(A、B除外),图中共有_________ 个不同的线段;(4)如图④当线段AB上标出n个点时(A、B除外),图中共有多少条不同的线段?(用含有n的式子表示)17.如图,平面内有4个点A、B、C、D,按下列语句在指定位置上画出图形.(2)画线段AC;(3)画射线DC.18.已知线段AB,(1)作图:延长线段AB到C,使得AC=3AB;(2)当AB的长等于2cm时,求线段BC的长.19.(1)如图(1)所示,点D在直线EF _________ ,或直线_________ 经过点D.(2)如图(2),直线_________ ,_________ 交于点O.(3)如图(3),经过点M三条直线_________ ,_________ ,_________ .(4)如图(4)所示,直线L与直线_________ ,_________ ,分别交于_________ ,_________ 两点.20.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.21.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?22.把一根本条钉在墙上,在只钉了一根钉子的时候,这根木条还可以转动,为什么?如果在这根木条的某个地方再钉上一根钉子.这根木条就不会动了,这是为什么?你能把它画出来吗?第四章图形的初步认识4.5.1点和线参考答案与试题解析一.选择题(共9小题)1.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A. 6 B.12 C.15 D.30考点:直线、射线、线段.分析:分别求出从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,即可得出答案.解答:解:∵从北京出发的有5种车票,从石家庄出发的有4种车票,从郑州出发的有3种车票,从武汉出发的有2种车票,从长沙出发的有1种车票,∴一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制2×(5+4+3+2+1)=30种车票,故选D.点评:本题考查了用数学知识解决实际问题的应用,主要考查学生的理解能力和计算能力.2.如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()A.L2处B.L3处C.L4处D.生产线上任何地方都一样考点:直线、射线、线段.分析:设在L3处为最佳,求出此时的总距离为L1L5+L2L4,假如设于任意的X处,求出总距离为L1L5+L2L4+L3X,和L1L5+L2L4比较即可.解答:解:在5名工人的情况下,设在L3处为最佳,这时总距离为L1L5+L2L4,理由是:如果不设于L3处,而设于X处,则总距离应为L1L5+L2L4+L3X>L1L5+L2L4,即在L3处5个工人到供应站距离的和最小.故选B.点评:本题考查了比较线段的长短,此题比较好,但是有一定的难度,主要考查了学生的分析问题和解决问题的能力.3.下列说法错误的是()A.两点确定一条直线 B.线段是直线的一部分C.一条直线是一个平角 D.把线段向两边延长即是直线考点:直线、射线、线段.分析:根据直线公理对A进行判断;根据线段的定义对B、D进行判断;根据平角的定义对C进行判断.解答:解:A、两点确定一条直线,所以A选项的说法正确;C、一个角由有公共端点的两射线组成,一个平角的两边在一条直线上,则一条直线不是一个平角,所以C选项的说法错误;D、把线段向两变边延长得到直线,所以D选项的说法正确.故选C.点评:本题考查了直线、射线、线段:直线上某一点一边的部分叫射线,直线上两点之间的部分叫线段.也考查了阅读理解能力.4.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条考点:直线、射线、线段.分析:写出所有的线段,然后再计算条数.解答:解:图中线段有:线段AB、线段AC、线段B C,共三条.故选C.点评:记住线段是直线上两点及其之间的部分是解题的关键.5下列语句正确的是()A.画直线AB=10厘米 B.画直线l的垂直平分线C.画射线OB=3厘米D.延长线段AB到点C,使得BC=AB考点:直线、射线、线段.分析:本题较简单,要熟知直线、射线、线段、定义及性质即可解答.解答:解:A、直线无限长;B、直线没有中点,无法画垂直平分线;C、射线无限长;D、延长线段AB到点C,使得BC=AB,正确.故本题选D.点评:直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点.射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.6.有三个点A,B,C,过其中每两个点画直线,可以画出直线()A.1条B.2条C.1条或3条D.无法确定考点:直线、射线、线段.分析:此题考查直线的基本性质:两点确定一条直线.解答:解:∵三点在一条直线上能画一条直线,三点不在一条直线上能画三条直线;故选C.点评:注意对题目中已知条件的不同情况的分析.7.要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()A.两点之间,线段最短 B.两点确定一条直线C.线段只有一个中点 D.两条直线相交,只有一个交点考点:直线的性质:两点确定一条直线.分析:根据概念利用排除法求解.解答:解:经过两个不同的点只能确定一条直线.故选B.点评:本题是两点确定一条直线在生活中的应用,数学与生活实际与数学相结合是数学的一大特点.8.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚考点:直线的性质:两点确定一条直线.分析:根据直线的性质,两点确定一条直线解答.解答:解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.点评:本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B. C. D.考点:线段的性质:两点之间线段最短;几何体的展开图.专题:压轴题;动点型.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM 上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.点评:本题考核立意相对较新,考核了学生的空间想象能力.二.填空题(共6小题)10.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.11.如图,从A到B有多条道路,人们往往走中间的直路,而不会走其他的曲折的路,这是因为两点之间线段最短.考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意从A到B,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:如果从A到B,沿直线行走,这样A、B两点处于同一条线段上,两点之间线段最短.点评:本题主要考查两点之间线段最短.12.要把木条固定在墙上至少需要钉 2 颗钉子,根据是两点确定一条直线.考点:直线的性质:两点确定一条直线.专题:探究型.分析:根据公理“两点确定一条直线”,来解答即可.解答:解:∵两点确定一条直线,∴要把木条固定在墙上至少需要钉2颗钉子.故答案为:2,两点确定一条直线.点评:本题考查的是“两点确定一条直线”在实际生活中的应用,此类题目有利用于培养同学们学以致用的思维习惯.13在同一平面内,三条直线两两相交,最多有3个交点,那么4条直线两两相交,最多有 6 个交点,8条直线两两相交,最多有28 个交点.考点:直线、射线、线段.专题:规律型.分析:可先画出三条、四条、五条直线相交,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.解答:解:4条直线相交最多有6个交点,8条直线两两相交,最多有=×8×7=28.故答案为:28.点评:此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊项一般猜想的方法.14.一条直线上有若干个点,以任意两点为端点可以确定一条线段,线段的条数与点的个数之间的对应关系如下表所示.请你探究表内数据间的关系,根据发现的规律,则表中n= 21 .点的个数 2 3 4 5 6 7线段的条数 1 3 6 10 15 n考点:直线、射线、线段.专题:压轴题;规律型.分析:根据表中数据,寻找规律,列出公式解答.n个m条2 13 1+24 1+2+3…n m=1+…+(n﹣1)=7个点把线段AB共分成=21条.点评:本题体现了“具体﹣﹣﹣抽象﹣﹣﹣﹣具体”的思维探索过程,探索规律、运用规律,有利于培养学生健全的思维能力.15.往返于甲、乙两地的火车中途要停靠三个站,则有10 种不同的票价(来回票价一样),需准备20 种车票.考点:直线、射线、线段.专题:应用题;压轴题.分析:先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.解答:解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;有多少种车票是要考虑顺序的,则有10×2=20.点评:主要考查运用数学知识解决生活中的问题;需要掌握正确数线段的方法.三.解答题(共7小题)16.(1)如图①当线段AB上标出1个点时(A、B除外),图中共有 3 个不同的线段;(2)如图②当线段AB上标出2个点时(A、B除外),图中共有 6 个不同的线段;(3)如图③当线段AB上标出3个点时(A、B除外),图中共有10 个不同的线段;(4)如图④当线段AB上标出n个点时(A、B除外),图中共有多少条不同的线段?(用含有n的式子表示)考点:直线、射线、线段.专题:规律型.分析:根据任何两点之间都有一条线段,根据点的个数,可得线段的条数.解答:解:(1)如图①当线段AB上标出1个点时(A、B除外),图中共有 3个不同的线段;(2)如图②当线段AB上标出2个点时(A、B除外),图中共有 6个不同的线段;(3)如图③当线段AB上标出3个点时(A、B除外),图中共有 10个不同的线段;(4)如图④当线段AB上标出n个点时(A、B除外),图中共有条不同的线段,点评:本题考查了直线、射线、线段,每一个点与它本身之外的点都能组成一条线段.17.如图,平面内有4个点A、B、C、D,按下列语句在指定位置上画出图形.(1)画直线AB;(2)画线段AC;(3)画射线DC.考点:直线、射线、线段.分析:利用作射线,直线和线段的方法作图.解答:解:作图如下:点评:本题主要考查了作图﹣J基本作图,解决此类题目的关键是熟悉基本几何图形的性质.18.已知线段AB,(1)作图:延长线段AB到C,使得AC=3AB;(2)当AB的长等于2cm时,求线段BC的长.考点:直线、射线、线段.分析:(1)画射线AP,在射线AP上顺次截取AC=3AB即可.(2)由图可知BC=2AB,然后将AB=2代入即可.解答:解:(1)画射线AP,在射线AP上顺次截取AC=3AB,(2)由图可知:BC=2AB,当AB=2cm时,BC=2AB=2×2=4cm.点评:考查基本作图;掌握在射线上作出所求线段为已知线段的整数倍的方法是解决本题的关键.19.(1)如图(1)所示,点D在直线EF 上,或直线EF 经过点D.(2)如图(2),直线 a , b 交于点O.(3)如图(3),经过点M三条直线 a , b , c .(4)如图(4)所示,直线L与直线 a , b ,分别交于 A , B 两点.考点:直线、射线、线段.分析:根据线段、直线的定义,线段有限长,有两个端点;直线无限长,没有端点进而进行判断即可.解答:解:(1)点D在图(1)所示,点D在直线EF上,或直线EF经过点D.(2)如图(2),直线 a,b交于点O.(3)如图(3),经过点M三条直线a,b,c.(4)如图(4)所示,直线L与直线a,b,分别交于A,B两点.点评:本题考查了线段和直线的定义,明确直线和线段定义并找出图中的直线和线段是解题的关键.20.如图所示,工厂A与工厂B想在公路m旁修建一座共用的仓库O,并且要求O到A与O到B的距离之和最短,请你在m上确定仓库应修建的O点位置,同时说明你选择该点的理由.考点:线段的性质:两点之间线段最短.专题:常规题型.分析:根据两点之间线段最短,连接AB与直线m的交点即为所求.解答:解:如图,连接AB交直线m于点O,则O点即为所求的点.理由如下:根据连接两点的所有线中,线段最短,∴OA+OB最短.点评:本题主要考查了线段的性质,熟记两点之间线段最短并灵活运用是解题的关键.21.平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图所示),你能说明理由吗?考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使他在AC与BD的交点处.解答:解:如答图所示,连接AC,BD,它们的交点是H,点H就是修建水池的位置,这一点到A,B,C,D 四点的距离之和最小.点评:本题考查线段的性质:两点之间,线段距离最短.要求学生能灵活应用所学的知识,解决实际问题.22.把一根本条钉在墙上,在只钉了一根钉子的时候,这根木条还可以转动,为什么?如果在这根木条的某个地方再钉上一根钉子.这根木条就不会动了,这是为什么?你能把它画出来吗?考点:直线的性质:两点确定一条直线.分析:根据过一点可以作无数条直线,两点确定一条直线解答.解答:解:如图;把一根本条钉在墙上,在只钉了一根钉子的时候,这根木条还可以转动,是因为过一点可以作无数条直线;如果在这根木条的某个地方再钉上一根钉子,这根木条就不会动了,是因为两点确定一条直线.点评:本题考查了直线的性质,熟记两点确定一条直线是解题的关键.。
相交线 华东师大版数学七年级上册素养提升卷(含解析)
第5章相交线与平行线单元大概念素养目标51相交线基础过关全练知识点1对顶角及其性质1.【教材变式·P162T1】(2022海南儋州鑫源中学期末)下列选项中,∠1和∠2是对顶角的是()2.(2022河南南阳九中开学测试)如图,已知直线AB,CD,EF相交于点O,∠1=95°,∠2=53°,则∠BOE的度数为()A.28°B.32°C.42°D.52°3.【新考法】(2023河南南阳宛城期末)为了测量古塔的外墙底角∠AOB的度数,王明设计了如下方案:作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是.4.如图所示的是明明自制的对顶角“小仪器”示意图.(1)将直角三角尺ABC的AC边延长且使AC固定;(2)将另一直角三角尺CDE的直角顶点与三角尺ABC的直角顶点重合;(3)延长DC,则∠PCD与∠ACF就是一对对顶角,已知∠1=30°,则∠ACF的度数是多少?知识点2垂线5.(2022甘肃天水麦积期末)如图,点C到直线AB的距离是()A.线段CA的长B.线段CB的长C.线段AD的长D.线段CD的长6.【跨学科·体育】(2023吉林长春第二实验中学期末)如图所示的是某同学在体育课上跳远后留下的脚印,线段AB的长即为他的跳远距离,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.经过一点有且只有一条直线与已知直线垂直7.(2023河北张家口万全期末)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,∠BOD=50°,则∠COE=()A.30°B.50°C.120°D.140°8.(2023吉林长春第二实验中学期末)如图,点O在直线AB上,OC⊥OD,若∠AOC=120°38',则∠BOD的大小为.9.【数形结合思想】(2023吉林长春绿园期末)如图,已知直线AB、CD相交于点O,EO⊥CD.(1)若∠AOC=34°,求∠BOE的度数;(2)若∠BOD∶∠BOC=1∶4,直接写出∠AOE= °.知识点3同位角、内错角和同旁内角10.(2022河北唐山一模)如图,与∠α互为内错角的是()A.∠1B.∠2C.∠3D.∠411.(2022广西贺州中考)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2B.∠1与∠3C.∠2与∠3D.∠3与∠412.(2022吉林长春期末)如图,下列结论中错误的是()A.∠1与∠2是同旁内角B.∠1与∠6是内错角C.∠2与∠5是内错角D.∠3与∠5是同位角13.(2023吉林长春八十七中期末)如图,直线a、b被直线c所截,则∠1与是内错角.14.【新独家原创】如图所示.(1)∠A和∠5可以看成是直线、被直线所截得的角;(2)∠4和∠5可以看成是直线、被直线所截得的角;(3)∠2和∠3可以看成是直线、被直线所截得的角;(4)∠1和∠3可以看成是直线、被直线所截得的角.15.【教材变式·P168T2】分别指出图①②中的同位角、内错角、同旁内角.能力提升全练16.(2022青海中考,6,★☆☆)数学课上老师用双手形象地表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角17.(2022江苏苏州中考,5,★☆☆)如图,直线AB与CD相交于点O,∠AOC=75°,∠1=25°,则∠2的度数是()A.25°B.30°C.40°D.50°18.【易错题】(2023河南洛阳伊川期末,9,★☆☆)如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列语句不正确的是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离19.(2022吉林长春绿园期末,8,★☆☆)如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°,则∠2的度数是()A.37.5°B.75°C.50°D.65°20.(2023吉林省第二实验学校期末,13,★★☆)如图,直线AB、EF相交于点D,∠ADC=90°.若∠ADE与∠ADC的度数之比为1∶3,则∠CDF的度数是.21.(2023吉林长春八十七中期末,21,★★☆)如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,证明:ON⊥CD;(2)若∠1=1∠BOC,求∠BOD的度数.4素养探究全练22.【规律探究题】【推理能力】(2021黑龙江大庆中考)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有个交点.23.【规律探究题】【推理能力】观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角;(2)如图b,图中共有对对顶角;(3)如图c,图中共有对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成对对顶角;(5)若有2 000条直线相交于一点,则可形成多少对对顶角?答案全解全析基础过关全练1.C 根据对顶角的定义知只有C选项符合,故选C.2.B∵∠1+∠COE+∠BOE=180°,∠COE=∠2=53°,∴∠BOE=180°-95°-53°=32°,故选B.3.答案对顶角相等解析本题以测量古塔的外墙底角为背景,考查对顶角的性质.作AO、BO的延长线OD、OC,量出∠COD的度数,就得到了∠AOB的度数,王明这样做的依据是对顶角相等.故答案为对顶角相等.4.解析由题意可知∠PCD=90°-∠1,所以∠PCD=90°-30°=60°,因为∠ACF=∠PCD,所以∠ACF=60°.5.D 因为CD⊥AB,所以点C到直线AB的距离是线段CD的长.故选D.6.C 解释这一现象的数学知识是“垂线段最短”,故选C.7.D ∵∠BOD=50°,∴∠AOC=50°,∵EO⊥AB,∴∠COE=90°+50°=140°.故选D.8.答案30°38'解析∵∠AOC+∠BOC=180°,∠AOC=120°38',∴∠BOC=180°-120°38'=59°22',又∵OC⊥OD,∴∠COD=90°,∴∠BOD=∠COD-∠BOC=90°-59°22'=30°38'.故答案为30°38'.9.解析(1)∵EO⊥CD,∴∠EOC=90°,∵∠AOC=34°,∴∠BOE=180°-∠AOC-∠COE=56°.(2)126.提示:∵∠BOD∶∠BOC=1∶4,∠BOD+∠BOC=180°,∴∠BOD=180°×1=36°,∴∠AOC=∠1+4BOD=36°,∵∠COE=90°,∴∠AOE=∠AOC+∠COE=126°.10.A 与∠α互为内错角的是∠1,故选A.11.B A.∠1和∠2是对顶角,故A错误;B.∠1和∠3是同位角,故B正确;C.∠2和∠3是内错角,故C错误;D.∠3和∠4是邻补角,故D错误.故选B.12.C A.∠1与∠2是同旁内角,正确,不合题意;B.∠1与∠6是内错角,正确,不合题意;C.∠2与∠5不是内错角,故错误,符合题意;D.∠3与∠5是同位角,正确,不合题意.故选C.13.答案∠5解析直线a、b被直线c所截,∠1与∠5是内错角.故答案为∠5.14.答案(1)EF;AB;AC;同位(2)AC;CD;EF;同旁内(3)EF;AB;CD;内错(4)EF;AB;CD;同旁内15.解析题图①中的同位角有∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有∠3与∠6,∠4与∠5;同旁内角有∠3与∠5,∠4与∠6.题图②中的同位角有∠1与∠3,∠2与∠4;没有内错角;同旁内角有∠3与∠2.能力提升全练16.D 根据同位角、内错角、同旁内角的概念,可知从左至右依次是同位角、内错角、同旁内角.故选D.17.D∵∠AOC=75°,∴∠BOD=75°.∵∠1=25°,∠1+∠2=∠BOD,∴∠2=∠BOD-∠1=75°-25°=50°.故选D.18.C 本题易因对点到直线的距离的理解不正确而出错.A.根据点到直线的距离的定义知此选项正确,不符合题意;B.根据垂线段最短可知此选项正确,不符合题意;C.线段AP的长是点A到直线PC的距离,故此选项错误,符合题意;D.根据点到直线的距离的定义知此选项正确,不符合题意.故选C.19.D因为∠3=130°,所以∠1=180°-130°=50°,因为∠2-∠1=15°,所以∠2=∠1+15°=50°+15°=65°,故选D.20.答案120°解析∵∠ADC=90°,∠ADE与∠ADC的度数之比为1∶3,∴∠ADE=90°÷3=30°,∵直线AB、EF相交于点D,∴∠BDF=∠ADE=30°,∵∠BDC=180°-∠ADC=90°,∴∠CDF=∠BDC+∠BDF=90°+30°=120°.故答案为120°.21.解析(1)证明:∵OM⊥AB,∴∠AOM=90°,∴∠1+∠AOC=90°,∵∠1=∠2,∴∠2+∠AOC=90°,即∠CON=90°,∴ON⊥CD.(2)∵OM⊥AB,∴∠BOM=90°,∠BOC,∵∠1=14∴∠BOM=3∠1,∴∠1=30°,∴∠BOD=90°-30°=60°.素养探究全练22.答案190解析2条直线相交有1个交点,3条直线两两相交最多有1+2=3个交点,4条直线两两相交最多有1+2+3=6个交点,……,n条直线两两相交最多有n(n−1)个交点,所以20条2=190个交点.故答案为190.直线两两相交最多有20×19223.解析(1)2.(2)6.(3)12.(4)n(n-1).(5)2 000×(2 000-1)=3 998 000,所以若有2 000条直线相交于一点,则可形成3 998 000对对顶角.。
2024年秋季学期新华师大版七年级上册数学课件 第4章 相交线和平行线 4.1 相交线 2.垂线
易, 仅供下载者本人使用,禁止
转载!
A.1
B.2
C.3
D.4
4.在体育课上,某同学跳远的情况如图所示,直线l表示 起跳线,经过测量,PB=3.3米,PC=3.1米,PD=3.5米, 则该同学的实际跳远成绩是_3_._1__米.
5.如图,已知直线AB、CD都经过O点,OE为射线,若∠1=35°,
∠2=55°,则OE与AB的位置关系是垂直 .
震动,比惩罚更强烈。每当想起叶圣陶先生的话:你这糊涂的先生,在你教鞭下有瓦特,在你的冷眼里有牛顿,在你的讥笑里 有爱迪生。身为教师,就更加感受到自己职责的神圣和一言一行的重要。
善待每一个学生,做学生喜欢的老师,师生双方才会有愉快的情感体验。一个教师,只有当他受到学生喜爱时,才能真正 实现自己的最大价值。 义务教育课程方案和课程标准(2022年版)简介 新课标的全名叫做《义务教育课程方案和课程标准(2022 年版)》,文件包括义务教育课程方案和16个课程标准(2022 年版), 不仅有语文数学等主要科目,连劳动、道德这些,也有非常详细的课程标准。 现行义务教育课程标准,是2011年制定的,离现在已经十多年了;而课程方案最早,要追溯到2001年,已经二十多年没更新过 了,很多内容,确实需要根据现实情况更新。 所以这次新标准的实施,首先是对老课标的一次升级完善。另外,在双减的大背景下颁布,也能体现出,国家对未来教育改革 方向的规划。 课程方案课程标准是啥?课程方案是对某一学科课程的总体设计,或者说,是对教学过程的计划安排。简单说,每个年级上什 么课,每周上几节,老师上课怎么讲,课程方案就是依据。 课程标准是规定某一学科的课程性质、课程目标、内容目标、实施建议的教学指导性文件,也就是说,它规定了,老师上课都 要讲什么内容。 课程方案和课程标准,就像是一面旗帜,学校里所有具体的课程设计,都要朝它无限靠近。所以,这份文件的出台,其实给学 校教育定了一个总基调,决定了我们孩子成长的走向。 各门课程基于培养目标,将党的教育方针具体化细化为学生核心素养发展要求,明确本课程应着力培养的正确价值观、必备品 格和关键能力。进一步优化了课程设置,九年一体化设计,注重幼小衔接、小学初中衔接,独立设置劳动课程。与时俱进,更 新课程内容,改进课程内容组织与呈现形式,注重学科内知识关联、学科间关联。结合课程内容,依据核心素养发展水平,提 出学业质量标准,引导和帮助教师把握教学深度与广度。通过增加学业要求、教学提示、评价案例等,增强了指导性。 教育部将组织宣传解读、培训等工作,指导地方和学校细化课程实施要求,部署教材修订工作,启动一批课程改革项目,推动 新修订的义务教育课程有效落实。
华师大版数学七年级上册《 第4章 图形的初步认识 》教学设计
华师大版数学七年级上册《第4章图形的初步认识》教学设计一. 教材分析华东师范大学版数学七年级上册《第4章图形的初步认识》是学生在小学阶段对图形学习的基础上,进一步深化对图形性质和图形变换的理解。
本章主要内容有:图形的平移、旋转,视图,以及相交线和平行线。
这些内容在日常生活和进一步学习数学中都有广泛的应用。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们可以通过观察、操作、思考来进一步理解图形的性质和图形变换。
但同时,学生的空间想象力还需要进一步培养,他们对于一些抽象的图形变换的理解可能还存在一定的困难。
三. 教学目标1.了解平移、旋转的概念,能进行简单的图形变换。
2.能通过观察、操作、思考,进一步理解图形的性质。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:图形平移、旋转的性质,视图的概念。
2.教学难点:图形变换的理解和应用,空间想象能力的培养。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考来理解图形的性质和图形变换。
2.利用多媒体辅助教学,提供丰富的图形资源,帮助学生直观地理解图形变换。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.图形素材。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些生活中的图形变换,如旋转门、滑滑梯等,引导学生思考:这些现象的本质是什么?它们有什么共同的特点?2.呈现(10分钟)介绍平移、旋转的概念,并通过多媒体展示一些图形的平移、旋转实例,让学生直观地理解这两个概念。
3.操练(10分钟)让学生通过实际操作,尝试进行图形的平移、旋转,并观察、分析平移、旋转前后的图形有什么变化,进一步理解平移、旋转的性质。
4.巩固(10分钟)通过一些练习题,让学生运用所学的平移、旋转知识,解决实际问题,巩固所学内容。
5.拓展(5分钟)引导学生思考:除了平移、旋转,还有哪些图形变换?它们之间有什么联系和区别?6.小结(5分钟)对本节课的主要内容进行小结,强调平移、旋转的性质和应用。
华师版七年级数学上册第4章 相交线和平行线小结与复习
知识回顾
4. 同位角、同旁内角、内错角
角的 名称
位置特征
基本 结构 图形 特征
相同点
共同特征
同位 截线:同侧 1 角 被截线:同旁 2
同旁 截线:同侧 内角 被截线:之间
内错 截线:两侧 角 被截线:之间
12
F 都在截 线同侧 都没有公
U 都在 共顶点
被截线 Z 之间
知识回顾
5. 平行线 在同一平面内不相交的两条直线叫做平行线.
第4章 相交线和平行线
华东师大版
知识梳理
两条 直线 相交
相 交 线
邻补角
邻补角互补
对顶角
对顶角相等
基本事实:同一平面内,过一点有且只有一 条直线与已知直线垂直
垂直平分线:垂直并且平分一条线段的直线 垂 线 垂线段的性质:垂线段最短
点到直线的距离:从直线外一点到这 条直线的垂线段的长度
两条直线被第 三条直线所截
∴ ∠DOG=∠DOF-∠FOG=90°-35°=55°.
能力提升
2.如图,AD 为三角形 ABC 的高,能表示点到直线
(线段)的距离的线段B有( A )到 BC 的距离 A
A. 2条
B. 3条
C. 4条
D. 5条
B
B 到 AD 的距离
DC
C 到 AD 的距离
能力提升
3. 如图,直线 AB,CD 被两条直线所截,若∠1=64°,
2. 如图,已知∠DAC=∠ACB,∠D+∠DFE=180°,
求证:EF//BC.
DF C
证明:∵∠DAC= ∠ACB (已知),
∴ AD//BC(内错角相等,两直线平行). ∵ ∠D+∠DFE=180°(已知),
第4章 图形的初步认识 华东师大版七年级上册数学单元测试(含答案)
第4章图形的初步认识(单元测试)华东师大新版七年级上册数学一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:....=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠.如图所示,图(表面上),请根据要求回答问题:,求的值;运动秒后都停止运动,此时恰有=BD第4章图形的初步认识(单元测试)华东师大新版七年级上册数学参考答案与试题解析一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'【答案】A【解答】解:钟表12个数字,每相邻两个数字之间的夹角为30°,每相邻两个数字之间有5个格,每格之间的度数为6°,时钟的时针由4点转到5点45分,时针转过的5+5×格,时针转过的度数=6°×(5+5×)=52°30′.故选:A.2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°【答案】C【解答】解:∵OC平分∠DOB,∠DOC=65°15',∴∠BOD=2∠DOC=130°30′,∴∠AOD=180°﹣130°30′=49°30′,∴∠DOE=∠AOD+∠AOE=49°30′+30°30′=80°.故选:C.4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示【答案】B【解答】解:A、∠DAO可用∠DAC表示,本选项说法正确;B、∠COB不能用∠O表示,本选项说法错误;C、∠2也可用∠OBC表示,本选项说法正确;D、∠CDB也可用∠1表示,本选项说法正确;故选:B.5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是( )A.B.C.D.【答案】B【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.6.如图是由几个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.俯视图面积最小C.左视图面积和正视图面积相等D.俯视图面积和正视图面积相等【答案】D【解答】解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠=∠=∠===×【答案】(1(2)图形见解答.【解答】解:的距离为×∴△ABM的面积=×10×5=25.或△ABM′的面积=×10×21=105.19.如图甲,点O是线段AB上一点,C、D两点分别从O、B同时出发,以2cm/s、4cm/s的速度在直线AB上运动,点C在线段OA之间,点D在线段OB之间.(1)设C、D两点同时沿直线AB向左运动t秒时,AC:OD=1:2,求的值;(2)在(1)的条件下,若C、D运动秒后都停止运动,此时恰有OD﹣AC=BD,求CD的长;(3)在(2)的条件下,将线段CD在线段AB上左右滑动如图乙(点C在OA之间,点D在OB 之间),若M、N分别为AC、BD的中点,试说明线段MN的长度总不发生变化.【答案】见试题解答内容【解答】解:(1)设AC=x,则OD=2x,又∵OC=2t,DB=4t∴OA=x+2t,OB=2x+4t,∴;(2)设AC=x,OD=2x,又OC=×2=5(cm),BD=×4=10(cm),由OD﹣AC=BD,得2x﹣x=×10,x=5,OD=2x=2×5=10(cm),=AC=×=BC=×=acm=AC=BC=AC+BC=AB=acm=AC=BC=AC﹣BC=()=bcm(2)数轴上表示a和﹣5的两点A和B之间的距离是 |a+5| ;(3)若数轴上三个有理数a、b、c满足|a﹣b|=1,|a﹣c|=7,则|b﹣c|的值为 6或8 ;(4)当a= 1 时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是 7 .【答案】见试题解答内容【解答】解:(1)2﹣(﹣3)=5,故答案为:5;(2)|AB|=|a﹣(﹣5)|=|a+5|,故答案为:|a+5|;(3)当a>b>c时,|b﹣c|=|a﹣c|﹣|a﹣b|=7﹣1=6;当b>a>c时,|b﹣c|=|a﹣c|+|a﹣b|=7+1=8;C点在A,B两点之间时不符合题意,综上|b﹣c|的值为6或8,故答案为:6或8;(4)∵当﹣3≤a≤4时,|a+3|+|a﹣4|的最小值为7,∴只需要|a﹣1|的值最小即可,此时a=1,|a﹣1|=0,∴当a=1时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是7.故答案为:1;7.。
新华师大版七年级上册数学教学课件 第4章 相交线与平行线 4.2 平行线 4.2.2 平行线的判定
∴ ∠1=∠2(等量代换)
a
b
∴ a∥ b(内错角相等,两直线平行)
我们用符号 l “∵”“∴”
分别表示“因 为”“所以”
演绎推理是一种从一般到特殊的推理,借助于一些公认的基本事实 及由此推导得出结论,通过判断,说明最后结论的正确.
例2 如图,在四边形ABCD中,已知∠B=60°,∠C=120°, AB与CD平行吗?AD与BC平行吗?
1
A
D
(2)∵∠D =∠1(已知)
∴AB∥CD( 内错角相等,两直线平行 ) B
C
2.根据题图,在下列解答中,填空: 【教材P188 练习 第2题】 (1)∵∠BAD+∠ABC=180°(已知)
∴( AD)∥( BC )(同旁内角互补,两直线平行)
(2)∵∠BCD+∠ABC=180°(已知)
∴( AB )∥( DC )(同旁内角互补,两直线平行)
∴ ∠1=∠2(角平分线定义). 又∵ ∠1= ∠3(已知),
D
1 2
A
3C B
∴ ∠2=∠3(等量代换),
∴ CD∥AB(内错角相等,两直线平行).
No Image
课堂小结
判定两条直线平行的方法
文字叙述 同位角相等,
两直线平行 内错角相等,
两直线平行
同旁内角
互补,
两直线平行
符号语言
图形
∵∠1=∠2 (已知), c
问题3 上节课我们学了平行线的哪些内容?
1.经过直线外一点,有且只有一条直线与已知直线平行. 2.如果两条直线都与第三条直线平行,那么这两条直线互相平行.
No Image
思考一下
根据平行线的定义,如果同一平面 内的两条直线不相交,就可以判断 这两条直线平行. 由于直线无限延伸,检验它们是否 相交有困难,所以难以直接根据两 条直线是否相交来判定是否平行, 那么有没有其他判定方法呢?
最新华东师大版七年级数学上册《相交线与平行线》单元测试题解析版
《第5章相交线与平行线》一、选择题1.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离2.在一个平面内,任意四条直线相交,交点的个数最多有()A.7个B.6个C.5个D.4个3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10° B.20° C.25° D.30°4.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角5.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等7.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°8.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A.30° B.45° C.60° D.75°9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60° B.50° C.40° D.30°10.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个二、填空题11.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.12.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为.13.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.14.如图,与∠1构成同位角的是,与∠2构成内错角的是.15.如图,已知∠1=∠2,∠B=40°,则∠3= .16.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.17.上午九点时分针与时针互相垂直,再经过分钟后分针与时针第一次成一条直线.18.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于度.三、解答题(共46分)19.)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,求∠ADE的度数.20.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD的度数.你能求出∠ECD的度数吗?如果能,请写出理由.21.如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量请你写出两种不同的测量方法,并说明几何道理.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.25.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD 于G,求∠1的度数.《第5章相交线与平行线》参考答案与试题解析一、选择题1.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离【考点】点到直线的距离.【分析】利用点到直线的距离的定义、垂线段最短分析.【解答】解:A、根据点到直线的距离的定义:即点到这一直线的垂线段的长度.故此选项正确;B、根据垂线段最短可知此选项正确;C、线段AP的长是点A到直线PC的距离,故选项错误;D、根据点到直线的距离即点到这一直线的垂线段的长度.故此选项正确.故选C.【点评】本题主要考查了点到直线的距离的定义,及垂线段最短的性质.2.在一个平面内,任意四条直线相交,交点的个数最多有()A.7个B.6个C.5个D.4个【考点】相交线.【专题】分类讨论.【分析】在平面上画出4条直线,当这4条直线经过同一个点时,有1个交点;当3条直线经过同一个点,第4条不经过该点时,有4个交点;当4条直线不经过同一点时,有6个交点.故可得出答案.【解答】解:如图所示:①当4条直线经过同一个点时,有1个交点;②当3条直线经过同一个点,第4条不经过该点时,有4个交点;③当4条直线不经过同一点时,有6个交点.综上所述,4条直线相交最多有6个交点.故选B.【点评】此题在相交线的基础上,着重培养学生的观察、实验能力.3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10° B.20° C.25° D.30°【考点】平行线的性质.【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【解答】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°,∵GH∥EF,∴∠2=∠AEC=25°,故选C.【点评】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.4.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.5.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°【考点】平行线的性质;垂线.【分析】如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.6.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【考点】作图—基本作图;平行线的判定.【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.7.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115°C.125°D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.8.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是()A.30° B.45° C.60° D.75°【考点】平行线的性质.【专题】几何图形问题.【分析】由邻补角的定义即可求得∠BAD的度数,又由AB∥CD,即可求得∠ADC的度数,则问题得解.【解答】解:∵∠EAB=45°,∴∠BAD=180°﹣∠EAB=180°﹣45°=135°,∵AB∥CD,∴∠ADC=∠BAD=135°,∴∠FDC=180°﹣∠ADC=45°.故选B.【点评】此题考查了平行线的性质.注意两直线平行,内错角相等.9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60° B.50° C.40° D.30°【考点】平行线的性质;垂线.【分析】根据直角三角形的两锐角互余,求出∠D=40°,再根据平行线的性质即可解答.【解答】解:如图所示,∵FE⊥BD,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.【点评】本题主要考查平行线的性质、垂线及直角三角形的性质,解决此题时,根据直角三角形的性质求出∠D的度数是解决此题的关键.10.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个【考点】对顶角、邻补角;余角和补角.【分析】根据定义及定理分别判断各命题,即可得出答案.【解答】解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选A.【点评】本题考查对顶角及邻补角的知识,难度不大,注意熟练掌握各定义定理.二、填空题11.已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.【考点】平行线的判定;垂线.【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.12.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为15°.【考点】平行线的性质.【分析】根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=45°﹣∠2计算即可得解.【解答】解:∵∠A=60°,∠F=45°,∴∠1=90°﹣60°=30°,∠DEF=90°﹣45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF﹣∠2=45°﹣30°=15°.故答案为:15°.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.13.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.【考点】平行线的性质;直角三角形的性质.【专题】探究型.【分析】先根据平角的定义求出∠EDC的度数,再由平行线的性质得出∠C的度数,根据三角形内角和定理即可求出∠B的度数.【解答】解:∵∠1=155°,∴∠EDC=180°﹣155°=25°,∵DE∥BC,∴∠C=∠EDC=25°,∵△ABC中,∠A=90°,∠C=25°,∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.如图,与∠1构成同位角的是∠B ,与∠2构成内错角的是∠BDE .【考点】同位角、内错角、同旁内角.【分析】两个角分别在被截线的同一方,并且都在截线的同侧,具有这种位置关系的两个角叫做同位角,与∠1构成同位角的是∠B;两个角都在被截线之间,并且都在截线的两侧,具有这种位置关系的两个角,叫做内错角,与∠2构成内错角的是∠BDE.【解答】解;根据同位角、内错角的定义,与∠1构成同位角的是∠B,与∠2构成内错角的是∠BDE.【点评】正确记忆同位角以及内错角的定义是解决本题的关键.15.如图,已知∠1=∠2,∠B=40°,则∠3= 40°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.16.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【考点】平行线的性质.【分析】延长DE交AB于F,根据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,根据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.17.上午九点时分针与时针互相垂直,再经过16分钟后分针与时针第一次成一条直线.【考点】钟面角.【专题】计算题.【分析】9点后分针与时针第一次成一条直线,则分针再3与4之间,时针在9与10之间,设9点时x分时,分针与时针第一次成一条直线,根据分针每分钟转动6°,时针每分钟转动0.5°,则x•6°﹣3×30°=x•0.5°,然后解方程即可.【解答】解:9点时x分时,分针与时针第一次成一条直线,根据题意得x•6°﹣3×30°=x•0.5°,解得x=16,即9时16分钟时分针与时针第一次成一条直线.故答案为.【点评】本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转动6°,时针每分钟转动0.5°.18.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于30 度.【考点】平行线的性质.【分析】根据平行线的性质得到∠DNM=∠BME=75°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故答案为:30.【点评】本题考查了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的关键.三、解答题(共46分)19.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,求∠ADE的度数.【考点】平行线的性质;三角形内角和定理.【分析】先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,根据平行线的性质即可得出结论.【解答】解:∵在△ABC中,∠B=46°,∠C=54°,∴∠BAC=180°﹣46°﹣54°=80°.∵AD平分∠BAC,∴∠BAD=∠BAC=40°.∵DE∥AB,∴∠ADE=∠BAD=40°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.20.(8分)小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD的度数.你能求出∠ECD的度数吗?如果能,请写出理由.【考点】平行线的性质.【分析】首先过点E作EF∥AB,又由AB∥CD,可得EF∥AB∥CD,然后由两直线平行,内错角相等,求得∠FEA的度数与∠C=∠FEC,又由∠AEC=60°,即可求得∠C的度数.【解答】解:∠ECD=15°.理由:如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF=45°,∠ECD=∠FEC,∴∠CEF=∠AEC﹣∠AEF=60°﹣45°=15°,∴∠ECD=15°.【点评】此题主要考查了平行线的性质,注意掌握两直线平行,内错角相等与辅助线的添加方法是解此题的关键.21.如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量请你写出两种不同的测量方法,并说明几何道理.【考点】对顶角、邻补角.【专题】应用题.【分析】根据平角的定义以及对顶角相等的性质进行设计方案.【解答】解:方法一:延长AO到C,测量∠BOC,利用邻补角的数量关系求∠AOB.∵∠AOB=180°﹣∠BOC.方法二:延长AO到C,延长BO到D,测量∠DOC,利用对顶角相等求∠AOB.∴∠AOB=∠DOC.【点评】能够运用数学知识解决生活中的问题,提高数学知识的应用能力.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?【考点】同位角、内错角、同旁内角.【分析】根据同位角的概念作答.准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【解答】解:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.【点评】同位角,即位置相同,两个角都在第三条直线的同旁,同在被截两条直线的上方或下方.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.【考点】平行线的判定;角平分线的定义;三角形内角和定理.【专题】证明题.【分析】(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.【解答】(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.【点评】此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.25.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD 于G,求∠1的度数.【考点】平行线的性质;角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义,两直线平行内错角相等的性质解答即可.【解答】解:∵∠EMB=50°,∴∠BMF=180°﹣∠EMB=130°.∵MG平分∠BMF,∴∠BMG=∠BMF=65°,∵AB∥CD,∴∠1=∠BMG=65°.【点评】主要考查了角平分线的定义及平行线的性质,比较简单.。
华师大版七上4.7《相交线》(垂线)word教案1
4.7.1 垂线教材分析《4.71垂线》选自义务教育课程标准实验教材《数学》(华东师大版)七年级(上)第四章相交线。
垂线是平面几何所要研究的基本内容之一,也是第四章的主要内容。
本节课是在学习了点、线、角的基础上,继续认识线线之间的相交关系,主要是学习垂线的概念、画法和性质等基础知识,学好这一节内容,为进一步学习空间的垂直关系、三角形的高线、四边形、圆等知识打下良好的基础。
其中垂线段最短这一性质在实际中很大的用途,可运用到求物体间的最短距离等方面中。
在学习本节的过程中,使学生经历观察、操作、推理、想象等探索过程,也蕴含着从一般到特殊的认识规律,对培养学生的思维能力具有重要的作用。
学生分析学生通过点、线、角等几何知识学习,已初步具有一些几何的思维能力,对于通过画一画、量一量、想一想、做一做等参与方式来探究知识很感兴趣,也不同程度地享受到了数学知识来源于实践操作的成功体验,从而愿意在教师的指导下主动与同学探索、发现、归纳数学知识。
设计理念针对教材内容和学生实际,通过学生熟知的生活实例从而引入课题,激发学生的探索欲望,采用探索式学习的教学模式,以培养学生的探索能力和创新精神为重心,以师生互动为特点,以相互活动为依托,在全方位培养学生能力的思想指导下,通过学生自己动手,又借助于多媒体的直观演示等,从直观的感性认识发现抽象的概念,使学生体验探索与创造的乐趣,学会与他人合作、与人交流。
在教学中采取让学生动手实践、大胆猜测的方式,并借助于几何画板的演示,证实学生探索出来的结论。
在探索垂线的性质时,采取小组学习的形式,以增强学生的合作互助,符合新课程标准的理念。
教学目标一、知识和技能目标1.在生动有趣的情境中,通过画、量、折等活动,进一步丰富学生对两条直线互相垂直的认识,掌握有关的符合表示。
2.理解垂直的概念;通过操作活动,探索有关垂直的性质并学会简单的运用。
3.会借助三角尺、量角器、方格纸画垂线。
二、过程与方法目标1.在探索垂线性质的过程中,培养学生观察理解能力、分析归纳的能力、几何语言能力、画图能力、抽象思维能力。
华东师大初中七年级上册数学《相交线与平行线》全章复习与巩固(提高)知识讲解[精选]
《相交线与平行线》全章复习与巩固(提高)知识讲解【学习目标】1.熟练掌握对顶角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2. 区别平行线的判定与性质,并能灵活运用;3. 了解平移的概念及性质.【知识网络】【要点梳理】要点一、相交线1.对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:(1)对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.(2)如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.(3)如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.(4)两直线相交形成的四个角中,每一个角的邻补角有两个,对顶角有一个.2.垂线及性质、距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作: AB ⊥CD,垂足为O.要点诠释:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P 到直线AB的距离是垂线段PO的长.要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.要点二、平行线1.平行线判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB 与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、图形的平移1.命题:判断一件事情的语句,叫做命题.每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.2.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:平移的性质:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、相交线1.(2015•凉山州一模)我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,…(1)10条直线交于一点,对顶角有对.(2)n(n≥2)条直线交于一点,对顶角有对.【答案与解析】解:(1)如图①两条直线交于一点,图中共有=2对对顶角;如图②三条直线交于一点,图中共有=6对对顶角;如图③四条直线交于一点,图中共有=12对对顶角;…;按这样的规律,10条直线交于一点,那么对顶角共有:=90,故答案为:90;(2)由(1)得:n(n≥2)条直线交于一点,对顶角有:=n(n﹣1).故答案为:n(n﹣1).【总结升华】此题主要考查了对顶角以及图形变化规律,本题是一个探索规律型的题目,解决时注意观察每对数之间的关系.这是中考中经常出现的问题.2.直线AB、CD相交于点O,OE⊥AB于点O,∠COE=40°,求∠BOD的度数. 【答案与解析】解:分两种情况.第一种:如图1,直线AB,CD相交后,∠BOD是锐角,∵OE⊥AB, ∴∠AOE=90°,即∠AOC+∠COE=90°.∵∠COE=40°, ∴∠AOC=50°.∵∠BOD=∠AOC ∴∠BOD=50°第二种:如图2,直线AB、CD相交后,∠BOD是钝角,∵OE⊥AB, ∴∠AOE=90°.∵∠COE=40°,∴∠AOC=90°+40°=130°,∴∠BOD=∠AOC=130°.【总计升华】本题属于无图题,首先应根据题意,画出图形,画图时要考虑两种情况:一种情况为∠BOD是锐角,第二种情况是∠BOD是钝角.此外关于两条直线相交,应想到邻补角、对顶角的定义及性质.举一反三:【变式】(2015•河北模拟)如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A.35°B.45°C.55°D.65°【答案】C.解:∵∠1=145°,∴∠2=180°﹣145°=35°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°.类型二、平行线的性质与判定3.如图所示,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.【思路点拨】这是初学几何时较为复杂的题目,通常是过“拐点”(拐角处的顶点)作平行线为辅助线,把一个大角分成两个角,分别与两个已知角建立起了联系.【答案与解析】解:过E点作EF∥AB,因为AB∥CD(已知),所以EF∥CD.所以∠4=∠D(两直线平行,内错角相等).又因为∠D=∠2(已知),所以∠4=∠2(等量代换).同理,由EF∥AB,∠1=∠B,可得∠3=∠1.因为∠1+∠2+∠3+∠4=180°(平角定义),所以∠1+∠2=∠3+∠4=90°,即∠BED=90°.故BE⊥DE.【总结升华】解此题的关键是如何构造平行关系,即过哪一点作哪条直线的平行线,只有通过适当的练习才能逐步达到熟练解题的目的.举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是(). A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【答案】C (提示:过点E作EF∥AB)【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=.【答案】900°4.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.【答案与解析】证明:如图,过点C做CK∥FG,并延长GF、CD交于点H,∵ CD∥EF (已知),∴∠CHG=∠1(两直线平行,同位角相等).又∵ CK∥FG,∴∠CHG+∠2+∠BCK=180°((两直线平行,同旁内角互补).∴∠1+∠2+∠BCK=180°(等量代换).∵∠1+∠2=∠ABC(已知),∴∠ABC+∠BCK=180°(等量代换).∴ CK∥AB(同旁内角互补,两直线平行).∴ AB∥GF(平行的传递性).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应联想到角相等或互补.类型三、图形的平移5.(吉林)如图所示,把边长为2的正方形的局部进行图①~④的变换,组成图⑤,则图⑤的面积是()A.18 B.16 C.12 D.8【思路点拨】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.【答案】B【解析】图①到图②是将一个等腰三角形由下方平移到上方.图③到图④是将右边的小长方形平移到左侧,所以图④中阴影部分的面积与边长为2的正方形的面积是相等的,图⑤是由4个图④组成的,所以图⑤的面积是4×4=16.【总结升华】平移是由平移的方向和距离决定的.平移的性质是平移前后,图形的形状、大小不变.类型四、实际应用6.手工制作课上,老师先将一张长方形纸片折叠成如图所示的那样,若折痕与一条边BC的夹角∠EFB=30°,你能说出∠EGF的度数吗?【思路点拨】长方形的对边是平行的,所以AD∥BC,可得∠DEF=∠EFG=30°,又因为折后重合部分相等,所以∠GEF=∠DEF=30°,所以∠DEG=2∠DEF=60°,又因为两直线平行,同旁内角互补,所以∠EGF=180°-∠DEG,问题可解.【答案与解析】解:因为AD∥BC(已知),所以∠DEF=∠EFG=30°(两直线平行,内错角相等).因为∠GEF=∠DEF=30°(对折后重合部分相等),所以∠DEG=2∠DEF=60°.所以∠EGF=180°-∠DEG=180°-60°=120°(两直线平行,同旁内角互补). 【总结升华】本题利用了:(1)折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)平行线的性质.举一反三:【变式】(山东滨州)如图,把—个长方形纸片对折两次,然后剪下—个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为().A.60° B.30° C.45° D.90°【答案】C。
华东师大版七年级上册数学各章知识点复习总结
第1章 走进数学世界1.在n ·n 的正方形方格中,有1²+2²+3²+…+n ²个正方形. 2.幻方:三阶幻方:四阶幻方: 第2章 有理数2.1.1正数和负数定义:像﹣2、﹣2.5、﹣237、﹣0.7这样的数是负数,像13、3.5、500、1.2这样的数是正数.(正数前面有时也可以放上一个“+”<读作“正”>号)☀注意:零既不是正数,也不是负数.2.1.2有理数分类:方法1:整、分法 方法2:正、零、负法162 3 13 511 10 8 9 76 12 414 15 1 有理数整数 分数正整数 负整数 零 正分数 负分数数集的定义:把这些数(指上文提到的有理数)放在一起,就组成一个数的集合,简称数集.上文有理数组成的数集叫做有理数集.2.2.1数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.2.2.2在数轴上比较数的大小方法:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数都大于负数.2.3相反数几何定义:1.在数轴上表示互为相反数的两个点分别位于原点的两旁,且与原点的距离相等.2.只有正负号不同的数成为互为相反数.(例:数a的相反数是﹣a,﹣a的相反数是a)☀注意:零的相反数是零.变为相反数的方法:通常在一个数的前面添上“﹣”号,表示这个数的相反数.(在一个数的前面添上“+”号,仍表示这个数本身.(例题解析)正负号组合化简方法:1.根据相反数的意义.2.数前面负号的个数。
负号的个数为偶数个时,取正;负号的个数为奇数个时,取负.2.4绝对值定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.取一个数的绝对值的结果:1.一个正数的绝对值是它本身.2.零的绝对值是零.3.一个负数的绝对值是它的相反数.4.任何一个有理数的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有|a|≥0.2.5有理数的大小比较除(2.2.2)在数轴上比较数的大小的方法比较两个负数的大小的方法:两个负数,绝对值大的反而小.2.6.1有理数的加法法则法则内容:1.同号两数相加,取与加数相同的正负号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得零;4.一个数与零相加,仍得这个数.法则扩充总结:正正相加,和大于其中任意一个加数;负负相加,和小于其中任意一个加数;正负相加,和大于负数,小于正数.(正指正数,负指负数)☀注意:一个有理数由正负号和绝对值两部分组成,进行加法运算时,应注意确定和的正负号及绝对值.2.6.2有理数加法的运算律加法交换律:两个数相加,交换加数的位置,和不变.字母表示:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.字母表示:(a+b)+c=a+(b+c).2.7有理数的减法法则:减去一个数,等于加上这个数的相反数.字母表示:a-b=a+(-b)2.8有理数的加减混合运算方法:1.按照运算顺序,从左到右逐步运算.2.用有理数减法法则,统一为只有加法运算的和式.加法运算律的应用:因为有理数的加减法可以统一成加法,所以在进行有理数加减混合运算时,可以适当应用加法运算律,简化运算.补充概念:从1开始逐步增大的连续奇数的和等于奇数个数的平方;从2开始逐步增大的连续偶数的和,等于偶数个数的平方加偶数个数.2.9.1有理数的乘法法则内容:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.(两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.)2.9.2有理数乘法的运算律乘法交换律:两个数相乘,交换因数的位置,积不变.字母表示:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.字母表示:(ab)c=a(bc)分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.字母表示:a(b+c)=ab+ac积的正负号与各因数的正负号之间的关系:几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 几个数相乘,有一个因数为零,积就为零.2.10有理数的除法倒数的定义:乘积是1的两个数互为倒数.有理数的除法转为乘法的方法:除以一个数等于乘以这个数的倒数.☀注意:零不能作除数.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.2.11有理数的乘方定义及相关内容:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在aⁿ中,a叫做底数,n叫做指数,aⁿ读作a的n次方,aⁿ看作是a的n次方的结果时,也可读作a的n次幂.幂的特点:(根据有理数乘法法则)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.2.12科学记数法定义:一个大于10的数就记成a×10ⁿ的形式,其中1≤a<10,n是正整数.像这样的记数法叫做科学记数法.☀注意:1.a的整数数位只有一位.2.n是原数的整数数位少1.2.13有理数的混合运算混合运算的运算顺序:1.先算乘方,再算乘除,最后算加减;2.同级运算,按照从左至右的顺序进行;3.如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的.补充:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方叫做第三级运算.☀注意:进行分数的乘除运算时,一般要把带分数化为假分数,把除法转化为乘法.2.14近似数一个与实际非常接近的数,称为近似数.题型分析:科学记数法中a×10ⁿ看它精确到哪一位,就看a最右边的那个数字在原数中是哪一位.☀注意:1.题目要求精确到十位、百位等,往往采用科学记数法,而要求精确到十分位、百分位等,往往不采用科学记数法.2.对一个比较大的数,取近似值往往采用科学记数法,因为科学记数法中的精确度只看a.3.取近似值有三种方法:四舍五入法、去尾法、进一法,要根据题的要求和实际情况而定.2.15用计算器进行计算:略第二章小结第三章整式的加减3.1.1用字母表示数☀注意:1.式子中出现的乘号,通常写作“·”或忽略不写.2.数字与字母相乘时,数字通常写在字母前面.3.除法运算写成分数形式.4.括号前面的乘号也要被省略.3.1.2代数式定义:由数和字母用运算符号连接所成的式子,称为代数式.单独一个数或一个字母也是代数式.3.1.3列代数式列代数式的原因:在解决问题时,列出代数式,使问题变得简洁,更具一般性.3.2代数式的值定义:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.3.3.1单项式定义:由数与字母的乘积组成的代数式叫做单项式.☀注意:1.当一个单项式的系数是1或-1时,“1”通常省略不写.2.单项式的系数是带分数时,通常写成假分数.3.3.2多项式定义:几个单项式的和叫做多项式.其中,每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式含有几项,就叫做几项式.多项式里,次数最高项的次数,就是这个多项式的次数.3.3.3升幂排列与降幂排列定义:把一个多项式各项的位置按照其中某一字母指数的大小顺序来排列.从大到小为降幂排列,从小到大为升幂排列.☀注意:1.重新排列多项式时,每一项一定要连同它的正负号一起移动.2.含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列.3.4.1同类项定义:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.3.4.2合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.3.4.3去括号与添括号去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.☀注意:添括号与去括号的过程正好相反,添括号是否正确,不妨用去括号检验一下.3.4.4整式的加减运算步骤:先去括号,再合并同类项.第3章小结第4章图形的初步认识4.1生活中的立体图形立体图形展示图:柱体锥体球体多面体的定义:每一个面都是平的的立体图形叫做多面体.☀注意:圆柱、球体等含有曲面的立体图形不称为多面体.4.2.1由立体图形到视图视图的定义:视图来自于投影.中心投影的定义:从一点发出的这种投影称为中心投影.平行投影的定义:平行投影是在一束平行光线照射下形成的投影.物体的三视图及其定义:从正面得到的投影,称为主视图;从上面得到的投影,称为俯视图;从侧面得到的投影,称为侧视图,依投影方向不同,有左视图和右视图.通常将主视图、俯视图与左(或右)视图称做一个物体的三视图.因而,三视图一般画主视图、俯视图、左视图.4.2.2由视图到立体图形☀注意:1.画出来的是平面图形.2.画出能看到的轮廓.3.画出能看到的棱、尖点.4.3立体图形的表面展开图:略4.4平面图形圆的特性:由曲线围成的封闭图形.多边形的定义:由线段围成的封闭图形叫做多边形.三角形在多边形中的意义:在多边形中,三角形是最基本的图形.每个多边形都可以分割成若干个三角形.从n边形的某一顶点出发引对角线,能得到(n-3)条对角线,能分成(n-2)个三角形.4.5.1点和线点存在的意义:表示那些大小尺寸可以忽略的物体.许多点的聚集又可以表现不同的图形.线段的意义:线段是无数排成行的点的聚集.多面体各部分名称示意图:关于线段的基本事实:两点之间,线段最短.射线的定义:把线段向一方无限延伸所形成的图形叫做射线.直线的定义:把线段向两方无限延伸所形成的图形叫做直线.关于直线的基本事实:(三种说法)经过两点有一条直线,并且只有一条直线;两点确定一条直线;经过两点有且只有一条直线.4.5.2线段的长短比较比较方法:1.用刻度尺量,比较大小2.将其中一条线段移到另一条线段上去加以比较.中点的定义:把一条线段分成两条相等线段的点,叫做这条线段的中点.题型分析:一条直线上有n个点,线段的条数为n(n-1)/2条.☀注意:线段的和差往往用图形语言告诉我们,我们要善于挖掘图形语言.点和直线的位置关系:1.点在直线上;2.点在直线外.欧拉公式:顶点数+面数-棱数=2(应用的范围是多面体)4.6.1角角的?定义:由两条有公共端点的射线组成的图形叫做角.角的?定义:由一条射线绕着它的端点旋转而成的图形.射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边.表示角的方法:1.两个端点及一个顶点(表示时要把表示角的顶点的字母写在中间);2.一个顶点(顶点处只能有一个角时才能用此方法);3.一个阿拉伯数字或希腊字母(先标出后才能用)平角的定义:绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角.周角的定义:绕着端点旋转到终边和始边再次重合,这时所成的角叫做周角.角度的单位换算:1°=60′ 1′=60″(1度等于60分,1分等于60秒)☀注意:描述物体运动的方向时,要以正北、正南方向为基准.4.6.2角的比较和运算题型分析:从一点引出n条射线,确定角的个数为n(n-1)/2个.角的平分线的定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.6.3余角和补角余角的定义:两个角的和等于90°(直角),就说这两个角互为余角,简称互余.补角的定义:两个角的和等于180°(平角),就说这两个角互为补角.关于余角、补角的定理:同角或等角的余角相等;同角或等角的补角相等.☀注意:互余和互补有时通过特殊的位置(即图形语言)告诉我们.第4章小结第5章相交线与平行线5.1.1对顶角对顶角的?定义:两个角具有相同的顶点,且其中一个角的两边分别与另一个角的两边互为反向延长线,我们把这样的两个角叫做对顶角.对顶角的?定义:两直线相交所成的四个角中,不相邻的一对角叫做对顶角.对顶角的性质:对顶角相等.5.1.2垂线垂直、垂足、垂线的定义:两直线相交所成的四个角中,有一个角等于90°,两线互相垂直,它们的交点叫做垂足,我们把其中的一条直线叫做另一条直线的垂线.关于垂线的基本事实:过一点有且只有一条直线与已知直线垂直.垂线段的定义:过直线外一点作已知直线的垂线,这一点与已知直线相交的点所在的线段叫做垂线段.点到直线的距离的定义:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.5.1.3同位角、内错角、同旁内角同位角的定义:内错角的定义:同旁内角的定义:5.2.1平行线平行线的定义:在同一平面内不相交的两条直线叫做平行线.互相平行的两条直线的表示的方法:例:直线a与直线b互相平行,记作“a∥b”. 两条不相交的直线的位置关系有:相交或平行.关于平行线的基本事实:1.过直线外一点有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.5.2.2平行线的判定判定方法:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.关于垂直、平行的性质:在同一平面内,垂直于同一条直线的两条直线平行.5.2.3平行线的性质性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.第五章小结。
七年级数学第四章《平面图形及其位置关系》专项练习(含答案)
第四章《平面图形及其位置关系》专项练习在本章中,我们不仅能从测量、折纸、画图等活动中学到线段、直线、射线、角等简单的平面图形,以及两直线平行、垂直的位置关系和特征,而且还可以自己创作出新颖、有趣的七巧板拼图,用尺规设计出精美、别致的图案,这样,你自己也会成为一名小小的设计师,更会感受到美就在我们身边.考点一:直线、射线线段 1.考点分析:考查直线、射线、线段的性质以及直线与线段计数问题,线段的计算及简单的语言的认识与应用,多以填空、选择的形式出现2.典例剖析例1.在表示直线时,常常要用到直线上的两个点表示,这条直线为什么不用一个点,三个点或更多的点表示直线?答:因为过一点可作无数条直线,即一点不能确定一条直线,所以不能用一点表示一条直线,而两点确定一直线,用直线上三个点或更多的点表示太繁,一般来说也没必要,因此用两点最简单明了.例2.(1)如图1,从教室门A 到图书馆B ,总有少数同学不走边上的路而横穿草坪,这是为什么?请你用所学的数学知识来说明这个问题.(2)如图2,A 、B 是河流L 两旁的两个村庄,现在要在河边修一个引水站向两村供水,问引水站修在什么地方才能使所需要的管道最短?请在图中表示出点P 的位置,并说明你的理由.(3)你赞同以上的做法吗?你认为应用 科学知识为人民服务应注意什么?分析:利用“两点之间,线段最短”.答:(1利用的是两点之间,线段最短.(2)连接A 、B两点与L 相交,交点就是P 的位置,根据两点之间,线段最短. (3)第一种做法不对,践踏草坪不道德;第二种做法对,节省物质.例3.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,求线段AC 的长. 解:当点C 在线段AB 的延长线时,如图3, AC=AB+BC=8+3=11(cm ) 当点C 在射线BA 上时,如图4,AC=AB-BC=8-3=5(cm ) 所以线段AC 的长为11cm 或5cm .评注:这是一道读句画图计算题,只要按照题意,正确地画出图形,这里还要注意分类讨论的数学思想,否则容易漏解. 专练一: 1.一般来说,把门安装在门框上需要两个合页,这是为什么呢?2.“已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,(1)线段CB 是线段AB 的几倍?(2)线段AC 是线段CB 的几分之几?”3.如图5,平原上有A 、B 、C 、D 四个村庄,为了解决当地缺水问题,政府准备投资修建一个蓄水池.不考虑其他因素,A L图2·· · A C B 图4 ·· · B A C 图3H B · A · ·C ·D E F ┒ ≈ ≈ ≈≈ ≈ ≈图5请你画图确定蓄水池H 点的位置,使它与四个村庄的距离之和最小. 4. 如图6,在正方体两个相距最远的顶点处有一只苍蝇B 和蜘蛛A , 蜘蛛可从哪条最短的路径爬到苍蝇处?试说明你的理由.5.在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,那么8条直线把一个平面最多分成 部分, n 条直线把一个平面最多分成 部分.6.问题:在直线上有n 个不同点,则此直线上共有多少条线段?考点二:角的度量、表示与比较 1.考点分析:角的度、分、秒的转换与计算,角的计数等内容是中考的热点,多以填空题、选择题的形式出现2.典例剖析例1.下图中有几个角?是哪几个角?分析:由一点引n 条射线所组成的角的个数共有(1)1234(1)2n n n -+++++-=L 个,此题从O 出发有4条射线,n=4,此时(1)62n n -=.解:图中有6个角,分别为∠AOB 、∠AOC 、∠AOD 、∠BOC 、∠BOD 、∠COD . 例2.如图7,一幅三角板的两个直角顶点重合在一起,(1)比较∠EOM 和∠FON 的大小,并说明为什么?(2)∠EON 与∠FOM 的和是多少度?为什么?解:由三角板可知∠EOM+∠FOM=900,∠FOM+∠FON=900, 所以∠EOM=∠FON ,又因为∠EON=∠EOM+∠FOM+∠FON , 所以∠EON+∠FOM=∠EOM+∠FOM+∠FON+∠FOM= 900+900=1800.例3.如图8,OA 是表示北偏东300方向的一条射线,仿照这条射线,画出展示下列方向的射线:(1)南偏东250;(2)北偏西600.分析:(1)以正南方向的射线为始边,向东旋转250, 所成的角的终边OB 即为所求的射线.(2)以正北方向的射线为始边,向西旋转600, 所成的角的终边OC 即为所求的射线.解:如图8所示:B图6 O A BCD图6东 O 西 南 北 30A 600东 O 西 南 北 250B C 图8 图9 图7O A B P QR图1专练二: 1.(2006年潍坊市)用A B C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( ) A .35︒ B .55︒ C .60︒ D .65︒ 2.如图10,已知∠AOC =∠BOD =75°,∠BOC =30°,求∠A OD.3.如图11,已知O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,求∠DOE 的度数.4.如图12,∠AOB=900,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线, 求∠MON 的大小.考点三:直线与直线的位置关系1.考点分析:直线与直线的位置关系有两种:平行与垂直,有关平行线的定义的辨析题和平行线性质的应用以及垂线、垂线段的概念、性质是中考的主要考点,多以填空题、选择题为主2.典例剖析例1.已知:如图1,∠A0B 的两边 0A 、0B 均为平面反光镜, ∠A0B =40o.在0B 上有一点P,从P 点射出一束光线经0A 上的Q 点反射后,反射光线QR 恰好与0B 平行,则∠QPB 的度数是( )A .60°B .100 °C . 80°D .120°分析:本题考察相交线、平行线的问题,题目非常简单. 答案为C .评注:本题把考察相交线、平行线的问题,放置在生活中的实际背景中,贴近生活,体现了数学的现实性、实用性,题目灵活,重点考察学生的数学素养.例2.按如图所示的方法将圆柱切开,所得的截面中 有没有互相平行的线段?答案:有.即:AB ∥CD AD ∥BC评注:由于圆柱的上、下底面平行,按照这样截法 阴影部分为平行四边形例3.体育课上,老师是怎样测量同学们的跳远成绩的? 你能尝试说明其中的理由吗?理由:将尺子拉直与踏板边沿所在的直线垂直,量取最近的脚印与踏板边沿之间的距离. “垂线段最短”.专练三:1.下列说法错误的是( )A.直线a ∥b ,若c 与a 相交,则b 与c 也相交BAC M N O图12图10图12G C FMA HED BNB.直线a 与b 相交,c 与a 相交,则b ∥cC.直线a ∥b ,b ∥c ,则a ∥cD.直线AB 与CD 平行,则AB 上所有点都在CD 同侧2.如右图,过C 点作线段AB 的平行线,说法正确的是( )A.不能作B.只能作一条C.能作两条D.能作无数条 3.将一张长方形纸对折,使OA 与OB 重合,这时∠AOC 是什么角?为什么?4.如图,哪些线段是互相垂直的,请利用量角器或直尺等工具将它们找出来.5.如图,所示是楼梯台阶的一部分,与面AB-DC 垂直的棱有哪些?6.读下列语句作图(1)任意作一个∠AOB . (2)在角内部取一点P .(3)过P 分别作PQ ∥OA ,PM ∥OB .(4)若∠AOB =30°,猜想∠MPQ 是多少度?考点四:平面图形问题1.考点分析:这部分内容主要是指:有趣的七巧板与图案设计两部分,利用七巧板的原理拼图以及用基本的图形,通过想象,设计一些个性化的图案,多以填空题、选择题为主2.典例剖析例1.如图1,用一块边长为22的正方形ABCD 厚纸板,按照下面的作法,做了一套七巧板:作对角线AC ,分别取AB 、BC 中点E 、F ,连结EF ;作DG ⊥EF 于G ,交AC 于H ;过G 作GL ∥BC ,交AC 于L ,再由E 作EK ∥DG ,交AC 于K ;将正方形ABCD 沿画出的线剪开,现用它拼出一座桥(如图2),这座桥的阴影部分的面积是( )A.8B.6C.4D.5分析:本题先将正方形割成七巧板,然后再拼成一座桥,因此不难发现阴影部分是由5个小板构成的,由于拼图前后图形的总面积以及7个小板的面积不变,所以这座桥的阴影部分的面积应是正方形面积的一半,即阴影部分的面积为4,故选C例2.(1)在七巧板中(如图1),找几组平行线或垂直的线段? (2)在七巧板中(如图),直角、锐角、钝角有哪些? 分析:根据七巧板中每个图形的特点可以得到: (1)平行线有:AB ∥DC ;EK ∥HG ;LG ∥CF 等; 垂直的线段有:EK ⊥AC ;GH ⊥AC ;EG ⊥HG 等(2)锐角12个:∠BAH ;∠FGL ;∠HGL 等,它们均为450 直角有:∠AHG ;∠HKE ;∠LHG ;∠KEG 等; 钝角有:∠CLG ;∠CFG ,它们均内为1350例3.如图3,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形.试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 、与____对应B 、与____对应C 、与____对应D 、与_____对应分析:根据剪拼前后,小块图形的大小,形状不变的特点,仔细观察每个正方形中的小块图形的特征,以此判断出:A 与M 对应;B 与P 对应;C 与Q 对应;D 与N 对应专练四:1.如图1是利用七巧拼成风的图案,在这个图案中找出二组平行线是_ __.(1)E C FM A HD BG(2)EC FA DBG(3)2.如图2是利用七巧板拼成的山峰的图案, 在这个图案中找出二组互相垂直的线段是___________________.3.如图3是利用七巧板拼成的数字3,这个图案中直角的个数是( ) A.5 B.9 C.7 D.8图3 图2 图14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图4①整幅七巧板是由正方形ABCD 分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图4②是由七巧板拼成的一个梯形,若正方形ABCD 的边长为12 cm ,则梯形MNGH 的周长是____cm (结果保留根号).5.用你所制作的七巧板,拼成一个等腰直角三角形与一个梯形,并在纸上画出所拼的图案. 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请你设计三种不同的修筑方案.(只需画简图)7种不同形状的平面图形?请你画出拼成的图形.参考答案专练一:1.答:是因为经过两点有一条直线且只有一条直线.2.若学生不会画图,很难得到其数量关系,但学生只要把图画出来,其数量关系就一目了然.3.解:如图5所示:连结AD 、BC ,交于点H ,则H 为所求蓄水池点. 4.解:分析:我们可以借助正方体的展开图找到解题的办法,由于正方体的 展开有不同的方法,因而从A 到B 可用6种不同的方法选取最短的 路径,但每条路径都通过连接正方体两个顶点的棱的中点.因为蜘蛛只能在正方体的表面爬行,所以只要找到这个正方体的展开图,应用“两点之间,线段最短”就可确定最短路径(如图6). 5.分析:在同一平面上,1条直线把一个平面分成22112++=2个部分,2条直线把一个平面最多分成22222++=4个部分,3条直线把一个平面最多分成22332++=7个部分,可以猜想:8条直线把一个平面最多分成部分2882372++=部分,那么n 条直线把一个平面图5图6A 图6图4最多分成222n n++部分.6.1+2+3+4+…+n=2)1(-⨯nn条线段,专练二:1.1100;2.120°;3.90°4.450.专练三:1.B;2.B;3.90°4.BC⊥AB BC⊥BE BC⊥AE BC⊥CD5.有棱DF,CE,HN,GM6.如图;30°或150°专练四:1.AB∥DC,HG∥BC;2.AG⊥AB,BC⊥CD ___3.B;4.略;5.如答图所示:(1)(2) 6.答案不唯一(如图7)7.答案不唯一(如图8)图7①②③④⑤图8。
4.1相交线1.对顶角教学设计2024-2025学年华东师大版数学七年级上册
3. 多元化评价:完善教学评价体系,不仅关注学生的笔试成绩,还要关注他们在实践操作和解决问题方面的能力,如增加课堂展示、小组讨论等评价方式。
4. 加强与生活实际的联系:通过举一些生活中的实际例子,让学生了解相交线和对顶角在现实生活中的应用,提高他们的学习兴趣和实际运用能力。
目标:让学生了解相交线和对顶角的基本概念、性质和作用。
过程:
讲解相交线的定义,包括其特点和绘制方法。
详细介绍对顶角的性质,使用图表和示意图帮助学生理解。
3. 相交线和对顶角案例分析(20分钟)
目标:通过具体案例,让学生深入了解相交线和对顶角的特性及其在几何问题解决中的应用。
过程:
分析几个典型的几何问题,涉及相交线和对顶角的性质。
目标:引起学生对相交线和对顶角的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道相交线和对顶角是什么吗?它们在几何学中有什么重要性和应用?”
展示一些关于相交线和对顶角的图片或几何模型,让学生初步感受它们的特点和魅力。
简短介绍相交线和对顶角的定义及重要性,为接下来的学习打下基础。
2. 相交线和对顶角基础知识讲解(10分钟)
2. 实践操作不足:学生在课堂上的实践操作时间可能不足,导致他们无法充分理解和掌握相交线和对顶角的性质。
3. 教学评价单一:评价学生学习成果时,可能过于依赖笔试成绩,而忽视了学生在实践操作和解决问题的能力。
(三)改进措施
1. 增加实践环节:在课堂上增加实践操作环节,让学生有更多机会动手画图和制作模型,从而加深对相交线和对顶角的理解。
布置课后作业:让学生撰写一篇关于相交线和对顶角的短文或报告,以巩固学习效果。
华东师大版七年级上册数学总复习PPT课件
12
目录
华东师大版
数轴练习:
8、已知在纸面上有一数轴(如图),折叠纸面.
第二章 有理数
(1)若折叠后,数1表示的点与数﹣1表示的点重合,则此时
数﹣2表示的点与数 2 表示的点重合;
(2)若折叠后,数3表示的点与数﹣1表示的点重合,则此时
数5表示的点与数 -3 表示的点重合;若这样折叠后,数轴
上有A、B两点也重合,且A、B两点之间的距离为9(A在B的
例1:若规定了收入为“+”,那么支出-50元
表示( B)
A、支出了50元;
B、收入了50元;
C、没有收入也没有支出; D、收入了100元
2020/1/14
3
目 录 第三章 第四章 第五章
华东师大版
相反意义的量练习:
第二章 有理数
1.在下列各组中,哪个选项表示互为相反意义的量( A )
A.足球比赛胜5场与负5场 B.向东走3千米,再向南走3千米 C.增产10吨粮食与减产﹣10吨粮食 D.下降的反义词是上升
2020/1/14
6
目 录 第三章 第四章 第五章
华东师大版
有理数练习:
第二章 有理数
1.下列说法错误的是( C )
A.负整数和负分数统称负有理数 B.正整数,0,负整数统称为整数 C.正有理数与负有理数组成全体有理数 D.3.14是小数,也是分数
2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0
3 8
,0,﹣30,0.15,﹣128,,+20,
﹣2.6,π,-(-5)
正数集合﹛ 15, 0.15,+20,π, -(-5) …﹜
负数集合﹛- 3 , 8
-30,-128,-2.6
《4.1相交线》作业设计方案-初中数学华东师大版24七年级上册
《相交线》作业设计方案(第一课时)一、作业目标本次《相交线》作业设计的主要目标是使学生:1. 理解并掌握相交线的概念及其性质。
2. 学会用相交线的性质解决简单的实际问题。
3. 培养学生的空间想象能力和逻辑推理能力。
4. 增强学生自主学习和合作学习的能力。
二、作业内容作业内容围绕《相交线》的核心理解与运用展开,具体包括:1. 基础概念题:要求学生回顾并掌握相交线的定义、性质及定理。
2. 实践应用题:设计一系列关于相交线在实际生活中的应用问题,如道路交叉口的角度问题、建筑中的相交线应用等。
3. 探究拓展题:设置一些具有挑战性的问题,如利用相交线性质解决复杂的几何图形问题,或者探究不同图形中相交线的数量与特点。
4. 作业思考题:布置一些思考性题目,引导学生深入思考相交线的性质与运用,例如:探讨不同类型相交线对空间结构的影响等。
三、作业要求为确保学生能够高效完成作业,特提出以下要求:1. 独立完成:要求学生独立完成作业,不得抄袭他人答案。
2. 细致审题:仔细阅读题目,理解题目要求,避免因理解错误导致答案偏差。
3. 规范作答:答案需清晰、准确,步骤完整,使用专业术语作答。
4. 时间管理:合理安排时间,确保在规定时间内完成作业。
5. 错题反思:对于做错的题目,要认真反思错误原因,并记录在错题本上。
四、作业评价为有效评价学生作业完成情况,采用以下评价方式:1. 准确性评价:评价学生答案的正确性。
2. 过程评价:评价学生作答过程的逻辑性和规范性。
3. 创新性评价:鼓励学生提出新颖的解题思路和方法。
4. 态度评价:评价学生完成作业的态度和积极性。
5. 互评与自评:鼓励学生之间互相评价作业,以及学生进行自我评价,培养批判性思维和自我反思能力。
五、作业反馈为确保作业的实效性,将进行以下反馈工作:1. 及时批改:教师及时批改作业,给出评价和反馈。
2. 个别辅导:针对学生作业中的问题,进行个别辅导和指导。
3. 课堂讲解:在下一课时中,针对共性问题进行讲解和答疑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1075
68943
2
1(1)4.7相交线
一、判断
1.顶点相同并且相等的两个角是对顶角.( )
2.相交直线构成的四个角中若有一个角是直角,就称这两条直线互相垂直.( •)
3.直线外一点到这条直线的垂线段叫做这点到这条直线的距离.( )
4.如图1,∠2和∠8是对顶角.( )
5.如图1,∠2和∠4是同位角.( )
6.如图1,∠1和∠3是同位角.( )
7.如图1,∠9和∠10是同旁内角,∠1和∠7也是同旁内角.( )
8.如图1,∠2和∠10是内错角.( )
9.O 是直线AB 上一点,D 分别在AB 的两侧,且∠DOB=∠AOC, 则C,O,D•三点在同一条直线上.( )
D C A B N
M P
(2)
Q
l
a
7568
432
1b
(3)5
6
43
21
A
B N
M P
(4)O
Q
42
1
D C
A
B (5)
O
F
E
10.如图2,其中共有4对同位角,4对内错角,4对同旁内角.( ) 二、填空
11.如图3,直线L 截直线a,b 所得的同位角有______对,它们是______;•内错有___对,它们是______;同旁内角有______对,•它们是______;•对顶角_____•对,•它们是_______.
12.如图4,∠1的同位角是________,∠1的内错角是________,∠1•的同旁内角是_______.
13.如图5,直线AB,CD 相交于O,OE 平分∠AOD,FO ⊥OD 于O,∠1=40°,则∠2=•_____,∠4=______. 14.如图6,AB ⊥CD 于O,EF 为过点O 的直线,MN 平分∠AOC,若∠EON=100•°,•那么 ∠EOB=_____,∠BOM=_____.
D C A B N
M (6)
O F
E C A
B
N M (7)
O D C A
B
(8)
O 432
1D
C
A B (9)
F E
15.如图7,AB 是一直线,OM 为∠AOC 的角平分线,ON 为∠BOC 的角平分线,则OM,ON 的位置关系是_______. 16.直线外一点与直线上各点连结的线段中,以_________为最短. 17.从直线外一点到这条直线的________叫做这点到直线的距离. 18.经过直线外或直线上一点,有且只有______直线与已知直线垂直.
19.如图8,要证BO ⊥OD,请完善证明过程,并在括号内填上相应依据:∵AO ⊥CO,∴∠AOC=__________(___________).又∵∠COD=40°(已知),∴∠AOD=_______.•∵∠BOC=∠AOD=50°(已知),∴∠BOD=_______,∴_______⊥_______(__________).
20.如图9,直线AB,CD 被EF 所截,∠1=∠2,要证∠2+∠4=180°,请完善证明过程,•并在括号内填上相应依据.∵直线AB 与EF 相交,∴∠1=∠3=(__________),又∵∠1+•∠4=180°(___________),∠1=∠2(已知),∴∠2=∠3,∠2+∠4=180°(____________________) 三、选择.
2
21.下列语句正确的是( )
A.相等的角为对顶角
B.不相等的角一定不是对顶角
C.不是对顶角的角都不相等
D.有公共顶点且和为180°的两个角为邻补角
22.两条相交直线与另外一条直线在同一平面内,它们的交点个数是( ) A.1 B.2 C.3或2 D.1或2或3
23.如图10,PO ⊥OR,OQ ⊥PR,能表示点到直线(或线段)的距离的线段有( ) A.1条 B.2条 C.3条 D.5条
(10)
R
O P
Q
D C
A
B
(11)
O
D C
A
B
(12)
F
E
24.如图,OA ⊥OB,OC ⊥OD,则( )
A.∠AOC=∠AOD
B.∠AOD=∠DOB
C.∠AOC=∠BOD
D.以上结论都不对 25.下列说法正确的是( )
A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条
B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线
C.作出点P 到直线的距离
D.连结直线外一点和直线上任一点的线段长是点到直线的距离 26.如图12,与∠C 是同旁内角的有( ). A.2 B.3 C.4 D.5 27.下列说法正确的是( ).
A.两条直线相交成四个角,如果有三个角相等,那么这两条直线垂直.
B.两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.
C.两条直线相交成四个角,如果有一对对顶角互余,那么这两条直线垂直.
D.两条直线相交成四个角,如果有两个角互补,那么这两条直线垂直. 28.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( )
A.
12(∠1+∠2) B. 12∠1 C. 12(∠1-∠2) D.1
2∠2 29.已知OA ⊥OC,∠AOB:∠AOC=2:3,则∠BOC 的度数是( )
A.30°
B.150°
C.30°或150°
D.以上答案都不对 四、解答.
30.如图,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB,求证:(1)CD ⊥CB;(2)CD•平分∠ACE.
21
D C
A B
E
31.如图,已知AO ⊥OB 于O,∠2-∠1=20°,求∠1,∠2的度数.
3
21
C
A
B
O
32.如图,OE,OF 分别是∠AOC 与∠BOC 的平分线,且OE ⊥OF,求证:A,O,B•三点在同一直线上.
C A
B
O
F E
33.如图,按要求作出:(1)AE ⊥BC 于E;(2)AF ⊥CD 于F;(3)连结BC,作AG ⊥BD 于G.
D
C
A
B
答案:
一、1.× 2.∨ 3.× 4.× 5.∨ 6.× 7.× 8.∨ 9.∨ 10.×
二、11.4∠1和∠5,∠4和∠6,∠7和∠3,∠8和∠22,∠5和∠3,∠4和∠82, ∠4和∠5,∠3 和∠84,∠1和∠3,∠2和∠4,∠5和∠7,∠6和∠8 12.∠4和∠NMP ∠6 ∠2和∠BMO
13.50° 65° 14.55°135° 15.垂直 16.垂线段 17.垂线段的长度 18.一条 19.90° 垂直的性质 50°90° BO OD 垂直的定义 20.对顶角相等平角的定义等量代换
三、21.B 22.D 23.D 24.C 25.A 26.C 27.A 28.C 29.C 四、30.(1)证明:∵∠ABC=90°, ∴∠1+∠CAB=90°. 又∵∠DCA=∠CAB,
∴∠DCA+∠1=90°,即∠BCD=90°, ∴CD ⊥CB.
(2)∵∠1+∠2+∠ACD+∠DCE=180°, 又∵∠1+∠ACD=90°, ∴∠2+∠DCE=90°. 又∵∠1=∠2, ∴∠ACD=∠DCE, ∴CD 平分∠ACE.
31.∠1=35°,∠2=55°. 32.(略) 33.(略)
4。