2013年课标版模拟试卷(14)文科数学试题
2013高考数学文科模拟试题(带答案)
2013高考数学文科模拟试题(带答案)2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(文科)第Ⅰ卷选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设全集集合集合,则=()A.B.C.D.2.设复数(其中为虚数单位),则z的共轭复数等于()A.1+B.C.D.3.已知条件p:,条件q:,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件4.如右图的程序框图所示,若输入,则输出的值是()A.B.1C.D.25.若抛物线上一点到轴的距离为3,则点到抛物线的焦点的距离为()A.3B.4C.5D.76.公差不为零的等差数列第2,3,6项构成等比数列,则这三项的公比为()A.1B.2C.3D.47.已知是单位向量,且夹角为60°,则等于()A.1B.C.3D.8.已知函数对任意,有,且当时,,则函数的大致图象为()9.设函数,则不等式的解集是()A.B.C.D.10.一个三棱锥的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A.B.C.1D.第Ⅱ卷非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置)11.若函数的图象在处的切线方程是,则.12.若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭圆的离心率是.13.已知变量满足约束条件,则的最大值为;14.若则;15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A(选修4—4坐标系与参数方程)已知点是曲线上任意一点,则点到直线的距离的最小值是;B(选修4—5不等式选讲)已知则的最大值是.;C(选修4—1几何证明选讲)如图,内接于,,直线切于点C,交于点.若则的长为.三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共75分)16.(本小题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(Ⅰ)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(Ⅱ)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.17.(本小题满分12分)在中,角A,B,C的对边分别为,b,c,且满足,.(Ⅰ)求的面积;(Ⅱ)若,求边与的值.18.(本小题满分12分)各项均为正数的等比数列中,.(Ⅰ)求数列通项公式;(Ⅱ)若等差数列满足,求数列的前项和.19.(本小题满分12分)已知是矩形,,分别是线段的中点,平面.(Ⅰ)求证:平面;(Ⅱ)在棱上找一点,使∥平面,并说明理由.20.(本小题满分13分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,判断方程在区间上有无实根.(Ⅲ)若时,不等式恒成立,求实数的取值范围.21.(本题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)已知、为椭圆上的动点,当时,求证:直线恒过一个定点.并求出该定点的坐标.2013年普通高等学校招生全国统一考试西工大附中第四次适应性训练数学(文科)参考答案与评分标准一、选择题:题号12345678910答案DAADBCCCAD二、填空题:11.312.13.1114.15.A;B.;C.三、解答题16.(本小题满分12分)【解】:在100名电视观众中,收看新闻的观众共有45人,其中20至40岁的观众有18人,大于40岁的观众共有27人。
2013年高考数学模拟试题(文科)及答案[1]
凹凸教育高考文科数学模拟题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.下列有关命题的说法正确的是(A )命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. (B )“1x =-”是“2560x x --=”的必要不充分条件.(C )命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. (D )命题“若x y =,则sin sin x y =”的逆否命题为真命题.4.某人骑自行车沿直线匀速旅行,先前进了a 千米,休息了一段时间,又沿原路返回b 千米()a b <,再前进c 千米,则此人离起点的距离s 与时间t 的关系示意图是(A ) (B ) (C ) (D )5.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那么 a 的取值范围是(A )17⎡⎢⎣,⎪⎭⎫31 (B )(0,13) (C )(0,1) (D )⎪⎭⎫⎢⎣⎡1,716.如图是一个算法程序框图,当输入的x 值为3时,输出的结果恰好是31,则空白框处的关系式可以是 (A )xy -=3 (B )xy 3= (C ) 31-=x y (D ) 31x y =7.底面边长为2,各侧面均为直角三角形的正三棱锥的四个顶点都在同一球面上,则此球的表面积为(A )π4(B )34π(C )π2(D ) π38.若]2,0(π∈x ,则使x x x x cot tan sin cos <<<成立的x 取值范围是 (A )(2,4ππ) (B )(ππ,43) (C )(ππ45,) (D )(ππ2,47)9. 设n S 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于 (A )103(B )31(C )91 (D )81 10.已知函数x x f x 2log )31()(-=,正实数a 、b 、c 满足()0()()f c f a f b <<<,若实数d 是函数()f x 的一个零点,那么下列四个判断:①a d <;②b d >;③c d <;④c d >. 其中可能成立的个数为(A )1 (B )2 (C )3 (D )4 11.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2=++,那么(A ) AO OD = (B ) 2AO OD = (C ) 3AO OD = (D ) 2AO OD =12.函数)(x f 、)(x g 都是定义在实数集R 上的函数,且方程-x [])(x g f =0有实根,则函数[])(x f g 的解析式可能是(A )342++x x (B )542+-x x (C ) 322++x x (D )532+-x x二.填空题:本大题共4小题,每小题4分,共16分.13.若在区域34000x y x y +-≤⎧⎪≥⎨⎪≥⎩内任取一点P ,则点P 落在单位圆221x y +=内的概率为 . 14. 过圆04622=-++x y x 与028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程是 .15.设21,F F 是椭圆1162522=+y x 的两个焦点,P 是椭圆上的动点(不能重合于长轴的两端点),I 是21F PF ∆的内心,直线PI 交x 轴于点D ,则=IDPI. 16.老师给出一个函数=y )(x f ,四个学生甲、乙、丙、丁各指出这个函数的一个性质:甲:对于R x ∈,都有)1()1(x f x f -=+;乙:在(]0,∞-上函数递减;丙:在()+∞,0上函数递增;丁:函数的最小值为0.如果其中恰有三人说得正确,请写出一个这样的函数 .三.解答题:本大题共6小题,共74分.17.(本小题满分12分)函数πφωφω<>>+=||,0,0),sin()(A x A x f 的图象的一部分如图 (Ⅰ)求函数)(x f 的解析式 ;(Ⅱ)求函数)(x g 的解析式,使得函数)(x f 与)(x g 的图象关于)1,4(π对称.18.(本小题满分12分)如图,在长方体1111D C B A ABCD -中,2==BC AB ,过A 1, C 1 , B三点的平面截去长方体的一个角后得到几何体111D C A ABCD -,且这个几何体的体积为340. (Ⅰ)证明:直线A 1B // CDD 1C 1; (Ⅱ)求 A 1 A 的长;(Ⅲ)求经过A 1、C 1、B 、D 四点的球的表面积.19.(本小题满分12分)某学校举行“科普与环保知识竞赛”,并从中抽取了部分学生的成绩(均为整数),所得数据的分布直方图如图.已知图中从左至右前3个小组的频率之比为1:2:3,第4小组与第5小组的频率分别是0.175和0.075,第2小组的频数为10.(Ⅰ)求所抽取学生的总人数,并估计这次竞赛的优秀率(分数大于80分);(Ⅱ)从成绩落在)5.0.5,650(和)5.100,5.90(的学生中任选两人,求他们的成绩在同一组的概率.20.(本小题满分12分)已知数列{}n a 中,13a =,对于*N n ∈,以1,n n a a +为系数的一元二次方程21210n n a x a x +-+=都有实数根αβ,,且满足(1)(1)2αβ--=.(Ⅰ)求证:数列1{}3n a -是等比数列;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)求{}n a 的前n 项和n S .21.(本小题满分12分)已知点)0,1(),0,1(C B -,P 是平面上一动点,且满足CB PB BC PC ⋅=⋅||||. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)直线l 过点(-4,43)且与动点P 的轨迹交于不同两点M 、N ,直线OM 、ON (O 是坐标原点)的倾斜角分别为α、β.求βα+的值.22.(本小题满分14分)若存在实常数k 和b ,使函数)(x f 和)(x g 对于其定义域上的任意实数x 分别满足b kx x f +≥)(和b kx x g +≤)(,则称直线b kx y l +=:为曲线)(x f 和)(x g 的“隔离直线”.已知函数2)(x x h =,x e x ln 2)(=ϕ(e为自然对数的底数).(Ⅰ)求函数)()()(x x h x F ϕ-=的极值;(Ⅱ)函数)(x h 和)(x ϕ是否存在隔离直线?若存在,求出此隔离直线;若不存在,请说明理由.参考答案1. B 解析:312|1|≤≤-⇔≤-x x ;42086<<⇔<+-x x x , ()U C A B =],32(.选B.2. C 解析:23213332iii z --=+-=,故选C.3. D 解析:“若x y =,则sin sin x y =”为真命题,∴其逆否命题为真命题.故选D.4. C 解析:匀速沿直线前进,图象应为斜率为正的直线;休息的一段时间s 应为常数,沿原路返回,图象应为斜率为负的直线;再前进,图象应为斜率为正的直线.故选C.5. A 解析:要使函数)(x f 在(,)-∞+∞上是减函数,需满足⎪⎩⎪⎨⎧≥+-<-<<041301310a a a a ,解得3171<≤a ,故选A.6. B 解析:根据框图,空白框处函数一个满足31)1(=-f ,故选B. 7. D 解析:底面边长为2,则侧棱长为1.三棱锥的外接球,即为棱长为1的正方体的外接球,设外接球的半径为R ,则31112222=++=R ,此球的表面积为S =πππ343442=⋅=R .故选D. 8. C 解析:4个选项逐一验证,可知应选C. 9. A 解析:3184=S S ,得2:1)(:484=-S S S , )(),(),(,1216812484S S S S S S S ---成等差数列,∴4:3:2:1)(:)(:)(:1216812484=---S S S S S S S ,168S S =103432121=++++,故选A. 10. A 解析:如图,由在同一个坐标系内xy )31(=和xy 2log =图象可知,正实数a 、b 、c 与d 的大小关系应为,c d a b <<<,②③成立.故选B.11. A 解析:D 为BC 边中点,OD OC OB 2=+∴, 02=++OC OB OA ,0=+∴OD OA ,即AO OD =,故选A.12. B 解析:设1x 是-x [])(x g f =0的实数根,即=1x [])(1x g f ,则有=)(1x g []{})(1x g f g .令=)(1x g 2x ,则[])(22x f g x =,∴方程[]0)(=-x f g x 有实根,故选B. 13.332π解析: 如图 ,设阴影部分的面积为1S , 则所求的概率为3231π=∆AOB S S . 14. 0192722=++-+y x y x 解析:由题意,可把所求圆的方程设为028*******=-+++-++)(y y x x y x λ,即028*******=--+++++λλλλy x y x ,其圆心坐标为)1313(λλλ+-+-,,代入04=--y x 得041313=-+++-λλλ,解得7-=λ,∴所求圆的方程S 是0192722=++-+y x y x 15.35 解析:I 是21F PF ∆的内心,=D F PF 11ID PI ;=D F PF 22ID PI .∴=ID PI35222121==++c a D F D F PF PF . 16. |2|)(2x x x f -= 解析:若甲、乙、丁正确,丙不正确的一个函数可以是|2|)(2x x x f -=;若乙、丙、丁正确,甲不正确可以是2)(x x f =.答案不唯一,写出一个即可. 17.解:(Ⅰ)根据图象,5.1=A ,-------------------------------------------------------------------------------------------1分πππ=-⋅=)365(2T ,222===πππωT ,---------------------------------------------------------------------------------------3分 于是,)2si n(5.1)(φ+=x x f ,2z k k ∈=+⋅,23πφπ, z k k ∈-=,322ππφ,-----------------------------5分πφ<|| ,32πφ-=∴.函数)(x f 的解析式为)322si n(5.1)(π-=x x f .-------------------------------------------6分 (Ⅱ)设点),(y x P 是函数)(x g 图象上任意一点,点P 关于直线4π=x 对称的点为),('''y x P ,------------------7分12,42''=+=+y y x x π,y y x x -=-=2,2''π.-------------------------------------------------------------------------------9分 ),('''y x P 在函数)(x f 的图象上,∴]32)2(2si n[5.12ππ--=-x y ,化简得2)32si n(5.1+-=πx y .∴函数)(x g 的解析式为2)32si n(5.1)(+-=πx x g .---------------------------------------------------------------------------12分18.解:(Ⅰ)法一:1111D C B A ABCD -是长方体,∴平面//1AB A 平面11C CDD , AB A B A 11平面⊂,111C CDD B A 平面⊄,∴直线A 1B //平面CDD 1C 1.---------------------------------------------------------------------------3分法二:连接1CD ,1111D C B A ABCD -是长方体,∴BC AD D A ////11,且BCAD D A ==11,∴四边形11B C DA 是平行四边形,∴11//CDB A .111C CDD B A 平面⊄,111C CDD CD 平面⊂,∴直线A 1B //平面11C CDD .----------------------------------------------------------------------------------------------------3分 (Ⅱ)设h A A =1, 几何体ABCD - A 1C 1D 1的体积是340. 340111111111=-=∴---C B A B D C B A ABCD D AC ABCD V V V ,------------------------------------------------------------------------------5分 即34022213122=⨯⨯⨯⨯-⨯⨯h h ,解得4=h .--------------------------------------------------------------------------7分 (Ⅲ)法一:如图,连接B D 1,设B D 1的中点为O ,连OD OC OA ,,11,ABCD - A 1B 1C 1D 1是长方体,⊥∴11D A 平面AB A 1,AB A B A 11平面⊂,⊥∴11D A B A 1.----------------------------------------------------8分B D OA 1121=∴.同理B D OC OD 1121==,∴OB OC OD OA ===11. ∴经过A 1、C 1、B 、D 的球的球心为点O .---------------------------------------------------10分2424222222121121=++=++=∴AB A A D A B D .∴πππ24)2(4)(42121=⨯==B D OD S 球.-------------------------------------------------------------------------------12分 法二:A 1、C 1、B 、D 四点同时在长方体ABCD - A 1B 1C 1D 1的外接球上,而空间四边形BD C A 11的外接球是唯一的.所以经过A 1、C 1、B 、D 的球,就是长方体ABCD - A 1B 1C 1D 1的外接球.--------------------------------------------10分设长方体外接球的半径为R ,则244222222=++=R .∴ππ2442==R S 球.-------------------------------------------------------------------------------------------------------12分19. 解:(Ⅰ)设第一小组的频率为x ,则1075.0175.032=++++x x x ,解得125.0=x . 第二小组的频数为10,得抽取顾客的总人数为4025.10210=⨯人.------------------------------------------3分依题意,分数大于80分的学生所在的第四、第五小组的频率和为5.2075.0075.10=+,所以估计本次竞赛的优秀率为%25.----------------------------------------------------6分(Ⅱ)落在)5.0.5,650(和)5.100,5.90(的学生数分别为54025.10=⨯;34075.00=⨯.-----------------7分 落在)5.0.5,650(的学生设为:)5,4,3,2,1(=i A i ;落在)5.100,5.90(的学生设为:)3,2,1(=j B j , 则从这8人中任取两人的基本事件为:),,(),,(),,(),,(),,(),,(322212312111B A B A B A B A B A B A),,(),,(),,(),,(),,(),,(342414332313B A B A B A B A B A B A ),(),,(),,(352515B A B A B A ,),,(),,(),,(323121A A A A A A ),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(54534352423251413121B B B B B B B B B B B B B B B B B B B B 共28个基本事件;------------------------------------------------------------------------------------------------------------------------------------10分 其中“成绩落在同一组”包括),,(),,(),,(323121A A A A A A),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(54534352423251413121B B B B B B B B B B B B B B B B B B B B 共包含13个基本事件,故所求概率为2813.----------------------------------------------12分20. 解:(Ⅰ)由题意得:12n n a a αβ++=,1na αβ⋅=,代入(1)(1)2αβ--=整理得: 1111()323n n a a +-=--,---------------------------------------------------------------------------------------------------4分当113n n a a +==时方程无实数根,∴13n a ≠,由等比数列的定义知:1{}3n a -是以11833a -=为首项,公比为12-的等比数列.-----------------------6分(Ⅱ)由(1)知1181()332n n a --=⨯-,∴1811()323n n a -=⨯-+. -------------------------------------------------------------------------9分 (Ⅲ)n S 218111[1()()()]32223n n-=+-+-++-+16161()9923n n=-⨯-+ . -------------------------------------------------------------------------12分21. 解:(Ⅰ)设),(y x P ,则),1(y x PC --=,)0,2(=BC ,),1(y x PB ---=,)0,2(-=CB ,---------1分CB PB BC PC ⋅=⋅||||,∴)1(22)()1(22x y x +⋅=⋅-+-,----------------------------------------------------------------4分化简得动点P 的轨迹方程是:x y 42=.-----------------------------------------------------------------------------------------------------------5分(Ⅱ)由于直线l 过点(-4,43),且与抛物线x y 42=交于两个不同点,所以直线l 的斜率一定存在,且不为0.设)4(34:+=-x k y l --------------------------------------------------------------------------------------------------------------6分⎩⎨⎧=+=-x y x k y 4)4(342,消去x 得,0)31616(42=++-k y ky , 0)31616(442>+-=∆k k ,232232-<<--k ,且0≠k . ky y k y y 31616,42121+==+.---------------------------------------------------------------------------------------------------------8分 =-+=-+=+212122111tan tan 1tan tan )tan(x x y y x y x y βαβαβα3316316161616)(41614421212121=-+=-+=-+kk y y y y y y y y ,-------------------------------------------------------------------------------------------------------------------------------------------------------11分,20,0πβαπβα<+<∴<≤,所以6πβα=+67π或.--------------------------------------------------------------------------------------------------12分22. 解:(Ⅰ)x e x x x h x F ln 2)()()(2-=-=ϕ,xe x x e x x F 2222)(2'-=-=, ------------------------------------------------------------------------------------------------------------------------1分022)(2'=-=xex x F ,解得e x =,e x -=(舍)----------------------------------------------------2分∴当e x =时,)(x F 取得极小值,)(x F 极小值=0)(=-=e e e F --------------------------------------------5分(Ⅱ)若函数)(x h 和)(x ϕ存在隔离直线b kx y l +=:,则)()(x b kx x h ϕ≥+≥,由(1)知∴当e x =时,)(x F 取得极小值0.∴e e e h ==)()(ϕ,点),(e e 在b kx y l +=:上.-------------------------------------------------6分∴),(e x k e y -=-∴e k e kx y -+=,b kx x h +≥)(,即02≥+--e k e kx x 在),(+∞-∞∈x 上恒成立. ∴0)2()(422≤-=+--=∆e k e k e k ,e k 2=∴.---------------------------------------------------------8分 代入:l e k e kx y -+=得,y l :=e x e 22-.----------------------------------------------------------------------9分)(x b kx ϕ≥+,即x e e x e ln 222≥-在),0(+∞∈x 上恒成立.即022ln 2≤+-e x e x e 在),0(+∞∈x 上恒成立. 令=)(x g e x e x e 22ln 2+-,xx e e e x e x g )(222)('-=-=,易知当),0(e x ∈时)(x g 递增,当),(+∞∈e x 时)(x g 递减,当e x =时,)(x g 在),0(+∞取最大值,-----------------------------------------------11分 02)()(m ax =+-==e e e e g x g ,即022ln 2≤+-e x e x e 在),0(+∞∈x 上恒成立.-----------------------13分综上所述:函数)(x h 和)(x ϕ存在隔离直线y =e x e 22-.------------------------------------------------------14分。
2013年高三数学文科一模试题(带答案)
2013年高三数学文科一模试题(带答案)2013年高三教学测试(一)文科数学试题卷注意事项:1.本科考试分试題卷和答題卷,考生须在答題卷上作答.答题前,请在答題卷的密封线内填写学校、班级、学号、姓名;2.本试題卷分为第1卷(选择題)和第π卷(非选择題)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:如果事件,互斥,那么棱柱的体积公式如果事件,相互独立,那么其中表示棱柱的底面积,表示棱柱的高棱锥的体积公式如果事件在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中表示棱锥的底面积,表示棱锥的高棱台的体积公式球的表面积公式球的体积公式其中分别表示棱台的上底、下底面积,其中表示球的半径表示棱台的高第I卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i为虚数单位,则复数=A.iB.-iC.D.-2.函数的最小正周期是A.B.πC.2πD.4π3.执行如图所示的程序框图,则输出的结果是A.OB.-1C.D.4.已知α,β是空间中两个不同平面,m,n是空间中两条不同直线,则下列命题中错误的是A.若m//nm丄α,则n丄αB.若m//ααβ,则m//nC.若m丄α,m丄β,则α//βD.若m丄α,mβ则α丄β5如图,给定由6个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取2个点,则两点间的距离为2的概率是ABCD6.已知函数,下列命题正确的是A.若是增函数,是减函数,则存在最大值B.若存在最大值,则是增函数,是减函数C.若,均为减函数,则是减函数D.若是减函数,则,均为减函数7.已知a,b∈R,a.b≠O,则“a>0,b>0”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知双曲线c:,以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点M、N(异于原点O),若|MN|=,则双曲线C的离心率是A.B.C.2D.9已知在正项等比数列{an}中,a1=1,a2a4=16则|a1-12|+|a2-12|+…+|a8-12|=A224B225C226D25610.已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x)))=0},若存在x0∈B,x0A则实数b的取值范围是ABbCD非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.已知奇函数f(x),当x>0时,f(x)=log2(x+3),则f(-1)=__▲__12.已知实数x,y满足则z=2x+y的最小值是__▲__13.—个几何体的三视图如图所示,则该几何体的体积为__▲__14.某高校高三文科学生的一次数学周考成绩绘制了如右图的频率分布直方图,其中成绩在40,80]内的学生有120人,则该校高三文科学生共有__▲__人15.已知正数x,y满足则xy的最小值是=__▲__.16.已知椭圆C1:的左焦点为F,点P为椭圆上一动点,过点以F为圆心,1为半径的圆作切线PM,PN,其中切点为M,N则四边形PMFN 面积的最大值为__▲__.17.若是两个非零向量,且,则与的夹角的取值范围是__▲_.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步驟•18.(本题满分14分)在ΔABC中,a,b,c分别是角A,B,C所对的边,且a=c+bcosC.(I)求角B的大小(II)若,求a+c的值.19.(本题满分14分)已知等差数列{an}的公差不为零,且a3=5,a1,a2.a5成等比数列(I)求数列{an}的通项公式:(II)若数列{bn}满足b1+2b2+4b3+…+2n-1bn=an求数列{bn}的通项公式20.(本题满分15分)如图,直角梯形ABCD中,AB//CD,=90°,BC=CD=,AD=BD:EC丄底面ABCD,FD丄底面ABCD且有EC=FD=2.(I)求证:AD丄BF:(II)若线段EC的中点为M,求直线AM与平面ABEF所成角的正弦值21(本题满分15分)已知函数f(x)=mx3-x+,以点N(2,n)为切点的该图像的切线的斜率为3(I)求m,n的值(II)已知.,若F(x)=f(x)+g(x)在0,2]上有最大值1,试求实数a的取值范围。
2013届高中毕业班第一次模拟考文科数学答案
2013届高中毕业班第一次模拟考文科数学答案13. 15 14. {|34}x x x >≠且 15. 250x y -+= 16. 135三. 解答题(共90分)17. 解:由已知得213112203a q a q a q ⎧=⎪⎨+=⎪⎩L L L L ①②………………..4分 ①②得23110q q =+化简得:231030q q -+=…………..5分 133q q ∴==或 (6)分当13q =时,118a =;当3q =时,129a =……………….8分{}n a ∴的通项公式1118()3n n a -=g 或1239n n a -=g ………….10分18. 解:(1)由sin sin A B C +=及正弦定理,得a b c +=,又1a b c ++=……………………….2分 1c + 1c ∴=……………………………6分(2)由1sin 2S ab C =又1sin 6S C = 11sin sin 26ab C C ∴= 13ab ∴=,又a b +=..8分由22222()21cos 222a b c a b ab c C ab ab +-+--===…………11分 60C ∴=o ………………………………………………………12分19. 解:(1)从50名教师随机选出2名的方法数为2501225C =…….2分 选出的2人都来自柳州市的方法数为215105C =……………..4分故2人都来自柳州市的概率为1053122535P ==…………….6分 (2)选出2人来自同一城市的方法数为22222015510350C C C C +++=…….8分 所以选出2人来自不同城市的方法数为250350875C -=……………10分故 2人来自不同城市的概率为875512257P ==………………………..12分20. 解.(1)证明:因为侧面11ABB A ,11ACC A 均为正方形,所以11,AA AC AA AB ⊥⊥,所以1AA ⊥平面ABC ,三棱柱111ABC A B C -是直三棱柱.因为1A D ⊂平面11A B C ,所以11CC A D ⊥, ………………………3分又因为1111A B AC =,D 为11B C 中点, 所以111A D B C ⊥. ……………………5分 因为1111CC B C C = ,所以1A D ⊥平面11BB C C . ……………6分(2)解: 因为侧面11ABB A ,11ACC A 均为正方形, 90BAC ∠= ,所以1,,AB AC AA 两两互相垂直,如图所示建立直角坐标系A xyz -……7分设1AB =,则111(0,10),(1,0,0),(0,0,1),(,,1)22C B AD ,. 1111(,,0),(0,11)22A D AC ==-uuu r uuu r ,, ……………………………8分 设平面1A DC 的法向量为=()x,y,zn ,则有 1100A D A C ⋅=⎧⎨⋅=⎩rrn n ,0x y y z +=⎧⎨-=⎩, x y z =-=-, 取1x =,得(1,1,1)=--n . ……………………9分又因为ABAB⋅==uu u rruu u rrnn,AB⊥平面11ACC A,…………11分所以平面11ACC A的法向量为(1,00)AB=uu u r,,因为二面角1D AC A--是钝角.所以,二面角1D AC A--的余弦值为……………12分21.解:(1)当2a=时,'2()61f x x=-…………………………….1分令'()0f x<,得x<<;…………………………3分令'()0f x>,得x<或x>……………………….5分∴()f x的单调递减区间是(,单调递增区间是(,-∞和()6+∞………………………………………………………6分(2)设过原点所作的切线的切点坐标是2(,)A m am m-,则231k am=-切线方程为32()(31)()y am m am x m--=--,……………….8分把(0,0)代入切线方程,得32()(31)()am m am m--=--m∴=或220am=a≠Q0m∴=………………………………………………11分即只有唯一切点,故过原点作切线只有一条………………….12分22. 解.(1)由已知可得点A(-6,0),F(0,4)设点P(x,y),则APuu u r=(x+6, y),FPuur=(x-4, y),由已知可得22213620(6)(4)0x yx x y⎧+=⎪⎨⎪+-+=⎩…………………………….4分则22x+9x-18=0,x=23或x=-6. 由于y>0,只能x=23,于是y=235.∴点P 的坐标是(23,235)……………………………………..6分(2) 直线AP 的方程是x -3y +6=0. 设点M(m ,0),则M 到直线AP 的距离是26+m . 于是26+m =6-m ,又-6≤m ≤6,解得m =2……………………………………………………8分 椭圆上的点(x ,y )到点M 的距离d 有222222549(2)4420()15992d x y x x x x =-+=-++-=-+,……….10分 由于-6≤X ≤6, ∴当x =29时,d 取得最小值15 ……………….12分。
数学_2013年湖北省某校高考数学模拟试卷(文科)(含答案)
2013年湖北省某校高考数学模拟试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z =(a −2)+√2i(a ∈R)为纯虚数,则a+i i的虚部为( )A 2B −2C 2iD −2i2. 某学校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,已知女学生一共抽取了100人,则n 的值是( ) A 120 B 200 C 240 D 4803. 已知函数f(x)={2cos πx3(x ≤2012)2x−2012(x >2012),则f[f(2013)]=( )A √3B −√3C 1D −1 4. 下列命题中是假命题的是( )A ∀x ∈(0, π2),x >sin B ∃x 0∈R ,lgx 0=0 C ∀x ∈R ,3r >0 D ∃x 0∈R ,sinx 0+cosx 0=25. “m <0”是“函数f(x)=m +log 2x(x ≥1)存在零点”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分又不必要条件 6. 将函数y =sin(6x +π4)的图象上各点的横坐标伸长到原来的3倍,再向右平移π8个单位,得到的函数的一个对称中心( ) A (π2,0) B (π4,0) C (7π16,0) D (5π16,0)由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y =−0.7x +a ,则a 等于( )A 5.1B 5.2C 5.25D 5.48. 已知f(x)的定义域为R ,对任意x ∈R ,有f(x +2)=f(x +1)−f(x),且f(1)=lg3−lg2,f(2)=lg3+lg5,则f(2013)的值为( ) A −1 B 1 C lg 23D lg 1159. 一个几何体的三视图如图所示,则该几何体的外接球的体积为( )A 4√3πB 12πC 2√3πD 4√2π10. 对于一个有限数列P ={P 1, P 2, ..., P n }P 的“蔡查罗和”定义为S 1+S 2+⋯+S nn,其中S k =P 1+P 2+...+P k (1≤k ≤n).若一个99项的数列{P 1, P 2, ..., P 99}的“蔡查罗和”为1000,则100项的数列{1, P 1, P 2, ..., P 99}“蔡查罗和”为( ) A 990 B 991 C 992 D 993二、填空题:本大题共7小题,每小题5分,共35分.11. 已知|a →|=1,|b →|=6,a →•(b →−a →)=2,则向量a →与b →的夹角为________. 12. 已知抛物线y 2=−8x 的准线过双曲线x 2m−y 23=1的右焦点,则双曲线的离心率为________.13. 若x ,y 满足约束条件{x +y ≥1x −y ≥−12x −y ≤2,目标函数z =x +2y 最大值记为a ,最小值记为b ,则a −b 的值为________.14. 已知集合A ={y|y =x 2+2x, −2≤x ≤2},B ={x|x 2+2x −3≤0},在集合A 中任意取一个元素a ,则a ∈B 的概率是________.15. 执行如图所示的程序框图,若输入A 的值为2,则输出P 的值为________.16. 若a ,b ,c 分别是△ABC 的A ,B ,C 所对的三边,且csinC =3asinA +3bsinB ,则圆M:x 2+y 2=12被直线l:ax −by +c =0所截得的弦长为________.17. 某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120∘;二级分形图是在一级分形图的每一条线段的末端再生成两条长度均为原来13的线段;且这两条线段与原线段两两夹角为120∘;…;依此规律得到n 级分形图,则(1)四级分形图中共有________条线段;(2)n 级分形图中所有线段的长度之和为________.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤. 18. 已知函数f(x)=2cosωxsin(ωx +π6)+cos 4ωx −sin 4ωx(ω>0)的两条相邻对称轴之间的距离等于π2,(1)求f(x)的解析式;(2)在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,且锐角B 满足f(B)=12,b =√7,a +c =4,求△ABC 的面积.19.如图所示的几何体中,ABCD −A 1B 1C 1D 1是一个长方体,P −ABCD 是一个四棱锥,其中AB =2,BC =3,AA 1=2,点P ∈平面CC 1D 1D 且PD =PC =√2,(1)在棱BB 1(含端点)上能否找到一点M ,使得PC // 平面ADM ,并请说明理由; (2)求该几何体的表面积.20. “宜昌梦,大城梦”.当前,宜昌正以特大城市的建设理念和标准全力打造宜昌新区,同时加强对旧城区进行拆除改造.已知旧城区的住房总面积为64am 2,每年拆除的面积相同;新区计划用十年建成,第一年新建设的住房面积为2am 2,前四年每年以100%的增长率建设新住房,从第五年开始,每年新建设的住房面积比上一年减少2am 2(1)若10年后宜昌新、旧城区的住房总面积正好比目前翻一番,则每年旧城区拆除的住房面积是多少m 2?(2)设第n 年(1≤n ≤10且n ∈N)新区的住房总面积为S n m 2,求S n .21. 如图所示,已知圆C :(x +1)2+y 2=8,定点A(1, 0),M 为圆C 上一动点,点P 在线段AM 上,点N 在线段CM 上,且满足AM →=2AP →,NP →⋅AM →=0,点N 的轨迹为曲线E .(1)求曲线E 的方程;(2)若过定点F(0, 2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FG →=λFH →,求λ的取值范围.22. 设函数f(x)=lnx −px +1, (1)讨论函数f(x)的单调性;(2)当p >0时,若对任意的x >0,恒有f(x)≤0,求p 的取值范围; (3)证明:ln2222+ln3232+...+lnn 2n 2<n −1−n−12(n+1)(n ∈N, n ≥2).2013年湖北省某校高考数学模拟试卷(文科)答案1. B2. C3. D4. D5. A6. A7. C8. B9. A10. B11. π312. 213. 1014. 2915. 416. 617. 分别为:45,9[1−(23)n].18. 解:(1)f(x)=2cosωx(sinωxcosπ6+cosωxsinπ6)+(cos2ωx−sin2ωx)(cos2ωx+sin2ωx)=√3cosωxsinωx+cos2ωx+cos2ωx=√32sin2ωx+cos2ωx+cos2ωx=√32sin2ωx+32cos2ωx+12=√3sin(2ωx+π3)+12,∵ T=π,∴ ω=1,则f(x)=√3sin(2x+π3)+12;(2)∵ B为三角形锐角,∴ B=60∘,在△ABC中,由余弦定理得:b2=a2+c2−2accosB=(a+c)2−2ac−2accosB,将b=√7,a+c=4代入得:ac=3,则S△ABC=12acsinB=32sin60∘=3√34.19. 解:(1)设B1M=t,则0≤t≤2,以D1为原点,建立空间直角坐标系,由题意知.D(0, 0, 2),M(3, 2, t),B(3, 2, 2), C(0, 2, 2),P(0, 1, 3),A(3, 0, 2), ∴ DM →=(3, 2, t −2),PC →=(0,1,−1), DA →=(3, 0, 0),设平面ADM 的法向量m →=(x,y,z),则{m →⋅DA →=3x =0˙,取y =1,得m →=(0, 1, 22−t ), ∵ PC // 平面ADM , ∴ PC →⋅m →=1−22−t=0,解得t =0,∴ M 点与B 1重合时,PC // 平面ADM . (2)∵ AB →=(0,2,0),AP →=(−3, 1, 1),∴ P 到AB 的距离d 1=|AP →|√1−cos 2<AP →,AB →>=√11⋅√1−111=√10,∵ BC →=(−3, 0, 0),BP →=(−3, −1, 1),∴ P 到BC 的距离d 2=|BP →|√1−cos 2<BP →,BC →>=√11⋅√1−911=√2.∴ 该几何体的表面积:S =S 四边形A 1B 1C 1D 1+2S 四边形AA 1D 1D +2S 四边形AA 1B 1B +2S △PBC +S △PAB +S △PDC=3×2+2×2×2+2×3×2+2×12×3×√2+12×2×√10+12×2×1=3√2+√10+27. 20. 解:(1)10年后宜昌新、旧城区的住房总面积为2a +4a +8a +16a +14a +12a +10a +8a +6a +4a =84a ,设每年旧城拆除的数量是x ,则84a +(64a −10x)=2×64a , ∴ x =2a ,即每年旧城区拆除的住房面积是2am 2;(2)设第n 年(1≤n ≤10且n ∈N)新区的住房建设面积为a n ,则a n ={2n a ,1≤n ≤42(12−n)a,5≤n ≤10, ∴ 1≤n ≤4时,S n =2(2n −1)a ;5≤n ≤10,S n =2a +4a +8a +16a +14a+...+2(12−n)a =30a +(n−4)(38−2n)a2=(23n −n 2−46)a . 21. 解:(1)设点N 的坐标为(x, y), ∵ AM →=2AP →,∴ 点P 为AM 的中点,∵ NP →⋅AM →=0,∴ NP ⊥AM ,∴ NP 是线段AM 的垂直平分线,∴ NM =NA , 又点N 在CM 上,设圆的半径是r ,则r =2√2, ∴ NC =r −NM ,∴ NC +NM =r =2√2>AC , ∴ 点N 的轨迹是以A 、C 为焦点的椭圆, ∴ 2a =2√2,c =1,可求得b =1,∴ 椭圆x 22+y 2=1,即曲线E 的方程:x 22+y 2=1.(2)当斜率不存在时,直线与曲线E 有2个交点此时参数的值为λ=13, 不妨设FH 斜率为k ,且将原点移至F ,则直线FH 方程为y =kx ,椭圆方程变为x 22+(y −2)2=1,将直线方程代入椭圆得x 22+(kx −2)2=1,整理得(1+2k 2)x 2−8kx +6=0,直线与曲线E 有二不同的交点,故△=(−8k)2−4⋅6(1+2k 2)=16k 2−24>0,即k 2>32,因为左右对称,可以研究单侧, 当k >0时,λ=x 1x 2=−b−√b 2−4ac −b+√b 2−4ac即λ=8k−√16k 2−248k+√16k 2−24=2−√1−32k 22+√1−32k 2由k 2>32,即0<32k 2<1,即0<√1−32k 2<1, 令t =√1−32k 2∈(0, 1),则λ=2−t 2+t,t ∈(0, 1),由于λ=2−t 2+t=42+t−1,故函数在t ∈(0, 1)上是减函数,故13<λ<1综上,参数的取值范围是13≤λ<122. (1)解:∵ f(x)=lnx −px +1,∴ f(x)的定义域为(0, +∞), f ′(x)=1x −p =1−px x,当p ≤0时,f′(x)>0,f(x)在(0, +∞)内单调增, 当p >0时,令f′(x)=0,∴ x =1p ∈(0, +∞),f′(x),f(x)随x的变化情况如下表:从上表可以看出:当P>0时,f(x)在(0, 1p )单调递增,在(1p, +∞)单调减.(2)当p>0时,在x=1p 取得极大值f(1p)=ln1p,此极大值也是最大值.要使f(x)≤0恒成立,只需f(1p )=ln1p≤0,∴ p≥1,∴ p的取值范围是[1, +∞).(3)令p=1,由(2)知lnx−x+1≤0,∴ lnx≤x−1,∵ n∈N,n≥2,∴ lnn2≤n2−1,∴ lnn2n2≤n2−1n2=1−1n2,∴ ln2222+ln3232+⋯+lnn2n2≤(1−122)+(1−132)+...+(1−1n2)=(n−1)−(122+132+⋯+1n2)<(n−1)−[12×3+13×4+⋯+1n(n+1)]=(n−1)−(12−13+13−14+⋯+1n−1n+1)=(n−1)−(12−1n+1)=n−1−n−12(n+1),∴ ln2222+ln3232+...+lnn2n2<n−1−n−12(n+1)(n∈N, n≥2).。
2013年高考数学文科模拟试卷(含答案详解版)
开始 0k =k =k +131n n =+150?n >输出k ,n结束是 否输入n2013年高考数学模拟试卷(文)第I 卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.1.已知集合{}0 1 2A =,,,集合{}2B xx =>,则A B =A .B .{}0 1 2,,C .{}2x x >D .∅ 2.已知i 为虚数单位,则212ii-++的值等于 ( )A. i -B.12i -C. 1-D.2.定义{|,,}x A B z z x y x A y B y⊗==+∈∈.设集合{0,2}A =,{1,2}B =3.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5 4.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( ) A .21 B .33 C .23 D .35.阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56.函数tan()42y x ππ=-的部分图象如图所示,则()O AO BA B +⋅=( )A.6B.4C.4-D.6-7.在纪念中国人民抗日战争胜利六十周年的集会上,两校各派3名代表,校际间轮流发言,对日本侵略者所犯下的滔天罪行进行控诉,对中国人民抗日斗争中的英勇事迹进行赞颂,那么不同的发言顺序共有( ) A.72种 B.36种 C.144种 D.108种O xyAB第6题图图18.已知函数()y f x =的定义域为2(43,32)a a --, 且(23)y f x =-为偶函数,则实数a 的值为( )A .3或-1B .-3或1C .1D .-19.农民收入由工资性收入和其它收入两部分构成。
2013-2014学度高考文科模拟试题
2013-2014学年度高考文科模拟试题2013-2014学年度高考模拟试题数学(理)一、选择题:本大题共12小题,每小题5分,共60分,1.若集A={x|-13},B={x|0},则AB=()A.{x|-12}B.{x|-12}C.{x|02}D.{x|01}2.函数的零点是()A.B.和C.1D.1和3.复数与复数在复平面上的对应点分别是、,则等于()A、B、C、D、4.已知函数的定义域为,集合,若:是Q:充分不必要条件,则实数的取值范围是()A.B.C.D.5.已知等差数列中,,记,S13=()A.78B.68C.56D.526.要得到一个奇函数,只需将的图象()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位7.已知x0,y0,若恒成立,则实数m的取值范围是()A.m4或m-2B.m2或m-4C.-28.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.9.设、分别是定义在R上的奇函数和偶函数,当时,.且.则不等式的解集是()A.(-3,0)(3,+)B.(-3,0)(0,3)C.(-,-3)(3,+)D.(-,-3)(0,3)10.已知函数,若有四个不同的正数满足(为常数),且,,则的值为()A、10B、14C、12D、12或2011.已知定义在R上的函数对任意的都满足,当时,,若函数至少6个零点,则取值范围是()A.B.C.D.12.在平面直角坐标系xOy中,点A(5,0),对于某个正实数k,存在函数f(x)=a(a0).使得=(+)(为常数),这里点P、Q的坐标分别为P(1,f(1)),Q(k,f(k)),则k的取值范围为()A.(2,+)B.(3,+)C.[4,+)D.[8,+)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.过点的直线与圆截得的弦长为,则该直线的方程为。
北京市西城区2013一摸文科数学习题和答案
北京市西城区2013年高三一模试卷高三数学(理科) 2013.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知全集U=R ,集合{|02}A x x =<<,2{|10}B x x =->,那么U AB =ð(A ){|01}x x <<(B ){|01}x x <≤ (C ){|12}x x << (D ){|12}x x ≤<2.若复数i2ia +的实部与虚部相等,则实数a = (A )1- (B )1(C )2-(D )23.执行如图所示的程序框图.若输出y =角=θ(A )π6 (B )π6-(C )π3(D )π3-4.从甲、乙等5名志愿者中选出4名,分别从事A ,B ,C ,D 四项不同的工作,每人承担一项.若甲、乙二人均不能从事A 工作,则不同的工作分配方案共有(A )60种 (B )72种(C )84种(D )96种5.某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是 (A)6 (B)12+(C)12+ (D)24+6.等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.已知函数22()log 2log ()f x x x c =-+,其中0c >.若对于任意的(0,)x ∈+∞,都有()1f x ≤,则c 的取值范围是 (A )1(0,]4(B )1[,)4+∞ (C )1(0,]8(D )1[,)8+∞8.如图,正方体1111ABCD A B C D -中,P 为底面ABCD上的动点,1PE A C ⊥于E ,且PA PE =,则点P 的轨迹是 (A )线段 (B )圆弧(C )椭圆的一部分(D )抛物线的一部分第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知曲线C 的参数方程为2cos 12sin x y =⎧⎨=+⎩αα(α为参数),则曲线C 的直角坐标方程为 .10.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______.11.如图,正六边形ABCDEF 的边长为1,则AC DB ⋅=______. 12.如图,已知AB 是圆O 的直径,P 在AB 的延长线上,PC切圆O 于点C ,CD OP ⊥于D .若6CD =,10CP =, 则圆O 的半径长为______;BP =______. 13.在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.14.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b c at b c a b=⋅,}b cc a. (ⅰ)若△ABC 为等腰三角形,则t =______;(ⅱ)设1a =,则t 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()sin cos f x x a x =-的一个零点是π4. (Ⅰ)求实数a 的值;(Ⅱ)设()()()cos g x f x f x x x =⋅-+,求()g x 的单调递增区间.16.(本小题满分13分)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测. (Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率; (Ⅱ)记X 为抽取的3名同学中男同学的人数,求随机变量X的分布列和数学期望.17.(本小题满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD ,BC AB 2=,60ABC ︒∠=,AC FB ⊥.(Ⅰ)求证:⊥AC 平面FBC ;(Ⅱ)求BC 与平面EAC 所成角的正弦值;(Ⅲ)线段ED 上是否存在点Q ,使平面EAC ⊥平面QBC ? 证明你的结论.18.(本小题满分13分)已知函数()ln f x ax x =-,()e 3axg x x =+,其中a ∈R .(Ⅰ)求)(x f 的极值;(Ⅱ)若存在区间M ,使)(x f 和()g x 在区间M 上具有相同的单调性,求a 的取值范围.19.(本小题满分14分)如图,椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角恰为60︒.(Ⅰ)求该椭圆的离心率; (Ⅱ)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记△GFD 的面积为1S ,△OED (O 为原点)的面积为2S ,求12S S 的取值范围.20.(本小题满分13分)已知集合*12{|(,,,),,1,2,,}(2)n n i S X X x x x x i n n ==∈=≥N .对于12(,,,)n A a a a =,12(,,,)n nB b b b S =∈,定义1122(,,,)nnAB b a b a b a =---; 1212(,,,)(,,,)()n n a a a a a a =∈R λλλλλ;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(Ⅰ)当5n =时,设5(1,2,1,2,)A a =,(2,4,2,1,3)B =.若(,)7d A B =,求5a ;(Ⅱ)(ⅰ)证明:若,,n A B C S ∈,且0∃>λ,使A B B C λ=,则(,)(,)(d A B d B C d A C+=; (ⅱ)设,,n A B C S ∈,且(,)(,)(,d A B d B C d A C +=.是否一定0∃>λ,使A B B C λ=?说明理由;(Ⅲ)记(1,1,,1)n I S =∈.若A ,n B S ∈,且(,)(,)d I A d I B p ==,求(,)d A B 的最大值.北京市西城区2013年高三一模试卷高三数学(理科)参考答案及评分标准2013.4一、选择题:本大题共8小题,每小题5分,共40分.1. B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.B ; 7.D ; 8.A .二、填空题:本大题共6小题,每小题5分,共30分.9.22230xy y +--=; 10.5; 11.32-12.152,5; 13.1+ 14.1,. 注:12、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:依题意,得π()04f =, ………………1分 即ππsincos 04422a -=-=, ………………3分 解得1a =. ………………5分(Ⅱ)解:由(Ⅰ)得()sin cos f x x x =-. ………………6分()()()cos g x f x f x x x =⋅-+(sin cos )(sin cos )2x x x x x =--- (7)分22(cos sin )2x x x =-+ ………………8分cos 22x x =+ ………………9分π2sin(2)6x =+. ………………10分由 πππ2π22π262k x k -≤+≤+,得 ππππ36k x k -≤≤+,k ∈Z . ………………12分所以 ()g x 的单调递增区间为ππ[π,π]36k k -+,k ∈Z . ………………13分16.(本小题满分13分)(Ⅰ)解:依题意,甲、乙两组的学生人数之比为 (35):(22)2:1++=, ……………1分所以,从甲组抽取的学生人数为2323⨯=;从乙组抽取的学生人数为1313⨯=.………2分 设“从甲组抽取的同学中恰有1名女同学”为事件A , ………………3分则 113528C C 15()C 28P A ⋅==,故从甲组抽取的同学中恰有1名女同学的概率为1528. ………………5分 (Ⅱ)解:随机变量X 的所有取值为0,1,2,3. ………………6分21522184C C 5(0)C C 28P X ⋅===⋅, 111213525221218484C C C C C 25(1)C C C C 56P X ⋅⋅⋅==+=⋅⋅, 211113235221218484C C C C C 9(2)C C C C 28P X ⋅⋅⋅==+=⋅⋅, 21322184C C 3(3)C C 56P X ⋅===⋅.……………10分所以,随机变量X的分布列为:………………11分5259350123285628564EX =⨯+⨯+⨯+⨯=. ………………13分17.(本小题满分14分) (Ⅰ)证明:因为BC AB 2=,60ABC ︒∠=,在△ABC 中,由余弦定理可得 BC AC 3=, 所以BC AC ⊥. ………………2分 又因为 AC FB ⊥,所以⊥AC 平面FBC . ………………4分(Ⅱ)解:因为⊥AC 平面FBC ,所以FC AC ⊥.因为FC CD⊥,所以⊥FC 平面ABCD. ………………5分所以,,CA CF CB 两两互相垂直,如图建立的空间直角坐标系xyz C -. (6)分在等腰梯形ABCD 中,可得 CB CD =.设1BC =,所以11(0,0,0),(0,1,0),(,,0),(,,1)2222C A BDE --.所以)1,21,23(-=,)0,0,3(=,)0,1,0(=. 设平面EAC 的法向量为=()x,y,z n ,则有0,0.CE CA ⎧⋅=⎪⎨⋅=⎪⎩n n所以10,20.x y z -+=⎨= 取1z =,得=n (0,2,1). ………………8分 设BC 与平面EAC 所成的角为θ,则||sin |cos ,|5||||CB CB CB ⋅=〈〉==θn n n , 所以BC 与平面EAC 所成角的正弦值为552. ………………9分(Ⅲ)解:线段ED 上不存在点Q ,使平面EAC ⊥平面QBC .证明如下: ………………10分假设线段ED 上存在点Q ,设 ),21,23(t Q - )10(≤≤t ,所以),21,23(t -=. 设平面QBC 的法向量为=m ),,(c b a ,则有0,0.CB CQ ⎧⋅=⎪⎨⋅=⎪⎩m m所以0,10.22b a b tc =⎧-+=⎪⎩ 取 1=c ,得=m )1,0,32(t -. ………………12分 要使平面EAC ⊥平面QBC ,只需0=⋅n m ,………………13分即 002110⨯+⨯+⨯=, 此方程无解. 所以线段ED 上不存在点Q ,使平面EAC ⊥平面QBC . ………………14分18.(本小题满分13分) (Ⅰ)解:()f x 的定义域为(0,)+∞, ………………1分且11()ax f x a x x -'=-=. ………………2分 ① 当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减.从而)(x f 没有极大值,也没有极小值. ………………3分② 当0a >时,令()0f x '=,得1x a=. ()f x 和()f x '的情况如下:故()f x 的单调减区间为(0,)a ;单调增区间为(,)a +∞.从而)(x f 的极小值为1()1ln f a a=+;没有极大值. ………………5分(Ⅱ)解:()g x 的定义域为R ,且 ()e 3ax g x a '=+. ………………6分③ 当0a>时,显然 ()0g x '>,从而()g x 在R 上单调递增.由(Ⅰ)得,此时()f x 在1(,)a+∞上单调递增,符合题意. ………………8分④ 当0a=时,()g x 在R 上单调递增,()f x 在(0,)+∞上单调递减,不合题意.……9分⑤ 当0a <时,令()0g x '=,得013ln()x a a=-. ()g x 和()g x '的情况如下表:当30a -≤<时,00x ≤,此时()g x 在0(,)x +∞上单调递增,由于()f x 在(0,)+∞上单调递减,不合题意. ………………11分当3a <-时,00x >,此时()g x 在0(,)x -∞上单调递减,由于()f x 在(0,)+∞上单调递减,符合题意.综上,a 的取值范围是(,3)(0,)-∞-+∞. ………………13分19.(本小题满分14分) (Ⅰ)解:依题意,当直线AB 经过椭圆的顶点(0,)b 时,其倾斜角为60︒. ………………1分设(,0)F c -,则tan 60bc︒== ………………2分 将b = 代入 222a bc =+,解得2a c =. ………………3分所以椭圆的离心率为12c e a ==. ………………4分 (Ⅱ)解:由(Ⅰ),椭圆的方程可设为2222143x y c c +=. ………………5分 设11(,)A x y ,22(,)B x y .依题意,直线AB 不能与,x y 轴垂直,故设直线AB 的方程为()y k x c =+,将其代入2223412x y c +=,整理得 222222(43)84120k x ck x k c c +++-=. (7)分则2122843ck x x k -+=+,121226(2)43cky y k x x c k +=++=+,22243(,)4343ck ck G k k -++. ………………8分 因为GD AB ⊥,所以2223431443Dckk k ck x k +⨯=---+,2243Dck x k -=+. ………………9分因为 △GFD ∽△OED ,所以2222222212222243()()||434343||()43ck ck ck S GD k k k ck S OD k ---++++==-+ (11)分222242222242(3)(3)99999()ck ck c k c k ck c k k++===+>. ………………13分所以12S S 的取值范围是(9,)+∞. ………………14分20.(本小题满分13分)(Ⅰ)解:当5n =时,由51(,)||7i i i d A B a b ==-=∑,得 5|12||24||12||21||3|7a -+-+-+-+-=,即 5|3|2a -=.由*5a ∈N ,得 51a =,或55a =. ………………3分(Ⅱ)(ⅰ)证明:设12(,,,)n A a a a =,12(,,,)n B b b b =,12(,,,)n C c c c =.因为 0∃>λ,使 AB BC λ=,所以 0∃>λ,使得 11221122(,,)((,,)n n n n b a b a b a c b c b c b ---=---λ,,,即0∃>λ,使得 ()i i i i b a c b λ-=-,其中1,2,,i n =.所以i i b a -与(1,2,,)i i c b i n -=同为非负数或同为负数. ………………5分所以 11(,)(,)||||nni i i i i i d A B d B C a b b c ==+=-+-∑∑1(||||)ni i i i i b a c b ==-+-∑1||(,)ni i i c a d A C ==-=∑. (6)分(ⅱ)解:设,,n A B C S ∈,且(,)(,)(,)d A B d B C d A C +=,此时不一定0∃>λ,使得AB BC λ=. ………………7分反例如下:取(1,1,1,,1)A =,(1,2,1,1,,1)B =,(2,2,2,1,1,,1)C ,则(,)1d A B =,(,)2d B C =,(,)3d A C =,显然(,)(,)(,)d A B d B C d A C +=. 因为(0,1,0,0,,0)AB =,(1,0,1,0,0,,0)BC =,所以不存在>0λ,使得AB BC λ=. ………………8分 (Ⅲ)解法一:因为1(,)||ni i i d A B b a ==-∑,设(1,2,,)ii b a i n -=中有()m m n ≤项为非负数,n m -项为负数.不妨设1,2,,i m=时0ii b a -≥;1,2,,i m m n =++时,0i i b a -<.所以 1(,)||ni i i d A B b a ==-∑12121212[()()][()()]m m m m n m m n b b b a a a a a a b b b ++++=+++-+++++++-+++因为 (,)(,)d I A d I B p ==,所以11(1)(1)nniii i a b ==-=-∑∑, 整理得 11nniii i a b ===∑∑.所以 12121(,)||2[()]ni i m m i d A B b a b b b a a a ==-=+++-+++∑. (10)分因为 121212()()m n m m n b b b b b b b b b +++++=+++-+++()()1p n n m p m ≤+--⨯=+;又 121m a a a m m +++≥⨯=, 所以 1212(,)2[()]m m d A B b b b a a a =+++-+++2[()]2p m m p ≤+-=.即 (,)2d A B p ≤. ……………12分 对于(1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有A,nB S ∈,且(,)(,)d I A d I B p==,(,)2d A B p =.综上,(,)d A B 的最大值为2p . ……………13分 解法二:首先证明如下引理:设,x y ∈R ,则有 ||||||x y x y +≤+.证明:因为 ||||x x x -≤≤,||||y y y -≤≤,所以 (||||)||||x y x y x y -+≤+≤+,即||||||x y x y +≤+.所以 11(,)|||(1)(1)|n ni i i i i i d A B b a b a ===-=-+-∑∑1(|1||1|)ni i i b a =≤-+-∑11|1||1|2n ni i i i a b p ===-+-=∑∑. (11)分上式等号成立的条件为1ia =,或1ib =,所以 (,)2d A B p ≤. ……………12分对于(1,1,,1,1)A p =+,(1,1,1,,1)B p =+,有A,nB S ∈,且(,)(,)d I A d I B p==,(,)2.d A B pd A B的最大值为2p.……………13分综上,(,)。
2013年高三文科数学模拟试题
高三文科数学模拟试题一、选择题:本大题共9小题,每小题5分,共45分,每小题只有一个选项是符合要求的。
1、若{1,2},{|30},A B x x ==-<则A B ⋂= ( ){}A.1,2 {}B.0,1,2 {}C.1,2,3 {}D.0,1,2,3 2.已知复数12(,,)2ia bi ab R i i+=+∈+为虚数单位,那么a b -的值为 ( ) A.12 B.13 C. 14 D. 153.已知命题2:",10";p x R x ∀∈+>命题:",sin 2"q x R x ∃∈=,则下列判断正确的是 ( )A.p q p 或真,非为真B.p q p 或真,非为假C.p q p 且为真,非为真D.p q p 且为真,非为假4.若某多面体的三视图(单位:cm )如图所示,则此多面体的体积是 ( )A.22cmB.24cmC.26cmD.212cm5.某产品的成本费用x 与销售额y 的统计数据如下表, 成本费用x(万元) 2 3 4 5 销售额y (万元)26393954根据上表可得回顾方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报成本费用为6万元时销售额为 ( )A.72.0万元B.67.7万元C.65.5万元D.63.6万元6.设双曲线22221(0,0)x y a b a b-=>>的离心率为54,抛物线22y x =的准线过双曲线的点,则此双曲线的方程为( )23正视图2侧视图俯视图222A.143x y -=22B.134x y -= 22C.1169x y -=22D.1916x y -=7.已知0.90.7 1.1log 0.9,log 0.7, 1.1a b c ===,则,,a b c 的大小关系为( )A.a b c <<B.a c b <<C.b a c <<D.c a b <<8.在ABC ∆中,,a b c 分别为角,,A B C 的对边,若2,sin sin sin a B C A =+=,且ABC ∆的面积为4sin 3A ,则角A =( ) A.6p B.3p C.2p 5D.3p 9.已知函数221,()2,0,xx of x x x x ⎧->⎪=⎨--≤⎪⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围是( )A.(0,1)B.(0,2)C.(1,2)D.(2,3)二、填空题:本大题共7小题,考生作答6小题,每小题5分共30分,把答案填在答题卡中对应题号后的横线上。
2013年高三一模数学(文科)试卷与答案
河北省石家庄市2013届高中毕业班第一次模拟考试数学文科(A 卷)(时间120分钟,满分150分)第I 卷(选择题,共60分)2. 若集合}822|{2≤<∈=+x Z x A ,}02|{2>-∈=x x R x B ,则)(B C A R 所含的元素个数为 A. O B. 1 C. 2 D. 33. 某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐 与健康”的调查,为此将学生编号为1、2、…、60,选取的这6名学生的编号可能是A. 1,2,3,4,5,6B. 6,16,26,36,46,56C. 1,2,4,8,16,32 D. 3,9,13 ,27,36,544 已知双曲线的一个焦点与抛物线x 2=20y 的焦点重合,且其渐近线的方程为3x ±4y=0,则 该双曲线的标准方程为5.设l 、m 是两条不同的直线,a,β是两个不同的平面,有下列命题: ①l//m,m ⊂a,则l//a ② l//a,m//a 则 l//m ③a 丄β,l ⊂a ,则l 丄β ④l 丄a ,m 丄a,则l//m 其中正确的命题的个数是 A. 1 B. 2 C. 3 D. 46. 执行右面的程序框图,输出的S 值为 A. 1 B. 9 C. 17 D. 207. 已知等比数列{a n },且a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为 A. 4 B. 6 C. 8 D. -98. 现采用随机模拟的方法估计该运动员射击4次,至少击中3次的 概率:先由计算器给出0到9之间取整数值的随机数,指定0、1表 示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数 为一组,代表射击4,次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 469812. [x]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f(x)=x-[x](x ∈R),g(x)=log 4(x-1),则函数h(x)=f(x)-g(x)的零点个数是 A. 1 B. 2 C. 3 D. 4第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作 答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分a 13.已知向量 a =(1,2),b=(x,1),u=a+2b,v=2a-b,且u//v,则实数x 的值是______三、解答题:本大题共6小通,共70分.解答应写出文字说明,证明过程或演算步職‘ 17. (本小题满分12分)(I)求角A 的大小;18. (本小题满分12分)如图,在四棱锥P-ABCD 中,PA 丄平面ABCD ,ABC ∠=ADC ∠=90°BAD ∠=1200,AD=AB=1,AC 交 BD 于 O 点. (I)求证:平面PBD 丄平面PAC;(II )求三棱锥D-ABP 和三棱锥P-PCD 的体积之比.19. (本小题满分12分)为了调查某大学学生在周日上网的时间,随机对1OO 名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果: 表1:男生上网时间与频数分布表表2:女生上网时间与频数分布表(I)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(II)完成下面的2x2列联表,并回答能否有90%的把握认为“学生周日上网时间与性 别有关”? 表3 :20. (本小題满分12分)重合的直线l 交椭圆于A,B 两点.(I)若ΔABF 2为正三角形,求椭圆的离心率;21(本小题满分12分)已知函数f(x)=e x+ax-1(e 为自然对数的底数).(I)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;(II)若f(x)≥x 2在(0,1 )上恒成立,求实数a 的取值范围.请考生在22〜24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-l:几何证明选讲如图,过圆O 外一点P 作该圆的两条割线PAB 和PCD,分别交圆 O 于点A,B,C,D 弦AD 和BC 交于Q 点,割线PEF 经过Q 点交圆 O 于点E 、F ,点M 在EF上,且BMF BAD ∠=∠:(I)求证:PA·PB=PM·PQ(II)求证:BOD BMD ∠=∠23. (本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系.x0y 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 的极坐标方程为: θθρcos sin 2=(I)求曲线l的直角坐标方程;点求|AB|的值24. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a∈R). (I)当a=1时,解不等式f(x)>3;(II)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围2013年高中毕业班第一次模拟考试(数学文科答案)一、选择题 A 卷答案1-5 DCBCA 6-10 CACAB 11-12 DB B 卷答案1-5 DBCBA 6-10 BABAC 11-12 DC 二、填空题13.12 14.363515. 2 16 .3724二 解答题17.解:(Ⅰ)法一:由B a A b c cos cos )2(=-及正弦定理得: B A A B C cos sin cos )sin sin 2(=-……………2分 则B A A B A C cos sin cos sin cos sin 2+=sin()B A =+,sin()sin A B C A B C π++=∴+=C A C sin cos sin 2=由于sin 0C ≠,所以,22cos =A ……………… 4分 又0A π<<,故4π=A . …………………… 6分或解:(Ⅰ)由B a A b c cos cos )2(=-及余弦定理得:ac b c a abc a c b b c 22)2(222222-+=-+- ……………………… 2分整理得:bc a c b 2222=-+222cos 222=-+=bc a c b A …………………… 4分又0A π<<,故4π=A . ……………………… 6分(Ⅱ) ABC ∆的面积S =1sin 2bc A=1,故bc =22 ① ………………… 8分根据余弦定理 2222cos a b c bc A =+- 和a, 可得22c b +=6…… ② ………………… 10分 解①②得2b c =⎧⎪⎨=⎪⎩2b c ⎧=⎪⎨=⎪⎩. …………………… 12分 18.解:证明:(Ⅰ)90ABC ADC ∠=∠=,,AD AB =AC 为公共边,Rt ABC Rt ADC ∴∆≅∆ ,………………… 2分则BO=DO,又在ABD ∆中,AB AD =,所以ABD ∆为等腰三角形.AC BD ∴⊥ ,…………………… 4分而⊥PA 面ABCD ,BD PA ⊥, 又⊥∴=BD A AC PA , 面PAC ,又⊂BD 面PBD ,∴平面⊥PAC 平面PBD .…………………… 6分(Ⅱ) 在R t ABC ∆中,1AB =,60BAC ∠=,则BC =,01sin1202ABD S AB AD ∆=⋅111=224=⨯⨯⨯,……………………8分01sin 602BCD S BC CD ∆=⋅1=224=,…………………10分PA BDCO113=133ABD D ABP P ABDABD B PCD P BCDBCD BCD S PAV V S V V S S PA ∆--∆--∆∆⋅===⋅ . …………………12分19.解:(Ⅰ)设估计上网时间不少于60分钟的人数x ,依据题意有30750100x =,…………………4分解得:225x = ,所以估计其中上网时间不少于60分钟的人数是225人.………………… 6分 (Ⅱ)根据题目所给数据得到如下列联表:其中22200(60304070)200 2.198 2.7061001001307091K⨯-⨯==≈<⨯⨯⨯………………10分因此,没有90%的把握认为“学生周日上网时间与性别有关”.…………………12分20. 解:(Ⅰ)由椭圆的定义知12122AF AF BF BF a +=+=,ABC ∴∆周长为4a , 因为2ABF ∆为正三角形,所以22AF BF =,11AF BF =,12F F 为边AB 上的高线,…………………………2分02cos3043ca ∴=,∴椭圆的离心率c e a ==.………………… 4分(Ⅱ)设11(,)A x y ,22(,)B x y 因为0e <<,1c =,所以a >…………6分①当直线AB x 与轴垂直时,22211y a b +=,422b y a =,4121221b OA OB x x y y a ⋅=+=- , 42231a a a -+-=22235()24a a --+, 因为2532+>a ,所以0OA OB ⋅< , AOB ∴∠为钝角.………………………8分②当直线AB 不与x 轴垂直时,设直线AB 的方程为:(1)y k x =+,代入22221x y a b +=,整理得:2222222222()20b a k x k a x a k a b +++-=, 22122222a k x x b a k -+=+,222212222a k a b x x b a k -=+1212OA OB x x y y ⋅=+212121212(1)(1)x x y y x x k x x +=+++2221212(1)()x x k k x x k =++++22222242222222()(1)2()a k ab k a k k b a k b a k -+-++=+2222222222()k a b a b a b b a k +--=+ 24222222(31)k a a a b b a k -+--=+………………10分令42()31m a a a =-+-, 由 ①可知 ()0m a <, AOB ∴∠恒为钝角.………………12分21.解:(Ⅰ)当1a =时,e ()1x f x x =+-,(1)e f =,e ()1x f x '=+,e (1)1f '=+,函数()f x 在点(1,(1))f 处的切线方程为e (e 1)(1)y x -=+- 即(e 1)1yx =+- ……………… 2分设切线与x 、y 轴的交点分别为A ,B .令0x =得1y =-,令0y =得1e 1x =+,∴1(,0)e 1A +,(0,1)B -11112e 12(e 1)S =⨯⨯=++△OAB .在点(1,(1))f 处的切线与坐标轴围成的图形的面积为12(e 1)+ …………………4分(Ⅱ)由2()f x x ≥得2e 1x x a x +-≥, 令2e e 11()x xx h x x x x x +-==+-, 222e e (1)(1)(1)1()1x x x x x h x x x x --+-'=--= 令e ()1xk x x =+-,…………………… 6分 e ()1x k x '=-,∵(0,1)x ∈,∴e ()10xk x '=-<,()k x 在(0,1)x ∈为减函数∴()(0)0k x k <= ,……………………8分又∵10x -<,20x >∴2e (1)(1)()0x x x h x x -+-'=>∴()h x 在(0,1)x ∈为增函数,…………………………10分 e ()(1)2h x h <=-,因此只需2e a -≥. …………………………………12分 22.证明:(Ⅰ)∵∠BAD =∠BMF ,所以A,Q,M,B 四点共圆,……………3分 所以PA PB PM PQ ⋅=⋅.………………5分 (Ⅱ)∵PA PB PC PD ⋅=⋅ , ∴PC PD PM PQ ⋅=⋅ ,又 CPQ MPD ∠=∠ , 所以~CPQ MPD ∆∆,……………7分 ∴PMD PCQ ∠=∠ ,则DCB FMD ∠=∠,………………8分∵BAD BCD ∠=∠,∴2BMD BMF DMF BAD ∠=∠+∠=∠,2BOD BAD ∠=∠,所以BMD BOD ∠=∠.…………………10分23.解:(Ⅰ)依题意22sin cos ρθρθ=………………3分 得:x y =2∴曲线1C 直角坐标方程为:x y =2.…………………5分(Ⅱ)把⎪⎪⎩⎪⎪⎨⎧=-=ty t x 22222代入x y =2整理得: 0422=-+t t ………………7分0>∆总成立,221-=+t t ,421-=t t23)4(4)2(221=-⨯--=-=t t AB ………………10分另解:(Ⅱ)直线l 的直角坐标方程为x y -=2,把x y -=2代入x y =2得: 0452=+-x x ………………7分0>∆总成立,521=+x x ,421=x x23)445(212212=⨯-=-+=x x k AB …………………10分24. 解:(Ⅰ)⎩⎨⎧>-+-≥32222x x x 解得37>x⎩⎨⎧>-+-<<322221x x x 解得φ∈x⎩⎨⎧>-+-≤32221x x x 解得13x <…………………3分 不等式的解集为17(,)(,)33-∞+∞ ………………5分 (Ⅱ)时,2>a ⎪⎩⎪⎨⎧≥--<<-+-≤++-=a x a x ax a x x a x x f ,2232,222,223)(;时,2=a 36,2()36,2x x f x x x -+≤⎧=⎨->⎩; 时,2<a ⎪⎩⎪⎨⎧≥--<<+-≤++-=2,2232,22,223)(x a x x a a x ax a x x f ;∴)(x f 的最小值为)()2(a f f 或;………………8分则⎩⎨⎧≥≥1)2(1)(f a f ,解得1≤a 或3≥a .………………10分。
2013年高考数学(文科)(课标I)真题及答案
2013年高考数学(文科)(课标I )真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A},则A∩B=( ) (A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2} (2) 1+2i (1-i)2= ( )(A )-1-12i (B )-1+12i (C )1+12i (D )1-12i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13(C )14 (D )16(4)已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )(A )y =±14x (B )y =±13x (C )y =±12x (D )y =±x(5)已知命题p :∀x ∈R,2x ><3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )(A ) p∧q (B )¬p∧q (C )p∧¬q (D )¬p∧¬q (6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )(A )S n =2a n -1 (B )S n =3a n -2 (C )S n =4-(7)执行右面的程序框图,如果输入的 t ∈[-1,3],则输出的s 属于( ) (A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5](8)O 为坐标原点,F 为抛物线C :y ²=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( )(A )2 (B )2 2 (C )2 3 (D )4(9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( )(A ) (B ) (C ) (D )(10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos²A+cos2A=0,a=7,c=6,则b=( )(A )10 (B )9 (C )8 (D )5 (11(A )16+8π (B )8+8π (C )16+16π (D )8+16π(12)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1] (C )[-2,1] (D )[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考数学模拟题(文)(附详细答案,打印版)
()图27 98 6 3 89 3 9 8 8 4 1 5 10 3 1 11 4侧视图(第4题图1)(第4题图2)(第8题图)≤≥12013年高考数学模拟题(文)一、选择题(本大题共10小题,每小题5分,共50分.1.已知命题:p 所有指数函数都是单调函数,则p ⌝为( )A .所有的指数函数都不是单调函数B .所有的单调函数都不是指数函数C .存在一个指数函数,它不是单调函数D .存在一个单调函数,它不是指数函数 2.已知{}2,M a a =≥{}2(2)(3)0,A a a a a M =--=∈则集合A 的子集共有( ) A .1个B .2个C .4个D .8 个3.“10<<a ”是“0122>++ax ax 的解集是实数集R ”的( ) A .充分而非必要条件 B .必要而非充分条件C .充要条件D .既非充分也非必要条件4.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为1214,,,.A A A 图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图。
那么算法流程图输出的结果是( ) A .7 B .8C .9D .105.已知,A B 是单位圆上的动点,且AB =O ,则OA AB ∙=( )A.B C .32-D .326.两个正数,a b 的等差中项是92,一个等比中项是a b >,则抛物线2b y x a=-的焦点坐标为( )A .5(,0)16-B .1(,0)5-C .1(,0)5D .2(,0)5-7.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天起每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布. A .12B .815C .1631D .16298.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为1V ,直径为4的球的体积为2V ,则12:V V =( ) A .1:2 B .2:1C .1:1D .1:49.定义:曲线C上的点到直线l 的距离的最小值称为 曲线C 到直线l 的距离;已知曲线1:C y a =到直线:20l x y -=a 的值为( )A . 3或-3B .23或-C .2D .-310.已知x ∈R ,用符号[]x 表示不超过x 的最大整数。
2013年高考数学模拟(文科)试题及答案
文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集R U =,集合}03|{},0)1)(2(|{<≤-=>-+=x x B x x x A ,则)(B C A U 为 (A) }02|{≥-<x x x 或 (B) }12|{>-<x x x 或(C)}03|{≥-<x x x 或 (D) }13|{>-<x x x 或 2. 已知R a ∈,且ii a -+-1为实数,则a 等于(A) 1 (B) 1- (C)2 (D)2-3.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是(A)(B)(C)(D) 834. 命题:“若12<x ,则11<<-x ”的逆否命题是(A)若12≥x ,则11-≤≥x x ,或 (B)若11<<-x ,则12<x (C)若11-<>x x ,或,则12>x (D)若11-≤≥x x ,或,则12≥x5.当x y 、满足不等式组1101x y y x ⎧-≤⎪≥⎨⎪≤+⎩时,目标函数t x y =+的最大值是(A) 1 (B) 2 (C) 3 (D) 5 6. 将棱长为1的正方体木块切削成一个体积最大的球,则该球的体积为(A)π23 (B)π32 (C)6π(D)34π7.对变量,x y 有观测数据(,)(1,2,,10)i i x y i = ,得散点图1;对变量,u v 有观测数据(,)(1,2,,10)i i u v i = ,得散点图2. 由这两个散点图可以判断.(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关俯视图8. 如图,是一个计算1922221++++ 的程序框图,则其中空白的判断框内,应填入 下列四个选项中的(A)i 19≥ (B) i 20≥ (C)i 19≤ (D)i 20≤9. 已知函数)0)(2cos(3)2sin()(πϕϕϕ<<+++=x x x f 是R 上的偶函数,则ϕ的值为(A)6π(B)3π(C)32π (D)65π10.已知ABC ∆的三边长为c b a 、、,满足直线0=++c by ax 与圆122=+y x 相离,则ABC ∆是 (A )锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 以上情况都有可能 11. 已知集合}),()(|)({R x x f x f x f M ∈=-=,}),()(|)({R x x f x f x f N ∈-=-=,}),1()1(|)({R x x f x f x f P ∈+=-=,}),1()1(|)({R x x f x f x f Q ∈+-=-=,若R x x x f ∈-=,)1()(3,则(A)M x f ∈)( (B) N x f ∈)( (C)P x f ∈)( (D)Q x f ∈)(12. 王先生购买了一步手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)若王先生每月拨打本地电话的时间是拨打长途电话时间的5倍,若要用联通130应最少打多长时间的长途电话才合算.(A) 300秒 (B) 400秒 (C) 500秒 (D) 600秒 二.填空题:本大题共4小题,每小题4分,共16分.13. 设向量(12)(23)a b == ,,,,若向量a b λ+ 与向量(47)c =--,共线,则=λ .14.ΔABC 中,3=a ,2=b ,45=∠B ,则A ∠= .15.考察下列三个命题,是否需要在“ ”处添加一个条件,才能构成真命题(其中m l ,为直线,βα,为平面)?如需要,请填这个条件,如不需要,请把“ ”划掉. ① αα//_____//l m l m ⇒⎪⎭⎪⎬⎫⊂ ② αα//_____////l m ml ⇒⎪⎭⎪⎬⎫③ αβαβ⊥⇒⎪⎭⎪⎬⎫⊥l l _____// 16. 若从点O 所做的两条射线OM ,ON 上分别有点M 1,M 2,与点N 1,N 2,则面积之比 11221122OM N OM N S O M O N S O M O N ∆∆⋅=⋅.若从点O 所做的不在同一平面内的三条射线OP ,OQ ,OR 上分别有点P 1,P 2,Q 1,Q 2,R 1,R 2,则能推导出的结论是 . 三.解答题:本大题共6小题,共74分. 17. (本小题满分12分)已知函数.cos2)62sin()62sin()(2x x x x f +-++=ππ(Ⅰ)求)(x f 的最小正周期和单调递增区间; (Ⅱ)求使)(x f ≥2的x 的取值范围.18. (本小题满分12分)在四棱锥P - ABCD 中,平面P AD ⊥平面ABCD ,AB // CD ,PAD ∆是等边三角形,已知BD = 2AD =8, AB = 2DC = 54,设M 是PC 上一点, (Ⅰ)证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P - ABCD 的体积.19. (本小题满分12分)已知关于x 的一元二次函数14)(2+-=bx ax x f .(Ⅰ)设集合}3211{,,,-=P 和}3,2,1,1,2{--=Q 分别从P ,Q 中各取一个数作为a ,b .求函数)(x f y =在区间),1[+∞是增函数的概率;(Ⅱ)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求函数)(x f y =在区间),1[+∞是增函数的概率.20. (本小题满分12分)设函数b x x g ax x x f +=+=232)(,)(,已知它们的图象在1=x 处有相同的切线. (Ⅰ)求函数)(x f 和)(x g 的解析式;(Ⅱ)若函数)()()(x g m x f x F ⋅-=在区间]3,21[上是减函数,求实数m 的取值范围.21. (本小题满分12分)已知中心在原点,焦点在x 轴上,离心率为552的椭圆的一个顶点是抛物线241x y =的焦点 .(Ⅰ)求椭圆方程;(Ⅱ)若直线l 过点),(02F 且交椭圆于B A 、两点,交y 轴于点M ,且.,21BF MB AF MA λλ==求21λλ+的值.22. (本小题满分14分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a .(Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n nn ∈+=,若数列}{n b 成等差数列,求实数t ;(Ⅲ)求数列}{n a 的前n 项和n S .附:答案及评分标准:一.选择题:AACDD CCBAC DB1. 解析:A.{|12}A x x x =><-或;{|03}U C B x x x =≥<-或,得{|02}U A C B x x x =≥<- 或.2. 解析:A.2()(1)111122a i a i i a a i ii-+-++---==+--,∴1a =.3. 解析:C.该几何体为正四棱锥,底面边长为222=,其体积12233V =⨯⨯⨯=.4. 解析:D.“若p ,则q ”的逆否命题为“若q ⌝,则p ⌝”,易知应选D.5. 解析:D.如图,易求点B 的坐标为(2,3),所以当2,3x y ==时t 取最大值5.6. 解析:C. 最大球为正方体的内切球,则内切球的半径为12,341()326V ππ=⋅=.7. 解析:C.由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,选C.8. 解析:B.当1922221++++ 时,19=i ,而1i i =+,此时20i =,输出S 为1922221++++ .9. 解析:A .)0)(2cos(3)2sin()(πϕϕϕ<<+++=x x x f =12(sin(2)))22x x φφ+++=2sin(2)3x πφ++;∵()f x 为偶函数,∴()32k k Z ππφπ+=+∈,又∵0φπ<<,∴6πφ=.10. 解析:C. 根据题意,圆心(0,0)到直线0=++c by ax 的距离1d =>,∴222c a b >+,故选C.11. 解析:D. ()f x M ∈,则函数()f x 关于y 轴对称;()f x N ∈,则函数()f x 关于原点对称;()f x P ∈,则函数()f x 关于直线1x =对称;()f x Q ∈,则函数()f x 关于(1,0)中心对称;3()(1),f x x x R =-∈关于(1,0)中心对称,故选D.12. 解析:B. 设王先生每月拨打长途x 秒,拨打本地电话5x 秒,根据题意应满足50.3650.60120.060.076060x x x x ⋅⋅++≤+,解得400x ≥.二.填空题:13.2;14.3π或32π;15. α⊄l ;α⊄l ;\(划掉);16. 体积之比222111222111OR OQ OP OR OQ OP V V R Q P O R Q P O ⋅⋅⋅⋅=--.13. 解析:2.a b λ+ =(322++λλ,),a b λ+ 与向量(47)c =-- ,共线,则0)4()32()7()2(=-⋅+--⋅+λλ,解得=λ 2.14. 解析:3π或32π.45sin 2sin 3sin sin =⇒=ABb Aa 23sin =⇒A ,A ∠=3π或32π.15. 解析:α⊄l ;α⊄l ;\(划掉).根据线面平行和线面垂直的判定定理,3个位置依次填α⊄l ;α⊄l ;\(划掉).16. 解析:根据结论11221122OM N OM N S O M O N S O M O N ∆∆⋅=⋅可类比得到,在空间中有体积之比222111222111OR OQ OP OR OQ OP V V R Q P O R Q P O ⋅⋅⋅⋅=--.三.解答题17. (本小题满分12分)已知函数.cos2)62sin()62sin()(2x x x x f +-++=ππ(Ⅰ)求)(x f 的最小正周期和单调递增区间; (Ⅱ)求使)(x f ≥2的x 的取值范围. 解:(Ⅰ)x x x x f 2cos2)62sin()62sin()(+-++=ππ12cos 6sin2cos 6cos2sin 6sin2cos 6cos2sin ++-++=x x x x x ππππ--------------1分12cos 2sin 3++=x x 1)62sin(2++=πx --------------------------------------3分ππωπ===22||2T ------------------------------------------------------------5分Z k k x k ∈+≤+≤+-,226222πππππ,Z k k x k ∈+≤≤+-∴,63ππππ,函数)(x f 的递增区间是Z k k k ∈++-∴],6,3[ππππ-----------------------------7分(Ⅱ)由()2f x ≥ 得2sin(2)126x π++≥, 21)62sin(≥+∴πx πππππ6526262+≤+≤+∴k x k )(Z k ∈----------------------------9分)(3Z k k x k ∈+≤≤∴πππ ,2)(≥∴x f 的x 的取值范围是},3|{Z k k x k x ∈+≤≤πππ---------------------------12分18. (本小题满分12分)在四棱锥P - ABCD 中,平面P AD ⊥平面ABCD ,AB // CD ,PAD ∆是等边三角形,已知BD = 2AD =8, AB = 2DC = 54,设M 是PC 上一点, (Ⅰ)证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P - ABCD 的体积.证明:(Ⅰ)AB =54,BD =8, AD =4,则AB 2 = BD 2+AD 2.∴BD ⊥AD .------------------------------------------2分 设AD 的中点为E ,连接AE ,因为PAD ∆是等边三角形,所以PE ⊥AD ,又平面PAD ⊥平面ABCD ,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,------------------------------------------4分 BD ⊂平面ABCD ,∴PE ⊥BD .E PE AD =⋂,∴BD ⊥平面PADBD ⊂平面BDM ,∴平面MBD ⊥平面P AD .-------------------------------------------------------------------------6分 解(Ⅱ)3223==AD PE ,----------------------------------------------------------------------------------------8分ABCD S 梯形==+∆∆BCD ABD S S ABD ABD ABD S S S ∆∆∆=+2321=2484432123=⋅⋅=⋅⋅⋅DB AD .--------------------------------------------------------------10分 316322431=⋅⋅=-ABCD P V ---------------------------------------------------------------12分19. (本小题满分12分)已知关于x 的一元二次函数14)(2+-=bx axx f(Ⅰ)设集合}3211{,,,-=P 和}3,2,1,1,2{--=Q 分别从P ,Q 中各取一个数作为a ,b .求函数)(x f y =在区间),1[+∞是增函数的概率;(Ⅱ)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求函数)(x f y =在区间),1[+∞是增函数的概率. 解:(Ⅰ)分别从P ,Q 中各取一个数作为a ,b 全部可能的基本结果有:(-1,-2),(-1,-1),(-1,1),(-1,2),(-1,3),(1,-2),(1,-1),(1,1),(1,2),(1,3),(2,-2),(2,-1),(2,1),(2,2),(2,3),(3,-2),(3,-1),(3,1),,(3,2),(3,3).共20个基本结果.-------------------------------------------------------------------------------3分函数14)(2+-=bx axx f 的对称轴a bx 2=,要使函数)(x f 在),1[+∞上是增函数,需满足⎪⎩⎪⎨⎧≤>120ab a , ----------------------------------------------------------------------------------------------------------------------------------4分于是满足条件的基本结果为:(1,-2),(1,-1),(2,-2),(2,-1),(2,1),(3,-2),(3,-1),(3,1)共8个.函数)(x f y =在区间),1[+∞是增函数的概率52208==P .----------------------------------------------------------6分(Ⅱ)⎪⎩⎪⎨⎧>>≤-+0008y x y x 所表示的区域如图OAB ∆所示,从区域内取点且函数)(x f y =在),1[+∞上是增函数需满足 的条件⎪⎩⎪⎨⎧≤>>200x y y x 如图阴影部分OAC ∆所示.-----------------------------------------------------------------------------9分解⎪⎩⎪⎨⎧==+28x y y x 得C (38,316).---------------------------------------------------------------------------------------10分 函数)(x f y =在区间),1[+∞是增函数的概率OABOAC S S P ∆∆=31838==----------------------------------------12分20. (本小题满分12分)设函数b x x g ax x x f +=+=232)(,)(,已知它们的图象在1=x 处有相同的切线.(Ⅰ)求函数)(x f 和)(x g 的解析式;(Ⅱ)若函数)()()(x g m x f x F ⋅-=在区间]3,21[上是减函数,求实数m 的取值范围.解:(Ⅰ)根据题意,)1()1(),1()1(''g f g f ==;--------------------------------------------------------------2分4)1(,4)(''==g x x g ,又∵a x x f +=2'3)(,----------------------------------------------------------------------3分∴41(3)1(''==+=)g a f ,∴1=a ;21)1(=+=a f ,∴2)1(2)1(==+=g b g ,得0=b .---5分∴函数)(x f 与)(x g 的解析式为:x x x f +=3)(,22)(x x g =------------------------------------------6分 (Ⅱ)232)()()(mx x x x g m x f x F -+=⋅-=;143)(2'+-=mx x x F ------------------------------7分 ∵函数)(x F 在区间]3,21[上是减函数,∴0143)(2'≤+-=mx x x F 在区间]3,21[上恒成立.-----------8分⎪⎩⎪⎨⎧≤≤0)3(0)21('F F ‘---------------------------------------------------------------------------------------------------------------10分 =⎪⎩⎪⎨⎧≤+⨯-⨯≤+⨯-⨯013433012144132m m 37≥⇒m . 实数m 的取值范围是),37[+∞∈m -------------------------------------------------------------------------------------12分21. (本小题满分12分)已知中心在原点,焦点在x 轴上,离心率为552的椭圆的一个顶点是抛物线241x y =的焦点 .(Ⅰ)求椭圆方程;(Ⅱ)若直线l 过点),(02F 且交椭圆于B A 、两点,交y 轴于点M ,且.,21BF MB AF MA λλ==求21λλ+的值.解:(Ⅰ) 设椭圆的方程为)0(12222>>=+b a by ax ;∵241x y =y x42=⇒的焦点坐标为(0,1),∴1=b . -------------------------------------------------------------------------------------2分⇒==552a c e 5412222=-=a a ac ,得5=a .--------------------------------------------------------------------4分∴所求的椭圆的方程为1522=+yx.-----------------------------------------------------------5分(Ⅱ)因为点),(02F 在椭圆内部,且直线与y 轴相交,所以直线l 不与x 轴垂直,斜率一定存在.设l :)2(-=x k y ------------------------------------------------------------------------------------------------------------6分则052020)51(15)2(222222=-+-+⇒⎪⎩⎪⎨⎧=+-=k x k k x y x x k y --------------- ①设),0(),,(),,(02211y M y x B y x A由①得2221222151520;5120kkx x kkx x +-=+=+,---------------------------------------------------------------8分1M A AF λ= 即 1101111,)(2,)M A x y y AF x y λλ=-==--(得110111,)(2,)x y y x y λ-=--(,111(2)x x λ=-即1112x x λ=-,同理2222x x λ=-------------------------------------------------------------------------------------------------9分12λλ+=112x x -+222x x -=121212122()242()x x x x x x x x +--++=222222222222202052()2()4040101515102020542040542()1515kk k k k k k k k k k k---+++==--+---+++ -----------------------------------------------------------------------------------------------------------------------------------------12分 22. (本小题满分14分)数列}{n a 满足)2,(122*1≥∈++=-n N n a a n n n ,273=a . (Ⅰ)求21,a a 的值; (Ⅱ)已知))((21*N n t a b n nn ∈+=,若数列}{n b 成等差数列,求实数t ;(Ⅲ)求数列}{n a 的前n 项和n S .解法一:(Ⅰ)由)2,(122*1≥∈++=-n N n a a n n n ,得33222127a a =++=29a ⇒=.2212219a a =++=12a ⇒=.--------------------------------------------------------------3分(Ⅱ)*11221(,2)(1)2(1)2n n n n n n a a n N n a a --=++∈≥⇒+=++*(,2)n N n ∈≥1111122n n nn a a --++⇒=+*(,2)n N n ∈≥---------------------------------------------------------6分 1111122n n nn a a --++⇒-=*(,2)n N n ∈≥,令*1(1)()2n n nb a n N =+∈,则数列}{n b 成等差数列,所以1t =.----------------------------------------------------------------------------------------------8分(Ⅲ))}{n b 成等差数列,1(1)n b b n d =+-321(1)22n n +=+-=.121(1)22n n nn b a +=+=;得1(21)21n n a n -=+⋅-*()n N ∈.--------------------------------------------------------------10分n S =21315272(21)2n n n -⋅+⋅+⋅+++⋅- -----------①2n S =23325272(21)22nn n ⋅+⋅+⋅+++⋅- --------------------② ① - ② 得213222222(21)2n nn S n n --=+⋅+⋅++⋅-+⋅+ --------------------------------------------11分11 233222(21)2n n n n =++++-+⋅+ 14(12)3(21)212n nn n --=+-+⋅+- =(21)21n n n -+⋅+-.所以(21)21n n S n n =-⋅-+*()n N ∈-------------------------------------------------------------14分.解法二:(Ⅱ)))((21*N n t a b n n n ∈+=且数列}{n b 成等差数列,所以有1()n n b b +-*()n N ∈为常数. 11111()()22n n n n n n b b a t a t +++-=+-+*()n N ∈ 1111(221)()22n n n n n a t a t ++=+++-+*()n N ∈111112222n n n n n n t t a a ++=++--*()n N ∈ 1112n t+-=+*()n N ∈,要使1()n n b b +-*()n N ∈为常数.需1t =.---------------------------------8分。
2013年高三文科数学模拟试题(附答案)
2013年高三文科数学模拟试题(附答案)骞夸笢鐪佹儬宸炲競2013枃绉戯級?0鍒嗭級ぇ棰樺叡l0椤规槸绗﹀悎棰樼洰瑕佹眰鐨勶紟姣忓皬棰?鍒嗭紝婊″垎50鍒嗭紟 1.鈥?鈥濈殑鍚﹀懡棰樻槸( )锛?A. B. C. D. 2.鍔犲瘑浼犺緭锛屽彂閫佹柟鐢辨槑鏂?瀵嗘枃锛堝姞瀵嗭級锛屾帴鍙楁柟鐢卞瘑鏂?鏄庢枃锛堣В?瀵瑰簲瀵嗘枃锛屼緥濡傦紝鏄庢枃瀵瑰簲瀵嗘枃锛庡綋鎺ュ彈鏂规敹鍒板瘑鏂?鏃讹紝鍒欒В瀵嗗緱鍒扮殑鏄庢枃涓猴紙锛夛紟A锛?4锛?锛?锛? B锛?7锛?锛?锛? C锛?6锛?锛?锛? D锛?1锛?锛?锛? 3.宸茬煡鍚戦噺锛?锛岃嫢锛屽垯瀹炴暟鐨勫€肩瓑浜庯紙锛夛紟 A. B. C. D. 4.?鍊嶏紝鍒欐き鍦嗙殑绂诲績鐜囩瓑浜庯紙锛夛紟A锛?B锛?C锛?D锛?5.鍦ㄤ竴娆″?宸茬煡璇ュ皬缁勭殑骞冲潎鎴愮哗涓??锛夛紟锛?锛?锛?锛?6. ?锛夛紟锛?锛?锛?锛?7.涓や釜瑙嗗浘鐩稿悓鐨勬槸锛?銆€锛夛紟A锛庘憼鈶?B锛庘憼鈶?C锛庘憼鈶?D锛庘憽鈶?8.濡傛灉鎵ц?锛?锛夛紟锛★紟2450 锛?2500 锛o紟2550 锛わ紟2652 9.灏嗗嚱鏁?鐨勫浘璞″厛鍚戝乏骞崇Щ锛岀劧鍚庡皢鎵€寰楀浘璞′笂ョ殑鍊嶏紙绾靛潗鏍囦笉鍙橈級锛屽垯鎵€寰楀埌鐨勫浘璞?瀵瑰簲鐨勫嚱鏁拌В鏋愬紡涓猴紙锛夛紟A锛?B锛?C锛?D锛?10.宸茬煡鍏ㄩ泦R锛岄泦鍚?,>b>0锛?鍒欐湁( )锛?A. B. C. D. ?00鍒嗭級5?4锝?5棰樻槸閫夊仛棰樺緱鍒嗭紟姣忓皬棰?鍒嗭紝婊″垎20鍒嗭紟11锛庡寲绠€锛?锛?12. 宸茬煡R涓婄殑鍑芥暟锛屼笖瀵逛换鎰?锛岄兘鏈夛細锛屽張鍒?锛?13.鑻ュ疄鏁?婊¤冻鏉′欢鐨勬渶澶у€间负_____ 锛?14. (鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰??涓婄殑鍔ㄧ偣鍒扮洿绾?鐨勮窛绂荤殑鏈€澶у€兼槸锛?15. (?濡傚彸鍥炬墍绀猴紝鐨勭洿寰勶紝锛?锛?锛屽垯锛?6?0鍒嗭紟瑙g瓟椤诲啓鍑16.12鍒嗭級鍦ㄢ柍ABC鎵€瀵圭殑杈癸紝涓旀弧瓒?锛?(鈪?鐨勫ぇ灏忥紱(鈪?璁?锛屾眰鐨勬渶灏忓€? 17锛??4鍒?逛綋锛?锛孍涓烘1鐨勪腑鐐癸紟(鈪? 姹傝瘉锛?锛?(鈪? 姹傝瘉锛?骞抽潰锛?锛堚參锛夋眰涓夋1閿?18?2鍒嗭級鏈夋湅锛?(鈪?姹備粬涔樼伀杞︽垨椋炴満鏉ョ殑姒傜巼锛?(鈪?姹?锛堚參)19.14鍒嗭級璁惧嚱鏁?鐨勫浘璞″湪鐐?澶勭殑鍒囩嚎鐨勬枩鐜囦负锛屼笖褰?鏃?鏈夋瀬鍊硷紟(鈪?姹?鐨勫€硷紱(鈪?姹?鐨勬墍鏈夋瀬鍊硷紟20. (?4鍒?宸茬煡鍦?锛?鍜屽渾锛岀洿绾?涓庡渾鐩稿垏浜庣偣锛涘渾鐨勫渾蹇冨湪灏勭嚎涓婏紝鍦?杩囧锛?(鈪?姹傜洿绾?鐨勬柟绋?(鈪?姹傚渾鐨勬柟绋嬶紟21?4鍒嗭級宸茬煡鏁板垪锛涙暟鍒?鐨勫墠n椤瑰拰鏄?锛屼笖锛?(鈪? 姹傛暟鍒??(鈪? 姹傝瘉锛氭暟鍒?(鈪? 璁?锛屾眰鐨勫墠n椤瑰拰锛?骞夸笢鐪佹儬宸炲競2013鍙傝€冪瓟妗?1.瑙f瀽锛氬懡棰樷€?鈥濈殑鍚﹀懡棰樻槸锛氣€?鈥濓紝鏁呴€塁锛?2.瑙f瀽锛氱敱宸茬煡锛屽緱锛?锛屾晠閫?锛?3.瑙f瀽锛氳嫢锛屽垯锛岃В寰?锛庢晠閫?锛?4.瑙f瀽锛氱敱棰樻剰寰?锛屽張锛?鏁呴€?锛?5.愮哗涓??锛岀敱骞冲潎鏁扮殑姒傚康锛屽緱锛?锛?鏁呴€?锛?6.瑙f瀽锛???锛?7.ц?锛?8.?锛岄€?锛?9.瑙f瀽锛?鐨勫浘璞″厛鍚戝乏骞崇Щ锛屾í鍧愭爣鍙樹负鍘熸潵鐨?鍊?锛庣瓟妗堬細锛?10.瑙f瀽锛氱壒娈婂€兼硶锛氫护锛屾湁锛庢晠閫?锛?棰樺彿11 12 13 14 1511.瑙f瀽锛?锛?12.瑙f瀽锛氫护锛屽垯锛屼护锛屽垯锛?鍚岀悊寰?鍗冲綋鏃讹紝鐨勫€间互涓哄懆鏈燂紝鎵€浠?锛?13.瑙f瀽锛氱敱鍥捐薄鐭ワ細褰撳嚱鏁?鐨勫浘璞¤繃鐐?鏃讹紝鍙栧緱鏈€澶у€间负2锛?14. (鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰?愭爣鏂圭▼锛屽渾涓婄殑鍔ㄧ偣鍒扮洿绾?鐨勮窛绂荤殑鏈€澶у蹇?鍒扮洿绾?鐨勮窛绂?鍐嶅姞涓婂崐寰?锛庢晠濉?锛?15. (閫夊仛棰?瑙f瀽锛氳繛缁?锛?鍒欏湪鍜?锛?涓?锛屾墍浠?锛?鏁?锛?6?0鍒嗭紟瑙g瓟椤诲啓鍑16.殑鏈€鍊硷紟瑙o細(鈪?鈭?锛屸埓锛?鈥︹€︹€︹€︹€︹€?鍒?鍙堚埖锛屸埓锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛?銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€銆€鈥︹€︹€︹€︹€?0鍒?鈭村綋鏃讹紝鍙栧緱鏈€灏忓€间负锛?鈥︹€︹€︹€?2鍒?17瑙o細(鈪?璇佹槑锛氳繛缁?锛屽垯// 锛?鈥︹€︹€︹€?鍒?鈭?舰锛屸埓锛庘埖闈?锛屸埓锛?鍙?锛屸埓闈?锛?鈥︹€︹€︹€︹€︹€?鍒?鈭?闈?锛屸埓锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛夎瘉鏄庯細浣?鐨勪腑鐐笷锛岃繛缁?锛?鈭?鏄?鐨勪腑鐐癸紝鈭?锛?鈭村洓杈瑰舰锛?鈥︹€︹€?鍒?鈭?鏄?鐨勪腑鐐癸紝鈭?锛?鍙?锛屸埓锛?鈭村洓杈瑰舰洓杈瑰舰锛?// 锛?鈭?锛?锛?鈭村钩闈?闈?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍙?骞抽潰锛屸埓闈?锛?鈥︹€︹€︹€︹€︹€?0鍒?锛?锛?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?18瑙o細璁欢锛屽垯锛?锛?锛?锛屼笖浜嬩欢?(鈪?鈥︹€︹€?鍒?(鈪??锛??锛?鈥︹€︹€︹€︹€︹€?鍒嗐€€锛堚參)鐢变簬锛?鈥︹€︹€︹€︹€︹€︹€?2鍒嗐€€19.鏋ц?瑙o細(鈪?鐢卞嚱鏁??锛屸€︹€︹€︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€鈥︹€︹€︹€?鍒?鈭?锛屸埓锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛屽嵆锛庛€€銆€鈥︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€? 0 + 0锟終鏋佸皬锟絁鏋佸ぇ锟終鈭?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?20锛庢瀽锛氫富瑕佽€冨療鐩寸嚎锛庡渾鐨勬柟绋嬶紝鐩寸嚎涓庡渾鐨勪綅缃瑙o細(鈪?锛堟硶涓€锛夆埖鐐?鍦ㄥ渾涓婏紝鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭寸洿绾?鐨勬柟绋嬩负锛屽嵆锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堟硶浜岋級褰撶洿绾?鍨傜洿杞存椂锛屼笉绗﹀悎棰樻剰锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?褰撶洿绾?涓?杞翠笉鍨傜洿鏃讹紝璁剧洿绾?鐨勬柟绋嬩负锛屽嵆锛?鍒欏渾蹇?鍒扮洿绾?鐨勮窛绂?锛屽嵆锛?锛岃В寰?锛屸€︹€?鍒?鈭寸洿绾?鐨勬柟绋嬩负锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒??锛?锛屸埖鍦?杩囧師鐐癸紝鈭?锛?鈭村渾鐨勬柟绋嬩负锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭靛渾洿绾?锛屸埓鍦嗗績鍒扮洿绾?锛?鐨勮窛绂伙細锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鏁寸悊寰楋細锛岃В寰?鎴?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?0鍒?鈭?锛屸埓锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?3鍒?鈭村渾锛?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?21锛庢瀽锛氫富瑕佽€冨療绛夊樊銆佺瓑姣旀暟鍒楃殑瀹氫箟銆佸紡锛屾眰鏁板垪鐨勫拰鐨勬柟娉曪紟瑙o細(鈪?璁?锛屽垯锛?锛?锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚叀锛夊綋鏃讹紝锛岀敱锛屽緱锛?鈥︹€︹€︹€︹€︹€︹€?鍒?褰?鏃讹紝锛?锛?鈭?锛屽嵆锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛庛€€銆€銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?癸紝涓哄叕姣旂殑绛夋瘮鏁板垪锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛堚參锛夌敱锛?锛夊彲鐭ワ細锛?銆€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?0鍒?鈭?锛庛€€鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?1鍒?鈭?锛?鈥?4鍒?。
2013届高三上册摸底考试文科数学试卷(附答案)
2013届高三上册摸底考试文科数学试卷(附答案)吴川四中2013届高三8月摸底考试数学(文科)参考公式:锥体的体积公式:(是锥体的底面积,是锥体的高)球体体积公式:(是半径)一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.设集合,,则()A.B.C.D.2.复平面上点P表示复数(其中i为虚数单位),点P坐标是A.(1,0)B.(一1,0)C.(0,一1)D.(0,1)3.命题“”的否定为()A.B.C.D.4.若,则“=3”是“2=9”的()条件A.充分而不必要B.必要而不充分C.充要D.既不充分又不必要5、下列函数为偶函数的是()A.B.C.D.6、若方程在内有解,则的图象是()7.阅读右图所示的程序框图,运行相应的程序,输出的结果是().A.B.13C.33D.1239.设图是某几何体的三视图,则该几何体的体积为()A.B.C.D.10.若实数满足,则称是函数的一个次不动点.设函数与函数(其中为自然对数的底数)的所有次不动点之和为,则A.B.C.D.二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(第11至13题为必做题,每道试题考生都必须作答。
)11.已知向量a=(1,—1),b=(2,x).若a•b=1,则x=___12.设函数,则___13.目标函数z=2x+y在约束条件下取得的最大值是_____(二)选做题(14~15题,考生只能从中选做一题;两道题都做的,只记第14题的分。
)14.(坐标系与参数方程选做题)已知圆的极坐标方程为,则圆上点到直线的最短距离为。
15.(几何证明选讲选做题)如图3,PAB、PCD为⊙O的两条割线,若PA=5,AB=7,CD=11,,则BD等于.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)已知等差数列中,,.(1)求数列的通项公式;(2)若数列的前项和,求的值.17.(本小题满分12分)已知函数f(x)=Asin(x+)(A>0,0(1)求的解析式;(2)若,求的值.18.(本小题满分14分)在三棱锥中,和是边长为的等边三角形,,分别是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面⊥平面;(Ⅲ)求三棱锥的体积.19.(本题满分14分)2012年春节前,有超过20万名广西、四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年.为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让过往返乡过年的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车,就进行省籍询问一次,询问结果如图4所示:(1)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?(3)在上述抽出的驾驶人员中任取2名,求至少有1名驾驶人员是广西籍的概率.20.(本小题满分14分)设,其中(Ⅰ)当时,求的极值点;(Ⅱ)若为R上的单调函数,求a的取值范围。
2013新课标高考文科数学试题及答案
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p :231,q ;32,χχχχχχ-=∈∃<∈∀R R :命题,则下列命题中为真命题的是:( )(A ) p ∧q (B )¬p ∧q (C )p ∧¬q (D )¬p ∧¬q (6)设首项为1,公比为 的等比数列{a n }的前n 项和为S n ,则()(A )S n =2a n -1 (B )S n =3a n -2(C )S n =4-3a n (D )S n =3-2a n(7)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于(A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5](8)O 为坐标原点,F 为抛物线C :y ²=4x 的焦点,P 为C 上一点,若丨PF 丨=4,则△POF 的面积为(A )2(B )2(C )2(D )4(9)函数f (x )=(1-cosx )sinx 在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)=若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
数学_2012-2013学年湖南省株洲市某校高三数学试卷14(文科)(含答案)
2012-2013学年湖南省株洲市某校高三数学试卷14(文科)一、选择题(本大题共9个小题,每个小题5分,共45分) 1. 已知命题P:∃x ∈R ,e x ≤0则¬P 为( )A ∀x ∈R ,e x ≤oB ∀x ∈R ,e x >0C ∃x ∈R ,e x >oD ∃x ∈R ,e x ≥o 2. 在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ) A 12 B 14 C 16 D 183. 函数f(x)=x +lgx −3的零点所在区间为( ) A (3, +∞) B (2, 3) C (1, 2) D (0, 1)4. 函数y =2cos 2x 的一个单调增区间是( ) A (−π4,π4) B (0,π2) C (π4,3π4) D (π2,π)5. 在△ABC 中,若AB →⋅BC →+AB →2=0,则△ABC 是( )A 锐角三角形B 直角三角形C 钝角三角形D 等腰直角三角形 6. 在区间(0, 1)内随机地取两个数,则这两个之和小于1.5的概率为( ) A 78B 18C 35D 457. 已知三条不重合的直线m 、n 、l 与两个不重合的平面α、β,有下列命题: ①若m // n ,n ⊂α,则m // α;②若l ⊥α,m ⊥β,且l // m ,则α // β;③若m ⊂α,n ⊂α,m // β,n // β,则α // β; ④若α⊥β,α∩β=m ,n ⊂β,n ⊥m ,则n ⊥α. 其中正确的命题个数是( ) A 1 B 2 C 3 D 48. 已知函数f(x)={−2x,(−1≤x ≤0)√x,(0<x ≤1),则下列图象错误的是( )A y =f(x −1)的图象B y =f(−x)的图象 C y =f(|x|)的图象 D y =f(x)的图象9. 如图,一个树形图依据下列规律不断生长,1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点,则第11行的实心圆点的个数是()A 21B 34C 55D 89二、填空题(本大题共7个小题,考生作答6个小题.每个小题5分,共30分,把答案填在答题卡中对应题号后的横线上)10. (极坐标与参数方程)在极坐标系中,已知曲线C的方程是ρ=4sinθ,过点(4,π6)作曲线C的切线,则切线长等于________.11. (优选法与试验设计初步)某单因素单峰试验的因素范围内由若干个离散的点组成,若用分数法寻找最佳点时的精度为18,则需做实验的次数为________.12. 将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.13. 有一个几何体的三视图及其尺寸(单位cm),则该几何体的表面积为:________.14. 若抛物线y2=8x的焦点在直线l:xcosθ+ysinθ+1=0(0<θ<π)上,则直线l的倾斜角为________.15. 已知实数x,y满足{x−y+1≥0x+2y−8≤0x≤3,若(3,52)是使得ax−y取得最小值的可行解,则实数a的取值范围为________.16. 已知函数f(n)=log(n+1)(n+2)(n为正整数),若存在正整数k满足:f(1)⋅f(2)…f(n)=k,那么我们将k叫做关于n的“对整数”.当n∈[1, 2012]时,则“对整数”的个数为________个.三、解答题(共5小题,共75分,解答题应写出必要的文字说明、证明过程或演算步骤)17. 如图,一个几何体由圆柱ADD1A1和三棱锥E−ABC组合而成,点A,B,C在⊙O的圆周上,E,A,D三点共线,已知AB⊥AC,AB=AC,AE=AD=1,BC=2.(1)求证:AC ⊥BD ;(2)求三棱锥C −BDE 的体积.18. 函数f(x)=2√3cos 2ωx 2+sinωx −√3(ω>0)在一个周期内的图象如图,A 为最高点,B ,C 为图象与x 轴的交点,且BA →⋅CA →=0. (1)求ω的值及f(x)的值域; (2)若f(x 0)=85,且x 0∈(−103,23),求f(x 0+1)的值.19. 已知关于x 的一元二次函数f(x)=ax 2−4bx +1.(1)设集合P ={1, 2, 3}和Q ={−1, 1, 2, 3, 4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f(x)在区间[1, +∞)上是增函数的概率;(2)设点(a, b)是区域{x +y −8≤0x >0y >0内的随机点,记A ={y =f(x)有两个零点, 其中一个大于1, 另一个小于1},求事件A 发生的概率.20. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n 幅图的蜂巢总数. (1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明); (2)证明:1f(1)+1f(2)+1f(3)+⋯+1f(n)<43.21. 已知抛物线C:y 2=2px(p >0)的准线为l ,焦点为F .⊙M 的圆心在x轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为π3的直线n ,交l 于点A ,交⊙M 于另一点B ,且AO =OB =2.(1)求⊙M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM →⋅PF →的最小值;(3)过l 上的动点Q 向⊙M 作切线,切点为S ,T ,求证:直线ST 恒过一个定点,并求该定点的坐标.2012-2013学年湖南省株洲市某校高三数学试卷14(文科)答案1. B2. D3. B4. D5. B6. A7. B8. C9. C10. 2√2 11. 412. 16、28、40、52 13. 24πcm 2 14. 2π315. a ≤−1216. 917. 证明:(1)因为EA ⊥平面ABC ,AC ⊂平面ABC ,所以EA ⊥AC ,即ED ⊥AC . 又因为AC ⊥AB ,AB ∩ED =A ,所以AC ⊥平面EBD . 因为BD ⊂平面EBD ,所以AC ⊥BD . 解:(2)V C−BDE =V E−ABC +V D−ABC 又∵ S △ABC =12×2×1=1 ∴ V E−ABC =13×S △ABC ×VA =13V D−ABC =13×S △ABC ×DA =13∴ V C−BDE =2318. 解:(1)∵ 函数f(x)=2√3cos 2ωx 2+sinωx −√3(ω>0)=√3(1+cosωx)+sinωx −√3=2sin(ωx +π3),BA →⋅CA →=0,∴ BA →⊥CA →,∴ 12BC =2,∴ BC =4,故函数的周期为8,即2πω=8, 解得ω=π4,∴ f(x)=2sin(π4x +π3),∴ f(x)的值域为[−2, 2].(2)∵ f(x 0)=85,且x 0∈(−103,23),∴ 2sin(π4x 0+π3)=85,sin(π4x 0+π3)=45.再由(π4x 0+π3)∈(−π2, π2)可得cos(π4x 0+π3)=35.∴ f(x 0+1)=2sin[π4(x 0+1)+π3]=2sin[(π4x 0+π3)+π4]=2sin(π4x 0+π3)cos π4+2cos(π4x 0+π3)sin π4=7√25. 19. 解:(1)∵ 函数f(x)=ax 2−4bx +1的图象的对称轴为x =2b a,要使f(x)=ax 2−4bx +1在区间[1, +∞)上为增函数,当且仅当a >0且2ba ≤1,即2b ≤a…若a =1则b =−1,若a =2则b =−1,1若a =3则b =−1,1…记B ={函数y =f(x)在区间[1, +∞)上是增函数},则事件B 包含基本事件的个数是1+2+2=5, ∴ P(B)=515=13…(2)依条件可知试验的全部结果所构成的区域为Ω={(a,b)|{a +b −8≤0a >0b >0}, 其面积S Ω=12×8×8=32…事件A 构成的区域:A ={(a,b)|{a +b −8≤0a >0b >0f(1)<0}={(a,b)|{a +b −8≤0a >0b >0a −4b +1<0}由{a +b −8=0a −4b +1=0,得交点坐标为(315,95),…∴ S A =12×(8−14)×315=96140,∴ 事件A 发生的概率为P(A)=S A S Ω=9611280…20. 解:(1)f(4)=37,f(5)=61.由于f(2)−f(1)=7−1=6, f(3)−f(2)=19−7=2×6, f(4)−f(3)=37−19=3×6, f(5)−f(4)=61−37=4×6,因此,当n ≥2时,有f(n)−f(n −1)=6(n −1),所以f(n)=[f(n)−f(n −1)]+[f(n −1)−f(n −2)]+...+[f(2)−f(1)]+f(1)=6[(n −1)+(n −2)+...+2+1]+1=3n 2−3n +1.又f(1)=1=3×12−3×1+1,所以f(n)=3n 2−3n +1.(2)当k ≥2时,1f(k)=13k 2−3k+1<13k 2−3k =13(1k−1−1k ).所以1f(1)+1f(2)+1f(3)+⋯+1f(n)<1+13[(1−12)+(12−13)+⋯+(1n−1−1n )=1+13(1−1n )<1+13=43.21. 解:(1)因为p2=OA ⋅cos60∘=2×12=1,即p =2,所以抛物线C 的方程为y 2=4x设⊙M 的半径为r ,则r =OB 2⋅1cos60∘=2,所以⊙M 的方程为(x −2)2+y 2=4(2)设P(x, y)(x ≥0),则PM →⋅PF →=(2−x,−y)(1−x,−y)=x 2−3x +2+y 2=x 2+x +2所以当x =0时,PM →⋅PF →有最小值为2(3)以点Q 这圆心,QS 为半径作⊙Q ,则线段ST 即为⊙Q 与⊙M 的公共弦 设点Q(−1, t),则QS 2=QM 2−4=t 2+5, 所以⊙Q 的方程为(x +1)2+(y −t)2=t 2+5 从而直线ST 的方程为3x −ty −2=0(∗)因为{x =23y =0一定是方程(∗)的解,所以直线ST 恒过一个定点,且该定点坐标为(23,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年课标版模拟试卷(14)文科数学试题
高三数学(文科)
一、填空题(50分)
1、已知集合A ={1,2,3,4},集合B ={2,3,4,5,6},则A ∪B = A 、{1,2,3,4} C 、{1,2,3,4,5,6} C 、{2,3,4,5,6} D 、{3,4}
2、复数z 满足z +1=2+i (i 为虚数单位),则z (1-i )= A 、2 B 、0 C 、1+i D 、i
3、在等比数列{n a }中,已知1j a a ⋅=25,则j a = A 、5 B 、5或-5 C 、-5 D 、25
4、“2a a -=0”是“函数3()f x x x a =-+是增函数”的 A 、充要条件 B 、充分而不必要条件
C 、必要不充分条件
D 、既不充分也不必要条件
5、在△ABC 中,∠A =
3
π
,AB =2,且△ABC 的面积为
,则边AC 的长为
A 、1
B 、
C 、2
D 、1
6、在线段AB 上任取一点P ,以P 为顶点,B 为焦点作抛物线,则该抛物线的准线与线段AB 有交点的概率是 A 、
13
B 、
12
C 、
23
D 、
34
7、一个几何体的三视图如图所示,其中主视图和左视图都是边长为2的正三角形,俯视图为圆,那么该几何体的表面积为 A 、6π B 、4π C 、3π D 、2 π
8、函数f (x )=|x -2|-lnx 在定义域内的零点个数为
A 、0
B 、1
C 、2
D 、3 9、已知函数2
()lg()n n f x x a x b =-+,其中,n n a b 的值由如图的程序框图产生,运行该程序所得的函数中,定义域为R 的有
A 、1个
B 、2个
C 、3个
D 、4个 10、椭圆
2
2
4
3
x
y
+
=1的左、右焦点分别为F 1、F 2,
P 是椭圆上任一点则的取值范围是
A 、(0,4]
B 、(0,3]
C 、[3,4)
D 、[3,4] 二、填空题(20分)
(一)必做题
11、已知向量m =(x ,1),n =(1,2),且m ∥n ,则x =___
12、设变量x ,y 满足约束条件42
00
x y x y x y +≤⎧⎪
-≤⎪⎨≥⎪⎪≥⎩,则其目标函数z =2x +y 的最大值为___
13、下列四个论述: (1)线性回归方程
(2)已知命题
则命题
(3)函数在实数R 上是增函数;
(4)函数的最小值是4
其中,正确的是_____(把所有正确的序号都填上)。
(二)选做题
14
、在极坐标系中,直线sin ρθ=与圆2cos ρθ=相交的弦长为
____
15、如图圆上的劣弧 CBD 所对的弦长CD
,弦AB 是线段CD 的
垂直平分线,AB =2,则线段AC 的长度为____
三、解答题(80分) 16、(本小题满分12分)
已知函数()sin()(0,0,||)2
f x A x A π
ωϕωϕ=+>><的部分图象如图所示。
(1)求函数f (x )的表达式;
(2)若1(((0,))12
3
2
f ππ
αα+=∈,求tan α的值。
17、(本小题满分13分)
某学校对学生的考试成绩作抽样调查,得到成绩的频率分布直方图如图所示,其中[70,80)对应的数值被污损,记为x 。
(1)求x 的值;
(2)记[90,100]为A 组,[80,90)为B 组,[70,80)为C 组,用分层抽样的办法从[90,100],[80,90),[70,80)三个分数段的学生中抽出6人参加比赛,从中任选3人为正选队员,求正选队员中有A 组学生的概率。
18、(本小题满分13分)
如图,矩形ABCD 中,对角线AC 、BD 的交点为G ,AD ⊥平面ABE ,AE ⊥EB ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥CE 。
(1)求证:AE ⊥平面BCE ;
(2)求证:AE ∥平面BFD ; (3)求三棱锥C -GBF 的体积。
19、(本小题满分14分)
设函数2()(2)(0)x f x x e ax x =--≥,其中e 是自然对数的底,a 为实数。
(1)若a =1,求f (x )的单调区间;
(2)当a ≠1时,f (x )≥-x 恒成立,求实数a 的取值范围。
20、(本小题满分14分)
已知双曲线
222
2
1(0,0)x y a b a
b
-
=>>的右焦点为F (c ,0)。
(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;
(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作
,求双曲线的离心率。
21、(本小题满分14分)
已知数列{n a }的前n 项和为2
3535,1(*)22
n n n
S n n c n N a =-
+=-
∈。
(1)求数列{n a }的通项公式;
(2)若10(*)i i c c i N -⋅<∈,则称i 是一个变号数,求数列{n c }的变号数的个数; (3)根据笛卡尔符号法则,有:
若关于实数x 的方程
的所有素数均为实数,
则该方程的正根的个数等于{n a }的变号数的个数或比变号数的个数多2的倍数, 动用以上结论证明:方程没有比3大的实数根。