2014年打印七年级数学下册第一次月考试卷
2014-2015学年七年级数学第一次月考试题
2014-2015学年七年级数学第一次月考试题班级: 姓名: 成绩:一、选择题:(3*10=30分)1、有理数 13 的相反数是( )(A ) 1 3 (B )- 13 (C )3 (D )-32、已知A 地海拔高度为–53米,而B 地比A 地高30米则此时B 地的海拔高度为 ( )A 、–83米B 、–23米C 、30米D 、23米3、 在有理数3, ∣-2∣, 0, -(+5), -(-3), +(-3),│-(-1)│中,正数有:( )A.3个B.4个C.5个D.6个4、三个数 313-,-0..2,-0.22之间的大小关系是( ) A.313->-0..2>-0.22 B.313-<-0..2<-0.22 C.313-<-0.22<-0..2 D.-0..2 >-0.22>-3135、下列说法正确的是 ( ) A )与(2)21(+-互为相反数 B.5的相反数是5-C.数轴上表示-a 的点一定在原点的左边D.任何负数都小于它的相反数6、 已知不为零的a ,b 两数互为相反数,则下列各数不是互为相反数的是( )(A )5 a 与5 b . (B)a 3与b 3. (C)a 1与b 1. (D)a 2与b 2.7、绝对值等于本身的数是( )(A )正数(B )负数 (C )正数或零 (D )零 8、下列叙述正确的是( ) (A )有理数中有最大的数(B )零是整数中最小的数.(C )有理数中有绝对值最小的数.(D )若一个数的平方与立方结果相等,则这个数是0. 9、图中所画的数轴,正确的是( ) -1210-2A 21543B -1210C -1210D 10、中央电视台 “开心词典”栏目中,有一期题目如图所示,两个天平都平衡,则三个球相当于( )个正方体。
A .2 B .3 C . 4 D . 5 二、填空:(3*8=24分) 11、-4的相反数是 , 的绝对值是7. 12、绝对值最小的有理数是 .绝对值等于本身的数是 。
七年级(下)第一次月考数学试卷
七年级(下)第一次月考数学试卷七年级(下)第一次月考数学试卷数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。
下面是店铺为大家搜索整理的七年级(下)第一次月考数学试卷,仅供大家学习参考。
七年级(下)第一次月考数学试卷篇1一、选择题(每题3分,共30分)1.已知方程①2x+y=0;② x+y=2;③x2﹣x+1=0;④2x+y﹣3z=7是二元一次方程的是( )A.①②B.①②③C.①②④D.①2.以为解的二元一次方程组是( )A. B. C. D.4.已知是方程kx﹣y=3的一个解,那么k的值是( )A.2B.﹣2C.1D.﹣15.方程组的解是( )A. B. C. D.6.“六一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装的x套,B型童装y套,依题意列方程组正确的是( )A. B.C. D.7.若方程mx+ny=6的两个解是,,则m,n的值为( )A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣48.已知,则a+b等于( )A.3B.C.2D.19.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是( )A. B.10.某市准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队单独工作8天,则余下的任务由乙工程队单独完成需要3天;设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为( )A.20B.15C.10D.5二、填空题(每题4分,共32分)11.如果x=﹣1,y=2是关于x、y的二元一次方程mx﹣y=4的一个解,则m= .12.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:.13.孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是.14.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的 .两根铁棒长度之和为55cm,此时木桶中水的深度是cm.15.方程组的解是.16.设实数x、y满足方程组,则x+y= .17.4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.三、解答题19.解方程组:(1) ;20.已知方程组和有相同的解,求a、b的值.21.关于x,y方程组满足x、y和等于2,求m2﹣2m+1的值.22.浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?23.在一次数学测验中,甲、乙两校各有100名同学参加测试,测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率= ×100%,全校优分率= ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.24.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.七年级(下)第一次月考数学试卷篇2一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一个是正确的,请将正确答案的代号填人答题卷中对应的表格内.1.(4分)在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A.1个B.2个C.3个D.4个【解答】解:①时针运行是旋转,故此选项错误;②电梯上升,是平移现象;③火车直线行驶,是平移现象;④地球自转,是旋转现象;⑤电视机在传送带上运动,是平移现象.故属于平移变换的个数有3个.故选:C.2.(4分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A 错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.3.(4分)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个【解答】解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选:B.4.(4分)已知点P到x轴的距离为3,到y轴的距离为2,且在第二象限,则点P的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,2)【解答】解:∵点P到x轴的距离为3,到y轴的距离为2,且在第二象限,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:B.5.(4分)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°【解答】解:如图所示(实线为行驶路线)A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选:A.6.(4分)三条直线两两相交于同一点时,对顶角有m对;交于不同三点时,对顶角有n对,则m与n的关系是()A.m=n B.m>n C.m<n D.m+n=10【解答】解:因为三条直线两两相交与是否交于同一点无关,所以m=n,故选A.7.(4分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:、是无理数.故选:B.8.(4分)下列语句中,正确的是()A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数本身的数共有三个【解答】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;B、负数有立方根,故选项B错误,C、一个数的立方根不是正数可能是负数,还可能是0,故选项C 错误,D、立方根是这个数本身的数共有三个,0,1,﹣1,故D正确.故选:D.9.(4分)下列运算中,错误的是()①=1,②=±4,③=﹣④=+=.A.1个B.2个C.3个D.4个【解答】解:①==,原来的计算错误;②=4,原来的计算错误;③=﹣=﹣1,原来的计算正确;④==,原来的计算错误.故选:C.10.(4分)请你观察、思考下列计算过程:因为11 2 =121,所以=11;因为111 2 =12321,所以=111;…,由此猜想=()【解答】解:∵=11,=111…,…,∴═111 111 111.故选:D.11.(4分)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γ B.α+β+γ=180° C.α+β﹣γ=90° D.β+γ﹣α=180°【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.12.(4分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)=(180°﹣∠ACB)=(180°﹣∠ABC)=90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠A DC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选:C.二、填空题(每题4分,共24分)请将答案直接写到对应的横线上.13.(4分)比较大小:﹣3<﹣2,>(填“>”或“<”或“=”)【解答】解:∵﹣<﹣,∴﹣3<﹣2.∵:∵2<<3,∴1<﹣1<2,∴<<1.故答案是:<;>.14.(4分)若点P(a+5,a﹣2)在x轴上,则a=2,点M(﹣6,9)到y轴的距离是6.【解答】解:根据题意得a﹣2=0,则a=2,点M(﹣6,9)到y轴的距离是|﹣6|=6,故答案为:2、6.15.(4分)大于﹣,小于的`整数有5个.【解答】解:∵1<2,3<4,∴﹣2<﹣<﹣1,∴大于﹣,小于的整数有﹣1,0,1,2,3,共5个,故答案为:5.16.(4分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为72度,108度.【解答】解:设其中一个角是x,则另一个角是180﹣x,根据题意,得x=(180﹣x)解得x=72,∴180﹣x=108;故答案为:72、108.17.(4分)如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF 折叠图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是120°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°﹣2∠EFG=140°,在图(3)中∠CFE=∠GFC﹣∠EFG=120°,故答案为:120°.18.(4分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:2 3,3 3和4 3分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即2 3 =3+5;3 3 =7+9+11;4 3 =13+15+17+19;…;若6 3也按照此规律来进行“分裂”,则6 3 “分裂”出的奇数中,最大的奇数是41.【解答】解:由2 3 =3+5,分裂中的第一个数是:3=2×1+1,3 3 =7+9+11,分裂中的第一个数是:7=3×2+1,4 3 =13+15+17+19,分裂中的第一个数是:13=4×3+1,5 3 =21+23+25+27+29,分裂中的第一个数是:21=5×4+1,6 3 =31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以6 3 “分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.三、计算(总共22分)请将每小题答案做到答题卡对应的区域.19.(16分)计算:(1)利用平方根解下列方程.①(3x+1)2﹣1=0;②27(x﹣3)3=﹣64(2)先化简,再求值:3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy],其中x=3,y=﹣.【解答】解:(1)①(3x+1)2﹣1=0∴(3x+1)2=1∴3x+1=1或3x+1=﹣1解得x=0或x=﹣;②27(x﹣3)3=﹣64∴(x﹣3)3=﹣[来源:学|科|网]∴x﹣3=﹣∴x=;(2)3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy]=3x 2 y﹣(2xy﹣2xy+3x 2 y+xy)=3x 2 y﹣2xy+2xy﹣3x 2 y﹣xy=﹣xy当x=3,y=﹣时,原式=﹣3×(﹣)=1.20.(6分)已知5+的小数部分是a,5﹣的小数部分是b,求:(1)a+b的值;(2)a﹣b的值.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴a=5+﹣8=﹣3,b=5﹣﹣1=4﹣,∴a+b=(﹣3)+(4﹣)=1;a﹣b=(﹣3)﹣(4﹣)=2﹣7.四、解答题(56分)请将每小题的答案做到答题卡中对应的区域内.21.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.[来源:Z*xx*]22.(8分)若x、y都是实数,且y=++8,求x+3y的立方根.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.23.(8分)如果A=是a+3b的算术平方根,B=的1﹣a 2的立方根.试求:A﹣B的平方根.【解答】解:依题意有,解得,A==3,B==﹣2A﹣B=3+2=5,故A﹣B的平方根是±.24.(8分)已知:如图,AB∥CD,∠1=∠2.求证:∠E=∠F.【解答】证明:分别过E、F点作CD的平行线EM、FN,如图∵AB∥CD,∴CD∥FN∥EM∥AB,∴∠3=∠2,∠4=∠5,∠1=∠6,而∠1=∠2,∴∠3+∠4=∠5+∠6,即∠E=∠F.25.(12分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米,(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?【解答】解:(1)若设图中最大正方形B的边长是x米,最小的正方形的边长是1米.F的边长为(x﹣1)米,C的边长为,E的边长为(x﹣1﹣1);(2)∵MQ=PN,∴x﹣1+x﹣2=x+,x=7,x的值为7;(3)设余下的工程由乙队单独施工,还要x天完成.(+)×2+x=1,x=10(天).答:余下的工程由乙队单独施工,还要10天完成.26.(12分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为∠P+n∠Q=360°.(直接写结论)【解答】(1)证明:如图1,过点P作PG∥AB,,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)==,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠C FP)]=×(360°﹣∠P),∴∠P+3∠Q=360°.(4)由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),∴∠P+n∠Q=360°.故答案为:∠P+n∠Q=360°.七年级(下)第一次月考数学试卷篇3一、填空题的倒数是____;的相反数是____;-0.3的绝对值是______。
七年级数学下册月考试卷及答案
七年级数学下册月考试卷及答案七年级数学月考考试就快到了,祝你数学月考考试顺利。
绽在心头芬芳绕,合家共同甜蜜笑。
以下是小编给你推荐的七年级数学下册月考试卷及参考答案,希望对你有帮助!七年级数学下册月考试卷一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣112.下列计算正确的是( )A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a3.化简(a2)3的结果为( )A.a5B.a6C.a8D.a94.x﹣(2x﹣y)的运算结果是( )A.﹣x+yB.﹣x﹣yC.x﹣yD.3x﹣y5.下列各式中不能用平方差公式计算的是( )A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a ﹣b+c)(a+b﹣c)7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是角.13.计算:(a+b)2+ =(a﹣b)2.14.一个多项式除以3xy商为9x2y﹣ xy,则这个多项式是.15.边长为a厘米的正方形的边长减少3厘米,其面积减少.16.若a+b=5,ab=5,则a2+b2 .17.已知a+ = ,则a2+ = .三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ ab)2.21.(x+2)2﹣(x+1)(x﹣1)22.计算:1652﹣164×166(用公式计算).23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣ .七年级数学下册月考试卷答案一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是( )A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂乘法、幂的乘方的运算法则进行计算,然后利用排除法求解.【解答】解:A、a3与a2不是同类项,不能合并,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为(a3)2=a6,故本选项错误;D、应为a3﹣a2=a2(a﹣1),故本选项错误;故选B.【点评】本题考查了合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算法则是解题的关键,不是同类项的一定不能合并.3.化简(a2)3的结果为( )A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】利用幂的乘方法则:底数不变,指数相乘.(am)n=amn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.4.x﹣(2x﹣y)的运算结果是( )A.﹣x+yB.﹣x﹣yC.x﹣yD.3x﹣y【考点】整式的加减.【分析】此题考查了去括号法则,括号前面是负号时,去括号后括号里的各项都变号,再合并同类项.【解答】解:x﹣(2x﹣y)=x﹣2x+y=﹣x+y.故选A.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.5.下列各式中不能用平方差公式计算的是( )A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a﹣b+c)(a+b﹣c)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中不能用平方差公式计算的是(a﹣2b)(2b ﹣a),故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°【考点】平行线的性质.【专题】应用题.【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:B.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是直角.【考点】余角和补角.【分析】根据补角的定义进行计算即可.【解答】解:设这个角为x,则x+x=180°,所以x=90°,故答案为:直.【点评】本题考查了余角和补角,掌握它们的性质是解题的关键.13.计算:(a+b)2+ (﹣4ab) =(a﹣b)2.【考点】完全平方公式.【专题】计算题.【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴(a+b)2+(﹣4ab)=(a﹣b)2.故答案为:(﹣4ab)【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.14.一个多项式除以3xy商为9x2y﹣xy,则这个多项式是27x3y2﹣x2y2 .【考点】整式的除法.【专题】计算题.【分析】根据被除数等于除数乘以商,即可求出结果.【解答】解:根据题意得:3xy(9x2y﹣ xy)=27x3y2﹣x2y2.故答案为:27x3y2﹣x2y2.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.边长为a厘米的正方形的边长减少3厘米,其面积减少4a .【考点】平方差公式.【分析】分别计算出两种边长下正方形的面积,继而可得出答案.【解答】解:边长为a厘米的正方形的面积为:a2;边长为(a﹣2)厘米的正方形的面积为:(a﹣2)2,则面积减小=a2﹣(a﹣2)2=(a+a﹣2)(a﹣a+2)=4a.故答案为:4a.【点评】本题考查了平方差公式的知识,掌握平方差公式的形式是关键.16.若a+b=5,ab=5,则a2+b2 15 .【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab来计算即可.【解答】解:∵a+b=5,ab=5,∴a2+b2=(a2+b2+2ab)﹣2ab,=(a+b)2﹣2ab,=52﹣2×5,=15.故答案为:15.【点评】本题考查对完全平方公式的理解掌握情况,对式子的合理变形会使运算更加简便,解题时,常用到a2+b2=(a+b)2﹣2ab=(a ﹣b)2+2ab的变化,结合已知去计算.17.已知a+ = ,则a2+ = 1 .【考点】完全平方公式.【专题】计算题.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+ = ,∴a2+ =(a+ )2﹣2=3﹣2=1,故答案为:1【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则即可求出答案.【解答】解:原式=18x2﹣24x+54x﹣72=18x2+30x﹣72;【点评】本题考查多项式乘以多项式法则,属于基础题型.20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ ab)2.【考点】整式的除法;幂的乘方与积的乘方.【专题】常规题型.【分析】先算乘方,再算乘除.【解答】解:原式=:(a3b5﹣3a2b2+2a4b3)÷ a2b2=4ab3﹣12+8a2b.【点评】本题考查了积的乘方和多项式除以单项式,掌握运算顺序,理解多项式除以单项式法则,是解决本题的关键.多项式除以单项式,一般多项式几项,相除后的结果是几项.21.(x+2)2﹣(x+1)(x﹣1)【考点】完全平方公式;平方差公式.【专题】计算题.【分析】利用完全平方公式与平方差公式展开,然后再合并同类项即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5.故答案为:4x+5.【点评】本题考查了完全平方公式与平方差公式,熟记公式结构是解题的关键.22.计算:1652﹣164×166(用公式计算).【考点】平方差公式.【分析】先把原式变形为1652﹣(165﹣1)(165+1),再用平方差公式进行计算即可.【解答】解:原式=1652﹣(165﹣1)(165+1)=1652﹣1652+1=1.【点评】本题考查了平方差公式,掌握平方差公式是解题的关键.23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣ .【考点】整式的混合运算—化简求值.【专题】计算题;压轴题.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式= =﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.。
七年级数学(下册)第一次月考数学试卷(含答案) (2)
七年级(下)第一次月考数学试卷一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.22.(3分)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2 3.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣64.(3分)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣45.(3分)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=6.(3分)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣27.(3分)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣88.(3分)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4二、填空题(每小题3分,共21分)9.(3分)计算0.1252015×(﹣8)2016=.10.(3分)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为.11.(3分)若2x=3,4y=5,则2x+2y的值为.12.(3分)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.13.(3分)若x﹣y=2,xy=4,则x2+y2的值为.14.(3分)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为cm.15.(3分)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为.三、解答题(8个小题,共75分)16.(8分)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).17.(8分)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).18.(10分)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.19.(8分)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.20.(8分)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.21.(10分)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)22.(11分)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?23.(12分)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共24分)1.(3分)(2016春•宝丰县月考)计算(﹣2)0+1的结果()A.﹣1 B.0 C.1 D.2【分析】根据非零的零次幂等于1,可得答案.【解答】解:原式=1+1=2,故选:D.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.2.(3分)(2016春•宝丰县月考)下列各式,能用平方差公式计算的是()A.(a﹣1)(a+1)B.(a﹣3)(﹣a+3)C.(a+2b)(2a﹣b)D.(﹣a﹣3)2【分析】根据平方差公式,即两数之和与两数之差的积等于两数的平方差,作出判断即可.【解答】解:A、(a﹣1)(a+1),正确;B、(a﹣3)(﹣a+3)=﹣(a﹣3)2,故错误;C、(a+2b)(2a﹣b)属于多项式乘以多项式,故错误;D、(﹣a﹣3)2属于完全平方公式,故错误;故选:A.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.(3分)(2013•西藏)一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000065=6.5×10﹣6;故选:B.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2016春•宝丰县月考)若等式(x﹣4)2=x2﹣8x+m2成立,则m的值是()A.16 B.4 C.﹣4 D.4或﹣4【分析】直接利用公式把(x﹣4)2展开后可得m2=42=16,求解即可得到m的值.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵(x﹣4)2=x2﹣8x+16,∴m2=16,解得m=±4.故选D.【点评】本题考查了完全平方公式,根据公式的平方项得到方程是求解的关键.5.(3分)(2016春•宝丰县月考)下列计算正确的是()A.x3•x﹣4=x﹣12B.(x3)3=x6C.2x2+x=x D.(3x)﹣2=【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、不是同类项不能合并,故C错误;D、负整数指数幂与正整数指数幂互为倒数,故D正确;故选:D.【点评】本题考查了负整数指数幂,熟记法则并根据法则计算是解题关键.6.(3分)(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.7.(3分)(2016春•苏州期中)若(x2﹣x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【分析】先根据已知式子,可找出所有含x的项,合并系数,令含x项的系数等于0,即可求m的值.【解答】解:(x2﹣x+m)(x﹣8)=x3﹣8x2﹣x2+8x+mx﹣8m=x3﹣9x2+(8+m)x﹣8m,∵不含x的一次项,∴8+m=0,解得:m=﹣8.故选:B.【点评】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.8.(3分)(2010秋•宝应县校级期中)根据如图所示的程序计算,若输入x的值为1,则输出y的值为()A.2 B.﹣2 C.4 D.﹣4【分析】由题意输入x然后平方得x2,然后再乘以2,然后再减去4,若结果大于0,就输出y,否则就继续循环,从而求解.【解答】解:输入x的值为1,由程序平方得,12=1,然后再乘以2得,1×2=2,然后再减去4得,2﹣4=﹣2,∵﹣2<0,继续循环,再平方得,(﹣2)2=4,然后再乘以2得,4×2=8,然后再减去4得,8﹣4=4,∵4>0,∴输出y的值为4,故答案为4.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型.二、填空题(每小题3分,共21分)9.(3分)(2016春•徐州期中)计算0.1252015×(﹣8)2016=8.【分析】根据指数相同的幂的乘法等于积的乘方,可得答案.【解答】解:原式=(﹣0.125×8)2015×(﹣8)=8.故答案为:8.【点评】本题考查了幂的乘方与积的乘方,利用积的乘方是解题关键.10.(3分)(2008秋•辽源期末)一个多项式除以2x2y,其商为(4x3y2﹣6x3y+2x4y2),则此多项式为8x5y3﹣12x5y2+4x6y3.【分析】根据被除式=商×除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式=(4x3y2﹣6x3y+2x4y2)×2x2y=8x5y3﹣12x5y2+4x6y3.【点评】本题考查了单项式除单项式,弄清被除式、除式、商三者之间的关系是求解的关键.11.(3分)(2016春•宝丰县月考)若2x=3,4y=5,则2x+2y的值为15.【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则将原式变形,进而得出答案.【解答】解:∵2x=3,4y=5,∴2x+2y=2x×(22)y=3×5=14.故答案为:15.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,熟练应用运算法则是解题关键.12.(3分)(2016春•宝丰县月考)若﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,则m﹣n的值为.【分析】直接利用单项式乘以单项式运算法则得出关于m,n的等式进而得出答案.【解答】解:∵﹣5a m+1•b2n﹣1•2ab2=﹣10a4b4,∴m+1+1=4,2n﹣1+2=4,解得:m=2,n=,则m﹣n=2﹣=.故答案为:.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(3分)(2016春•盐都区月考)若x﹣y=2,xy=4,则x2+y2的值为12.【分析】把x﹣y=2两边平方,利用完全平方公式化简,将xy=4代入即可求出所求式子的值.【解答】解:把x﹣y=2两边平方得:(x﹣y)2=x2﹣2xy+y2=4,把xy=4代入得:x2+y2=12,故答案为:12【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.(3分)(2016春•宝丰县月考)已知长方体的体积为3a3b5cm3,它的长为abcm,宽为ab2cm,则这个长方体的高为2ab2cm.【分析】根据题意列出关系式,计算即可得到结果.【解答】解:根据题意得:3a3b5÷(ab•ab2)=2ab2(cm);故答案为:2ab2【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.(3分)(2016春•宝丰县月考)已知x2﹣2x=2,则(x﹣1)(3x+1)﹣(x+1)2的值为2.【分析】先利用多项式乘多项式的法则展开,然后合并同类项,再利用整体代入的思想解决问题即可.【解答】解:∵x2﹣2x=2,∴x2=2+2x,∴原式=3x2+x﹣3x﹣1﹣x2﹣2x﹣1=2x2﹣4x﹣2=2(2+2x)﹣4x﹣2=4+4x﹣4x﹣2=2.故答案为2.【点评】本题考查整式的混合运算﹣化简求值,利用整体代入的思想是解决问题的关键,计算时注意符号问题,括号前面是负号时去括号要变号,属于展开常考题型.三、解答题(8个小题,共75分)16.(8分)(2016春•宝丰县月考)计算(1)(2x+3y)2﹣(2x﹣3y)2;(2)(3m﹣4n)(3m+4n)(9m2+16n2).【分析】(1)原式利用完全平方公式化简,去括号合并即可得到结果;(2)原式利用平方差公式计算即可得到结果.【解答】解:(1)原式=4x2+12xy+9y2﹣4x2+12xy﹣9y2=24xy;(2)原式=(9m2﹣16n2)(9m2+16n2)=81m4﹣256n4.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.17.(8分)(2016春•宝丰县月考)计算:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3);(2)(﹣5xy3)2•(﹣x2y)3÷(﹣9x3y2).【分析】(1)先由立方公式展开,再利用整式的加减,即可求解;(2)根据单项式的乘法和除法的计算法则计算.【解答】解:(1)(x+1)(x2﹣x+1)+6x3+(﹣2x3)=x3+1+6x3﹣2x3=5x3+1(2)(﹣5xy3)2×(﹣x2y)3÷(﹣9x3y2)=25x2y6×(﹣)x6y3÷(﹣9x3y2)=25x2y6×x6y3÷9x3y2=x8y9÷9x3y2=x5y7.【点评】此题是整数的混合运算,解本题的关键是记住整式运算的法则,(2)易出现符号错误.18.(10分)(2016春•宝丰县月考)求下列各式的值:(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣;(2)[(﹣3xy)2•x3﹣2x2•(3xy2)3•y]÷9x4y2,其中x=3,y=﹣1.【分析】(1)先算除法和乘法,再合并同类项,最后代入求出即可;(2)先算除法和乘法,再合并同类项,最后代入求出即可.【解答】解:(1)原式=a2﹣2ab﹣b2﹣a2+b2=﹣2ab,把a=,b=﹣代入﹣2ab=;(2)原式=(9x5y2﹣27x5y7)÷9x4y2=x﹣3xy5,把x=3,y=﹣1代入x﹣3xy5=3﹣3×3×(﹣1)5=12.【点评】本题考查了整式的混合运算和求值的应用,熟练掌握运算法则是解本题的关键.19.(8分)(2016春•宝丰县月考)红光中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,计划用宽为x m、长为30x m的塑料扣板,已知这件陈列室的长为5ax m、宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑料扣板?当a=4时,求出具体的扣板数.【分析】根据题意列出关系式,计算即可得到结果,把a的值代入计算即可得到具体数.【解答】解:根据题意得:(5a x•3ax)÷(x•30x)=15a2x2÷30x2=a2,则应该至少购买a2块这样的塑料扣板,当a=4时,原式=8,即具体的扣板数为8张.【点评】此题考查了整式的除法,以及代数式求值,熟练掌握运算法则是解本题的关键.20.(8分)(2016春•宝丰县月考)已知(x+y)2=64,(x﹣y)2=16,求x2+y2的值.【分析】已知等式利用完全平方公式展开,相加即可求出原式的值.【解答】解:由题意得:x2+2xy+y2=64①,x2﹣2xy+y2=16②,①+②得:2(x2+y2)=80,则x2+y2=40.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.21.(10分)(2016春•宝丰县月考)如图,一块半圆形钢板,从中挖去直径分别为x、y的两个半圆:(1)求剩下钢板的面积:(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)【分析】(1)利用圆的面积公式计算,图中的大圆半径是;(2)把x=4,y=2代入上式计算即可.【解答】解:如题中图,(1)S剩=.==(2)当x=4,y=2时,S剩=×3.14×2×4=6.28(面积单位).【点评】本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.22.(11分)(2016春•宝丰县月考)(1)对于任意自然数n,代数式n(n+3)﹣(n﹣4)(n ﹣5)的值都能被4整除吗?请说明理由.(2)小明在做一个多项式除以a的题时,由于粗心误以为乘以a,结果是8a4b﹣4a3+2a2,那么你能知道正确的结果是多少吗?【分析】(1)将原式展开化简可得4(3n﹣5),根据n是自然数可知原式能被4整除;(2)先根据误乘的结果用除法求出原多项式,再用该多项式除以a可得结果.【解答】解:(1)能,原式=n2+3n﹣(n2﹣5n﹣4n+20)=n2+3n﹣n2+5n+4n﹣20=12n﹣20=4(3n﹣5),因为n是自然数,所以3n﹣5是整数,因此原式能被4整除;(2)根据题意,原多项式为(8a4b﹣4a3+2a2)÷a=16a3b﹣8a2+4a.故正确结果为:(16a3b﹣8a2+4a)÷a=32a2b﹣16a+8.【点评】本题主要考查整式的运算能力,熟练掌握多项式与单项式相乘、除,多项式与多项式相乘的运算法则是关键也是基础.23.(12分)(2016春•宝丰县月考)仔细观察下列四个等式:22=1+12+2;32=2+22+3;42=3+32+4;52=4+42+5;…(1)请你写出第5个等式;(2)用含n的等式表示这5个等式的规律;(3)将这个规律公式认真整理后你会发现什么?【分析】(1)根据已知规律直接写出第5个等式即可;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1,整理即可;(3)整理右边可知:为完全平方.【解答】解:(1)根据已知可以得出:第5个等式为:62=5+52+6;(2)分析已知等式:左边是(n+1)2,右边是n+n2+n+1;所以:(n+1)2=n+n2+n+1;(3)整理(2)得,(n+1)2=n+n2+n+1=n2+2n+1,可化为完全平方公式.【点评】此题主要考查数字的规律问题,认真观察题中已知,弄清已知数与序数n之间的关系是解题的关键.。
七年级下第一次月考数学试卷10含答案解析
七年级(下)第一次月考数学试卷一、选择题1.下列计算正确的是()A.x3+x3=x6B.x3÷x4=C.(m5)5=m10D.x2y3=(xy)52.下列各度数不是多边形的内角和的是()A.1800°B.540°C.1700°D.1080°3.一个多边形的外角和是内角和的一半,则它是()边形A.7 B.6 C.5 D.44.若a>0且a x=2,a y=3,则a x﹣y的值为()A.﹣1 B.1 C.D.5.画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.6.如图,若AB∥CD,则∠α=150°,∠β=80°,则∠γ=()A.40°B.50°C.60°D.30°7.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于()A.230°B.210°C.130°D.310°8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个9.如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2015,最少经过()次操作.A.6 B.5 C.4 D.3二、填空题10.计算:(﹣x2y)2=(﹣2)﹣2=﹣2x2•(﹣x)3=(﹣0.25)2014×42015=.(﹣1)2015+(﹣π)0+2﹣2=.11.已知a m=8,a n=2,则a m+n=.已知22×83=2n,则n=.12.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=.13.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是cm.14.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.15.如图所示,直线a∥b,则∠A=度.16.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,ED′的延长线与BC相交于点G,若∠EFG=50°,则∠1=.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=.18.两个角的两边分别平行,其中一个角比另一个角的4倍少30°,这两个角是.三、解答题:(共7题,共54分)19.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是;(3)利用网格画出△ABC 中AC边上的中线BD;(4)利用网格画出△ABC 中AB边上的高CE;(5)△A′B′C′的面积为.20.计算(1)(﹣a)7÷(﹣a)4×(﹣a)3(2)a3•(﹣b3)2+(﹣2ab2)3(3)2(a2)3﹣a2•a4+(2a4)2÷a2(4)()﹣3﹣(3.14﹣π)0+(﹣2)4.21.如图,已知MN⊥AB于P,MN⊥CD于Q,∠2=80°,求∠1的度数.22.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.23.试解答下列问题:(1)在图1我们称之为“8字形”,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数是个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试写出∠B与∠P、∠D之间数量关系.24.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,则∠OGA=(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=30°,则∠OGA=(3)将(2)中“∠OBA=30°”改为“∠OBA=α”,其余条件不变,则∠OGA=(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA 的度数(用含α的代数式表示)2015-2016学年江苏省无锡市玉祁中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列计算正确的是()A.x3+x3=x6B.x3÷x4=C.(m5)5=m10D.x2y3=(xy)5【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘法、幂的乘方、积的乘方以及同底数幂的除法的性质求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、x3+x3=2x3,故本选项错误;B、x3÷x4=x﹣1=,故本选项正确;C、(m5)5=m25,故本选项错误;D、(xy)5=x5y5,故本选项错误.故选B.2.下列各度数不是多边形的内角和的是()A.1800°B.540°C.1700°D.1080°【考点】多边形内角与外角.【分析】n(n≥3)边形的内角和是(n﹣2)180°,因而多边形的内角和一定是180的整数倍.【解答】解:不是180的整数倍的选项只有C中的1700°.故选C.3.一个多边形的外角和是内角和的一半,则它是()边形A.7 B.6 C.5 D.4【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的一半,则多边形的内角和是720度,根据多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故选B.4.若a>0且a x=2,a y=3,则a x﹣y的值为()A.﹣1 B.1 C.D.【考点】同底数幂的除法.【分析】根据同底数幂相除,底数不变,指数相减的性质逆用计算即可.【解答】解:∵a x=2,a y=3,∴a x﹣y=a x÷a y=.故选:C.5.画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.6.如图,若AB∥CD,则∠α=150°,∠β=80°,则∠γ=()A.40°B.50°C.60°D.30°【考点】平行线的性质.【分析】过点E作EF∥AB,根据平行线的性质可求出∠AEF的度数,进而得出∠CEF的度数,由此可得出结论.【解答】解:过点E作EF∥AB,∵∠α=150°,∴∠AEF=180°﹣∠α=180°﹣150°=30°.∵∠β=80°,∴∠CEF=∠β﹣∠AEF=80°﹣30°=50°.∵AB∥CD,EF∥AB,∴EF∥CD,∴∠γ=∠CEF=50°.故选B.7.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于()A.230°B.210°C.130°D.310°【考点】多边形内角与外角;三角形内角和定理.【分析】首先根据三角形内角和可以计算出∠A+∠B的度数,再根据四边形内角和为360°可算出∠1+∠2的结果.【解答】解:∵△ABC中,∠C=50°,∴∠A+∠B=180°﹣∠C=130°,∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°,故选:A.8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【考点】三角形内角和定理.【分析】结合三角形的内角和为180°逐个分析4个条件,可得出①④中∠C=90°,②③能确定△ABC为锐角三角形,从而得出结论.【解答】解:①∵∠A+∠B=∠C,且∠A+∠B+∠C=180°,∴∠C+∠C=180°,即∠C=90°,此时△ABC为直角三角形,①可以;②∵∠A=∠B=2∠C,且∠A+∠B+∠C=180°,∴2∠C+2∠C+∠C=180°,∴∠C=36°,∠A=∠B=2∠C=72°,△ABC为锐角三角形,②不可以;③∵∠A=∠B=α∠C,且∠A+∠B+∠C=180°,∴α∠C+α∠C+∠C=180°,∴∠C=,∠A=∠B=α∠C=,△ABC为锐角三角形,③不可以;④∵∠A﹕∠B﹕∠C=1﹕2﹕3,∴∠A+∠B=∠C,同①,此时△ABC为直角三角形,④可以;综上可知:①④能确定△ABC为直角三角形.故选A.9.如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2015,最少经过()次操作.A.6 B.5 C.4 D.3【考点】三角形的面积.【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴S△A1B1B=2.同理可得,S△C1B1C=2,S△AA1C=2,∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;同理可证△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2015,最少经过4次操作.故选C.二、填空题10.计算:(﹣x2y)2=x4y2(﹣2)﹣2=﹣2x2•(﹣x)3=2x5(﹣0.25)2014×42015=4.(﹣1)2015+(﹣π)0+2﹣2=.【考点】幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】分别利用幂的乘方与积的乘方、零指数幂,负整数指数幂的知识进行计算后即可得到正确的结果.【解答】解:(﹣x2y)2=x4y2;(﹣2)﹣2==;﹣2x2•(﹣x)3=﹣2x2•(﹣x3)=2x5;(﹣0.25)2014×42015=(﹣0.25)2014×42014×4=4.(﹣1)2015+(﹣π)0+2﹣2=﹣1+1+=.故答案为:x4y2、、2x5、4、.11.已知a m=8,a n=2,则a m+n=16.已知22×83=2n,则n=11.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的运算法则将a m+n化简为a m与a n的乘法运算,代入a m与a n的数值可得答案.【解答】解:a m+n=a m•a n=8×2=16,∵22×83=22×29=211=2n.∴n=11,故答案为16、11;12.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=90°.【考点】三角形内角和定理.【分析】根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.【解答】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案为90°.13.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.14.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.15.如图所示,直线a∥b,则∠A=22度.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.【分析】依题意由平行线的性质,结合三角形外角及外角性质,可以得到∠A=∠C﹣∠B,易求∠A的度数.【解答】解:∵a∥b,∴∠ADE=50°,∵∠ABE=28°,根据三角形外角及外角性质,∴∠A+∠ABE=∠ADE,∴∠A=∠C﹣∠B=22°.∴∠A=22°.16.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,ED′的延长线与BC相交于点G,若∠EFG=50°,则∠1=100°.【考点】平行线的性质;翻折变换(折叠问题).【分析】先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,所以∠1=100°【解答】解:∵DE∥GC,∴∠DEF=∠EFG=50°,∠1=∠GED,∵长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,∴∠DEF=∠GEF=50°,即∠GED=100°,∴∠1=∠GED=100°.故答案为:100.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=2.【考点】三角形的面积.【分析】S△ADF﹣S△BEF=S△ABD﹣S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.【解答】解:∵点D是AC的中点,∴AD=AC,∵S△ABC=12,∴S△ABD=S△ABC=×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=S△ABC=×12=4,∵S△ABD﹣S△ABE=(S△ADF+S△ABF)﹣(S△ABF+S△BEF)=S△ADF﹣S△BEF,即S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.故答案为:2.18.两个角的两边分别平行,其中一个角比另一个角的4倍少30°,这两个角是42°,138°或10°,10°.【考点】平行线的性质.【分析】设另一个角为α,则这个角是4α﹣30°,然后根据两边分别平行的两个角相等或互补列式计算即可得解.【解答】解:设另一个角为α,则这个角是4α﹣30°,∵两个角的两边分别平行,∴α+4α﹣30°=180°或α=4α﹣30°,解得α=42°或α=10°,∴4α﹣30°=138°或4α﹣30°=10°,这两个角是42°,138°或10°,10°.故答案为:42°,138°或10°,10°.三、解答题:(共7题,共54分)19.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等;(3)利用网格画出△ABC 中AC边上的中线BD;(4)利用网格画出△ABC 中AB边上的高CE;(5)△A′B′C′的面积为10.【考点】作图-平移变换.【分析】(1)利用平移变换的性质得出对应点位置进而得出答案;(2)利用平移变换的性质得出答案;(3)利用网格结合三角形中线的性质得出答案;(4)利用网格结合三角形高线的性质得出答案;(5)利用平移的性质结合三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是平行且相等.故答案为:平行且相等;(3)如图所示:BD即为所求;(4)如图所示:CE即为所求;(5)△A′B′C′的面积为△ABC的面积:×5×4=10.故答案为:10.20.计算(1)(﹣a)7÷(﹣a)4×(﹣a)3(2)a3•(﹣b3)2+(﹣2ab2)3(3)2(a2)3﹣a2•a4+(2a4)2÷a2(4)()﹣3﹣(3.14﹣π)0+(﹣2)4.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据同底数幂的乘除法法则计算即可求解;(2)先算积的乘方,再算单项式的乘法,最后合并同类项即可求解;(3)先算幂的乘方和积的乘方,再算同底数幂的乘除法,最后合并同类项即可求解;(4)先算负整数指数幂,零指数幂,乘方,再计算加减法即可求解.【解答】解:(1)(﹣a)7÷(﹣a)4×(﹣a)3=(﹣a)7﹣4+3=(﹣a)6=a6;(2)a3•(﹣b3)2+(﹣2ab2)3=a3b6﹣8a3b6=﹣7a3b6;(3)2(a2)3﹣a2•a4+(2a4)2÷a2=2a6﹣a6+4a8÷a2=2a6﹣a6+4a6=5a6;(4)()﹣3﹣(3.14﹣π)0+(﹣2)4=27﹣1+16=42.21.如图,已知MN⊥AB于P,MN⊥CD于Q,∠2=80°,求∠1的度数.【考点】平行线的判定与性质.【分析】根据已知条件可知AB∥CD,根据两直线平行同旁内角互补即可得出∠1的度数.【解答】解:∵MN⊥AB于P,MN⊥CD于Q,∴AB∥CD,∵∠2=80°,∴∠1=180°﹣80°=100°.22.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.【考点】平行线的判定与性质;角平分线的定义.【分析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∠1=∠2即可.【解答】平分.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠2=∠3,(两直线平行,内错角相等)∠E=∠1,(两直线平行,同位角相等)又∵∠E=∠3(已知)∴∠1=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).23.试解答下列问题:(1)在图1我们称之为“8字形”,请直接写出∠A、∠B、∠C、∠D之间的数量关系:∠A+∠D=∠C+∠B;(2)仔细观察,在图2中“8字形”的个数是6个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试写出∠B与∠P、∠D之间数量关系2∠P=∠D+∠B..【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有6个;(3)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数;(4)同(3),根据“8字形”中的角的规律及角平分线的定义,即可得出2∠P=∠D+∠B.【解答】解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B;故答案为:∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个;故答案为:6;(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B,又∵∠D=40度,∠B=36度,∴2∠P=40°+36°,∴∠P=38°;(4)关系:2∠P=∠D+∠B.由∠D+∠1+∠2=∠B+∠3+∠4①由∠ONC=∠B+∠4=∠P+∠2,②①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1,∠D+2∠B=2∠P+∠B,即2∠P=∠D+∠B.故答案为:2∠P=∠D+∠B.24.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=30°,则∠OGA=15°(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=30°,则∠OGA=10°(3)将(2)中“∠OBA=30°”改为“∠OBA=α”,其余条件不变,则∠OGA=α(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA 的度数(用含α的代数式表示)【考点】三角形内角和定理;三角形的外角性质.(1)由于∠BAD=∠ABO+∠BOA=α+90°,由AF平分∠BAD得到∠FAD=∠BAD,【分析】而∠FAD=∠EOD+∠OGA,2×45°+2∠OGA=α+90°,则∠OGA=α,然后把α=30°代入计算即可;(2)由于∠GOA=∠BOA=30°,∠GAD=∠BAD,∠OBA=α,根据∠FAD=∠EOD+∠OGA 得到3×30°+3∠OGA=α+90°,则∠OGA=α,然后把α=30°代入计算;(3)由(2)得到∠OGA=α;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA=α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA=α﹣15°.【解答】解:(1)15°;(2)10°;(3);(4)当∠EOD:∠COE=1:2时,则∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,而AF平分∠BAD,∴∠FAD=∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA=α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA=α﹣15°,即∠OGA的度数为α+15°或α﹣15°.故答案为15°,10°,α.2016年4月26日。
2014秋初一数学第一次月考试卷
2014秋初一数学第一次月考试卷(满分150分,考试时间120分钟)班级 号数 姓名一、填空题:( 3分×14=42分)1、若温度计上升3度记作3℃,则下降6度记作_________;2、相反数等于32的数是 ,绝对值等于32的数是_________; 3、倒数等于3的数是 ,相反数等于它本身的数是 ;4、化简下列各数的符号:-(-16)= ,-(+107 )= ; 5、比较大小:-5.7 0,31-41-。
6、计算=-+-22)3(3 ,=--2233 ;7、用科学记数法表示-510400= 。
8、若b a 、互为倒数,d c 、互为相反数,则=-+ab d c 2)( ; 9、若00 b a 、,则b a - 0二、选择题(每题3分,共30分)(注意请把答案填在下面的表格中,否则要扣分)1、下列说法正确是( )A 、有最大的整数B 、有最小的负数C 、有最大的正数D 、有最大的负整数2、 下列结论中,正确的是 ( )A 、a -一定是负数B 、a 一定是正数C 、-a 一定是负数D 、-a 一定是非负数3、若12=-x ,则=x ( )A 、3B 、1C 、-1或1D 、3或14、下列各式正确的是 ( )A .22)5(5-=- B.1996)1(1996=-C.0)1()1(99=---D. 01)1(99=--5、若五个有理数的积为负数,其中负因数的个数一定可能是 ( )A 、1个B 、3个C 、4个D 、5个6、下列各数中,数值相等的是( )A 、2223与B 、2222)与(--C 、3333--与)(D 、322323⨯-⨯-与)(7、下列命题正确的是 ( )A. 若b a ,则22b aB. 若22b a ,则b aC.若b a ,22b aD. 若b a ,则b a8、两数相加,其和小于每一个加数,那么一定是( ) A. 两个加数同为正数B. 两个加数同为负数C. 取与加数的符号相民D. 两个加数中有一个为0三、 解答题: (每题7分,共56分)1、把下列各数在数轴上表示出来,并用“<”把各数连接起来(8分):-2,0,3,-1,1,212-,213-2、把下列各数分别填入相应的大括号内(8分):21-,-1,2,5,0,4-,215,311-,-5 正数集合{ }负数集合{ }整数集合{ }分数集合{ }3、计算:(6分×8=48分)(1))16(94)49()81(-÷⨯-÷- (2)3222)2(3)3(2------(3)[]24)3(231)5.01(1--⨯⨯-⨯- (4)()5171619-⨯(5)()()22323185253-÷-⎪⎭⎫ ⎝⎛-⨯---- (6)⎪⎭⎫ ⎝⎛-⨯1099899(7)()151225.01427-⎪⎭⎫ ⎝⎛÷-+⨯÷-- (8)⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+-⨯127125243153154、某公路养护小组乘车沿南北向公路巡视维护,某天早晨从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,-9,+7,-14,-6,+13,-6,-8。
人教版七年级下册数学第一次月考试题带答案
人教版七年级下册数学第一次月考试卷一、单选题1.如图,直线a 、b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°2.如图,AB ∥CD ,∠A=80°,则∠1的度数是( )A .70°B .100°C .110°D .130°3.已知:如图, AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠与2∠的关系一定成立的是( )A .相等B .互补C .互余D .互为对顶角 4.如图所示,下边的4个图形中,经过平移能得到左边的图形的是( )A .B .C .D . 5.下面的语句是假命题的是( )A .同旁内角互补B .钝角的补角是锐角C.垂线段最短D.直角的补角是直角⊥,则点O到PR所在直线的距离是线段()的长.6.如图,PO OR⊥,OQ PRA.OQ B.OR C.OP D.PQ7.如图,a∥b,∠1是∠2的3倍,则2∠等于()A.45︒B.90︒C.135︒D.150︒8.如图,如果AB∥CD,那么下面说法错误的是()A.∠3=∠7 B.∠2=∠6 C.∠3+∠4+∠5+∠6=180°D.∠4=∠8 9.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.360°C.270°D.540°10.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cm B.2cm C.小于2cm D.不大于2cm二、填空题11.同一平面内,两条直线的位置关系有_____________________12.如图,△ABC沿着直线BC的平移,使点B移到点E,若∠ABC=40°,∠ACB=60°,则∠DEF= _________ .m n,∠2=50°,那么∠1=______°,∠3= ______°,∠4=______°.13.如图,//14.命题“两直线平行、同旁内角互补”中,题设是_________,结论是_______,此命题是_______命题.15.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.由∠CBE=______,可以判断AD∥BC,由∠CBE=______,可以判断AB∥CD,由∠ABC + ______=180°,可以判断AB∥CD.16.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=____.三、解答题17.读句画图,如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.18.推理填空:如图:①若∠1=∠2,则∥()若∠DAB+∠ABC=180°,则∥()②当∥时,∠ C+∠ABC=180°()当∥时,∠3=∠C ()19.如图,AB∥CD,∠3=115°,求∠1的度数.20.如图,已知∠1=50°,∠B=50°,∠D=50°,求∠C的度数21.如图,已知∠AGD=∠ACB,∠1=∠2.求证:CD∥EF22.如图,已知//AM BN ,60A ∠=︒.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠、分别交射线AM 于点C ,D .(1)①ABN ∠的度数是________;②//AM BN ,ACB ∴∠=∠________;(2)求CBD ∠的度数;(3)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.23.3是2x ﹣1的平方根,y 是8的立方根,z 是绝对值为9的数,求2x+y ﹣5z 的值.24.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.参考答案1.C【详解】∵直线a,b 相交于点O ,若∠1=40︒,∴∠2=(180-40)°=140 °;故选C.2.B【分析】根据平行线的性质求解即可;【详解】如图所示,∵AB ∥CD ,∴+2=180A ∠∠︒,又∵∠A=80°,∴2=100∠︒,又∵1∠与2∠是对顶角,∴1=100∠︒.故答案选B .【点睛】本题主要考查了平行线的性质应用,准确理解对顶角的性质是解题的关键.3.C【分析】根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.4.A【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:A、经过平移能得到左边的图形,故符合题意;B、经过平移和旋转才能得到左边的图形,故不符合题意;C、经过平移和轴对称变换才能得到左边的图形,故不符合题意;D、经过平移和旋转才能得到左边的图形,故不符合题意;故选:A.【点睛】本题考查了生活中的平移现象,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.5.A【分析】根据直角、垂线段、锐角和平行线的性质判断即可.【详解】解:A、两直线平行,才会同旁内角互补,故原命题是假命题;B、钝角的补角是锐角,故原命题是假命题;C、垂线段最短,故原命题是假命题;D、直角的补角是直角,故原命题是假命题;故选:A.【点睛】本题考查了命题与定理的知识,解题的关键是了解直角、垂线段、锐角和平行线的性质,难度不大.6.A【分析】根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.【详解】解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.故选A.【点睛】本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.7.A【分析】根据两条直线平行,同位角相等和∠1是∠2的3倍以及邻补角的概念,得4∠3=180°,由此可以求出∠2=45°.【详解】解:如图,∵a∥b,∴∠2=∠3,而∠1是∠2的3倍,∴∠1是∠3的3倍,而∠1+∠3=180°,∴4∠3=180°,∴∠3=45°,∴∠2=45°.故选:A.【点睛】本题主要考查了平行线的性质以及邻补角的定义的运用,解决问题的关键是结合已知条件列方程进行求解.8.D【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.9.B【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【详解】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故选B.【点睛】此题主要考查了平行线的性质,作出PA∥a是解决问题的关键.10.D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.11.相交或平行【分析】根据在同一平面内,两条直线的位置关系可知.【详解】解:在同一平面内,两条直线有2种位置关系,它们是相交或平行.故答案为:相交或平行.【点睛】本题是基础题型,主要考查了在同一平面内,两条直线的两种位置关系.12.40°【分析】根据平移的性质可得AB∥DE,再根据平行线的性质可得∠DEF的度数.【详解】解:∵△DEF由△ABC平移得到,B和E为对应点,∴AB∥DE,∴∠DEF=∠ABC=40°.故答案为:40°.【点睛】本题考查了平移的性质以及平行线的性质,根据平移得出AB∥DE是解题的关键. 13.50 50 130【分析】∠1与∠2是对顶角,∠2与∠3是内错角,∠3与∠4是邻补角,据此回答.【详解】解:如图,∵∠2=50°,∴∠1=∠2=50°,∵m∥n,∴∠3=∠2=50°,∴∠4=180°-∠3=130°.故答案为:50;50;130.【点睛】本题考查了平行线性质定理,解题的关键是根据性质定理得出各对相等的角.14.两条直线平行, 同旁内角互补, 真.【解析】【分析】根据题设是前提条件,结论是由前提条件得到的结果作答即可得题设和结论,再判断命题真假即可.【详解】∵“两直线平行,同旁内角互补”可以写成:“如果两直线平行,那么同旁内角互补”,∴题设是两直线平行,结论是同旁内角互补,此命题是真命题,故答案为:两直线平行;同旁内角互补;真.【点睛】本题考查了命题中题设与结论的判断,真命题与假命题的判断,用到的知识点为:所有命题都可以写成“如果…那么…”,“如果”后面是题设,“那么”后面是结论.15.∠A ∠C ∠C【分析】根据平行线的判定直接完成填空.【详解】解:由∠CBE=∠A可以判断AD∥BC,根据是同位角相等,可得两条直线平行;由∠CBE=∠C可以判断AB∥CD,根据是内错角相等,可得两条直线平行;由∠ABC+∠C=180°,可以判断AB∥CD,根据是同旁内角互补,可得两条直线平行;故答案为:∠A,∠C,∠C.【点睛】此题考查了平行线的判定,关键是弄清两个角是哪两条直线被第三条直线所截而形成的角.16.54°【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【详解】∵AB∥CD,∴∠BEF=180°−∠1=180°−72°=108°∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=12∠BEF=12×108°=54°∴∠2=∠BEG=54°.故答案为54°.17.(1)作图见解析;(2)作图见解析.【详解】试题分析:(1)过点P作∠PQA=∠DCA即可.(2)过点P作∠QPR=90°即可.试题解析:如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R.18.见解析【分析】①利用平行线的性质及判定,即先利用内错角相等,两直线平行得出AB∥CD,然后再根据同旁内角互补,两直线平行得出AD∥BC.②根据两直线平行,同旁内角互补求得两角互补.再根据两直线平行,内错角相等求得∠3=∠C.【详解】解:①若∠1=∠2,则AB∥CD(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);当AD∥BC时,∠3=∠C(两直线平行,内错角相等).故答案为:AB∥CD;内错角相等,两直线平行;AD∥BC;同旁内角互补,两直线平行;AB∥CD;两直线平行,同旁内角互补;AD∥BC;两直线平行,内错角相等.【点睛】此题主要考查了平行线的性质及判定.(1)①两直线平行,同位角相等.②两直线平行,内错角相等.③两直线平行,同旁内角互补.(2)①同位角相等,两直线平行.②内错角相等,两直线平行.③同旁内角互补,两直线平行.19.65°【分析】根据平行线的性质和邻补角的定义即可解答.【详解】解:∵AB∥CD,∴∠3+∠2=180°,∠2=∠1,∴∠1=∠2=180°-∠3=180°-115°=65°.【点睛】本题考查了平行线的性质和邻补角,熟练掌握平行线的性质是解题的关键.20.130°【分析】根据题意可得∠1=∠B,得到AD∥BC,再根据平行线的性质得到∠C.【详解】解:∵∠1=∠B=50°,∴AD∥BC,∴∠C=180°-∠D=180°-∠50°=130°.【点睛】本题考查了平行线的判定和性质,解题的关键是根据题意得到AD∥BC.21.见解析【分析】根据平行线的判定首先得出DG∥CB,再利用平行线的性质得出∠3=∠2,进而得出CD∥EF.【详解】解:证明:∵∠AGD=∠ACB,∴DG∥CB,∴∠3=∠1,∵∠1=∠2,∴∠3=∠2,∴CD∥EF.【点睛】此题主要考查了平行线的判定与性质,熟练掌握相关的定理是解题关键.22.(1)①120°,②∠CBN;(2)60°;(3)不变,∠APB:∠ADB=2:1.【解析】【分析】(1)由平行线的性质:两直线平行同旁内角互补和内错角相等可得;(2)由(1)知∠ABP+∠PBN=120°,再根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;【详解】解:(1)①∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;②∵AM∥BN,∴∠ACB=∠CBN,故答案为:120°,∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-60°=120°,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°;(3)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.23.-33或57.【分析】根据平方根和立方根的计算方法先求x和y,再根据绝对值的求法计算出z的值,最后再求2x+y﹣5z的值.【详解】解:∵3是2x﹣1的平方根,y是8的立方根,z是绝对值为9的数,∴2x-1=9,y=2,z=±9,∴x=5.当z=9时,2x+y-5z=2×5+2-5×9=-33.当z=-9时,2x+y-5z=2×5+2-5×(-9)=57.【点睛】此题重点考察学生对平方根,立方根,绝对值的理解,熟练掌握它们的定义和计算方法是解题的关键.x=±.24.(1)23a b-的平方根为4±;(2)3【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.。
七年级下数学第一次月考题
OBDAC(1题图)七年级下册数学第一次月考试题第一题 第二题第三题第四题第五题第六题总分一.选择题(每小题3分,共30分)1、如图,直线AB 与直线CD 相交于点O ,其中∠A0C 的对顶角是( ).A .∠A0DB .∠B0DC .∠B0CD .∠A0D 和∠B0C 2、 如图,若m ∥n ,∠1 = 105°,则∠2 =( ) A .55° B .60° C .65° D .75°3、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度可能是().A .第一次右拐15°,第二次左拐165°B .第一次左拐15°,第二次右拐15°C .第一次左拐15°,第二次左拐165°D .第一次右拐15°,第二次右拐15° 4、中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”移动到图( ).(4题图) A B C D 5、如右图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ; (2)21∠=∠;(3) 43∠=∠; (4) 5∠=∠B.54D3E21C BAA .1B .2C .3D .4 6、平面内三条直线的交点个数可能有〔 〕 A 、1个或3个 B 、2个或3个 C 、1个或2个或3个 D 、0个或1个或2个或37、同一平面内的三条直线满足a ⊥b ,b ⊥c ,则下列式子成立的是( ). A .a ∥c B .a ⊥c C .a=c D .a ∥b ∥c8、在5×5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正 确的平移方法是( ).A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格 9、下列说法中正确的是( ).A .在同一平面内,两条直线的位置只有两种:相交和垂直.B .有且只有一条直线垂直于已知直线.C .如果两条直线都与第三条直线平行,那么这两条直线也互相平行.D .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离. 10、如图,AD ‖BC ,点E 在BD 的延长线上,若∠ADE=155°, 则∠DBC 的度数为( ) .A .155°B . 25°C .45°D . 35°二.填空题(每题3分,共27分)11、体育课上,老师测量跳远成绩的依据是____________________________12、命题分为 和 两部分,把命题“对顶角相等”改写成“如果…,那么…”的形式为 .(10题图)13、下面生活中的物体的运动情况可以看成平移的是_______________.(1)摆动的钟摆(2)在笔直的公路上行驶的汽车(3)随风摆动的旗帜(4)投篮时运动的篮球(5)汽车玻璃上雨刷的运动(6)从楼顶自由落下的球(球不旋转) 14、如图,直线AB 、CD 与直线EF 相交于E 、F , 752=∠,当=∠1时,能使AB //CD .15、若一个角的两边与另一个角的两边分别平行,则这两个角一定___________. 16、如图,直线AB ∥CD ,∠B=23°,∠D =42°,则∠E =_______.17、如图,易拉罐的上下底面互相平行,吸管吸易拉罐的饮料时,∠1=110°,则∠2=_____18、如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD = 38°,则∠AOC = ,∠COB =19、把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG = 55°,则∠1=_______,∠2=_______.(18题图)(16题图) (19题图)BA CD EF G MN12DC BA FE 21(14题图)(17题三.作图题(共13分 20题8分 21题 5分)20、读句画图:如图,直线CD 与直线AB 相交于C ,根据下列语句画图 (用尺规作图,不写作法,保留作图痕迹)(1)过点P 作PQ ∥CD ,交AB 于点Q (2)过点P 作PR ⊥CD ,垂足为R21、在下图中平移三角形ABC ,使点A 移到点A ',点B 和点C 应移到什么位置?请在图中画出平移后图形(保留作图作迹)PDCBA·ABCA '四. 补全下列各题解题过程.(每空1分,共18分)[1] 如图,∵AB ∥EF ( 已知 )∴∠A + =1800( )∵DE ∥BC ( 已知 )∴∠DEF= ( ) ∠ADE= ( )[2] 如图,已知A B B C ⊥,BC C D ⊥,12=∠∠.试判断B E 与C F 的关系,并说明你的理由. 解:BE ∥CF.理由:∵A B B C ⊥,BC C D ⊥ (已知)∴__________ = ___________=o 90 ( ) ) ∵12=∠∠ ( )∴∠ABC -∠1=∠BCD -∠2 ,即∠EBC=∠BCF∴________∥________ ( )[3]如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D 。
14下七年级数学第一次月考试卷
七年级数学试卷 第1页,共4页 七年级数学试卷 第2页,共4页丽景学校2013—2014学年度第二学期期中考试七年级数学试卷总分120分 考试时间100分钟一、选择题(本大题10小题,每小题3分,共30分)1.如图,已知a ∥b ,∠1=50°,则∠2的大小是( ) A .40° B .50° C .120° D .130°2.在平面直角坐标系中,点M (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.4的平方根是( )A .2B .16C .2±D .16± 4.点P(a -2,a 24+)在x 轴上,则实数a 的值是( ) A .2 B .2- C .0 D .无法确定5.如图,直线DE 经过点A ,DE ∥BC ,∠B=60°,则下列结论成立的是( ) A .∠C=60° B .∠DAB=60° C .∠EAC=60° D .∠BAC=60°6.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO=30°, 则∠DOT=( )A .30°B .45°C .60°D .120°7.估计110+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间8.在平面直角坐标系中,将点)3,2(-P 沿x 轴方向向右平移3个单位长度得到点Q ,则点Q 的坐标是( )A .)6,2(-B .)0,2(-C .)3,5(-D .)3,1(9.实数2-,3.0,71,2,π-中,无理数的个数是( )A .2B .3C .4D .510.如图,已知AB ∥CD ,∠1=40°,∠2=60°,则∠3等于( ) A .120° B .100° C .80° D .60°二、填空题(本大题6小题,每小题4分,共24分)11.化简:=2)4(______ ____. 12.27的立方根是___ ____.13.如图,a ∥b ,直线c 与a ,b 分别相交于点A ,B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2=_____ __.14.若点P 在第三象限且到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标是 .15.实数x ,y 满足0)1(2=+-y x ,则点),(y x P 的位置在 轴上.16.已知三条不同的直线c b a ,,在同一平面内,下列四个命题:○1如果a ∥b ,a ⊥c ,那么b ⊥c ;○2如果b ∥a ,c ∥a ,那么c ∥b ;○3如果a ⊥b ,a ⊥c ,那么b ⊥c ;○4如果a ⊥b ,a ⊥c ,那么b ∥c 。
七年级数学下册第一次月考试题及答案
七年级下学期月考数 学 试 题考试时间:120分钟 试卷满分:150分 编辑人:丁济亮第Ⅰ卷(本卷满分100分)一、选择题:(共10小题,每小题3分,共30分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1.在同一平面内,两条直线的位置关系是A .平行.B .相交.C .平行或相交.D .平行、相交或垂直2.点P (-1,3)在A .第一象限.B .第二象限.C .第三象限.D .第四象限.3.下列各图中,∠1与∠2是对顶角的是4.如图,将左图中的福娃“欢欢”通过平移可得到图为A .B .C .D .5.下列方程是二元一次方程的是A .2xy =.B .6x y z ++=.C .235y x+=. D .230x y -=. 6.若0xy =,则点P (x ,y )一定在A .x 轴上.B .y 轴上.C .坐标轴上.D .原点.7.二元一次方程21-=x y 有无数多组解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩. B .11x y =-⎧⎨=-⎩. C .10x y =⎧⎨=⎩. D .11x y =⎧⎨=⎩. 8.甲原有x 元钱,乙原有y 元钱,若乙给甲10元,则甲所有的钱为乙的3倍;若甲给乙10元,则甲所有的钱为乙的2倍多10元.依题意可得1 2 B . 1 2 A . 1 2 C . 1 2 D .A .103(10)102(10+10x y x y +=-⎧⎨-=+⎩). B .10310210x y x y +=⎧⎨-=+⎩. C .3(10)2(10)x y x y =-⎧⎨=+⎩. D .103(10)102(10)10x y x y -=+⎧⎨+=-+⎩.9.如图,点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是A .∠3=∠4.B .∠B =∠DCE .C .∠1=∠2.D .∠D+∠DAB =180°.10.下列命题中,是真命题的是A .同位角相等.B .邻补角一定互补.C .相等的角是对顶角.D .有且只有一条直线与已知直线垂直. 二、填空题(共10小题,每小题3分,共30分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.11.剧院里5排2号可以用(5,2)表示,则7排4号用 表示.12.如图,已知两直线相交,∠1=30°,则∠2=__ _. 13.如果⎩⎨⎧-==13y x ,是方程38x ay -=的一个解,那么a =_______.14.把方程3x +y –1=0改写成含x 的式子表示y 的形式得 . 15.一个长方形的三个顶点坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标是____________.16.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是 ,结论是 .17.如图,AB CD ∥,BC DE ∥,则∠B 与∠D 的关系是_____________.18.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于 .19.如图,EG ∥BC ,CD 交EG 于点F ,那么图中与∠1相等的角共有______个.第19题图1FAB CDE G 第18题图 马将车B C E2413D B C 第9题图4321第12题图20.已知x 、y 满足方程组21232x y x y +=⎧⎨-=⎩,则3x +6y +12 +4x -6y +23 的值为 .三、解答题(共40分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.21.(每小题4分,共8分)解方程组:(1)⎩⎨⎧y =2x -3,3x +2y =8; (2)743211432x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 22.(本题满分8分)如图,∠AOB 内一点P :(1)过点P 画PC ∥OB 交OA 于点C ,画PD ∥OA 交OB 于点D ;(2)写出两个图中与∠O 互补的角;(3)写出两个图中与∠O 相等的角.23.(本题8分)完成下面推理过程:如图,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1 =∠2(已知),且∠1 =∠CGD (______________ _________),∴∠2 =∠CGD (等量代换).∴CE ∥BF (___________________ ________).∴∠ =∠C (__________________________).又∵∠B =∠C (已知),∴∠ =∠B (等量代换).∴AB ∥CD (________________________________).24.(本题8分)如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.(本题8分)列方程(组)解应用题:一种口服液有大、小盒两种包装,3大盒、4小盒共装108瓶,2大盒、3小盒共装76瓶.大盒与小盒每盒各装多少瓶?第Ⅱ卷(本卷满分50分)四、解答题(共5题,共50分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.26.(每小题5分,共10分)解方程组:(1)33(1)022(3)2(1)10x y x y -⎧--=⎪⎨⎪---=⎩ (2)04239328a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩27.(本题8分)如图,在三角形ABC 中,点D 、F 在边BC 上,点E 在边AB 上,点G 在边AC 上,AD ∥EF ,∠1+∠FEA =180°.求证:∠CDG =∠B .28.(本题10分) 如图,在平面直角坐标系中有三个点A (-3,2)、B (﹣5,1)、C (-2,0),P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b +2).(1)画出平移后的△A 1B 1C 1,写出点A 1、C 1的坐标;(2)若以A 、B 、C 、D 为顶点的四边形为平行四边形,直接写出D 点的坐标;(3)求四边形ACC 1A 1的面积.29.(本题10分)江汉区某中学组织七年级同学参加校外活动,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车,则多出一辆,且其余客车刚好坐满.已知45座和60座客车的租金分别为220元/辆和300元/辆.第28题E 第27题图2图1(1)设原计划租45座客车x 辆,七年级共有学生y 人,则y = (用含x 的式子表示);若租用60座客车,则y = (用含x 的式子表示);(2)七年级共有学生多少人?(3)若同时租用两种型号的客车或只租一种型号的客车,每辆客车恰好坐满并且每个同学都有座位,共有哪几种租车方案?哪种方案更省钱?30.(本题12分)如图1,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且221(24)0a b a b ++++-=.(1)求a ,b 的值;(2)①在x 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M ,使△COM 的面积=12△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上一动点,连接OP ,OE 平分∠AOP ,OF ⊥OE .当点P 运动时,OPDDOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.七年级数学试卷参考答案第Ⅰ卷(本卷满分100分)一、1. C2. B3. B4.C5. D6. C7. D8.A9. A10. B二、11. (7,4) 12. 30°13. -1 14.y=1-3x15.(3,2)16.两直线都平行于第三条直线,这两直线互相平行17.互补18.(3,3)19.2 20.4三、21.(1)21xy=⎧⎨=⎩(2)1212xy=⎧⎨=⎩(每小题过程2分,结果2分)22.(1)如图…………………………………………2分(2)∠PDO,∠PCO等,正确即可;……………………………5分(3)∠PDB,∠PCA等,正确即可.……………………………8分23.对顶角相等……………………………2分同位角相等,两直线平行……………………………4分BFD两直线平行,同位角相等……………………………6分BFD内错角相等,两直线平行……………………………8分24.∵EF∥AD,(已知)∴∠ACB+∠DAC=180°.(两直线平行,同旁内角互补) …………2分∵∠DAC=120°,(已知)∴∠ACB=60°.……………………………3分又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=40°.……………………………4分∵CE平分∠BCF,∴∠BCE=20°.(角的平分线定义)……5分∵EF∥AD,AD∥BC(已知),∴EF ∥BC .(平行于同一条直线的两条直线互相平行)………………6分∴∠FEC =∠ECB .(两直线平行,同旁内角互补)∴∠FEC=20°. ……………………………8分25.解:设大盒和小盒每盒分别装x 瓶和y 瓶,依题意得……………1分341082376x y x y +=⎧⎨+=⎩ ……………………………4分解之,得2012x y =⎧⎨=⎩ ……………………………7分 答:大盒和小盒每盒分别装20瓶和16瓶.……………………8分第Ⅱ卷(本卷满分50分)26.(1)92x y =⎧⎨=⎩ ; (2)325a b c =⎧⎪=-⎨⎪=-⎩(过程3分,结果2分)27.证明:∵AD ∥EF ,(已知)∴∠2=∠3.(两直线平行,同位角相等)……………………………2分∵∠1+∠FEA=180°,∠2+∠FEA=180°,……………………………3分∴∠1=∠2.(同角的补角相等)……………………………4分∴∠1=∠3.(等量代换)∴DG ∥AB .(内错角相等,两直线平行)……6分∴∠CDG=∠B .(两直线平行,同位角相等)……………………………8分28.解:(1)画图略, ……………………………2分A 1(3,4)、C 1(4,2).……………………………4分(2)(0,1)或(―6,3)或(―4,―1).……………………………7分(3)连接AA 1、CC 1;∵1117272AC A S ∆=⨯⨯= 117272AC C S ∆=⨯⨯= ∴四边形ACC 1 A 1的面积为:7+7=14.也可用长方形的面积减去4个直角三角形的面积:11472622121422⨯-⨯⨯⨯-⨯⨯⨯=. 答:四边形ACC 1 A 1的面积为14.……………………………10分29.(1)4515x +; 60(1)x -; ……………………………2分解:(2)由方程组451560(1)y x y x =+⎧⎨=-⎩ ……………………………4分解得5240x y =⎧⎨=⎩ ……………………………5分答:七年级共有学生240人.……………………………6分(3)设租用45座客车m 辆,60座客车n 辆,依题意得4560240m n += 即3416m n +=其非负整数解有两组为:04m n =⎧⎨=⎩和41m n =⎧⎨=⎩故有两种租车方案:只租用60座客车4辆或同时租用45座客车4辆和60座客车1辆. ……………………………8分当0,4m n ==时,租车费用为:30041200⨯=(元);当4,1m n ==时,租车费用为:220430011180⨯+⨯=(元);∵11801200<,∴同时租用45座客车4辆和60座客车1辆更省钱.………………10分30.解:(1)∵221(24)0a b a b ++++-=,又∵2210,(24)0a b a b ++≥+-≥, ∴2210(24)0a b a b ++=+-=且 .∴ 210240a b a b ++=⎧⎨+-=⎩ ∴ 23a b =-⎧⎨=⎩即2,3a b =-=. ……………………………3分(2)①过点C 做CT ⊥x 轴,CS ⊥y 轴,垂足分别为T 、S .∵A (﹣2,0),B (3,0),∴AB =5,因为C (﹣1,2),∴CT =2,CS =1,△ABC 的面积=12 AB ·CT =5,要使△COM 的面积=12△ABC 的面积,即△COM 的面积=52 ,所以12 OM ·CS =52,∴OM =5.所以M 的坐标为(0,5).……………6分 ②存在.点M 的坐标为5(,0)2-或5(,0)2或(0,5)-.………………9分 (3)OPD DOE∠∠的值不变,理由如下: ∵CD ⊥y 轴,AB ⊥y 轴 ∴∠CDO=∠DOB=90°∴AB ∥AD ∴∠OPD=∠POB∵OF ⊥OE ∴∠POF+∠POE=90°,∠BOF+∠AOE=90°∵OE 平分∠AOP ∴∠POE=∠AOE ∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF ∴∠OPD =2∠BOF=2∠DOE ∴2OPD DOE ∠=∠.……………………………12分。
2014人教版七年级下册数学第一次月考试卷
镇前中学2013-2014七年级下期第一次月考试卷班级 座号 姓名(时间120分钟,总分150分)一、 选择题(每题4分,共40分)1、下面四个图形中,∠1与∠2是对顶角的图形的个数是( ) A .0 B .1 C .2 D .3121212122、下面五幅图案中,(2)、(3)、(4)、(5)中哪一幅图案可以通过平移图案(1)得到.( )A. (2)B.(3)C.(4)D.(5) 3、()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.49 4、 有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
A .1 B .2 C .3 D .4 5、下列各数中无理数有( ).3.141,227-,π,0,4.217,0.1010010001 . A .2个 B .3 个 C . 4个 D .5个 6.25的算术平方根是( ).A B .5 C .-5 D .±57、如图,点E 在AD 的延长线上,下列条件中不能判断AB ∥CD 的是 ( )A 、∠1=∠2B 、∠A=∠5C 、∠3=∠4D 、∠A+∠ADC=180o8、如图,下列说法错误的是( )A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角9、若=a 的值是( ) A .78 B .78- C .78± D .343512- 10.若225a =,3b =,则a b +=( )A .-8B .±8C .±2D .±8或±2二、填空题11.若13是m 的一个平方根,则m 的另一个平方根为 . 12.在下列说法中①0.09是0.81的平方根;②-9的平方根是±3;③2(5)-的算术平方根是-5;⑤0的相反数和倒数都是0;2=±;⑦已知a 是实数,||a =;⑧全体实数和数轴上的点一一对应.正确的个数是 .13.若a 、b 都是无理数,且2a b +=,则a 、b 的值可以是 (一组满足条件的值) 14、如图,直线,AB CD 相交于点,O OE 平分AOC ∠,若∠AOE=25度,•则∠BOD=______度15、把命题“对顶角相等”写成“如果……那么……”的形式为 ______________________________________________ 16、如图,把一张长方形纸条按图折叠后,若得到'70AOB ∠=︒,则'B OG ∠= 。
七年级数学下册第一次月考试卷(附答案)
七年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第五章《相交线与平行线》~第六章《实数》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A. 65°B. 60°C. 55°D. 75°2.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°3.下列语句正确的是()A. 4是16的算术平方根,即±√16=4B. −3是27的立方根C. √64的立方根是2D. 1的立方根是−14.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. −a>b5.如图,在下列给出的条件中,不能判定AB//DF的是()A. ∠A=∠3B. ∠A+∠2=180°C. ∠1=∠4D. ∠1=∠A6. 如图摆放的一副学生用直角三角板,∠F =30°,∠C =45°,AB 与DE 相交于点G ,当EF//BC 时,∠EGB 的度数是( )A. 135°B. 120°C. 115°D. 105°7. 若a 2=4,b 2=9,且ab <0,则a −b 的值为( )A. −2B. ±5C. 5D. 58. 下列结论正确的是( )A. 数轴上任意一点都表示唯一的有理数B. 数轴上任意一点都表示唯一的无理数C. 两个无理数之和一定是无理数D. 数轴上任意两点之间还有无数个点9. 下列说法中,不正确的有( )①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π−4)2的算术平方根是π−4;⑤算术平方根不可能是负数,A. 2个B. 3个C. 4个D. 5个10. 如图,AF//CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC//BE ;③∠CBE +∠D =90°;④∠DEB =2∠ABC ,其中结论正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)11. 若√3a −23与√2−b 3为相反数,且b ≠0,则ab 的值为________. 12. 已知y =√x −3+√3−x +1,则x +y 的算术平方根是________. 13. 如图,有下列3个结论:①能与∠DEF 构成内错角的角的个数是2;②能与∠EFB 构成同位角的角的个数是1;③能与∠C构成同旁内角的角的个数是4,以上结论正确的是______.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.15.若√2a−2与|b+2|互为相反数,则(a−b)2的平方根=______.16.一个正数x的两个不同的平方根是2a−3和5−a,则x的值是________.17.如图所示,AB//CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为______.18.已知直线a//b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是______.19.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动(旋转角不超过180度),使两块三角尺至少有一组边互相平行.如图2:当∠BAD=15°时,BC//DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为_____.20.已知一个数的平方根是3a+1和a+11,求这个数的立方根是______.三、解答题(本大题共6小题,共80.0分)21.(12分)计算:3;(1)(−1)3+|1−√2|+√8(2)(−3)2+2×(√2−1)−|−2√2|.22.(12分)阅读下列材料∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).规定实数m的整数部分记为[m],小数部分记为{m).如:[√7]=2,{7}=√7−2.解答以下问题:(1)[√10]=________,{√5}=________;(2)求{√5}+{5−√5}的值.23.(12分)工人师傅准备从一块面积为16平方分米的正方形工料上裁剪出一块面积为12平方分米的长方形的工件。
2014年秋第一次月考七年级数学试卷
洪祥中学2014秋学期第一次阶段性质量检测七年级数学试题一.选择题(每小题3分,共30分) 1.-2的相反数是( ) A .2 B .-2 C .21 D . 21- 2.│3.14- π|的值是( ).A .0B .3.14- πC .π-3.14D .3.14+π 3.一个数和它的倒数相等,则这个数是( ) A .1 B .1- C .±1 D .±1和04、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 55.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.05(精确到百分位)C .0.05(保留两个有效数字)D .0.0502(精确到0.0001)6、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A 0B -1C 1D 0或17.有理数a 、b 在数轴上的对应的位置如图所示: 则( )0-11abA .a + b <0B .a + b >0C .a -b = 0D .a -b >08、我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A 63×102千米B 6.3×102千米C 6.3×104千米D 6.3×103千米 9、下列各对数中,数值相等的是( )A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)3 10、在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( )A -12B -101C -0.01D -5二.填空(每题3分,共30分)9.在数+8.3、 -4、-0.8、 51-、 0、 90、 334-、|24|--中,________是正数,_________不是整数。
10. +2与-2是一对相反数,请赋予它实际的意义:_________. 11.35-的倒数的绝对值是___________.12.某数的绝对值是5,那么这个数是 。
人教版七年级下册数学第一次月考试题附答案
人教版七年级下册数学第一次月考试卷一、单选题1.如图所示,∠1和∠2是对顶角的是( )A .B .C .D . 2.将如图所示的图案通过平移后可以得到的图案是( )A .B .C .D . 3.9的算术平方根是( )A .±3B .3C .-3D .64.下列等式正确的是( )A 2=-B 13=±C 2=-D .4=-5.在实数10.210.7010728π,,,中,其中无理数的个数为( ) A .1 B .2 C .3 D .46.下列结论正确的是( )A .2764 的立方根是34± B .1125-没有立方根 C .有理数一定有立方根 D .6(1)- 的立方根是-17.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB =CD ;④如果a>b ,b>c ,那么a>c ;⑤直角都相等.A .①④⑤B .①②④C .①②⑤D .②③④⑤ 8.下列图形中,由AB ∥CD ,能得到∠1=∠2的是A .B .C .D .9.如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=55°,则∠B的度数是()A.65°B.45°C.55°D.35°10.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a∥b,a∥c,那么b∥c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个二、填空题11____.12.如图4,已知AB∥CD,∠B=30°,∠D=40°,则∠E=______度.13.如图,AC⊥BC,垂足为C,且BC=5,AC=12,AB=13,则点A到BC的距离是________,点B到点A的距离是________.14.如图,现有一条高压线路沿公路l旁边建立,某村庄A需进行农网改造,必须要从这条高压线上架接一条线路去村庄A,为了节省费用,请你帮他们规划一下,并说明理由.理由是_________________15.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.16.用“※”定义新运算:对于任意实数a ,b ,都有2 1.a b b =+※例如,2744117=+=※,那么53=※ ______ .17.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.三、解答题18.解方程:25x 2﹣36=0.19.已知某正数的两个平方根为3a +和215a -,求这个数是多少?20.已知:如图,直线AB 与CD 被EF 所截,∠1=∠2,求证:AB ∥CD .21.完成下面推理过程:如图,已知12,B C ∠=∠∠=∠,可推得//.AB CD理由如下:12∠=∠ (已知),且 1CCD ∠=∠( ),2CGD∴∠=∠(等量代换).∴( ).//CE BF=∠∴∠C∠=∠(已知),又B C∴∠______ B=∠(等量代换).∴( ).//AB CD22.如图,直线CD与直线AB相交于C,根据下列语句画图、解答.(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由23.如图,一块边长为8米的正方形土地,上面修了横竖各有两条道路,宽都是2米,空白的部分种上各种花草,请利用平移的知识求出种花草的面积?24.如图,已知AD⊥BC,EF⊥BC于F,∠E=∠1,问AD平分∠BAC吗?请说明理由.25==(11= ;(2)利用上面的解法,198++参考答案1.D【分析】根据对顶角的意义结合具体图形进行判断即可.有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.【详解】解:根据两条直线相交,才能构成对顶角进行判断,B、C都不是由两条直线相交构成的图形,错误;又根据对顶角相等,排除A,只有D符合对顶角的定义.故选:D.【点睛】本题考查对顶角,理解对顶角的意义是正确判断的前提.2.C【解析】【分析】平移就是将某个图形沿某个方向移动一定的距离,据此判断即可.【详解】解:A是通过轴对称得到的;B须逆时针旋转90度才能得到;C是通过平移得到的;D须顺时针旋转90度才能得到.故选:C【点睛】本题考查了图形的平移,注意区分轴对称、平移和旋转,熟练掌握平移的特性是解题的关键. 3.B【分析】根据算术平方根的定义解答;【详解】∵32=9,∴9的算术平方根是3故选B【点睛】本题考查的是算术平方根,理解并掌握算术平方根的定义是关键.4.D【分析】由二次根式的性质、算术平方根的意义,分别进行判断,即可得到答案.【详解】解:A2=,故A错误;B13=,故B错误;C C错误;D、4=-,故D正确;故选:D.【点睛】本题考查了二次根式的性质、算术平方根,解题的关键是熟练掌握运算法则进行解题.5.B【解析】【分析】根据无理数的定义进行分析解答即可.【详解】在实数10.210.7010728π,,,中,属于无理数的有:?2π,,共2个.故选B.【点睛】熟悉“无理数的定义:无限不循环小数叫做无理数和无理数的常见表现形式”是解答本题的关键.6.C【分析】根据立方根的定义逐一进行分析判断即可得答案.【详解】A. 2764的立方根是34,故A选项错误;B.1125-的立方根是15-,故B选项错误;C. 有理数一定有立方根,正确;D. ()61-的立方根是1,故D选项错误,故选C.【点睛】本题考查了立方根,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.7.A【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,故①正确;②对顶角相等吗?不是命题,故②错误;③画线段AB=CD,不是命题,故③错误;④如果a>b,b>c,那么a>c,是命题,故④正确;⑤直角都相等,是命题,故⑤正确.故选A.8.B【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.9.D【详解】试题分析:根据“∠ACB=90°和∠ACD=55°”先求出∠BCE的度数,再根据两直线平行,内错角相等即可求出∠B.解:∵∠ACB=90°,∠ACD=55°,∴∠BCE=180°﹣90°﹣55°=35°,∵DE∥AB,∴∠B=∠BCE=35°.故选D.考点:平行线的性质;余角和补角.10.A【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1)过直线外一点有且只有一条直线与已知直线平行,故错误;(2)根据平行公理的推论,正确;(3)线段的长度是有限的,不相交也不一定平行,故错误;(4)应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.11.±3【详解】,±.∴9的平方根是3故答案为±3.12.70【分析】首先过点E作EF∥AB,由AB∥CD,即可证得AB∥EF∥CD,然后根据两直线平行,内错角相等,即可求得∠1与∠2的度数,又由∠BED=∠1+∠2,即可求得答案.【详解】过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∵∠B=30°,∠D=40°,∴∠1=∠B=30°,∠2=∠D=40°,∴∠BED=∠1+∠2=30°+40°=70°.故答案为:70.【点睛】此题考查了平行线的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等定理的应用与辅助线的作法.13.12 13【分析】点到直线的距离是指垂线段的长度,两点间的距离是连接两点的线段的长度.【详解】点A到直线BC的垂线段是AC,所以线段AC的长是点A到直线BC的距离,即点A到BC 的距离是12;点B到点A的距离是线段AB的长,即点B到点A的距离是13.故答案为12,13.【点睛】本题考查的知识点是点到直线的距离,两点间的距离,解题的关键是熟练的掌握点到直线的距离,两点间的距离.14.从直线外一点到这条直线上各点所连的线段中,垂线段最短【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短进行解答.【详解】要节省费用,即架接的线路要最短,所以如图过点A作l的垂线段AB,根据垂线段最短即可.故填:从直线外一点到这条直线上各点所连的线段中,垂线段最短.【点睛】本题考查了垂线段最短这一性质的运用,解题的关键是熟知垂线段的性质.15.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.16.10【分析】熟悉新运算的计算规则,运用新规则计算.【详解】解:依规则可知:5※3=32+1=10;故答案为:10.【点睛】此题考查了定义新运算,关键是掌握新运算规则,然后再运用.17.18;4n+2【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n 个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.18.x =±65. 【解析】【分析】先求出x 2,再根据平方根的定义进行解答.【详解】整理得,x 2=3625, ∴x =±65. 故答案为x =±65. 【点睛】本题考查了利用平方根的定义求未知数的值,熟记正数的平方根有两个,互为相反数,负数没有平方根,0的平方根是0是解题的关键.19.49【分析】根据一个正数有两个平方根,这两个平方根互为相反数,可得a +3和2a−15互为相反数,列出式子求出a 的值,继而可求得这个数.【详解】由题意得,a +3+2a−15=0,解得:a =4,则a +3=7,这个数为:72=49.【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.见详解【分析】根据对顶角相等得:∠2=∠3,从而得∠1=∠3,根据平行线的判定定理,即可得到结论.【详解】∵∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴AB∥CD.【点睛】本题主要考查平行线的判定定理,掌握同位角相等,两直线平行,是解题的关键.21.对顶角相等,同位角相等,两直线平行,BFD,内错角相等,两直线平行.【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【详解】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠BFD =∠C(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等,同位角相等,两直线平行,BFD,内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.22.(1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析【详解】解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60°23.见解析【分析】根据平移的知识,把横竖各两条道路平移到正方形的边上,求剩余空白部分的面积即可.【详解】由平移,可把种花草的面积看成是如图边长为4米的正方形的面积.∴种花草的面积为:4×4=16(米2).【点睛】利用平移的知识,把图形变换位置,可以简化计算,在实际生活中,应用很广.24.AD平分∠BAC.理由见解析【分析】由AD⊥BC,EF⊥BC于F可得AD∥EF,由此可得∠1=∠BAD,∠E=∠CAD,结合∠E=∠1,即可得到∠BAD=∠CAD,从而可得AD平分∠BAC.【详解】解:AD 平分∠BAC .理由如下:∵AD ⊥BC ,EF ⊥BC ,∴∠AD=∠EFC=90°,∴AD ∥EF ,∴∠CAD=∠E ,∠BDA=∠1.∵∠E=∠1,∴∠CAD=∠BAD ,∴AD 平分∠BAC .【点睛】本题考查平行线的性质和判定,熟悉“平行线的判断方法和性质”是正确解答本题的关键.25.(12)9【分析】(1)观察上面解题过程,归纳总结得到一般性规律,写出即可;(2)原式利用各种分母有理化,计算即可得到结果.【详解】(1)===1=-n ≥1)(2198++199+-=1-=-1+10=9.【点睛】此题考查了分母有理化,弄清题中分母有理化法则是解本题的关键.。
七年级数学下册第一次月考试题
谯城中学2014----2015学年度第二学期第一次月考七年级数学试题一、选择题(每小题4分,共40分)1、下列实数2π,722,0.1414,39, 3.141592 ,2中,无理数的个数是( )A 、2个B 、3个C 、4个D 、5个2、若m =4,则估计m 的值所在的范围是 ( )A 、1<m <2B 、2<m <3C 、3<m <4D 、4<m <5 3、下列各组数中互为相反数的是( )A 、-2与、-2与 C 、-2 与12- D 、2与2-4、-27的立方根与4的平方根的和是( )A 、-1B 、-5C 、-1或-5D 、±5或±1 5、设x ,y 为实数,且554-+-+=x x y ,则y x -的平方根是( )A 、1B 、±1C 、3D 、±3 6、不等式组240,10x x -<⎧⎨+≥的解集在数轴上表示正确的是( )A B C D 7、不等式732122x x --+<的负整数解有:( ) A 、1 个 B 、 2个 C、3个 D 、4个8、如果一元一次不等式组3x x a >⎧⎨≥⎩的解集为3x >,则a 的取值范围是( )A 、3a >B 、a ≥3C 、3a <D 、a ≤3 9、计算423(3)a b -的结果是( )A 、1269a b -B 、7527a b -C 、1269a bD 、12627a b -10、下列计算正确的是( )A 、(ab 2)2=ab 4B 、(3xy)3=9x 3y 3C 、(-2a 2)2=-4a 4D 、(-3a 2bc 2)2=9a 4b 2c 42-1 2 2-1二、填空题(每小题5分,共40分) 11、若264x =,则x 的立方根为 。
12、比较大小:2。
13、已知一个正数的两个平方根是分别为32x -和6+x ,则这个数是 。
14、若代数式5y -4的值不大于y+2,那么y 的最大整数解为 。
七年级数学下册第一次月考试卷(含答案解析)
七年级数学下册第一次月考试卷(含答案解析)班级:________ 姓名:________ 成绩:________一.单选题(共10小题,共30分)1. 在下面各数中,−√5,-3π,12,3.1415,√643,0.1616616661…,√9,√8无理数个数为( ) A.4个 B.3个 C.2个D.1个2. 如图,将三角板的直角顶点放在直尺的一边上.若∠1=65∘,则∠2的度数为( )A.15∘B.35∘C.25∘D.40∘3.下列各式中正确的是( ) A.√36=±6B.√(−3)2=−3C.√8=4D.(√−83)3=−84. 如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A.∠A+∠2=180∘B.∠A=∠3C.∠1=∠4D.∠1=∠A5.下列语句中,真命题有( )①经过直线外一点,有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线平行;③有理数与数轴上的点是一一对应的;④对顶角相等;⑤平方根等于它本身的数是0,1A.2个B.3个C.4个D.5个6.如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知∠EFG=58∘,则∠BEG等于( )A.58∘B.116∘C.64∘D.74∘7.直线a上有一点A,直线b上有一点B,且a∥b.点P在直线a,b之间,若PA=3,PB=4,则直线a、b之间的距离()A.等于7B.小于7C.不小于7D.不大于78.如图,两个完全一样的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24B.40C.42D.489.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.√a2+1B.√a+1C.a+1D.√a+110.如图,AB∥CD,∠BED=130∘,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.135∘B.120∘C.115∘D.110∘二.填空题(共5小题,共15分)11.比较大小:√7+1_______3(填“>”、“<”或“=”).12.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72∘,则∠2=_______度.13. 珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120∘,∠BCD=80∘,则∠CDE =_______度.14. ∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60∘,则∠2= _______ . 15. 如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为______.三.解答题(共8小题,共55分)16. (1)计算:√9−√1253+|1−√5|+√214 (5分)(2)解方程:(2x-1)2=25 (5分)17. 如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于O ,且∠DOF=75∘,求∠BOD 的度数.(6分)18.已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求3a-4b的平方根.(7分)19.如图,已知AB∥CD,∠A=∠D,求证:∠CGE=∠BHF.(7分)20.已知实数a、b、c在数轴上的位置如下,化简|a|+|b|+|a+b|−√(c−a)2−2√c2(7分)21.根据下表回答问题:(8分)(1) 272.25的平方根是________ (2分)(2) √259.21=_______,√27889=_______,√2.6244=_______ (3分)(3) 设√270的整数部分为a,求﹣4a的立方根.(3分)22.直线AB∥CD,点P在两平行线之间,点E、F分别在AB、CD上,连接PE,PF.尝试探究并解答:(10分)(1) 若图1中∠1=36∘,∠2=63∘,则∠3=_________;(2分)(2) 探究图1中∠1,∠2与∠3之间的数量关系,并说明理由;(3分)(3) ①如图2所示,∠1与∠3的平分线交于点P1,若∠2=α,试求∠EP1F的度数(用含α的代数式表示);(3分)②如图3所示,在图2的基础上,若∠BEP1与∠DFP1的平分线交于点P2,∠BEP2与∠DFP2的平分线交于点P3…∠BEPn-1与∠DFPn-1的平分线交于点Pn,且∠2=α,直接写出∠EPnF的度数(用含α的代数式表示).(3分)参考答案与解析一.单选题(共10小题)第1题:【正确答案】 A【答案解析】是无理数,-3π是无理数,是分数,是有理数,3.1415是有理数,=4是有理数,0.1616616661…是无理数,是有理数,是无理数.故选:A.第2题:【正确答案】 C【答案解析】∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°-65°=25°.故选:C.第3题:【正确答案】 D【答案解析】A、,故原题计算错误;B、,故原题计算错误;C、,故原题计算错误;D、,故原题计算正确;故选:D.第4题:【正确答案】 D【答案解析】解:A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.第5题:【正确答案】 A【答案解析】①经过直线外一点,有且只有一条直线与已知直线平行是真命题;②垂直于同一条直线的两条直线平行是假命题;③有理数与数轴上的点是一一对应的是假命题;④对顶角相等是真命题;⑤平方根等于它本身的数是0,1是假命题,故选:A.第6题:【正确答案】 C【答案解析】∵AD∥BC,∴∠AFE=∠FEC=58°.而EF是折痕,∴∠FEG=∠FEC.∴∠BEG=180°-2∠FEC=180°-2×58°=64°.故选:C.第7题:【正确答案】 D【答案解析】如图,当点A、B、P共线,且AB⊥a时,直线a、b之间的最短,所以直线a、b 之间的距离≤PA+PB=3+4=7.即直线a、b之间的距离不大于7.故选:D.第8题:【正确答案】 D【答案解析】∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC=S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,=S梯形ABEO=×(6+10)×6=48.∴S阴影部分故选:D.第9题:【正确答案】 A【答案解析】∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故选:A.第10题:【正确答案】 C【答案解析】如图,过点E作EM∥AB,过点F作FN∥AB,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM =180°,∠CDE+∠DEM =180°, ∴∠ABE+∠BED+∠CDE =360°,∵∠BED =130°,∴∠ABE+∠CDE =230°, ∵BF 平分∠ABE ,DF 平分∠CDE , ∴∠ABF =∠ABE ,∠CDF =∠CDE ,∴∠ABF+∠CDF = (∠ABE+∠CDE)=115°,∵∠DFN =∠CDF ,∠BFN =∠ABF ,∴∠BFD =∠BFN+∠DFN =∠ABF+∠CDF =115°. 故选:C .二.填空题(共5小题) 第11题:【正确答案】 > 无 【答案解析】∵2<<3,∴3<+1<4, 即+1>3,故答案为:>. 第12题:【正确答案】 54 无【答案解析】∵AB ∥CD ,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG , 又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=12×108°=54°, 故∠2=∠BEG=54°. 故答案为:54.第13题:【正确答案】 20 无【答案解析】过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.第14题:【正确答案】 60°或120°无【答案解析】如图:当α=∠2时,∠2=∠1=60°,当β=∠2时,∠β=180°-60°=120°,故答案为:60°或120°.第15题:【正确答案】1−√3无【答案解析】∵正方形的面积为3,∴圆的半径为,∴点A表示的数为.故答案为:.三.解答题(共8小题)第16题:【正确答案】解:原式=3﹣5+﹣1+.【答案解析】见答案。
2013-2014年七年级下第一次月考数学试卷及答案
2013-2014第二学期七年级数学第一次月考试卷一、选择题(每小题3分,共30分).(﹣6x)•(3x)=﹣18x3.(3分)(2012•云南)若,,则a+b的值为()B4.(3分)计算:=()BD.以上都不对9.(3分)已知,则下列等式成立的有()①;②;③;④.10.(3分)(2009•广东一模)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a >b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()二、填空题(每小题3分,共24分)11.有一道计算题:(﹣a4)2,李老师发现全班有以下四种解法,①(﹣a4)2=(﹣a4)(﹣a4)=a4•a4=a8;②(﹣a4)2=﹣a4×2=﹣a8;③(﹣a4)2=(﹣a)4×2=(﹣a)8=a8;④(﹣a4)2=(﹣1×a4)2=(﹣1)2•(a4)2=a8;你认为其中完全正确的是(填序号)_________.12.若(a m+1b n+2)•(a2n﹣1b2m)=a3b5,则m+n的值是_________.13.如果单项式﹣4x2a y2与是同类项,则这两个单项式的积为_________.14.已知长方体长为4×102毫米,宽为3×102毫米,高为2×102毫米,这个长方体的体积是_________立方毫米.15.(2010•贺州)已知10m=2,10n=3,则103m+2n=_________.16.若m+4n﹣2=0,则3m•81n=_________.17.已知2x+y=1,代数式(y+1)2﹣(y2﹣4x)的值为_________.18.如图所示,正方形ABCD和正方形CEFG的边长分别为a、b,如果a+b=17,ab=60,那么阴影部分的面积是_________.三、解答题(共66分)19.(12分)计算.(1)(a﹣2)2+4(a﹣1)(2)(a+2)(a+2)﹣a(a+1)(3)(a﹣b﹣1)(a+b﹣1)(4)(x+2y)2(x﹣2y)20.(6分)解下列方程(组).(x+3)2﹣2(x﹣3)(x+2)+(x﹣2)2=521.(15分)化简,求值.(1)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4;(2)已知210=a2=4b,化简,并求值.22.(5分)已知x 3m=4,y 3n=5,求:(x 2m)3+(y n)3﹣x 2m y n•x 4m•y 2n的值.24.(8分)(1),多项式a 2+b 2﹣4a+6b+13=0求a+b 值.(2)已知(x+y )2=25,(x ﹣y )2=9,求xy 与x 2+y 2的值.25.(6分)观察下列等式:32﹣12=8=8×1;52﹣32=16=8×2;72﹣52=24=8×3;92﹣72=32=8×4…这些等式反映了正整数的某种规律.(1)设n 为正整数,试用含m 的式子,表示你发现的规律; (2)验证你发现规律的正确性,并用文字归纳出这个规律.26.1.(8分)小明将一个底为正方形,高为m 的无盖盒子展开,如图①所示,测得其边长为n ,(1)请你计算无盖纸盒的表面展开图的面积S 1(即图中阴影部分的面积). (2)将阴影部分拼成一个长方形如图②所示,这个长方形的长和宽分别是多少?面积S 2是多少?(3)比较(1)、(2)的结果,你得出什么结论?2.(2007成都)下列运算正确的是( ) A .321x x -=B .22122xx --=-C .236()a a a -=·D .236()a a -=-3.(2007南昌)下列各式中,与2(1)a -相等的是( )A .21a -B .221a a -+C .221a a -- D .21a +4.(2008襄樊)下列运算正确的是( )A .x 3·x 4=x 12B .(-6x 6)÷(-2x 2)=3x 3C .2a-3a=-aD .(x-2)2=x 2-4 5.(2008湖州)计算(-x )2·x 3所得的结果是( )A .x 5B .-x 5C .x 6D .-x 6 6.(2008南京)计算(ab 2)3的结果是( )A .ab 5B .ab 6C .a 2b 3D .a 3b 6 7.(2008广东)下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a 8.(2008山东临沂)下列各式计算正确的是( ) A . 53232a a a =+ B . ()()xy xy xy 332=÷ C . ()53282b b = D . 65632x x x =∙9.(2007滨州)322313()()3x y xy ⎛⎫÷=⎪⎝⎭. 10.(2007河北)若20a a +=,则2007222++a a 的值为 .11.(2007武汉)一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为___________米.13.(2008南平)先化简,再求值:()()(2)a b a b b b +-+-,其中1a =-,1b =.14.(2008乌鲁木齐)若0a >且2x a =,3y a =,则x y a -的值为( ) A .1-B .1C .23D .3215(2007云南)已知x+y = –5,xy = 6,则22x y +的值是( ) A . 1 B . 13C . 17D . 2516.(2007梅州)定义a b cdad bc =-,上述记号就叫做2阶行列式.若1111x x x x +--+6=,x = .17.(2008聊城)计算:23283(2)2a b a b----÷= .18(2008盐城)如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.ab bbaaC B A 第7题图图。
人教版七年级下册数学第一次月考试卷
A、∠2=∠3B、∠1=∠3C、∠4+∠5=180°D、∠2=∠4 5.如图AB∥CD可以得到()A、∠1=∠2B、∠2=∠3C、∠1=∠4D、∠3=∠46、直线AB、CD、EF相交于O,则∠1+∠2+∠3()。
A、90°B、120°C、180°D、140°7、在下列各式中正确的是()F ADA、2)2(-=-2 B、=3 C、16=8 D、22=28、下列哪个图形是由左图平移得到的()B D9、直线AB∥CD,∠A=23°,∠C=42°,则∠E=()A、23°B、42°C、65°D、19°10、如图所示,直线a、b被直线c所截,现给出下列四种条件:①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180°④∠3=∠8,其中能判断是a∥b的条件的序号是()A、①②B、①③C、①④D、③④二. 填空题:(每题4分,共36分)11、若a∥b,b∥c,则a c. 理由是。
12、直线AB与CD互相垂直,垂足为O,P是直线CD上一点,则P到AB的距离是。
13已知:如图,CD AB⊥于D,∠=︒130,则∠=ADE______,∠=BDE__________。
(第13题图)14、如图,直线a∥b,则∠ACB=_______15、把命题“等角的补角相等”写成“如果……那么……”的形式是:____________________________________________________ __。
16、81的平方根是__________,16的算术平方根是__________。
(第14题图)CaA50°28°bB12345678(第10题)abc(第9题图)A B C 2117、直线AB 、CD 相交于点O ,若∠AOC =100°,则∠AOD =___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 5
A B C 图6
A B C a
b
1 2
3 2014年七年级数学第一次月考试卷
(相交线与平行线)
班级 姓名 得分
一、选择题(本题有12小题,每小题3分,共36分) 1.体育课上,老师测量跳远成绩的依据是( ).
A 、平行线间的距离相等
B 、两点之间,线段最短
C 、垂线段最短
D 、两点确定一条直线
2.如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )
A .50°
B .60°
C .140°
D .160°
图1
3.如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )
A .70°
B .100°
C .110°
D .130°
4.已知:如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )
A .相等
B .互余
C .互补
D .互为对顶角 5.如图4,图中对顶角共有( )对
A 、6
B 、11
C 、12
D 、13
6. 如图5,直线AB ,CD 与EF 相交于G ,H ,下列条件:①∠1=∠2;
②∠3=∠6;③∠2=∠8;④∠5+∠8=180º,其中能判定AB ∥CD 的是( ) A 、①③ B、①②④ C、①③④ D、②③④
7.如图6,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A 是1200
,第二次拐的角∠B 是1500
第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是( ) A 、120
B 、130
C 、140
D 、1500
8.如图7所示,已知∠3=∠4,若要使∠1=∠2,则还需( )
A 、∠1=∠3 B、∠2=∠3 C、∠1=∠4 D、AB∥CD
9.如图8,如果AB ∥CD ,那么下面说法错误的是( )
A .∠3=∠7;
B .∠2=∠6
C 、∠3+∠4+∠5+∠6=1800
D 、∠4=∠8 10. 如果两条直线被第三条直线所截,那么一组内错角的平分线( ) A、互相垂直 B、互相平行 C、互相重合 D、 以上均不正确 11.下列所示的四个图形中,1∠和2∠是同位角...的是( )
A. ②③
B. ①②③
C. ①②④
D. ①④
12.下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直.其中正确的个数为( ).
A 、4
B 、3
C 、2
D 、1 二、填空题(本题有8小题,每小题3分,共24分)
13.如图9,直线a b ∥,直线c 与a b ,相交.若170∠=
,则2_____∠=
.
图9 图10 图11
14.如图10,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.
15.如图11,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______ 16.如图12,已知a b ∥,170∠=
,240∠=
,则3∠= .
C A
B
D E 图4 D
B A
C 1 图2 a b 1 2 O
A B C D E
F 2 1 O 图3 ①
2121
②
1
2
③
1
2
④
1 2 b a
c b a c
d 1 2
3
4 A B
C
D
E 图7 8
7
654321D C B A 图8 图14
图12 图13
17.如图13所示,请写出能判定CE∥AB的一个条件.
18. 如图14,一个宽度相等的纸条按如图所示方法折叠一下,则1=
∠.
19.命题“等角的余角相等”的题设是 ,结论是 .
20.图形在平移时,下列特征中不发生改变的有________(把你认为正确的序号都填上)
①图形的形状;②图形的位置;③线段的长度;
④角的大小;⑤垂直关系;⑥平行关系.
三、解答题(本大题有6小题,共60分)
21.(本小题满分12分)按要求画图:
(1)如图15所示,网格内每个小正方形的边长都为1个单位长度,试画出小船向右平移4 个单位长度,向上平移4个单位长度后的图形.
(2)如图, 平移三角形ABC,使A 点移动到A′点,画出平移后的三角形A′B′C′。
图15-2
22.(本小题满分19分,每空1分)推理填空:
(1)如图:① 若∠1=∠2,则∥()
若∠DAB+∠ABC=1800,则∥()
②当∥时,∠ C+∠ABC=1800()
当∥时,∠3=∠C()
(2)已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°。
将下列推理过程补充完整:
① 因为∠1=∠ABC(已知),
所以AD∥______()
②因为∠3=∠5(已知),
所以AB∥______,
(_______________________________)
因为∠ABC+∠BCD=180°(已知),
所以_______∥________,
(________________________________)
23.(本小题满分6分)如图,∠1=50°,∠B=50°,∠2=60°,求∠C.
24.(本小题满分6分)如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.
25.(本小题满分8分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.
26.(本小题满分9分)如图所示,一个四边形纸片ABCD,90
B D
==
∠∠,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕.
(1)试判断B E'与DC的位置关系;
(2)如果130
C=
∠,求AEB
∠的度数.
图15-1
1
D2
A
E
C
B
3
2
1
D C
B
A
A B
C
D
O
1
2
3
E
F
F
2
1
G
E
D
C
B
A。