高中数学新人教A版选修1-1活页作业附答案11函数的最大小值56

合集下载

人教A版高中数学选修1-1习题精选(含答案)

人教A版高中数学选修1-1习题精选(含答案)

习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则=________.13.过()的焦点的弦为,为坐标原点,则 =________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

高中数学(人教A版)选修1-1全册综合测试题(含详解)

高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。

高中数学选修1-1全册习题(答案详解)

高中数学选修1-1全册习题(答案详解)

目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组] 第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真 3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

2019秋新版高中数学人教A版选修1-1习题:第三章 导数及其应用 3.3.3 Word版含解析.docx

2019秋新版高中数学人教A版选修1-1习题:第三章 导数及其应用 3.3.3 Word版含解析.docx

3.3.3函数的最大(小)值与导数课时过关·能力提升基础巩固1.函数y=x-sin x,x∈的最大值是A.π-1 BC.πD.π+1y'=1-cos x,x∈≥0.∴y=x-sin x在上是增函数.∴当x=π时,y max=π.2.函数f(x)=4x-x4在x∈[-1,2]上的最大值、最小值分别是()A.f(1)与f(-1)B.f(1)与f(2)C.f(-1)与f(2)D.f(2)与f(-1)(x)=4-4x3,由f'(x)>0,得x<1,由f'(x)<0,得x>1,所以f(x)=4x-x4在x=1时取极大值f(1)=3.而f(-1)=-5,f(2)=-8,所以f(x)=4x-x4在[-1,2]上的最大值为f(1),最小值为f(2).3.函数y=x3-3x+3在区间[-3,3]上的最小值是()A.1B.5C.12D.-153x2-3,令y'=0,得3x2-3=0,解得x=1或x=-1.∵当-1<x<1时,y'<0;当x>1或x<-1时,y'>0.∴y极小值=y|x=1=1,y极大值=y|x=-1=5,而端点值y|x=-3=-15,y|x=3=21,∴y min=-15.4.已知函数f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,则此函数在[-2,2]上的最小值是()A.-37B.-29C.-5D.-11f'(x)=6x2-12x=6x(x-2)=0,解得x=0或x=2.因为f(0)=m,f(2)=m-8,f(-2)=m-40,所以f(x)max=m=3,f(x)min=f(-2)=m-40=3-40=-37.5.设函数f(x)=ax3+3bx(a,b为实数,a<0,b>0),当x∈[0,1]时,有f(x)∈[0,1],则b的最大值是()A6.函数f(x)=x2的最小值是f'(x)=2x得x=-3,当x<-3时,f'(x)<0,当-3<x<0时,f'(x)>0,故当x=-3时,f(x)取得极小值,也为最小值,f(x)min=27.7.函数f(x)在上的最小值是(x)-由f'(x)>0,得x<1.∴f(x)在(0,1)内单调递增,在(1,4)内单调递减.∵f(0)=0,f(4)∴f(x)在[0,4]上的最小值为0.8.已知函数f(x)若当时≥2恒成立,则实数a的取值范围是.f(x)x,得f'(x)-又函数f(x)的定义域为(0,+∞),且a>0,令f'(x)=0,得x=舍去)或x当0<x时,f'(x)<0;当x时,f'(x)>0,故x是函数f(x)的极小值点,也是最小值点,且f a+1.要使f(x ≥2恒成立,需ln a+1≥2恒成立,则a≥e.+∞)9.已知函数f(x)=x3-3x2-9x+k,对任意x∈[-4,4],f(x ≥0 求实数k的取值范围.(x)=3x2-6x-9=3(x-3)(x+1).由f'(x)=0,得x=3或x=-1.∵f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.∴f(x)min=k-76.由k-76≥0 得k≥76.∴k的取值范围是[76,+∞).10.设定义在(0,+∞)上的函数f(x)=ax(1)求f(x)的最小值;(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y求的值f(x)的导数f'(x)=a-当x时,f'(x)>0,f(x)在内单调递增;当0<x时,f'(x)<0,f(x)在内单调递减.故当x时,f(x)取最小值为2+b.(2)f'(x)=a由题设知,f'(1)=a解得a=2或a=不合题意,舍去).将a=2代入f(1)=a解得b=-1.故a=2,b=-1.能力提升1.函数f(x)=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是()A.12,-15B.-4,-15C.12,-4D.5,-15(x)=6x2-6x-12=6(x+1)(x-2),令f'(x)=0,得x=-1或x=2.因为f(0)=5,f(2)=-15,f(3)=-4,所以f(2)<f(3)<f(0).所以f(x)max=f(0)=5,f(x)min=f(2)=-15.2.已知a≤-对任意恒成立则的最大值是A.0B.1C.2D.3f(x)-x,则f'(x)---令f'(x)=0,解得x=1.当x∈时,f'(x)<0,故函数f(x)在上单调递减;当x∈(1,2]时,f'(x)>0,故函数f(x)在(1,2]内单调递增,∴f(x)min=f(1)=0,∴a≤0 即a的最大值为0.3.若函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是()A.[0,1)B.(0,1)C.(-1,1) D(x)=3x2-3a=3(x2-a).若a≤0 则f'(x)>0,即f(x)在(0,1)内单调递增,f(x)无最小值.若a>0,由f'(x)>0,得x则f(x)在(0内单调递减,在内单调递增.若≥1 则f(x)在(0,1)内单调递减,f(x)无最小值.故此时,f(x)在(0内单调递减,在内单调递增,当x时,f(x)取最小值.4.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小值时t的值为()A.1 B,由图可以看出|MN|=y=t2-ln t(t>0).-y'=2t-当0<t时,y'<0,可知y在内单调递减;当t时,y'>0,可知y在内单调递增.故当t时,|MN|有最小值.5.已知定义在R上的可导函数f(x)=x2+2xf'(2)+15,在闭区间[0,m]上有最大值15,最小值-1,则m的取值范围是.★6.已知函数f(x)的定义域为[-2,6],x与f(x)的部分对应值如表,f(x)的导函数y=f'(x)的图象如图所示.给出下列说法:①函数f(x)在(0,3)内是增函数;②曲线y=f(x)在x=4处的切线可能与y轴垂直;③如果当x∈[-2,t]时,f(x)的最小值是-2,那么t的最大值为5;④∀x1,x2∈[-2,6],都有|f(x1)-f(x2)|≤a恒成立,则实数a的最小值是5.正确的个数是.7.已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.f'(x)=(x-k+1)e x.由f'(x)>0,得x>k-1.所以f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+∞).(2)当k-1≤0 即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)内单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1 即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.★8.已知函数f(x)=ax4ln x+bx4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式f(x ≥-2c2恒成立,求c的取值范围.∵f(1)=-3-c,即b-c=-3-c,∴b=-3.又f'(x)=4ax3ln x+ax3+4bx3=x3(4a ln x+a+4b),由f'(1)=0,得a+4b=0,∴a=12.(2)由(1)知,f'(x)=48x3·ln x(x>0).由f'(x)>0,得x>1.∴f(x)在(0,1)内是减函数,在(1,+∞)内是增函数.∴f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).(3)由(2)知f(x)在x=1处取最小值-3-c,要使f(x ≥-2c2恒成立,只需-3-c≥-2c2,即2c2-c-3≥0 解得c≥或c≤-1.故c的取值范围是(-∞,-1]∪。

高中人教a版数学选修1-1课时作业1.1命题及其关系 word版含答案

高中人教a版数学选修1-1课时作业1.1命题及其关系 word版含答案

第一章第节命题及其关系本节教材分析(一)三维目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若,则”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

()教学重点:命题的概念、命题的构成()教学难点:分清命题的条件、结论和判断命题的真假()教学建议:通过学生的参与,激发学生学习数学的兴趣。

(一)三维目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.()教学重点:()会写四种命题并会判断命题的真假;()四种命题之间的相互关系.()教学难点:()命题的否定与否命题的区别;()写出原命题的逆命题、否命题和逆否命题;()分析四种命题之间相互的关系并判断命题的真假.()教学建议:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力新课导入设计学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?导入二一、创设情境在我们日常生活中,经常涉及到逻辑上的问题。

无论是进行思考、交流,还是从事各项工作,都需要用逻辑用语表达自己的思想,需要用逻辑关系进行判断和推理。

因此,正确使用逻辑用语和逻辑关系是现代社会公民应该具备的基本素质。

本章我们将从命题及其关系入手,学习四种命题的相互关系、充分条件和必要条件,学习逻辑用语,了解数理逻辑的有关知识,体会逻辑用语在表述或论证中的作用,使以后的论证和表述更加准确、清楚和简洁。

【名师一号】高中数学新课标人教a版选修1-1综合测试题(含答案解析)(含答案)

【名师一号】高中数学新课标人教a版选修1-1综合测试题(含答案解析)(含答案)

综合测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( )A .“p 或q ”是真命题B .“p 且q ”是真命题C .“綈p ”为真命题D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12x B .y =±2x C .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0,且sin θ≠1时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图象关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件 D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +ax ,∴由题可知,f ′ (1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13 C.12D.33解析设|PF2|=m,则|PF1|=2m,|F1F2|=3m.故离心率e=ca=2c2a=3mm+2m=33.答案 D9.给出下列三个命题:①若a≥b>-1,则a1+a ≥b1+b;②若正整数m和n满足m≤n,则m(n-m)≤n2;③设P(x1,y1)为圆O1:x2+y2=9上任一点,圆O2以Q(a,b)为圆心且半径为1.当(a-x1)2+(b-y1)2=2时,圆O1与圆O2相切.其中假命题的个数为()A.0个B.1个C.2个D.3个解析考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y=f(x)的导数图象,则正确的判断是()①f(x)在(-3,1)上是增函数;②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图象可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8xx 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f(x)在(-∞,+∞)内单调递增,则f ′(x)≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23),∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图象一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________________. 解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图象不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1 296a ,令S ′=2a -1 296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.已知f (x )=(2x -x 2)e x ,给出以下几个结论:①f (x )>0的解集是{x |0<x <2};②f (-2)是极小值,f (2)是极大值;③f (x )没有最小值,也没有最大值;④f (x )有最大值,没有最小值.其中判断正确的是________.解析 f (x )>0,又e x >0,∴2x -x 2>0.∴0<x <2,故①正确.由f (x )=(2x -x 2)e x ,得f ′(x )=(2-x 2)e x ,令f ′(x )=0,得x 1=-2,x 2= 2.∵当x <-2或x >2时,f ′(x )<0,f (x )单调递减; 当-2<x <2时,f ′(x )>0,f (x )单调递增. ∴f (-2)是极小值,f (2)为极大值,故②正确. 由②知,f (2)为最大值,没有最小值,故③错,④正确. 答案 ①②④三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)若p (x ):sin x +cos x >m ,q (x ):x 2+mx +1>0.若∀x ∈R ,p (x )为假命题,且q (x )为真命题,求实数m 的取值范围.解 ∵sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4∈,又∀x ∈R ,p (x )为假命题,∴m ≥ 2.∀x ∈R ,q (x )为真命题,即对任意实数x ,不等式x 2+mx +1>0恒成立,∴Δ=m 2-4<0,∴-2<m <2.故∀x ∈R ,p (x )为假命题,q (x )为真命题,实数m 的取值范围是2≤m <2.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0),∵a >0,由F ′(x )>0,得x ∈(a ,+∞), ∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减. ∴F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离,且F 不在l 1上∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为(-2k ,-1). ∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1) =(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4=-4(1+k 2)+4k (2k +2k )+4k 2+4=4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号, ∴RP →·RQ→≥4×2+8=16, 即RP →·RQ→的最小值为16. 21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是(3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图象在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得 5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA ,MB 与x 轴能围成等腰三角形.。

新课标人教A版高中数学(必修一)课后习题解答全册答案完整版

新课标人教A版高中数学(必修一)课后习题解答全册答案完整版

人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。

2018年新人教A版高中数学选修1-1全册同步检测含答案解析

2018年新人教A版高中数学选修1-1全册同步检测含答案解析

2018年新人教A版高中数学选修1-1全册同步检测目录第1章1.1-1.1.1命题第1章1.1-1.1.3四种命题间的相互关系第1章1.2充分条件与必要条件第1章1.3简单的逻辑联结词第1章1.4全称量词与存在量词第1章章末复习课第1章章末评估验收(一)第2章2.1-2.1.1椭圆及其标准方程第2章2.1-2.1.2第1课时椭圆的简单几何性质第2章2.1-2.1.2第2课时直线与椭圆的位置关系第2章2.2-2.2.1双曲线及其标准方程第2章2.2-2.2.2双曲线的简单几何性质第2章2.3-2.3.1抛物线及其标准方程第2章2.3-2.3.2抛物线的简单几何性质第2章章末复习课第2章章末评估验收(二)第3章3.1-3.1.2导数的概念第3章3.1-3.1.3导数的几何意义第3章3.2导数的计算第3章3.3-3.3.1函数的单调性与导数第3章3.3-3.3.2函数的极值与导数第3章3.3-3.3.3函数的最大(小)值与导数第3章3.4生活中的优化问题举例第3章章末复习课章末评估验收(三)模块综合评价(一)模块综合评价(二)第一章常用逻辑用语1.1 命题及其关系1.1.1 命题A级基础巩固一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》,在这4句诗中,可作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思解析:“红豆生南国”是陈述句,意思是“红豆生长在南方”,故本句是命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题.答案:A2.下列命题为真命题的是()A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2解析:很明显A正确;B中,由x2=1,得x=±1,所以B是假命题;C中,当x=y<0时,结论不成立,所以C是假命题;D中,当x=-1,y=1时,结论不成立,所以D是假命题.答案:A3.给出下列命题:①若直线l⊥平面α,直线m⊥平面α,则l⊥m;②若a、b都是正实数,则a+b≥2ab;③若x2>x,则x>1;④函数y=x3是指数函数.其中假命题为()A.①③B.①②③C.①③④D.①④解析:①显然错误,所以①是假命题;由基本不等式,知②是真命题;③中,由x2>x,得x<0或x>1,所以③是假命题;④中函数y=x3是幂函数,不是指数函数,④是假命题.答案:C4.命题“垂直于同一条直线的两个平面平行”的条件是()A.两个平面B.一条直线C.垂直D.两个平面垂直于同一条直线解析:把命题改为“若p则q”的形式为若两个平面垂直于同一条直线,则这两个平面平行,则条件为“两个平面垂直于同一条直线”.答案:D5.下列语句中命题的个数为()①若a,G,b成等比数列,则G2=ab.②4-x2≥0.③梯形是中心对称图形.④π>2吗?⑤2016年是我人生中最难忘的一年!A.2B.3C.4D.5解析:依据命题的概念知④和⑤不是陈述句,故④⑤不是命题;再从“能否判断真假”的角度分析:②不是命题.只有①③为命题,故选A.答案:A二、填空题6.下列语句:①2是无限循环小数;②x 2-3x +2=0;③当x =4时,2x >0;④把门关上!其中不是命题的是________.解析:①是命题;②不是命题,因为语句中含有变量x ,在没给变量x 赋值的情况下,无法判断语句的真假;③是命题;④是祈使句,不是命题.答案:②④7.已知命题“f (x )=cos 2ωx -sin 2ωx 的最小正周期是π”是真命题,则实数ω的值为________.解析:f (x )=cos 2ωx -sin 2ωx =cos 2ωx ,所以⎪⎪⎪⎪⎪⎪2π2ω=π,解得ω=±1.答案:±1 8.下列命题:①若xy =1,则x ,y 互为倒数; ②二次函数的图象与x 轴有公共点; ③平行四边形是梯形; ④若ac 2>bc 2,则a >b .其中真命题是________(写出所有真命题的编号).解析:对于②,二次函数图象与x 轴不一定有公共点;对于③,平行四边形不是梯形.答案:①④ 三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)末位数字是0的整数能被5整除; (2)偶函数的图象关于y 轴对称; (3)菱形的对角线互相垂直.解:(1)若一个整数的末位数字是0,则这个整数能被5整除,为真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称,为真命题.(3)若一个四边形是菱形,则它的对角线互相垂直,为真命题.10.已知:A:5x-1>a,B:x>1,请选择适当的实数a,使得利用A、B构造的命题“若p,则q”为真命题.解:若视A为p,则命题“若p,则q”为“若x>1+a5,则x>1”.由命题为真命题可知1+a5≥1,解得a≥4;若视B为p,则命题“若p,则q”为“若x>1,则x>1+a5”.由命题为真命题可知1+a5≤1,解得a≤4.故a取任一实数均可利用A,B构造出一个真命题,比如这里取a=1,则有真命题“若x>1,则x>25”.B级能力提升1.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是()A.4B.2C.1D.-3解析:C中,当a=1时,Δ=12-4×1×1=-3<0,方程无实根,其余3项中,a 的值使方程均有实根.答案:C2.①若a·b=a·c,则b=c;②若a=(1,k),b=(-2,6),a//b,则k=-3;③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为60°.其中真命题的序号为________(写出所有真命题的序号).解析:取a=0,满足a·b=a·c,但不一定有b=c,故①不正确;当a=(1,k),b=(-2,6),a//b时,6+2k=0,所以k=-3,则②正确;非零向量a和b满足|a|=|b|=|a-b|时,|a|,|b|,|a-b|构成等边三角形,所以a与a +b的夹角为30°,因此③错误.答案:②3.把下列命题改写成“若p,则q”的形式,并判断真假.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”,它是真命题.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.第一章常用逻辑用语1.1 命题及其关系1.1.2 四种命题1.1.3 四种命题间的相互关系A级基础巩固一、选择题1.命题“对角线相等的四边形是矩形”是命题“矩形的对角线相等”的()A.逆命题B.否命题C.逆否命题D.无关命题解析:将命题“对角线相等的四边形是矩形”写成“若p,则q”的形式为:“若一个四边形的对角线相等,则这个四边形是矩形”.而将命题“矩形的对角线相等”写成“若p,则q”的形式为:“若一个四边形是矩形,则四边形的对角线相等”.则前一个命题为后一个命题的逆命题.答案:A2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a+b+c≥3,则a2+b2+c2=3解析:否定条件,得a+b+c≠3,否定结论,得a2+b2+c2<3.所以否命题是“若a +b+c≠3,则a2+b2+c2<3”.答案:A3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除解析:原命题与它的逆否命题是等价命题,原命题的逆否命题是:不能被3整除的整数,一定不能被6整除.答案:B4.下列说法:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真.其中正确的是()A.①②B.②③C.③④D.②③④解析:互为逆否命题的两个命题同真假,互为否命题和逆命题的两个命题,它们的真假性没有关系.答案:B5.有下列四种命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若x>y,则x2>y2”的逆否命题;③“若x≤3,则x2-x-6>0”的否命题;④“对顶角相等”的逆命题.其中真命题的个数是()A.0 B.1 C.2 D.3解析:(1)原命题的否命题与其逆命题有相同的真假性,其逆命题为“若x,y互为相反数,则x +y =0”,为真命题;(2)原命题与其逆否命题具有相同的真假性.而原命题为假命题(如x =0,y =-1),故其逆否命题为假命题;(3)该命题的否命题为“若x >3,则x 2-x -6≤0”,很明显为假命题;(4)该命题的逆命题是“相等的角是对顶角”,显然是假命题.答案:B 二、填空题6.命题“若x 2<4,则-2<x <2”的逆否命题为_______________,是______________(填“真”或“假”)命题.解析:命题“若x 2<4,则-2<x <2”的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,因为原命题是真命题,所以其逆否命题也是真命题.答案:若x ≥2或x ≤-2,则x 2≥4 真7.命题“当AB =AC 时,△ABC 是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有________个.解析:原命题“当AB =AC 时,△ABC 是等腰三角形”是真命题,且互为逆否命题等价,故其逆否命题为真命题.其逆命题“若△ABC 是等腰三角形,则AB =AC ”是假命题,则否命题是假命题.则4个命题中有2个是真命题.答案:28.设有两个命题:①不等式mx 2+1>0的解集是R ;②函数f (x )=log m x 是减函数.如果这两个命题中有且只有一个是真命题,则实数m 的取值范围是________.解析:①当m =0时,mx 2+1=1>0恒成立,解集为R.当m ≠0时,若mx 2+1>0的解集为R ,必有m >0. 综上知,不等式mx 2+1>0的解集为R ,必有m ≥0.②当0<m <1时,f (x )=log m x 是减函数,当两个命题中有且只有一个真命题时⎩⎪⎨⎪⎧m ≥0,m ≤0或m ≥1或⎩⎪⎨⎪⎧m <0,0<m <1,所以 m =0或m ≥1. 答案:m =0或m ≥1三、解答题9.写出命题“在△ABC 中,若a >b ,则A >B ”的逆命题、否命题和逆否命题,并判断它们的真假.解:(1)逆命题:在△ABC 中,若A >B ,则a >b 为真命题.否命题:在△ABC 中,若a ≤b ,则A ≤B 为真命题.逆否命题:在△ABC 中,若A ≤B ,则a ≤b 为真命题.10.判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集是R ,则a <74”的逆否命题的真假.解:先判断原命题的真假如下:因为a ,x 为实数,关于x 的不等式x 2+(2a +1)x +a 2+2>0的解集为R ,且抛物线y =x 2+(2a +1)x +a 2+2的开口向上,所以Δ=(2a +1)2-4(a 2+2)=4a -7<0.所以a <74.所以原命题是真命题.因为互为逆否命题的两个命题同真同假,所以原命题的逆否命题为真命题.B 级 能力提升1.若命题p 的逆命题是q ,命题q 的否命题是m ,则m 是p 的( ) A .原命题 B .逆命题 C .否命题D .逆否命题解析:设命题p 为“若k ,则l ”,则命题q 为“若l ,则k ”,从而命题m 为“若非l ,则非k ”,即命题m 是命题p 的逆否命题.答案:D2.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,为真命题的是________.解析:由于原命题为真命题,则其逆否命题也为真命题.其否命题:若函数y =f (x )不是幂函数,则y =f (x )的图象过第四象限,为假命题,从而原命题的逆命题也是假命题.答案:逆否命题3.已知p :x 2+mx +1=0有两个不等的负根,q :4x 2+4(m -2)x +1=0无实数根.若p ,q 一真一假,求m 的取值范围.解:当p 为真时,即方程x 2+mx +1=0有两个不等的负根,设两个负根为x 1,x 2,则有⎩⎪⎨⎪⎧m 2-4>0,x 1+x 2=-m <0,解得m >2.当q 为真时,即方程4x 2+4(m -2)x +1=0无实数根,则有16(m -2)2-4×4×1<0,解得1<m <3.若p 真,q 假,则⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,得m ∈[3,+∞);若p 假,q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,得m ∈(1,2].综上所述,m 的取值范围是(1,2]∪[3,+∞).第一章 常用逻辑用语 1.2 充分条件与必要条件A 级 基础巩固一、选择题1.“α=π6”是“cos 2α=12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由cos 2α=12,可得α=k π±π6(k ∈Z),故选A.答案:A2.(2016·天津卷)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件解析:当x =1,y =-2时,x >y ,但x >|y |不成立; 若x >|y |,因为|y |≥y ,所以x >y . 所以x >y 是x >|y |的必要而不充分条件. 答案:C3.x 2<4的必要不充分条件是( ) A .0<x ≤2 B .-2<x <0 C .-2≤x ≤2D .1<x <3解析:x2<4即-2<x<2,因为-2<x<2能推出-2≤x≤2,而-2≤x≤2不能推出-2<x<2,所以x2<4的必要不充分条件是-2≤x≤2.答案:C4.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.答案:A5.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=2 B.m=-2C.m=-1 D.m=1解析:当m=-2时,f(x)=x2-2x+1,其图象关于直线x=1对称,反之也成立,所以函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是m=-2.答案:B二、填空题6.设a,b是实数,则“a+b>0”是“ab>0”的_____________条件.解析:若a+b>0,取a=3,b=-2,则ab>0不成立;反之,若a=-2,b=-3,则a+b>0也不成立,因此“a+b>0”是“ab>0”的既不充分也不必要条件.答案:既不充分也不必要条件7.关于x 的不等式|2x -3|>a 的解集为R 的充要条件是________. 解析:由题意知|2x -3|>a 恒成立. 因为|2x -3|≥0,所以 a <0. 答案:a <08.对任意实数a ,b ,c ,给出下列命题: ①“a =b ”是“ac =bc ”的充要条件;②“b -2是无理数”是“b 是无理数”的充要条件; ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的序号是________. 解析:①中由“a =b ”可得ac =bc ,但由“ac =bc ”得不到“a =b ”,所以不是充要条件; ②是真命题;③中a >b 时,a 2>b 2不一定成立,所以③是假命题; ④中由“a <5”得不到“a <3”, 但由“a <3”可以得出“a <5”,所以“a <5”是“a <3”的必要条件,是真命题. 答案:②④ 三、解答题9.已知p :-4<x -a <4,q :(x -2)(x -3)<0,且q 是p 的充分而不必要条件,试求a 的取值范围.解:设q ,p 表示的范围为集合A ,B ,则A =(2,3),B =(a -4,a +4).由于q 是p 的充分而不必要要件,则有AB ,即⎩⎪⎨⎪⎧a -4≤2,a +4>3或⎩⎪⎨⎪⎧a -4<2,a +4≥3,解得-1≤a ≤6.10.求证:关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.证明:必要性:因为方程ax 2+bx +c =0有一个根为1, 所以x =1满足方程ax 2+bx +c =0,即a +b +c =0. 充分性:因为a +b +c =0,所以c =-a -b , 代入方程ax 2+bx +c =0中可得ax 2+bx -a -b =0, 即(x -1)(ax +a +b )=0.故方程ax 2+bx +c =0有一个根为1.所以关于x 的方程ax 2+bx +c =0有一个根为1的充要条件是a +b +c =0.B 级 能力提升1.m =12是直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:当m =12时,两直线为52x +32y +1=0和-32x +52y -3=0,两直线斜率之积为-1,两直线垂直;而当两直线垂直时,(m +2)(m -2)+3m (m +2)=0,即2(m +2)(2m -1)=0,所以 m =-2或m = 12.所以 为充分不必要条件.答案:B2.已知p :不等式x 2+2x +m >0的解集为R ;q :指数函数f (x )=⎝ ⎛⎭⎪⎫m +14x为增函数,则p 是q 成立的________条件.解析:p :不等式x 2+2x +m >0的解集为R ,即Δ=4-4m <0,m >1;q :指数函数f (x )=⎝ ⎛⎭⎪⎫m +14x 为增函数,即m +14>1,m >34,则p 是q 成立的充分不必要条件.答案:充分不必要3.已知p :-2≤x ≤10,q :x 2-2x +1-m 2≤0(m >0),若綈p 是綈q 的充分不必要条件.求实数m 的取值范围.解:p :-2≤x ≤10.q :x 2-2x +1-m 2≤0(m >0)⇔[x -(1-m )][x -(1+m )]≤0(m >0)⇔1-m ≤x ≤1+m (m >0).因为綈p 是綈q 的充分不必要条件,所以q 是p 的充分不必要条件,即{}x |1-m ≤x ≤1+m {}x |-2≤x ≤10,故有⎩⎪⎨⎪⎧1-m ≥-2,1+m <-10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{}m |0<m ≤3. 本题还可用以下方法求解.因为p :-2≤x ≤10,所以綈p :x <-2或x >10.q :x 2-2x +1-m 2≤0(m >0)⇔[x -(1-m )][x -(1+m )]≤0(m >0)⇔1-m ≤x ≤1+m (m >0),綈q :x <1-m 或x >1+m (m >0).因为綈p 是綈q 的充分不必要条件,所以{}x |x <-2或x >10{}x |x <1-m 或x >1+m ,故有⎩⎪⎨⎪⎧1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{}m |0<m ≤3.第一章常用逻辑用语1.3 简单的逻辑联结词A级基础巩固一、选择题1.命题“2是3的约数或2是4的约数”中,使用的逻辑联结词的情况是() A.没有使用逻辑联结词B.使用了逻辑联结词“且”C.使用了逻辑联结词“或”D.使用了逻辑联结词“非”答案:C2.若命题“p且q”为假,且綈p为假,则()A.p或q为假B.q假C.q真D.p假解析:綈p为假,则p为真,而p∧q为假,得q为假.答案:B3.下列命题中,既是“p或q”形式的命题,又是真命题的是()A.方程x2-x+2=0的两根是-2,1B.方程x2+x+1=0没有实根C.2n-1(n∈Z)是奇数D.a2+b2≥0(a,b∈R)解析:选项A中,-2,1都不是方程的根;选项B不是“p或q”的形式;选项C 也不是“p或q”的形式;选项D中,a2+b2≥0⇔a2+b2>0或a2+b2=0,且是真命题,故选D.答案:D4.已知p:x∈A∩B,则綈p是()A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B解析:p:x∈A∩B,即x∈A且x∈B,故綈p是x∉A或x∉B.答案:B5.给出命题p:函数y=x2-x-1有两个不同的零点;q:若1x<1,则x>1.那么在下列四个命题中,真命题是()A.(綈p)∨q B.p∧qC.(綈p)∧(綈q) D.(綈p)∨(綈q)解析:对于p,函数对应的方程x2-x-1=0的判别式Δ=(-1)2-4×(-1)=5>0,所以函数有两个不同的零点,故p为真.对于q,当x<0时,不等式1x<1恒成立;当x>0时,不等式的解集为{x|x>1}.故不等式1x<1的解集为{x|x<0或x>1}.故q为假.结合各选项知,只有(綈p)∨(綈q)为真.故选D.答案:D二、填空题6.命题“若a<b,则2a<2b”的否命题是________________,命题的否定是______________.解析:命题“若p,则q”的否命题是“若綈p,则綈q”,命题的否定是“若p,则綈q”.答案:若a≥b,则2a≥2b若a<b,则2a≥2b7.已知命题p :对任意x ∈R ,总有|x |≥0.q :x =1是方程x +2=0的根,则p ∧(綈q )为________命题(填“真”或“假”).解析:命题p 为真命题,命题q 为假命题,所以命题綈q 为真命题,所以p ∧綈q 为真命题.答案:真8.已知p :x 2-x ≥6,q :x ∈Z.若“p ∧q ”“綈q ”都是假命题,则x 的值组成的集合为________.解析:因为“p ∧q ”为假,“綈q ”为假,所以q 为真,p 为假.故⎩⎪⎨⎪⎧x 2-x <6,x ∈Z ,即⎩⎪⎨⎪⎧-2<x <3,x ∈Z.因此,x 的值可以是-1,0,1,2. 答案:{-1,0,1,2} 三、解答题9.写出下列命题的p ∨q ,p ∧q ,綈p 的形式,并判断其真假: (1)p :2是有理数;q :2是实数.(2)p :5不是15的约数;q :5是15的倍数.(3)p :空集是任何集合的子集;q :空集是任何集合的真子集. 解:(1)p ∨q :2是有理数或2是实数,真命题;p ∧q :2是有理数且2是实数,假命题;綈p :2不是有理数,真命题. (2)p ∨q :5不是15的约数或5是15的倍数,假命题; p ∧q :5不是15的约数且5是15的倍数,假命题; 綈p :5是15的约数,真命题.(3)p ∨q :空集是任何集合的子集或空集是任何集合的真子集,真命题; p ∧q :空集是任何集合的子集且空集是任何集合的真子集,假命题;綈p :空集不是任何集合的子集,假命题.10.已知命题p :方程x 2+2x +a =0有实数根;命题q :函数f (x )=(a 2-a )x 在R 上是增函数.若p ∧q 为真命题,求实数a 的取值范围.解:当p 是真命题时,Δ=4-4a ≥0,解得a ≤1.当q 是真命题时,a 2-a >0,解得a <0或a >1.由题意,得p ,q 都是真命题,所以⎩⎪⎨⎪⎧a ≤1,a <0或a >1,解得a <0,所以实数a 的取值范围是(-∞,0).B 级 能力提升1.给定命题p :若x 2≥0,则x ≥0;命题q :已知非零向量a ,b ,则“a ⊥b ”是“| a -b |=| a +b |”的充要条件,则下列各命题中,假命题是( )A .p ∨qB .(綈p )∨qC .(綈p )∧qD .(綈p )∧(綈q )解析:命题p 为假命题,命题q 为真命题,所以綈p 是真命题,綈q 为假命题,所以(綈p )∧(綈q )为假命题.答案:D2.给出下列结论:(1)当p 是真命题时,“p 且q ”一定是真命题; (2)当p 是假命题时,“p 且q ”一定是假命题; (3)当“p 且q ”是假命题时,p 一定是假命题; (4)当“p 且q ”是真命题时,p 一定是真命题. 其中正确结论的序号是________.解析:(1)错误,当q 是假命题时,“p 且q ”是假命题,当q 也是真命题时,“p 且q ”是真命题;(2)正确;(3)错误,p 也可能是真命题;(4)正确.答案:(2)(4)3.已知a >0,设p :函数y =a x 在R 上单调递减;q :不等式x +|x -2a |>1的解集为R ,如果“p ∨q ”为真,“p ∧q ”为假,求实数a 的取值范围.解:对于命题p :函数y =a x 在R 上单调递减,即0<a <1.对于命题q :不等式x +|x -2a |>1的解集为R ,即函数y =x +|x -2a |在R 上恒大于1,又y =⎩⎪⎨⎪⎧2x -2a ,x ≥2a ,2a ,x <2a ,所以 y min =2a >1,即a >12.由p ∨q 为真,p ∧q 为假,根据复合命题真值表知p 、q 一真一假.如果p 真q 假,则0<a ≤12;如果p 假q 真,则a ≥1.综上所述,a 的取值范围为⎝ ⎛⎦⎥⎤0,12∪[1,+∞).第一章 常用逻辑用语 1.4 全称量词与存在量词A 级 基础巩固一、选择题1.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2解析:A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是特称命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.答案:B2.命题“∀x ∈R ,x 2≠x ”的否定是( ) A .∀x ∉R ,x 2≠x B .∀x ∈R ,x 2=x C .∃x ∉R ,x 2≠xD .∃x ∈R ,x 2=x解析:全称命题的否定是特称命题,所以命题“∀x ∈R ,x 2≠x ”的否定是“∃x ∈R ,x 2=x ”.答案:D3.下列特称命题中假命题的个数是( ) ①有一条直线与两个平行平面垂直; ②有一条直线与两个相交平面平行; ③存在两条相交直线与同一个平面垂直.A .0B .1C .2D .3 解析:①②都是真命题,③是假命题. 答案:B4.设函数f (x )=x 2+mx (m ∈R),则下列命题中的真命题是( ) A .任意m ∈R ,使y =f (x )都是奇函数 B .存在m ∈R ,使y =f (x )是奇函数 C .任意m ∈R ,使x =f (x )都是偶函数 D .存在m ∈R ,使y =f (x )是偶函数解析:当m =0时,f (x )=x 2为偶函数,故选D. 答案:D5.若⎝ ⎛⎭⎪⎫13x 2-2ax <33x +a 2恒成立,则实数a 的取值范围是( )A .0<a <1B .a >34C .0<a <34D .a <34解析:由题意,得-x 2+2ax <3x +a 2,即x 2+(3-2a )x +a 2>0恒成立,所以Δ=(3-2a )2-4a 2<0,解得a >34.答案:B 二、填空题6.命题“∃x 0,y 0∈Z ,3x 0-2y 0=10”的否定是______________. 解析:特称命题的否定是全称命题,则否定为∀x ,y ∈Z ,3x -2y ≠10. 答案:∀x ,y ∈Z ,3x -2y ≠107.下列命题中,是全称命题的是________;是特称命题的是________. ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.解析:①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.答案:①②③④8.下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x0∈Q,x20=2;③∃x0∈R,x20+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为________.解析:x2-3x+2>0,Δ=(-3)2-4×2>0,所以当x>2或x<1时,x2-3x+2>0才成立,所以①为假命题.当且仅当x=±2时,x2=2,所以不存在x∈Q,使得x2=2,所以②为假命题.对∀x∈R,x2+1≠0,所以③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,所以④为假命题.所以①②③④均为假命题.答案:0三、解答题9.判断下列各命题的真假,并写出命题的否定.(1)有一个实数a,使不等式x2-(a+1)x+a>0恒成立;(2)对任意实数x,不等式|x+2|≤0恒成立;(3)在实数范围内,有些一元二次方程无解.解:(1)方程x2-(a+1)x+a=0的判别式Δ=(a+1)2-4a=(a-1)2≥0,则不存在实数a,使不等式x2-(a+1)x+a>0恒成立,所以原命题为假命题.它的否定:对任意实数a,不等式x2-(a+1)x+a>0不恒成立.(2)当x=1时,|x+2|>0,所以原命题是假命题.它的否定:存在实数x,使不等式|x+2|>0成立.(3)由一元二次方程解的情况,知该命题为真命题. 它的否定:在实数范围内,所有的一元二次方程都有解.10.对于任意实数x ,不等式sin x +cos x >m 恒成立,求实数m 的取值范围. 解:令y =sin x +cos x ,则y =sin x +cos x =2⎝ ⎛⎭⎪⎫22sin x +22cos x =2sin ⎝ ⎛⎭⎪⎫x +π4.因为-1≤sin ⎝⎛⎭⎪⎫x +π4≤1,所以2sin ⎝ ⎛⎭⎪⎫x +π4≥- 2. 因为∀x ∈R ,sin x +cos x >m 恒成立, 所以只要m <-2即可.故实数m 的取值范围是(-∞,-2).B 级 能力提升1.若命题p :∀x ∈R ,log 2x >0,命题q :∃x 0∈R ,2x 0<0,则下列命题为真命题的是( )A .p ∨qB .p ∧qC .(綈p )∧qD .p ∨(綈q )解析:命题p :∀x ∈R ,log 2x >0为假命题,命题q :∃x 0∈R ,2x 0<0为假命题,所以p ∨(綈q )为真命题,故选D.答案:D2.已知命题“∃x 0∈R ,2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是________.解析:由题意可得“对∀x ∈R ,2x 2+(a -1)x +12>0恒成立”是真命题,令Δ=(a-1)2-4<0,得-1<a <3.答案:(-1,3)3.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+a +2=0”,若命题“p或q”是真命题,求实数a的取值范围.解:p⇔a≤(x2)min=1.q⇔Δ=4a2-4(a+2)≥0⇔a≤-1或a≥2.因为“p或q”为真命题,所以p、q中至少有一个真命题.所以a≤1或a≤-1或a≥2,所以a≤1或a≥2.所以“p或q”是真命题时,实数a的取值范围是(-∞,1]∪[2,+∞).章末复习课[整合·网络构建][警示·易错提醒]1.命题及其关系的关注点(1)命题的四种形式的转换方法是首先确定原命题的条件和结论,然后对条件与结论进行交换、否定,就可以得到各种形式的命题.(2)命题真假的判断,可根据真(假)命题的定义直接推理判断,还可以根据互为逆否命题具有相同的真假性来判断.2.充分条件与必要条件的注意点(1)在判定充分条件、必要条件时,要注意既要看由p能否推出q,又要看由q能否推出p,不能顾此失彼.(2)证明充要条件要分两个方面,防止将充分条件和必要条件的证明弄混.3.简单的逻辑联结词的两个关注点(1)正确理解“或”的意义,日常用语中的“或”有两类用法:其一是“不可兼”的“或”;其二是“可兼”的“或”,我们这里仅研究“可兼”的“或”.(2)有的命题中省略了“且”“或”,要正确区分.4.否命题与命题的否定的注意点否命题与命题的否定的区别.对于命题“若p,则q”,其否命题形式为“若綈p,则綈q”,其否定为“若p,则綈q”,即否命题是将条件、结论同时否定,而命题的否定是只否定结论.有时一个命题的叙述方式是简略式,此时应先分清条件p,结论q,改写成“若p,则q”的形式再判断.专题1命题及其关系对于命题正误的判断是高考的热点之一,应重点关注,命题正误的判断涉及各章节的内容,覆盖面宽,也是高考的易失分点.命题正误的判断方法是:真命题要有依据或者给以论证;假命题只需举出一个反例即可.[例1](1)(2015·广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)已知原命题“菱形的对角线互相垂直”,则对它的逆命题、否命题、逆否命题的真假判断正确的是()A .逆命题、否命题、逆否命题都为真B .逆命题为真,否命题、逆否命题为假C .逆命题为假,否命题、逆否命题为真D .逆命题、否命题为假,逆否命题为真解析:(1)法一:如图1,l 1和l 2是异面直线,l 1与l 平行,l 2与l 相交,故A ,B 不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故C 不正确,选D.图1 图2法二:因为l 分别与l 1,l 2共面,故l 与l 1,l 2要么都不相交,要么至少与l 1,l 2中的一条相交.若l 与l 1,l 2都不相交,则l ∥l 1,l ∥l 2,从而l 1∥l 2,与l 1,l 2是异面直线矛盾,故l 至少与l 1,l 2中的一条相交,选D.(2)因为原命题“菱形的对角线互相垂直”是真命题,所以它的逆否命题为真;其逆命题“对角线互相垂直的四边形是菱形”显然是假命题,所以原命题的否命题也是假命题.答案:(1)D (2)D 归纳升华1.判断一个命题是真命题还是假命题,关键是看能否由命题的条件推出命题的结论,若能推出,则是真命题,否则为假命题.2.还可根据命题的四种形式之间的真假关系进行判断,即当一个命题的真假不易判断时,可以先把它转换成与它等价的命题(逆否命题),再进行判断.[变式训练] 给出下面三个命题:①函数y =tan x 在第一象限内是增函数;②奇函数的图象一定过原点;③命题“若0<log a b <1,则a >b >1”的逆命题.其中是真命题的是________(填序号).解析:①是假命题,反例:x =2π+π6和π4,tan ⎝⎛⎭⎪⎫2π+π6=33,tan π4=1,2π+π6>π4,但tan ⎝⎛⎭⎪⎫2π+π6<tan π4;②是假命题,反例:y =1x 是奇函数,但它的图象不过原点;③是“若a >b >1,则0<log a b <1”,由对数函数的图象及其单调性可知是真命题.答案:③专题2 充分条件与必要条件的判定充分条件与必要条件的判定是高考考查的热点内容,在高考试题中主要以选择题的形式出现.解决此类问题的关键是充分利用充分条件、必要条件与充要条件的定义,同时,丰富的数学基础知识是做好此类题目的前提.[例2] (1)若向量a =(x ,3)(x ∈R),则“|a|=5”是“x =4”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)已知条件p :x +y ≠-2,条件q :x ≠-1或y ≠-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:(1)|a|=x 2+32=5得x =4或x =-4.反之当x =4时,|a|=42+32=5,故“|a|=5”是“x =4”的必要不充分条件.(2)由逆否命题:若綈q ,则綈p ,则x =-1=y ⇒x +y =-2正确,但x +y =-2 x =y =-1,即綈q 是綈p 的充分不必要条件.答案:(1)B (2)A 归纳升华判断充分条件和必要条件的方法1.定义法:根据充分条件和必要条件的定义直接判断.如本例中(1).2.集合法:运用集合思想判断充分条件和必要条件也是一种很有效的方法,主要是。

人教a版数学【选修1-1】作业:3.2.1-3.2.2(含答案)

人教a版数学【选修1-1】作业:3.2.1-3.2.2(含答案)

§3.2导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一) 课时目标 1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.1.函数y =f (x )=c 的导数为____________,它表示函数y =c 图象上每一点处,切线的斜率为0.若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的____________始终为0,即一直处于________状态.函数y =f (x )=x 的导数为__________,它表示函数y =x 图象上每一点处切线的斜率为1.若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做____________为1的______________运动.2.常见基本初等函数的导数公式:(1)若f (x )=c (c 为常数),则f ′(x )=______;(2)若f (x )=x α (α∈Q *),则f ′(x )=________;(3)若f (x )=sin x ,则f ′(x )=________;(4)若f (x )=cos x ,则f ′(x )=________;(5)若f (x )=a x ,则f ′(x )=________ (a >0);(6)若f (x )=e x ,则f ′(x )=________;(7)若f (x )=log a x ,则f ′(x )=________ (a >0,且a ≠1);(8)若f (x )=ln x ,则f ′(x )=________.一、选择题1.下列结论不正确的是( )A .若y =3,则y ′=0B .若y =1x,则y ′=-12x C .若y =-x ,则y ′=-12xD .若y =3x ,则y ′=32.下列结论:①(cos x )′=sin x ;②⎝⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( ) A .0个 B .1个 C .2个 D .3个3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A.1e B .-1eC .-eD .e 4.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B .[0,π) C .⎣⎢⎡⎦⎥⎤π4,3π4 D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 5.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( )A .(-2,-8)B .(-1,-1)或(1,1)C .(2,8)D .⎝ ⎛⎭⎪⎫-12,-18 6.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( )A .12523B .110523C .25523D .110523 题 号 1 2 3 4 5 6 答 案二、填空题7.曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程为__________________________. 8.已知f (x )=x a ,a ∈Q ,若f ′(-1)=-4,则a =________________________________________________________________________. 9.若函数y =f (x )满足f (x -1)=1-2x +x 2,则y ′=f ′(x )=________.三、解答题10.求下列函数的导数:(1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =10x .11.求过点(2,0)且与曲线y =x 3相切的直线方程.能力提升12.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.13.求过曲线y =e x 上点P (1,e)且与曲线在该点处的切线垂直的直线方程.1.准确记忆八个公式是求函数导数的前提.2.求函数的导数,要恰当选择公式,保证求导过程中变形的等价性.3.对于一些应用问题如切线、速度等,可以结合导数的几何意义,利用公式进行计算.§3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则(一)知识梳理1.y ′=0 瞬时速度 静止 y ′=1 瞬时速度 匀速直线2.(1)0 (2)αx α-1 (3)cos x (4)-sin x(5)a x ln a (6)e x (7)1x ln a (8)1x作业设计1.B [y ′=⎝ ⎛⎭⎪⎫1x ′=(x -12)′=-12x -32=-12x x.] 2.B [直接利用导数公式.因为(cos x )′=-sin x ,所以①错误;sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误; ⎝ ⎛⎭⎪⎫1x 2′=(x -2)′=-2x -3,则y ′|x =3=-227, 所以③正确.]3.D [设切点为(x 0,y 0).由y ′=e x ,得y ′|x =x 0=e x 0,∴过切点的切线为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0,又y =kx 是切线,∴⎩⎪⎨⎪⎧ k =e x 0,1-x 0e x 0=0, ∴⎩⎪⎨⎪⎧x 0=1,k =e.] 4.A [∵y ′=cos x ,而cos x ∈[-1,1].∴直线l 的斜率的范围是[-1,1],∴直线l 倾斜角的范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫34π,π.] 5.B [y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1,则P 点坐标为(-1,-1)或(1,1).]6.B [s ′=15t -45. 当t =4时,s ′=15·1544=110523.]7.x +2y -3-π6=0 解析 ∵y ′=(cos x )′=-sin x ,∴y ′|x =π6=-sin π6=-12, ∴在点A 处的切线方程为y -32=-12⎝⎛⎭⎪⎫x -π6, 即x +2y -3-π6=0. 8.4解析 ∵f ′(x )=ax a -1,∴f ′(-1)=a (-1)a -1=-4,∴a =4.9.2x解析 ∵f (x -1)=1-2x +x 2=(x -1)2,∴f (x )=x 2,f ′(x )=2x .10.解 (1)y ′=(x 12)′=12x 11.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -5=-4x5. (3)y ′=(5x 3)′=(x 35)′=35x -25=355x2. (4)y ′=(10x )′=10x ln 10.11.解 点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20,即x 30x 0-2=3x 20,解得x 0=0或x 0=3. 当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0;当x 0=3时,得切点坐标是(3,27),斜率k =27,则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.12.-2解析 y ′=(n +1)x n ,曲线在点(1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =n n +1.a n =lg x n =lg n n +1=lg n -lg(n +1), 则a 1+a 2+…+a 99=lg 1-lg 2+lg 2-lg 3+…+lg 99-lg 100=-lg 100=-2.13.解 ∵y ′=e x ,∴曲线在点P (1,e)处的切线斜率是y ′|x =1=e ,∴过点P 且与切线垂直的直线的斜率k =-1e, ∴所求直线方程为y -e =-1e(x -1), 即x +e y -e 2-1=0.。

人教a版数学【选修1-1】作业:模块综合检测(a)(含答案)

人教a版数学【选修1-1】作业:模块综合检测(a)(含答案)

模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 4.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( ) A .1 B .3 C .9 D .不存在8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4B .f (x )=13x 2+4C .f (x )=3x 3+4x +4D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y2b2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+ax(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是 ________________________________________________________________.14.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1.(1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax-1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.模块综合检测(A) 答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b22a,此时函数对应的图象开口向上,当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点, ∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为焦点的椭圆.] 6.D [∵y =4e x +1,∴y ′=-4e x (e x +1)2.令e x +1=t ,则e x =t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t .再令1t=m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1).容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,所以有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,所以a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba ×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.]10.D [因为f (x )=ax 3-bx +4,所以f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如图所示,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2.在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|,∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,ba= 2. ∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax 2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0,即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1 解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba =3,∴b =3a .∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b2a2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝⎛⎭⎫-b 2a 2x 20+b 2-⎝⎛⎭⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2. 16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2. 又∵f (0)=a ,f (-3)=a , f (-2)=a +4,f (3)=54+a , ∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0,需⎩⎪⎨⎪⎧f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0.∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn . 由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3=|F 1F 2|2,即m 2+n 2-mn =122. ②由①2-②,得mn =2563.∴S △F 1PF 2=6433.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN →|=4,|MP →|=(x +2)2+y 2, MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0, 即(x +2)2+y 2=2-x , 化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎨⎧f ′(1)=2a -43a =1f (1)=a -43a +b =2,解得⎩⎨⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a 3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB , ∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0. ∴(a 2+1)·-23-a 2+a ·2a 3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x -1,x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0. (2)因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞).令g (x )=ax 2-x +1-a ,x ∈(0,+∞). ①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0, 此时f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1.a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a -1>1,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增; x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0, 此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a -1<0.x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. 综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a -1上单调递增,在⎝⎛⎭⎫1a -1,+∞上单调递减.。

人教A版高中数学选修1-1课时自测 当堂达标:3.3.3 函数的最大(小)值与导数 精讲优练课型 Word版含答案

人教A版高中数学选修1-1课时自测 当堂达标:3.3.3 函数的最大(小)值与导数 精讲优练课型 Word版含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时自测·当堂达标1.函数f(x)=x3-3x(|x|<1) ( )A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值【解析】选D.f′(x)=3x2-3=3(x+1)(x-1),当x∈(-1,1)时,f′(x)<0,所以f(x)在(-1,1)上是单调递减函数,无最大值和最小值,故选D.2.函数y=的最大值为( )A.e-1B.eC.e2D.【解析】选A.令y′==0,解得x=e.当x>e时,y′<0;当0<x<e时,y′>0,所以y=的极大值为,因为y=在其定义域内只有一个极值,所以y max=.3.f(x)=x3-12x+8在上的最大值为M,最小值为m,则M-m=.【解析】f′(x)=3x2-12,令f′(x)=0得x=2或x=-2.又f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M=24,m=-8,所以M-m=32.答案:324.函数f(x)=的最大值为.【解析】方法一:f′(x)==0⇒x=1.进一步分析,最大值为f(1)=.方法二:f(x)==≤,当且仅当=时,即x=1时,等号成立,故f(x)max=.答案:5.已知函数f(x)=2x3-6x2+a在上有最小值-37,求a的值,并求f(x)在上的最大值.【解析】f′(x)=6x2-12x=6x(x-2).由f′(x)=0,得x=0或x=2.当x变化时,f′(x), f(x)的变化情况如下表:所以当x=-2时,f(x)min=-40+a=-37,所以a=3.所以当x=0时,f(x)取到最大值3.关闭Word文档返回原板块。

人教版数学高一A数学选修1-1测试卷(十一)

人教版数学高一A数学选修1-1测试卷(十一)

高中同步测试卷(十一)单元检测 导数与函数的极值与最值,生活中的优化问题举例(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.对可导函数,在一点两侧的导数异号是这点为极值点的( ) A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件 2.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( ) A .1,-3 B .1,3 C .-1,3 D .-1,-3 3.设函数f (x )=x e x ,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点4.已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在区间(a ,b )上的图象如图所示,则函数f (x )在区间(a ,b )上的极大值点的个数为( )A .4B .3C .2D .15.函数f (x )=ax 3+x +1有极值的充要条件是( ) A .a >0 B .a ≥0 C .a <0 D .a ≤0 6.函数y =f (x )=ln xx 的最大值为( )A .e -1 B .e C .e2 D .107.把长为12 cm 的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形的面积之和的最小值是( )A.332cm 2 B .4 cm 2 C .3 2 cm 2 D .2 3 cm 28.已知f (x )=2x 3-24x +m (m 为常数)在[0,2]上有最大值3,那么此函数在[0,2]上的最小值为( )A .-29B .-30C .-5D .59.若函数f (x )=12ax 2+2x -ln x (a ≠0)在区间[1,2]上是增函数,则实数a 的最小值为( )A .1B .-1C .-34D .-210.某银行准备新设一种定期存款业务,经预测,存款量与存款利率成正比,比例系数为k (k >0),贷款的利率为 4.8%,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),则存款利率为多少时,银行可获得最大收益( )A .0.012B .0.024C .0.032D .0.03611.某商场从生产厂家以每件20元购进一批商品,若销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( )A .30元B .60元C .28 000元D .23 000元12.用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的最大体积为( )A .2 m 3B .3 m 3C .4 m 3D .5 m 313.函数f (x )=12x 2+1x取极小值时x =________.14.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.15.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则ab =________. 16.某种产品每件成本为6元,每件售价为x 元(x >6),年销量为u 万件,若已知5858-u 与(x -214)2成正比,且售价为10元时,年销量为28万件,则该产品的年最大利润为________万元.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=4x 2-72-x ,x ∈[0,1].求f (x )的单调区间和值域.18.(本小题满分12分)函数f (x )=x 3+f ′⎝⎛⎭⎫23x 2-x . (1)求f (x )的单调区间;(2)求f (cos x )的最小值和最大值.19.(本小题满分12分)某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元.若每件售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和.(1)试将利润y (万元)表示为年广告费x (万元)的函数.如果年广告费投入100万元,企业是亏损还是盈利?(2)当年广告费投入多少万元时,企业年利润最大?20.(本小题满分12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求f (x )的单调递增区间;(2)若f (x )≤m 2+m +103在[-4,3]上恒成立,求实数m 的取值范围.21.(本小题满分12分)讨论三次方程x 3-9x -a =0解的个数,其中a 为常数.22.(本小题满分12分)某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形高科技工业园区.已知AB ⊥BC ,OA ∥BC ,AB =BC =2OA =4 km ,曲线段OC 是以点O 为顶点且开口向右的抛物线的一段.如果要使矩形的相邻两边分别落在AB ,BC 上,且一个顶点落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到0.1 km 2).参考答案与解析1.[导学号68670066] 解析:选C.不妨设在点x 0左侧导数为正,右侧导数为负,则任意x <x 0,f (x )<f (x 0),所以左侧是增函数;任意x >x 0,f (x )<f (x 0),所以右侧是减函数,所以x 0为函数的极大值点.2.解析:选A.f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.3.[导学号68670067] 解析:选D.求导得f ′(x )=e x +x e x =e x (x +1),令f ′(x )=e x (x +1)=0,解得x =-1.易知x =-1是函数f (x )的极小值点.4.解析:选B.极大值点在导函数f ′(x )的零点处,且满足零点的左侧为正, 右侧为负,由导函数的图象可知这样的极大值点共有3个,故选B.5.[导学号68670068] 解析:选 C .由f ′(x )=3ax 2+1且f (x )有极值知3ax 2+1=0有解,即x 2=-13a>0,故a <0.6.解析:选A.令y ′=(ln x )′x -ln x x 2=1-ln xx 2=0⇒x =e ,当x >e 时,y ′<0;当0<x <e 时,y ′>0, 所以y 极大值=f (e)=e -1,在定义域内只有一个极值,所以y max =e -1.7.[导学号68670069] 解析:选D.设一个三角形的边长为x cm ,则另一个三角形的边长为(4-x )cm ,两个三角形的面积和为S =34x 2+34(4-x )2=32x 2-23x +4 3.令S ′=3x -23=0,则x =2,所以S min =2 3 cm 2.8.解析:选A.∵f ′(x )=6x 2-24=6(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x )及f (x )的变化情况如下表:∵f (x )在[0,2]∴当x =2时,函数f (x )有最小值. 又∵当x =0时,f (x )=m 最大, ∴m =3,从而f (2)=-29. ∴最小值为f (2)=-29.故选A.9.[导学号68670070] 解析:选C.易知x >0,且f ′(x )=ax +2-1x =ax 2+2x -1x ,∵函数f (x )在区间[1,2]上是增函数,∴f ′(x )≥0对x ∈[1,2]恒成立,即不等式ax 2+2x -1≥0对x ∈[1,2]恒成立,即a ≥1-2xx 2=1x 2-2x =⎝⎛⎭⎫1x -12-1对x ∈[1,2]恒成立,故a ≥⎝⎛⎭⎫12-12-1,即a ≥-34,∴实数a 的最小值为-34,故选C.10.解析:选B.由题意知,存款量g (x )=kx (k >0),银行应支付的利息h (x )=xg (x )=kx 2,x ∈(0,0.048).设银行可获得收益为y ,则y =0.048kx -kx 2. 于是y ′=0.048k -2kx ,令y ′=0,解得x =0.024. 依题意知,y 在x =0.024处取得最大值. 故当存款利率为0.024时,银行可获得最大收益.11.[导学号68670071] 解析:选D.设毛利润为L (p ),由题意知 L (p )=pQ -20Q =Q (p -20) =(8 300-170p -p 2)(p -20) =-p 3-150p 2+11 700p -166 000, 所以L ′(p )=-3p 2-300p +11 700.令L ′(p )=0,解得p =30或p =-130(舍去). 此时,L (30)=23 000.因为在p =30附近的左侧L ′(p )>0,右侧L ′(p )<0,所以L (30)是极大值,根据实际问题的意义知,L (30)是最大值,即零售价定为每件30元时,最大毛利润为23 000元.12.解析:选 B.设长方体的宽为x (m),则长为2x (m),高为h =18-12x4=(4.5-3x )(m)⎝⎛⎭⎫0<x <32. 故长方体的体积为V (x )=2x 2(4.5-3x )=9x 2-6x 3⎝⎛⎭⎫0<x <32. 从而V ′(x )=18x -18x 2=18x (1-x ). 令V ′(x )=0,解得x =1或x =0(舍去). 当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0.故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值. 从而最大体积V =V (1)=9×12-6×13=3(m 3).13.[导学号68670072] 解析:∵f ′(x )=x -1x 2,x ∈(0,1)时,f ′(x )<0,x ∈(1,+∞)时,f ′(x )>0. ∴x =1时函数有极小值. 答案:114.解析:∵f ′(x )=⎝ ⎛⎭⎪⎫x 2+a x +1′=(x 2+a )′(x +1)-(x 2+a )(x +1)′(x +1)2=x 2+2x -a (x +1)2, 又∵在x =1处取极值, ∴f ′(1)=0.∴1+2×1-a =0, ∴a =3. 答案:315.解析:f ′(x )=3x 2+2ax +b ,由题意可知⎩⎪⎨⎪⎧f ′(1)=0f (1)=10,即⎩⎪⎨⎪⎧2a +b +3=0a 2+a +b +1=10,解得⎩⎪⎨⎪⎧a =4b =-11或⎩⎪⎨⎪⎧a =-3b =3.当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2,易知在x =1的左右两侧都有f ′(x )>0,即函数f (x )在R 上是单调递增的,因此f (x )在x =1处并不存在极值,故⎩⎪⎨⎪⎧a =4b =-11,ab =-44.答案:-4416.解析:设5858-u =k (x -214)2,因为售价为10元时,年销量为28万件,所以5858-28=k (10-214)2,解得k =2,所以u =-2(x -214)2+5858=-2x 2+21x +18,所以年利润f (x )=(x -6)(-2x 2+21x +18) =-2x 3+33x 2-108x -108,则f ′(x )=-6x 2+66x -108=-6(x -2)(x -9), 令f ′(x )=0,得x =2或x =9,因为x >6,所以x =9.当6<x <9时,f ′(x )>0;当x >9时,f ′(x )<0,所以x =9为f (x )的极大值点,所以当x =9时,年利润最大,最大年利润为f (9)=135万元.答案:13517.解:对函数f (x )求导,得f ′(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2,令f ′(x )=0解得x =12或x =72.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的递减区间是⎣⎡⎭⎫0,12; f (x )的递增区间是⎣⎡⎦⎤12,1.当x ∈[0,1]时,f (x )的值域为[-4,-3]. 18.解:(1)f ′(x )=3x 2+2f ′⎝⎛⎭⎫23x -1,则 f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2f ′⎝⎛⎭⎫23×23-1,得f ′⎝⎛⎭⎫23=-1, 故f (x )=x 3-x 2-x .令f ′(x )=3x 2-2x -1>0,解得x <-13或x >1.故f (x )的单调增区间为⎝⎛⎭⎫-∞,-13,(1,+∞); 同理可得f (x )的单调减区间为⎝⎛⎭⎫-13,1. (2)设cos x ∈[-1,1],由(1)知f (x )在区间⎣⎡⎭⎫-1,-13上单调递增,在区间⎝⎛⎦⎤-13,1上单调递减,故f (cos x )max =f ⎝⎛⎭⎫-13=527;又f (-1)=f (1)=-1,故f (cos x )min =-1. 19.解:(1)由题意,每年产销Q 万件,共计成本为(32Q +3)万元. 销售收入是(32Q +3)·150%+x ·50%. ∴年利润y =年收入-年成本-年广告费 =12(32Q +3-x ) =12(32×3x +1x +1+3-x ) =-x 2+98x +352(x +1)(x ≥0),∴所求的函数关系式为y =-x 2+98x +352(x +1)(x ≥0).当x =100时,y <0,即当年广告费投入100万元时,企业亏损. (2)令f (x )=y =-x 2+98x +352(x +1)(x ≥0),则f ′(x )=(-2x +98)(x +1)-(-x 2+98x +35)2(x +1)2=-x 2-2x +632(x +1)2. 令f ′(x )=0,则x 2+2x -63=0. ∴x =-9(舍去)或x =7.又∵x ∈(0,7)时,f ′(x )>0;x ∈(7,+∞)时,f ′(x )<0. ∴f (x )极大值=f (7)=42.又∵在(0,+∞)上只有一个极值点, ∴f (x )max =f (x )极大值=f (7)=42.∴当年广告费投入7万元时,企业年利润最大.20.解:(1)f ′(x )=x 2+a ,由f ′(2)=0,得a =-4;再由f (2)=-43,得b =4.所以f (x )=13x 3-4x +4,f ′(x )=x 2-4.令f ′(x )=x 2-4>0,得x >2或x <-2.所以f (x )的单调递增区间为(-∞,-2),(2,+∞).(2)因为f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,所以函数f (x )在[-4,3]上的最大值为283.要使f (x )≤m 2+m +103在[-4,3]上恒成立,只需m 2+m +103≥283,解得m ≥2或m ≤-3.所以实数m 的取值范围是(-∞,-3]∪[2,+∞).21.解:设方程对应的函数为f (x )=x 3-9x -a ,则f ′(x )=3x 2-9,令f ′(x )=0,则x =±3,即函数f (x )有两个极值点为x 1=3,x 2=- 3.f (-3)=63-a ,f (3)=-63-a .(1)若f (3)f (-3)<0,对应方程有三个解,解得-63<a <63; (2)若f (3)f (-3)=0,对应方程有两个解,解得a =-63或a =63; (3)若f (3)f (-3)>0,对应方程有一个解,解得a >63或a <-63; 综上可知:当-63<a <63时,方程有三个解; 当a =-63或a =63时,方程有两个解; 当a >63或a <-63时,方程有一个解.22.解:以O 为原点,OA 所在直线为y 轴,以O 点到BC 的垂线为x 轴建立直角坐标系(图略),设矩形落在曲线段OC 上的一个顶点为P ,高中数学-打印版精心校对 抛物线方程为y 2=2px (p >0).把点C (4,2)代入,有y 2=x (0≤x ≤4,0≤y ≤2).令P (t 2,t )(0≤t <2),记工业园区面积为S ,则S =(4-t 2)(t +2)=-t 3-2t 2+4t +8,0≤t <2,∴S ′=-3t 2-4t +4=-(t +2)(3t -2),令S ′=0得t =23或t =-2(舍去), 当t ∈(0,23)时,S ′>0,S 是t 的增函数;当t ∈(23,2)时,S ′<0,S 是t 的减函数. ∴当t =23,即P 点坐标为⎝⎛⎭⎫49,23时,S 取得最大值,且S max ≈9.5(km 2),此时矩形的长为(4-49)km ,宽为(2+23)km. 即把工业园区规划成长为329 km ,宽为83km 的矩形时,工业园区的用地面积最大,最大的用地面积约为9.5 km 2.。

人教A版高中数学选修1-1课时自测 当堂达标:3.3.3 函数的最大(小)值与导数 精讲优练课型 Word版含答案

人教A版高中数学选修1-1课时自测 当堂达标:3.3.3 函数的最大(小)值与导数 精讲优练课型 Word版含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时自测·当堂达标1.函数f(x)=x3-3x(|x|<1) ( )A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值【解析】选D.f′(x)=3x2-3=3(x+1)(x-1),当x∈(-1,1)时,f′(x)<0,所以f(x)在(-1,1)上是单调递减函数,无最大值和最小值,故选D.2.函数y=的最大值为( )A.e-1B.eC.e2D.【解析】选A.令y′==0,解得x=e.当x>e时,y′<0;当0<x<e时,y′>0,所以y=的极大值为,因为y=在其定义域内只有一个极值,所以y max=.3.f(x)=x3-12x+8在上的最大值为M,最小值为m,则M-m= .【解析】f′(x)=3x2-12,令f′(x)=0得x=2或x=-2.又f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M=24,m=-8,所以M-m=32.答案:324.函数f(x)=的最大值为.【解析】方法一:f′(x)==0⇒x=1.进一步分析,最大值为f(1)=.方法二:f(x)==≤,当且仅当=时,即x=1时,等号成立,故f(x)max=.答案:5.已知函数f(x)=2x3-6x2+a在上有最小值-37,求a的值,并求f(x)在上的最大值.【解析】f′(x)=6x2-12x=6x(x-2).由f′(x)=0,得x=0或x=2.当x变化时,f′(x), f(x)的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f′(x) + 0 - 0 f(x) -40+a ↗极大值a ↘-8+a所以当x=-2时,f(x)min=-40+a=-37,所以a=3.所以当x=0时,f(x)取到最大值3.关闭Word文档返回原板块。

人教A版高中数学选修1-1课时自测 当堂达标:3.3.3 函数的最大(小)值与导数 精讲优练课型 Word版含答案

人教A版高中数学选修1-1课时自测 当堂达标:3.3.3 函数的最大(小)值与导数 精讲优练课型 Word版含答案

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时自测·当堂达标1.函数f(x)=x3-3x(|x|<1) ( )A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值【解析】选D.f′(x)=3x2-3=3(x+1)(x-1),当x∈(-1,1)时,f′(x)<0,所以f(x)在(-1,1)上是单调递减函数,无最大值和最小值,故选D.2.函数y=的最大值为( )A.e-1B.eC.e2D.【解析】选A.令y′==0,解得x=e.当x>e时,y′<0;当0<x<e时,y′>0,所以y=的极大值为,因为y=在其定义域内只有一个极值,所以y max=.3.f(x)=x3-12x+8在上的最大值为M,最小值为m,则M-m= .【解析】f′(x)=3x2-12,令f′(x)=0得x=2或x=-2.又f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M=24,m=-8,所以M-m=32.答案:324.函数f(x)=的最大值为.【解析】方法一:f′(x)==0⇒x=1.进一步分析,最大值为f(1)=.方法二:f(x)==≤,当且仅当=时,即x=1时,等号成立,故f(x)max=.答案:5.已知函数f(x)=2x3-6x2+a在上有最小值-37,求a的值,并求f(x)在上的最大值.【解析】f′(x)=6x2-12x=6x(x-2).由f′(x)=0,得x=0或x=2.当x变化时,f′(x), f(x)的变化情况如下表:所以当x=-2时,f(x)min=-40+a=-37,所以a=3.所以当x=0时,f(x)取到最大值3.关闭Word文档返回原板块。

2020年高中数学人教A版选修1-1练习18 函数的最大(小)值与导数 Word版含解析

2020年高中数学人教A版选修1-1练习18 函数的最大(小)值与导数 Word版含解析

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列是函数f (x )在[a ,b ]上的图象,则f (x )在(a ,b )上无最大值的是( )【解析】 在开区间(a ,b )上,只有D 选项中的函数f (x )无最大值.【答案】 D2.函数f (x )=2x +1x ,x ∈(0,5]的最小值为( ) A .2 B .3 C.174D .22+12【解析】 由f ′(x )=1x -1x 2=x 32-1x 2=0,得x =1,且x ∈(0,1]时,f ′(x )<0;x ∈(1,5]时,f ′(x )>0, ∴x =1时,f (x )最小,最小值为f (1)=3. 【答案】 B3.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值为M ,最小值为m ,则M -m 的值为( )A .2B .-4C .4D .-2【解析】 f ′(x )=3x 2-6x =3x (x -2), 令f ′(x )=0,得x =0或x =2. 因为f (0)=2,f (-1)=-2,f (1)=0, 所以M =2,m =-2. 所以M -m =4. 【答案】 C4.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <12【解析】 ∵f ′(x )=3x 2-3a ,令f ′(x )=0得x 2=a . ∴x =±a .又∵f (x )在(0,1)内有最小值, ∴0<a <1,∴0<a <1.故选B. 【答案】 B5.已知函数f (x )=ax 3+c ,且f ′(1)=6,函数在[1,2]上的最大值为20,则c 的值为( )A .1B .4C .-1D .0【解析】 ∵f ′(x )=3ax 2, ∴f ′(1)=3a =6,∴a =2.当x ∈[1,2]时,f ′(x )=6x 2>0,即f (x )在[1,2]上是增函数, ∴f (x )max =f (2)=2×23+c =20, ∴c =4. 【答案】 B二、填空题6.函数f (x )=3x +sin x 在x ∈[0,π]上的最小值为________. 【解析】 f ′(x )=3x ln 3+cos x .∵x ∈[0,π]时,3x ln 3>1,-1≤cos x ≤1, ∴f ′(x )>0.∴f (x )递增,∴f (x )min =f (0)=1. 【答案】 17.已知函数f (x )=x 3-32ax 2+b (a ,b 为实数,且a >1)在区间[-1,1]上的最大值为1,最小值为-1,则a =________,b =________.【解析】 ∵f ′(x )=3x 2-3ax =3x (x -a ), 令f ′(x )=0,解得x 1=0,x 2=a . ∵a >1,∴当x 变化时,f ′(x )与f (x )的变化情况如下表:f (-1)=-3a 2,f (1)=2-3a2, f (-1)<f (1), ∴-3a 2=-1,∴a =23. 【答案】 23 18.设函数f (x )=ax 3-3x +1(x ∈R ),若对任意的x ∈(0,1]都有f (x )≥0成立,则实数a 的取值范围为________. 【导学号:26160094】【解析】 ∵x ∈(0,1], ∴f (x )≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4. 令g ′(x )=0,得x =12. 当 0<x <12时,g ′(x )>0; 当12<x ≤1时,g ′(x )<0.∴g (x )在(0,1]上有极大值g ⎝ ⎛⎭⎪⎫12=4,它也是最大值,故a ≥4. 【答案】 [4,+∞) 三、解答题9.求下列各函数的最值.(1)f (x )=x 3-3x 2+6x -2,x ∈[-1,1]; (2)y =5-36x +3x 2+4x 3,x ∈(-2,2).【解】 (1)f ′(x )=3x 2-6x +6=3(x 2-2x +2)=3(x -1)2+3, ∵f ′(x )在[-1,1]内恒大于0, ∴f ′(x )在[-1,1]上为增函数. 故x =-1时,f (x )最小值=-12; x =1时,f (x )最大值=2.即f (x )的最小值为-12,最大值为2.(2)y ′=-36+6x +12x 2,令y ′=0,即12x 2+6x -36=0,解得x 1=32,x 2=-2(舍去).当x ∈⎝ ⎛⎭⎪⎫-2,32时,f ′(x )<0,函数单调递减;当x ∈⎝ ⎛⎭⎪⎫32,2时,f ′(x )>0,函数单调递增. ∴函数f (x )在x =32时取得极小值f ⎝ ⎛⎭⎪⎫32=-2834,无极大值,即在(-2,2)上函数f (x )的最小值为-2834,无最大值.10.设f (x )=-13x 3+12x 2+2ax .(1)若f (x )在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为-163,求f (x )在该区间上的最大值.【解】 由f ′(x )=-x 2+x +2a =-⎝⎛⎭⎪⎫x -122+14+2a , 当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a ;令29+2a >0,得a >-19.所以,当a >-19时,f (x )在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间. (2)令f ′(x )=0,得两根x 1=1-1+8a2, x 2=1+1+8a 2. 所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增.当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2). 又f (4)-f (1)=-272+6a <0,即f (4)<f (1),所以f (x )在[1,4]上的最小值为 f (4)=8a -403=-163,得a =1,x 2=2,从而f (x )在[1,4]上的最大值为f (2)=103.[能力提升]1.已知函数f (x )、g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )【解析】 令u (x )=f (x )-g (x ), 则u ′(x )=f ′(x )-g ′(x )<0, ∴u (x )在[a ,b ]上为减函数,∴u (x )在[a ,b ]上的最大值为u (a )=f (a )-g (a ). 【答案】 A2.设动直线x =m 与函数f (x )=x 3,g (x )=ln x 的图象分别交于点M ,N ,则|MN |的最小值为( )A.13(1+ln 3) B.13ln 3 C .1+ln 3D .ln 3-1【解析】 由题意知,|MN |=|x 3-ln x |.设h (x )=x 3-ln x ,h ′(x )=3x 2-1x ,令h ′(x )=0,得x =313,易知,当x =313时,h (x )取得最小值,h (x )min =13-13ln 13=13⎝⎛⎭⎪⎫1-ln 13>0,故|MN |min =13⎝⎛⎭⎪⎫1-ln 13=13(1+ln 3).【答案】 A3.已知函数f (x )=2ln x +ax 2(a >0),若当x ∈(0,+∞)时,f (x )≥2恒成立,则实数a 的取值范围是________. 【导学号:26160095】【解析】 由f (x )≥2,得a ≥2x 2-2x 2ln x . 设g (x )=2x 2-2x 2ln x , 则g ′(x )=2x (1-2ln x ), 令g ′(x )=0,得x =e 12或x =0(舍去),因为当0<x <e 12 时,g ′(x )>0;当x >e 12 时,g ′(x )<0. 所以当x =e 12时,g (x )取得最大值g (e 12)=e ,故a ≥e.【答案】 a ≥e4.设23<a <1,函数f (x )=x 3-32ax 2+b (-1≤x ≤1)的最大值为1,最小值为-62,求常数a ,b 的值.【解】 令f ′(x )=3x 2-3ax =0,得x 1=0,x 2=a . 由题意可知当x 变化时,f ′(x ),f (x )的变化情况如下表:而f (0)>f (a ),f (1)>f (-1),故需比较f (0)与f (1)的大小. 因为f (0)-f (1)=32a -1>0,所以f (x )的最大值为f (0)=b ,所以b =1,又f (-1)-f (a )=12(a +1)2(a -2)<0,所以f (x )的最小值为f (-1)=-1-32a +b =-32a , 所以-32a =-62,所以a =63. 综上,a =63,b =1......................................使用本文档删除后面的即可 致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学新人教A 版选修1-1活页作业附答案
活页作业(十一) 函数的最大(小)值
(时间:45分钟 满分:100分)
一、选择题(每小题5分,共25分)
1.设函数f (x )=2x -1(x <0),则f (x )( ) A .有最大值 B .有最小值 C .是增函数
D .是减函数
解析:画出函数f (x )=2x -1(x <0)的图象,如图中实线部分所示.由图象可知,函数
f (x )=2x -1(x <0)是增函数,无最大值及最小值.
答案:C
2.函数f (x )=x 2
+3x +2在区间(-5,5)上的最大、最小值分别为( ) A .42,12 B .42,-1
4
C .12,-1
4
D .无最大值,最小值为-1
4
解析:∵f (x )=⎝ ⎛⎭⎪⎫x +322-1
4
,x ∈(-5,5),
∴当x =-32时,f (x )有最小值-1
4,f (x )无最大值.
答案:D 3.已知f (x )=1
x -2
,则y =f (x +2)在区间[2,8]上的最小值与最大值分别为( ) A .18,1
2 B .1
3,1 C .19,13 D .18,13
解析:∵f (x )=
1x -2,∴f (x +2)=1x +2-2=1x
. ∵y =1
x
在[2,8]上为减函数,
∴y max =12,y min =1
8.
答案:A
4.函数f (x )=⎩
⎪⎨
⎪⎧
x +7,x ∈[-1,1,
2x +6,x ∈[1,2],则f (x )的最大值、最小值分别为( )
A .10,6
B .10,8
C .8,6
D .以上都不对
解析:当-1≤x <1时,6≤x +7<8, 当1≤x ≤2时,8≤2x +6≤10. ∴f (x )min =f (-1)=6,
f (x )max =f (2)=10.故选A.
答案:A
5.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2
+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )
A .90万元
B .60万元
C .120万元
D .120.25万元
解析:设公司在甲地销售x 辆, 则在乙地销售(15-x )辆,
公司获利为L =-x 2
+21x +2(15-x )=-x 2
+19x +30=-⎝
⎛⎭⎪⎫x -1922
+30+192
4,
∴当x =9或10时,L 最大为120万元. 答案:C
二、填空题(每小题5分,共15分)
6.函数y =-1
x
,x ∈[-3,-1]的最大值与最小值的差是________.
解析:易证函数y =-1
x
在[-3,-1]上为增函数,
∴y min =13,y max =1.∴y max -y min =1-13=2
3.
答案:2
3
7.函数f (x )=x -1的最小值是________.
解析:设x =t ,t ≥0,所以f (t )=t 2
-1,t ≥0,所以f (x )=x 2
-1,x ≥0,因为f (x )=x 2
-1在[0,+∞)上为增函数,所以f (x )的最小值为-1.即f (x )=x -1的最小值是-1.
答案:-1
8.函数y=ax+1在区间[1,3]上的最大值为4,则a=________.
解析:若a<0,则函数y=ax+1在区间[1,3]上是减函数,则在区间左端点处取得最大值,即a+1=4,a=3,不满足a<0;若a>0,则函数y=ax+1在区间[1,3]上是增函数,则在区间右端点处取得最大值,即3a+1=4,a=1,满足a>0,所以a=1.
答案:1
三、解答题(每小题10分,共20分)
9.求函数f(x)=
⎩⎪

⎪⎧1
x
0<x<1,
x1≤x≤2
的最值.
解:函数f(x)的图象如图,
由图象可知f(x)的最小值为f(1)=1.无最大值.
10.已知函数f(x)=x2-2ax+5(a>1),若f(x)的定义域和值域均是[1,a],求实数a 的值.
解:∵f(x)开口向上,对称轴x=a>1,∴f(x)在[1,a]上是减函数.
∴f(x)的最大值为f(1)=6-2a,f(x)的最小值为f(a)=5-a2.∴6-2a=a,5-a2=1.∴a=2.
一、选择题(每小题5分,共10分)
1.函数f(x)=
1
1-x1-x
的最大值是( )
A.
4
5
B.
5
4
C.
3
4
D.
4
3
解析:f(x)=
1
1-x1-x

1
x2-x+1

1


⎭⎪

x-
1
2
2+
3
4
,∴当x=
1
2
时,f(x)max=
4
3
.
答案:D
2.当0≤x≤2时,a<-x2+2x恒成立,则实数a的取值范围是( )
A.(-∞,1] B.(-∞,0]
C .(-∞,0)
D .(0,+∞)
解析:a <-x 2
+2x 恒成立,则a 小于函数f (x )=-x 2
+2x ,x ∈[0,2]的最小值,而f (x )=-x 2
+2x ,x ∈[0,2]的最小值为0,故a <0.
答案:C
二、填空题(每小题5分,共10分)
3.对于函数f (x )=x 2
+2x ,在使f (x )≥M 成立的所有实数M 中,我们把M 的最大值M max
=-1叫做函数f (x )=x 2
+2x 的下确界,则对于a ∈R ,且a ≠0,a 2
-4a +6的下确界为________.
解析:a 2
-4a +6=(a -2)2
+2≥2, 则a 2
-4a +6的下确界为2. 答案:2
4.定义在R 上的函数f (x )对任意两个不等的实数x 1,x 2,总有
f x 1-f x 2
x 1-x 2
>0成
立,且f (-3)=a ,f (-1)=b ,则f (x )在[-3,-1]上的最大值是________.
解析:由
f x 1-f x 2
x 1-x 2
>0,得f (x )在R 上是增函数,则f (x )在[-3,-1]上的最
大值是f (-1)=b .
答案:b
三、解答题(每小题10分,共20分)
5.已知函数f (x )=x 2+2x +a
x
,若对任意x ∈[1,+∞),f (x )>0恒成立,试求a 的取
值范围.
解:在区间[1,+∞)上,f (x )=x 2+2x +a x
>0恒成立⇔x 2+2x +a >0恒成立,即a >-(x
2
+2x )在[1,+∞)上恒成立.由于g (x )=-(x 2
+2x )=-(x +1)2
+1在[1,+∞)上单调递减,
∴g (x )max =g (1)=-3.∴a >-3.
6.某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足如下函数:
R (x )=⎩⎪⎨
⎪⎧
400x -12x 20≤x ≤400,80 000x >400,
其中x 是仪器的产量.
(1)将利润f (x )表示为产量x 的函数.(利润=总收益-总成本) (2)当产量x 为何值时,公司所获利润最大?最大利润是多少元?
解:(1)由题意知f (x )=R (x )-100x -20 000=
⎩⎪⎨⎪⎧
-12x 2+300x -20 0000≤x ≤400,-100x +60 000x >400.
(2)当0≤x ≤400时,f (x )=-12(x -300)2
+25 000,
即当x =300时,f (x )有最大值25 000, 当x >400时,f (x )<20 000.
综上可知,当月产量为300台时,公司获得最大利润25 000元.。

相关文档
最新文档