高考物理高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)

合集下载

高考物理生活中的圆周运动的基本方法技巧及练习题及练习题(含答案)及解析

高考物理生活中的圆周运动的基本方法技巧及练习题及练习题(含答案)及解析

高考物理生活中的圆周运动的基本方法技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()221 2A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0=4gR ,则小球运动到半圆上B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度v=4gR ,初始位置变为x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >(3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+2.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.3.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 020v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh =所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v 代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)

高考物理高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)

高考物理高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小3.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨;(3)由④式可知:214/1A AB m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.4.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =4.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.5.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R,A点与圆心O等高,B点在O 的正上方,AD为与水平方向成θ=45°角的斜面,AD长为72R.一个质量为m的小球(视为质点)在A点正上方h处由静止释放,自由下落至A点后进入圆形轨道,并能沿圆形轨道到达B点,且到达B处时小球对圆轨道的压力大小为mg,重力加速度为g,求:(1)小球到B点时的速度大小v B(2)小球第一次落到斜面上C点时的速度大小v(3)改变h,为了保证小球通过B点后落到斜面上,h应满足的条件【答案】2gR10gR 33 2R h R≤≤【解析】【分析】【详解】(1)小球经过B点时,由牛顿第二定律及向心力公式,有2Bv mg mg m R+=解得B v(2)设小球离开B 点做平抛运动,经时间t ,下落高度y ,落到C 点,则212y gt =cot B y v t θ=两式联立,得2244B v gR y R g g===对小球下落由机械能守恒定律,有221122B mv mgy mv += 解得v ===(3)设小球恰好能通过B 点,过B 点时速度为v 1,由牛顿第二定律及向心力公式,有21v mg m R=又211()2mg h R mv -=得32h R =可以证明小球经过B 点后一定能落到斜面上设小球恰好落到D 点,小球通过B 点时速度为v 2,飞行时间为t ',21)sin 2gt θ='2)cos v t θ='解得2v =又221()2mg h R mv -=可得3h R =故h 应满足的条件为332R h R ≤≤ 【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.6.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,在水平桌面上离桌面右边缘3.2m处放着一质量为0.1kg的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A点飞出,恰好落到竖直圆弧轨道BCD的B端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D.已知∠BOC=37°,A、B、C、D四点在同一竖直平面内,水平桌面离B端的竖直高度H=0.45m,圆弧轨道半径R=0.5m,C点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D点时的速度大小v D;(2)若铁球以v C=5.15m/s的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小F C;(计算结果保留两位有效数字)(3)铁球运动到B点时的速度大小v B;(4)水平推力F作用的时间t。

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,半径R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,依据动能定理; -μ mgs= mv解得: v A设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.2. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平川面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02hgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为:【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.3.如下图,物体 A 置于静止在圆滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度开释,并在最低点与物体 A 发生水公正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ=, A、 C碰撞时间极短,且只碰一次,取重力加快度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬时遇到细线的拉力大小;(2)求 A、 C 碰撞后瞬时 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【分析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摇动的过程中机械能守恒,得:1mv C2mgh 2因此: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=(3)物块 A 与木板 B 互相作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v =1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =;4. 如下图,一质量 M =4kg 的小车静置于圆滑水平川面上,左边用固定在地面上的销钉挡住。

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

高考物理高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-=从C 点到落地的时间:00.8t s == B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.4.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧.在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.5.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=-解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.6.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得:T11s2mg042( H L )L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.2.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω0时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0.(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0g .=l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.3.如下图,高为L 的倾斜直轨道AB、 CD 与水平面的夹角均为53°,分别与竖直平面内的圆滑圆弧轨道相切于B、D 两点,圆弧的半径也为L 。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2ω=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t 220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 020v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v 代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;5.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零; (3)转台从静止开始加速到角速度3gLω=的过程中,转台对物块做的功.【答案】(1)1gLμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1g Lμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.6.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+7.某工厂在竖直平面内安装了如图所示的传送装置,圆心为O 的光滑圆弧轨道AB 与足够长倾斜传送带BC 在B 处相切且平滑连接,OA 连线水平、OB 连线与竖直线的夹角为37θ=︒,圆弧的半径为 1.0m R =,在某次调试中传送带以速度2m/s v =顺时针转动,现将质量为13kg m =的物块P (可视为质点)从A 点位置静止释放,经圆弧轨道冲上传送带,当物块P 刚好到达B 点时,在C 点附近某一位置轻轻地释放一个质量为21kg m =的物块Q 在传送带上,经时间 1.2s t =后与物块P 相遇并发生碰撞,碰撞后粘合在一起成为粘合体A .已知物块P 、Q 、粘合体S 与传送带间的动摩擦因数均为0.5μ=,重力加速度210m/s g =,sin370.6︒=,cos370.8︒=.试求:(1)物块P 在B 点的速度大小; (2)传送带BC 两端距离的最小值;(3)粘合体回到圆弧轨道上B 点时对轨道的压力.【答案】(1)4m/s (2)3.04m (3)59.04N ,方向沿OB 向下。

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:1233gRv =,2533gR v =4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B 运动到C ,根据动能定理有:解得:(3)从C 点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B 点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.一轻质细绳一端系一质量为m =0.05吻的小球儿另一端挂在光滑水平轴O 上,O 到小球的距离为L = 0.1m ,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示水平距离s=2m ,动摩擦因数为μ=0.25.现有一滑块B ,质量也为m =0.05kg ,从斜面上高度h =5m 处滑下,与 小球发生弹性正碰,与挡板碰撞时不损失机械能.若不计空气阻力,并将滑块和小球都视为质点,(g 取10m/s 2,结果用根号表示),试问:(1)求滑块B 与小球第一次碰前的速度以及碰后的速度. (2)求滑块B 与小球第一次碰后瞬间绳子对小球的拉力.(3)滑块B 与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数.【答案】(1)滑块B 95,碰后的速度为0;(2)滑块B 与小球第一次碰后瞬间绳子对小球的拉力48N ;(3)小球做完整圆周运动的次数为10次。

高中物理高考物理生活中的圆周运动解题技巧分析及练习题(含答案)

高中物理高考物理生活中的圆周运动解题技巧分析及练习题(含答案)

高中物理高考物理生活中的圆周运动解题技巧分析及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,BC为半径r 225=m竖直放置的细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球过C点时速度大小不变,小球冲出C点后经过98s再次回到C点。

(g=10m/s2)求:(1)小球从O点的正上方某处A点水平抛出的初速度v0为多大?(2)小球第一次过C点时轨道对小球的支持力大小为多少?(3)若将BC段换成光滑细圆管,其他不变,仍将小球从A点以v0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N的恒力,试判断小球在BC段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。

【答案】(1)2m/s(2)20.9N(3)2N【解析】【详解】(1)小球从A运动到B为平抛运动,有:r sin45°=v0t在B点有:tan45°gtv=解以上两式得:v0=2m/s(2)由牛顿第二定律得:小球沿斜面向上滑动的加速度:a14545mgsin mgcosmμ︒+︒==g sin45°+μg cos45°=22小球沿斜面向下滑动的加速度:a24545mgsin mgcosmμ︒-︒==g sin45°﹣μg cos45°=2m/s2设小球沿斜面向上和向下滑动的时间分别为t1、t2,由位移关系得:12a1t1212=a2t22又因为:t 1+t 298=s 解得:t 138=s ,t 234=s小球从C 点冲出的速度:v C =a 1t 1=32m/s在C 点由牛顿第二定律得:N ﹣mg =m 2Cv r解得:N =20.9N(3)在B 点由运动的合成与分解有:v B 045v sin ==︒22m/s 因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤3.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >3)()44R π+【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+4.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,在水平桌面上离桌面右边缘3.2m处放着一质量为0.1kg的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A点飞出,恰好落到竖直圆弧轨道BCD的B端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D.已知∠BOC=37°,A、B、C、D四点在同一竖直平面内,水平桌面离B端的竖直高度H=0.45m,圆弧轨道半径R=0.5m,C点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D点时的速度大小v D;(2)若铁球以v C=5.15m/s的速度经过圆弧轨道最低点C,求此时铁球对圆弧轨道的压力大小F C;(计算结果保留两位有效数字)(3)铁球运动到B点时的速度大小v B;(4)水平推力F作用的时间t。

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析

高考物理生活中的圆周运动解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=-可得:1R Lμ=若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=-可得:22R Lμ=若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=-综上所述,μ需满足的条件:2R R L Lμ<<.4.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.5.如图所示,一质量为m =1kg 的小球从A 点沿光滑斜面轨道由静止滑下,不计通过B 点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R =10cm ,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E 点运动,E 点右侧有一壕沟,E 、F 两点的竖直高度d =0.8m ,水平距离x =1.2m ,水平轨道CD 长为L 1=1m ,DE 长为L 2=3m .轨道除CD 和DE 部分粗糙外,其余均光滑,小球与CD 和DE 间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:(1)小球通过第二个圆形轨道的最高点时的速度; (2)小球通过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A 点释放时的高度的范围是多少?【答案】(1)1m/s (2)40N (3)0.450.8m h m ≤≤或 1.25h m ≥ 【解析】⑴小球恰能通过第二个圆形轨道最高点,有:22v mg m R=求得:υ2gR ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: −μmgL 1=12mv 22−12mv 12 ② 求得:υ12212gL υμ+5在最高点时,合力提供向心力,即F N +mg=21m Rυ ③ 求得:F N = m(21Rυ−g)= 40N根据牛顿第三定律知,小球对轨道的压力为:F N ′=F N =40N ④⑵若小球恰好通过第二轨道最高点,小球从斜面上释放的高度为h1,在这一过程中应用动能定理有:mgh 1 −μmgL 1 −mg 2R =12mv 22 ⑤ 求得:h 1=2R+μL 1+222gυ=0.45m 若小球恰好能运动到E 点,小球从斜面上释放的高度为h 1,在这一过程中应用动能定理有:mgh 2−μmg(L 1+L 2)=0−0 ⑥ 求得: h 2=μ(L 1+L 2)=0.8m使小球停在BC 段,应有h 1≤h≤h 2,即:0.45m≤h≤0.8m 若小球能通过E 点,并恰好越过壕沟时,则有d =12gt 2 ⑦ x=v E t →υE =xt=3m/s ⑧ 设小球释放高度为h 3,从释放到运动E 点过程中应用动能定理有: mgh 3 −μmg(L 1+L 2)=212E mv −0 ⑨ 求得:h 3=μ(L 1+L 2)+22Egυ=1.25m 即小球要越过壕沟释放的高度应满足:h≥1.25m综上可知,释放小球的高度应满足:0.45m≤h≤0.8m 或 h≥1.25m ⑩6.如图所示,在光滑水平桌面EAB 上有质量为m =2 kg 的小球P 和质量为M =1 kg 的小球Q ,P 、Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E 处放置一质量也为M =1 kg 的橡皮泥球S ,在B 处固定一与水平桌面相切的光滑竖直半圆形轨道。

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)(1)

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)(1)

高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)(1)一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =3.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R ,A 点与圆心O 等高,B 点在O 的正上方,AD 为与水平方向成θ=45°角的斜面,AD 长为72R .一个质量为m 的小球(视为质点)在A 点正上方h 处由静止释放,自由下落至A 点后进入圆形轨道,并能沿圆形轨道到达B 点,且到达B 处时小球对圆轨道的压力大小为mg ,重力加速度为g ,求:(1)小球到B 点时的速度大小v B(2)小球第一次落到斜面上C 点时的速度大小v(3)改变h ,为了保证小球通过B 点后落到斜面上,h 应满足的条件 【答案】2gR 10gR 332R h R ≤≤【解析】 【分析】 【详解】(1)小球经过B 点时,由牛顿第二定律及向心力公式,有2Bv mg mg m R+=解得2B v gR(2)设小球离开B 点做平抛运动,经时间t ,下落高度y ,落到C 点,则212y gt =cot B y v t θ=两式联立,得2244B v gR y R g g===对小球下落由机械能守恒定律,有221122B mv mgy mv += 解得v ===(3)设小球恰好能通过B 点,过B 点时速度为v 1,由牛顿第二定律及向心力公式,有21v mg m R=又211()2mg h R mv -=得32h R =可以证明小球经过B 点后一定能落到斜面上设小球恰好落到D 点,小球通过B 点时速度为v 2,飞行时间为t ',21)sin 2gt θ='2)cos v t θ='解得2v =又221()2mg h R mv -=可得3h R =故h 应满足的条件为332R h R ≤≤ 【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.4.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.5.如图所示,一质量为m 的小球C 用轻绳悬挂在O 点,小球下方有一质量为2m 的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A碰C前与平板车速度达到相等,由动量守恒定律列出等式;A减速的最大距离为d,由动能定理列出等式,联立求解。

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)

高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)

高考物理生活中的圆周运动解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C点后经过98s 再次回到C 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理高考物理生活中的圆周运动解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r = 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=3.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,4.如图甲所示,轻质弹簧原长为2L ,将弹簧竖直放置在水平地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为L .现将该弹簧水平放置,如图乙所示.一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5L 的水平轨道,B 端与半径为L 的光滑半圆轨道BCD 相切,半圆的直径BD 在竖直方向上.物块P 与AB 间的动摩擦因数0.5μ=,用外力推动物块P ,将弹簧压缩至长度为L 处,然后释放P ,P 开始沿轨道运动,重力加速度为g .(1)求当弹簧压缩至长度为L 时的弹性势能p E ;(2)若P 的质量为m ,求物块离开圆轨道后落至AB 上的位置与B 点之间的距离; (3)为使物块P 滑上圆轨道后又能沿圆轨道滑回,求物块P 的质量取值范围.【答案】(1)5P E mgL = (2) 22S L = (3)5532m M m # 【解析】 【详解】(1)由机械能守恒定律可知:弹簧长度为L 时的弹性势能为(2)设P 到达B 点时的速度大小为,由能量守恒定律得:设P 到达D 点时的速度大小为,由机械能守恒定律得:物体从D 点水平射出,设P 落回到轨道AB 所需的时间为θ θ 22S L =(3)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点的速度不能小于零 得54mgL MgL μ> 52M m <要使P 仍能沿圆轨道滑回,P 在圆轨道的上升高度不能超过半圆轨道的中点C ,得212BMv MgL '≤ 2142p BE Mv MgL μ='+5.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=-可得:1R Lμ=若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=-可得:22R Lμ=若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=-综上所述,μ需满足的条件:2R R L Lμ<<.6.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv - 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s 22x H +解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m7.某工地某一传输工件的装置可简化为如图所示的情形,AB为一段足够长的曲线轨道,BC为一段足够长的水平轨道,CD为一段圆弧轨道,圆弧半径r=1m,三段轨道均光滑。

一长为L=2m、质量为M=1kg的平板小车最初停在BC轨道的最左端,小车上表面刚好与AB轨道相切,且与CD轨道最低点处于同一水平面。

一可视为质点、质量为m=2kg的工件从距AB轨道最低点h高处沿轨道自由滑下,滑上小车后带动小车也向右运动,小车与CD 轨道左端碰撞(碰撞时间极短)后即被粘在C处。

工件只有从CD轨道最高点飞出,才能被站在台面DE上的工人接住。

相关文档
最新文档