七年级上期末数学试卷含答案解析

合集下载

人教版七年级上学期数学《期末测试题》含答案解析

人教版七年级上学期数学《期末测试题》含答案解析
8.如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()
A. 1,﹣3,0B. 0,﹣3,1C. ﹣3,0,1D. ﹣3,1,0
[答案]A
[解析]
使得它们折成正方体后相对的面上两个数互为相反数,则A与-1,B与3;C与0互为相反数.
17.计算:
(1)﹣8﹣3×(﹣12)+8;
(2)﹣6× ﹣|(﹣8)÷2|
18.(1)化简:
(2)先化简,再求值: ,其中 , .
19.解方程
(1)
(2)
20.为了某校七年级学生对 《最强大脑》、 《朗读者》、 《中国诗词大会》、 《极限挑战》四个电视节目的喜爱情况,随机抽取了 位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2)
7.若 的和是单项式,则 的值是()
A.1B.-1C.2D.0
[答案]A
[解析]
[分析]
和是单项式说明两式可以合并,从而可以判断两式为同类项,根据同类项 相同字母的指数相等可得出x、y的值.
[详解]解:由 的和是单项式,
则x+2=1,y=2,
解得x=−1,y=2,
则xy=(−1)2=1,
故选A.
[点睛]本题考查同类项的知识,属于基础题,注意同类项的相同字母的指数相同.
(2)当 _________秒时, ;
(3)若点 、 与线段 同时移动,点 以每秒2个单位长度的速度向数轴的正方向移动,点 以每秒1个单位长度的速度向数轴的负方向移动.在移动过程中,当 时, 的值为__________.

2023-2024学年天津市部分区七年级(上)期末数学试卷+答案解析

2023-2024学年天津市部分区七年级(上)期末数学试卷+答案解析

2023-2024学年天津市部分区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列四个数中,是负整数的是()A.0B.C.D.2.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为亿亩.将250000000用科学记数法表示应为()A. B. C. D.3.如图所示的几何体,从上往下看的视图是()A. B. C. D.4.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上记作,则表示气温为()A.零上B.零下C.零上D.零下5.下面的计算正确的是()A. B.C. D.6.如果是关于x的方程的解,那么a的值为()A. B.4 C.6 D.107.若多项式为常数化简后的结果不含字母y,则a的值为()A. B.0 C.2或 D.68.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它的北偏东的方向上,观测到小岛B在它的南偏西的方向上,则的度数是()A.B.C.D.9.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D.10.A,B,C三点在同一直线上,线段,,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不对11.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.设人数为x,则可列方程为()A. B. C. D.12.观察如图“蜂窝图”,按照这样的规律,第2024个图案中的“”的个数是()A.6074B.6072C.6073D.6068二、填空题:本题共6小题,每小题3分,共18分。

13.已知一个角是,则它的余角是______.14.按括号内的要求,用四舍五入法求近似数:精确到______.15.如图所示,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是______,依据是______.16.若,则______,______.17.如图,,OC平分,OD平分,则的大小为______度18.已知数轴上A,B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为,B两点之间的距离为______;式子的最小值为______.三、计算题:本大题共1小题,共8分。

山东省济南市七年级(上)期末数学试卷(含解析)

山东省济南市七年级(上)期末数学试卷(含解析)

山东省济南市七年级(上)期末数学试卷一、选择题(本大题共12个小照,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是()A.﹣2B.0C.D.﹣π2.如图,几何体的左视图是()A.B.C.D.3.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四4.下列选项中,表示点P在点O十点钟方向正确的是()A.B.C.D.5.下列说法中正确的是()A.0不是单项式B.6πx3的系数为6C.3x﹣6y+5不是多项式D.2ah的次数26.已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.射线AB与射线BC是指同一条射线C.图中共有5条线段D.直线AB与直线CA是指同一条直线7.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+48.“享受光影文化,感受城市魅力”,2018年4月15~22日第八届北京国际电影节顺利举办.如面的统计图反映了北京国际电影节参展影片的有关情况:悬疑剧情爱情喜剧科幻动作古装动画其他影片类型届第七届8.70%25.30%17.80%12.20%13.00%7.80%0 3.80%11.40%第八届21.33%19.94%18.70%15.37%10.66%7.48% 4.02% 1.39% 1.11%根据统计图提供的信息,下列推断合理的是()A.两届相比较,所占比例最稳定的是动作类影片B.两届相比较,所占比例增长最多的是剧情类影片C.第八届悬疑类影片数量比第七届的2倍还多D.在第七届中,所占比例居前三位的类型是悬疑类、剧情类和爱情类9.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x10.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()A.10B.6C.4D.211.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a >b),则a﹣b的值为()A.6B.8C.9D.1212.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的﹣2019所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:|﹣3|﹣1=.14.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是.15.若x+2与﹣5互为相反数,则x的值为.16.如图,是一种数值转换机的运算程序.若输入的数为5,则第100次输出的数是.17.在直线l上有四个点A、B、C、D,已知AB=24,AC=6,点D是BC的中点,则线段AD=.18.如图,甲、乙两动点分别从正方形ABCD的顶点,A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边上(填AB,BC,CD或AD).三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(1)8+(﹣3)2×(﹣2);(2)﹣×(﹣+).20.(6分)解方程:(1)﹣2x+4=0;(2)6﹣3(x+)=.21.(6分)(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.22.(8分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.23.(8分)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,(1)计算:(x2+y)ω(x2﹣y)(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.24.(10分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?25.(10分)计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值26.(12分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?27.(12分)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.参考答案与试题解析一、选择题(本大题共12个小照,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是()A.﹣2B.0C.D.﹣π【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:|﹣|=,则|﹣|>0>﹣2>﹣π,故最小的数是:﹣π.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.3.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四【分析】根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【解答】解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.4.下列选项中,表示点P在点O十点钟方向正确的是()A.B.C.D.【分析】根据点P在点O十点钟方向,而10点与12点相隔2格,每格30°即可得.【解答】解:∵点P在点O十点钟方向,而10点与12点相隔2格,每格30°,∴表示点P在点O十点钟方向的图形为:故选:B.【点评】本题主要考查方向角,解题的关键是熟练掌握方向角的定义.5.下列说法中正确的是()A.0不是单项式B.6πx3的系数为6C.3x﹣6y+5不是多项式D.2ah的次数2【分析】根据单项式与多项式的概念即可求出答案.【解答】解:(A)0是单项式,故A错误;(B)6πx3的系数为6π,故B错误;(C)3x﹣6y+5是多项式,故C错误;故选:D.【点评】本题考查整式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.已知如图,则下列叙述不正确的是()A.点O不在直线AC上B.射线AB与射线BC是指同一条射线C.图中共有5条线段D.直线AB与直线CA是指同一条直线【分析】根据点与直线的关系可知点O不在直线AC上,故A说法正确,不符合题意;射线表示方法是端点字母在前,故B错误,符合题意;图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;直线表示方法是用直线上两个点表示,没有先后顺序,故D正确,不符合题意.【解答】解:A、点O不在直线AC上,故A说法正确,不符合题意;B、射线AB与射线BC不是指同一条射线,故B错误,符合题意;C、图中有线段AB、AC、BC、OB、OC,共5条,故C说法正确,不符合题意;D、直线AB与直线CA是指同一条直线,故D正确,不符合题意.故选:B.【点评】此题主要考查了直线、射线、线段,以及点与直线的位置关系,关键是掌握三线的表示方法.7.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【分析】根据去括号法则逐个判断即可.【解答】解:A、﹣3(m+n)﹣mn=﹣3m﹣3n﹣mn,错误,故本选项不符合题意;B、﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2,正确,故本选项符合题意;C、ab﹣5(﹣a+3)=ab+5a﹣15,错误,故本选项不符合题意;D、x2﹣2(2x﹣y+2)=x2﹣4x+2y﹣4,错误,故本选项不符合题意;故选:B.【点评】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.8.“享受光影文化,感受城市魅力”,2018年4月15~22日第八届北京国际电影节顺利举办.如面的统计图反映了北京国际电影节参展影片的有关情况:影片类型悬疑剧情爱情喜剧科幻动作古装动画其他届第七届8.70%25.30%17.80%12.20%13.00%7.80%0 3.80%11.40%第八届21.33%19.94%18.70%15.37%10.66%7.48% 4.02% 1.39% 1.11%根据统计图提供的信息,下列推断合理的是()A.两届相比较,所占比例最稳定的是动作类影片B.两届相比较,所占比例增长最多的是剧情类影片C.第八届悬疑类影片数量比第七届的2倍还多D.在第七届中,所占比例居前三位的类型是悬疑类、剧情类和爱情类【分析】根据表格中的数据可以判断各个选项中的说法是否合理,本题得以解决.【解答】解:两届相比较,所占比例最稳定的是动作类影片,故选项A合理,两届相比较,所占比例增长最多的是悬疑类,故选项B不合理,第八届悬疑类影片所占的比例比第七届的2倍还多,故选项C不合理,在第七届中,所占比例居前三位的类型是剧情类、爱情类、科幻类,故选项D不合理,故选:A.【点评】本题考查统计表,解答本题的关键是明确题意,可以判断出各个选项中的说法是否合理.9.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为()A.100﹣x=2(68+x)B.2(100﹣x)=68+xC.100+x=2(68﹣x)D.2(100+x)=68﹣x【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆﹣调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【解答】解:设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.10.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于()A.10B.6C.4D.2【分析】由线段的中点定义可得BD=6,BC=10,由线段的和差关系可求CD的长.【解答】解:∵E为DB的中点,且EB=3,∴BD=2BE=6,∵线段AB=20,C为AB的中点,∴CB=AC=10,∵CD=BC﹣BD∴CD=4故选:C.【点评】本题考查了两点间的距离,线段中点的定义,利用线段的和差关系求线段的长度是本题的关键.11.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a >b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.12.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的﹣2019所对应的点与圆周上字母()所对应的点重合.A.A B.B C.C D.D【分析】圆每转动一周,A、B、C、D循环一次,﹣2019与1之间有2020个单位长度,即转动2020÷4=505(周),据此可得.【解答】解:1﹣(﹣2019)=2020,2020÷4=505(周),所以应该与字母A所对应的点重合.故选:A.【点评】此题考查数轴,以及循环的有关知识,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.计算:|﹣3|﹣1=2.【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是﹣2b3+3ab2+4a2b+a3.【分析】根据多项式的项的定义,可知本多项式的项为4a2b,3ab2,﹣2b2,a3,再由加法的交换律及多项式的升幂排列得出结果.【解答】解:多项式4a2b+3ab2﹣2b2+a3的各项为4a2b,3ab2,﹣2b2,a3.按字母a升幂排列为:﹣2b3+3ab2+4a2b+a3.故答案为:﹣2b3+3ab2+4a2b+a3.【点评】本题考查了多项式升幂排列的定义.把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.15.若x+2与﹣5互为相反数,则x的值为3.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意可得:x+2=5,解得:x=3,故答案为;3【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.16.如图,是一种数值转换机的运算程序.若输入的数为5,则第100次输出的数是1.【分析】根据数值转换机中的运算程序判断即可.【解答】解:当第1次输入的数为x=5时,第一次输出5+3=8,第二次输出8×=4,第三次输出4×=2,第四次输出2×=1,第五次输出1+3=4,除去前1次,以4,2,1循环,三个一循环,则第100次输出的数为1;故答案为:1.【点评】此题考查了代数式求值,弄清题中的规律是解本题的关键.17.在直线l上有四个点A、B、C、D,已知AB=24,AC=6,点D是BC的中点,则线段AD=9或15.【分析】分类讨论:C在线段AB的反向延长向上;C在线段AB上;根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【解答】解:如图1,当C在线段AB的反向延长向上时,由线段的和差,得BC=AB+AC =24+6=30,由线段中点的性质,得CD=BC=×30=15,AD=CD﹣AC15﹣6=9;如图2,当C在线段AB上时,由线段的和差,得BC=AB﹣AC=24﹣6=18,由线段中点的性质,得CD=BC=×18=9,AD=AC+CD=6+9=15.故答案为:9或15.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键,以防遗漏.18.如图,甲、乙两动点分别从正方形ABCD的顶点,A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在BC边上(填AB,BC,CD或AD).【分析】因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环,从而不难求得它们第2019次相遇位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,故第1次相遇,甲走了正方形周长的×=;从第2次相遇起,每次甲走了正方形周长的,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.(2019﹣1)÷5=403…3,故它们第2019次相遇位置与第三次相同,在边BC上.故答案为BC.【点评】此题主要考查了行程问题中的相遇问题及按比例分配的运用,通过计算发现规律是解题关键.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(1)8+(﹣3)2×(﹣2);(2)﹣×(﹣+).【分析】(1)先计算乘方,再计算乘法,最后计算加减可得;(2)先利用乘法分配律计算,再计算乘法,最后计算加减可得.【解答】解:(1)原式=8+9×(﹣2)=8﹣18=﹣10;(2)原式=﹣×+×﹣×=﹣4+3﹣2=﹣2.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.(6分)解方程:(1)﹣2x+4=0;(2)6﹣3(x+)=.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:﹣2x=﹣4,解得:x=2;(2)去括号得:6﹣3x﹣2=,去分母得:18﹣9x﹣6=2,移项合并得:﹣9x=﹣10,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.【分析】(1)利用利用线段的定义得出即可;利用射线的定义得出即可;直线的定义得出即可;(2)根据点在直线上,点在直线外,即可解答.【解答】解:(1)如图所示:(2)点A在直线l上,点P在直线l外.【点评】此题主要考查了基本作图,熟练根据相关定义得出是解题关键.22.(8分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.【分析】(1)用正方形的面积减去两个三角形,一个小正方形面积,表示出S即可;(2)把x与y的值代入计算即可求出值.【解答】解:(1)根据题意得:S=100﹣xy﹣xy﹣xy=100﹣2xy;(2)当x=3,y=2时,原式=100﹣12=88.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.23.(8分)若“ω”是新规定的某种运算符号,设aωb=3a﹣2b,(1)计算:(x2+y)ω(x2﹣y)(2)若x=﹣2,y=2,求出(x2+y)ω(x2﹣y)的值.【分析】(1)先依据定理列出代数式,然后依据整式的运算法则进行计算即可;(2)将x=﹣2,y=2代入(1)的化简结果进行计算即可.【解答】解:(x2+y)ω(x2﹣y)=3(x2+y)﹣2(x2﹣y)=3x2+3y﹣2x2+2y=x2+5y;(2)将x=﹣2,y=2代入得:原式=(﹣2)2+5×2=2+20=14.【点评】本题主要考查的是整式的加减和求代数式的值,掌握整式的加减法则是解题的关键.24.(10分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(10分)计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值【分析】(1)由题意x=±3,y=±2,由于xy<0,x=3,y=﹣2或x=﹣3,y=2,代入x+y即可求出答案.(2)由题意x=±3,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:由题意知:x=±3,y=±2,(1)∵xy<0,∴x=3,y=﹣2或x=﹣3,y=2,∴x+y=±1,(2)当x=3,y=2时,x﹣y=3﹣2=1;当x=3,y=﹣2时,x﹣y=3﹣(﹣2)=5;当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,所以x﹣y的最大值是5【点评】本题考查绝对值的性质,涉及代入求值,分类讨论的思想,属于基础题型.26.(12分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇?(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?(3)若两人同时出发,相向而行,则几小时后两人相距10千米?【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b+20b﹣70|=10,解得,b1=,b2=,答:小时或小时后两人相距10千米.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.27.(12分)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为40°;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.【分析】(1)(2)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC+∠BOC)=AOB,即可得出答案;(3)根据角平分线定义得出∠DOC=∠AOC,∠EOC=∠BOC,求出∠DOE=(∠AOC﹣∠BOC)=AOB,即可得出答案;(4)根据角平分线定义即可求解.【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOC,∠EOC=∠BOC,∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=∠AOC+∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=∠AOC,∠EOC=∠BOC,∠DOE=∠COD﹣∠EOC,=∠AOC﹣∠BOC,=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.【点评】本题考查了角的有关计算和角平分线定义,能够求出∠DOE=∠AOB是解此题的关键,求解过程类似.。

七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列是一元一次方程的是()A.x+1B.x+1=y C.2x+1=﹣1D.x+1=x22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.已知a=b,下列变形不一定成立的是()A.a﹣n=b﹣n B.an=bn C.a2=b2D.=14.已知x=1是关于x的一元一次方程2x﹣a=0的解,则a的值为()A.﹣1B.﹣2C.1D.25.下列运算正确的是()A.﹣2(a﹣b)=﹣2a﹣b B.﹣2(a﹣b)=﹣2a+bC.﹣2(a﹣b)=﹣2a﹣2b D.﹣2(a﹣b)=﹣2a+2b6.如图是正方体的一个平面展开图,则原正方体上与“周”相对的面上的字是()A.七B.十C.华D.诞7.某车间28名工人生产螺栓螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x列的方程是()A.12x=18(28﹣x)B.12x=2×18(28﹣x)C.2×18x=18(28﹣x)D.2×12x=18(28﹣x)8.如图,一直线段AB:BC:CD=3:2:4,点E、F分别是AB、CD的中点,且EF=22cm,则线段BC的长为()cm.A.8B.9C.11D.129.不相等的有理数a,b,c在数轴上的对应点分别是A、B、C,如果|a﹣b|+|b﹣c|=|a﹣c|,那么点B()A.在A、C点的左边B.在A、C点的右边C.在A、C点之间D.上述三种均可能10.如图,射线OB、OC在∠AOD的内部,下列说法:①若∠AOC=∠BOD=90°,则与∠BOC互余的角有2个;②若∠AOD+∠BOC=180°,则∠AOC+∠BOD=180°;③若OM、ON分别平分∠AOD,∠BOD,则∠MON=∠AOB;④若∠AOD=150°、∠BOC=30°,作∠AOP=∠AOB、∠DOQ=∠COD,则∠POQ=90°其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,共18分)11.若|a|=2,则a=.12.一个角的补角是它本身的3倍,则这个角的度数为.13.在同一平面内,三条直线两两相交,交点的个数为.14.若关于x的方程mx|m+1|﹣2=0是一元一次方程,则m=.15.一文具店在某一时间以每件30元的价格卖出两个笔袋,其中一个盈利25%,另一个亏损25%.卖这两个笔袋总的盈亏情况是元(填盈利或亏损多少)16.如图,数轴上线段AB及可移动的线段CD(点A在点B的左侧,点C在点D的左侧),已知线段AB覆盖8个整数点(数轴上对应整数的点),线段CD覆盖2个整数点,点M,点N分别为AC、BD的中点,则线段MN覆盖个整数点.三、解答题(共8题,共72分)17.(8分)计算:(1)48°39′+67°31′(2)18.(8分)解方程:19.(8分)先化简,再求值:,其中x=﹣3,y=2.20.(8分)整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?21.(8分)已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a﹣c|,求(1)中式子的值.22.(10分)为了支持囤货,大智路某手机卖场本月计划用9万元购进某国产品牌手机,从卖场获知该品牌3中不同型号的国产手机的进价及售价如下表:若该手机卖场同时购进两种不同型号的手机共50台,9万元刚好用完.(1)请你确定该手机卖场的进货方案,并说明理由;(2)该卖场老板准备把这批手机销售的利润的50%捐给公益组织,在同时购进两种不同型号的手机方案中,为了使捐款最多,你选择哪种方案?23.(10分)已知,直线l上线段AB=8、线段CD=4(点A在点B的左侧,点C在点D的左侧)(1)若线段BC=2,则线段AD=;(2)如图2,点P、Q分别为AD、BC的中点,求线段PQ的长度;(3)若线段CD从点B开始以1个单位/秒的速度向右运动,同时,点M从点A开始以2个单位/秒的速度向右运动,点N是线段BD的中点,若MN=2DN,求线段CD运动的时间.24.(12分)已知∠AOB、∠COD,射线OE平分∠AOD(1)如图1,已知∠AOB=180°、∠COD=90°,若∠DOB=40°,则∠COE=度;(2)∠AOB、∠COD的位置如图所示,已知∠AOB=2∠COD,求的值;(3)射线OC、OD在直线OA的右侧按顺时针方向分布,已知∠COD=30°,OF为∠AOD的三等分线且靠近射线OD,设∠COF=α,将∠COD绕点O顺时针旋转,满足45°<∠AOD<135°且∠AOD≠90°,若∠BOD=3α,求∠AOB(可用α表示)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】依次分析各个选项,选出符合一元一次方程定义的选项即可.【解答】解:A.属于整式,不符合一元一次方程的定义,即A项错误,B.属于二元一次方程,不符合一元一次方程的定义,即B项错误,C.符合一元一次方程的定义,是一元一次方程,即C项正确,D.属于一元二次方程,不符合一元一次方程的定义,即D项错误,故选:C.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.2.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【分析】分别利用等式的基本性质判断得出即可.【解答】解:由等式a=b,可得:a﹣n=b﹣n,an=bn,a2=b2,但b=0时,无意义,故选:D.【点评】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.4.【分析】把x=1代入方程2x﹣a=0得到关于a的一元一次方程,解之即可.【解答】解:把x=1代入方程2x﹣a=0得:2﹣a=0,解得:a=2,故选:D.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【分析】分别根据去括号法则整理得出判断即可.【解答】解:A、﹣2(a﹣b)=﹣2a+2b,故此选项错误;B、﹣2(a﹣b)=﹣2a+2b,故此选项错误;C、﹣2(a﹣b)=﹣2a+2b,故此选项错误;D、﹣2(a﹣b)=﹣2a+2b,故此选项正确.故选:D.【点评】此题主要考查了去括号法则,正确去括号得出是解题关键.6.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“十”与“年”是相对面,“七”与“诞”是相对面,“周”与“华”是相对面.故原正方体上与“周”相对的面上的字是华.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【分析】要列方程首先要根据题意找出题中存在的等量关系:每天生产的螺母=每天生产的螺栓的2倍,从而列出方程.【解答】解:设x名工人生产螺栓,则生产螺母的工人为28﹣x名.每天生产螺栓12x个,生产螺母18×(28﹣x);根据“恰好每天生产的螺栓和螺母按1:2配套”,得出方程:2×12x=18(28﹣x)故选:D.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.【分析】设AB=3x,BC=2x,CD=4x,由线段和差关系列出方程,可求解.【解答】解:∵AB:BC:CD=3:2:4,∴设AB=3x,BC=2x,CD=4x,∵点E、F分别是AB、CD的中点,∴BE=AB=x,CF=CD=2x,∵EF=BE+BC+CF=x+2x+2x=22cm∴x=4cm∴BC=2x=8cm故选:A.【点评】本题考查了两点间距离,线段中点的定义,熟练运用线段和差关系求线段的长度是本题的关键.9.【分析】根据|a﹣b|+|b﹣c|表示数b的点到a与c两点的距离的和,|a﹣c|表示数a与c两点的距离即可求解.【解答】解:∵|a﹣b|+|b﹣c|=|a﹣c|,∴点B在A、C点之间.故选:C.【点评】本题主要考查了绝对值的定义,就是表示两点之间的距离.10.【分析】根据余角和补角的定义和角平分线的定义即可得到结论.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴与∠BOC互余的角有2个;正确;②∵∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BCO=∠AOC+∠BOD=180°,∴∠AOC+∠BOD=180°;故正确;③如图1,∵OM、ON分别平分∠AOD,∠BOD,∴∠DOM=∠AOD,∠DON=∠BOD,∴∠MON=∠DOM﹣∠DON=(∠AOD﹣∠BOD)=∠AOB,故正确;④如图2,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°﹣60°=90°,如图3,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°﹣30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°+60°=210°,综上所述,∠POQ=90°或210°,故错误.故选:C.【点评】本题考查了余角和补角,角平分线的定义,正确的识别图形是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【分析】理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或﹣2.【解答】解:∵|a|=2,∴a=±2.故本题的答案是±2.【点评】理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.【分析】首先根据补角的定义,设这个角为x°,则它的补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的补角为(180°﹣x),依题意,得180°﹣x=3x,解得x=45°答:这个角的度数为45°.故答案为:45°.【点评】本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.13.【分析】分三点共线和三点不共线两种情况作出图形即可.【解答】解:如图,三条不同的直线两两相交交点个数有1或3个.故答案为:1或3个【点评】本题考查了直线、射线、线段,作出图形,利用数形结合的思想求解更加简便.14.【分析】根据一元一次方程的定义,得到关于m的方程,结合m≠0,即可得到答案.【解答】解:根据题意得:|m+1|=1,即m+1=1或m+1=﹣1,解得:m=0或﹣2,∵m≠0,∴m=﹣2,故答案为:﹣2.【点评】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.15.【分析】尽管是同样的价格卖出,但是由于两个笔袋的成本不一样,所以这是解决问题的出发点,于是分别设两个笔袋的成本来列式计算,求出成本即可.【解答】解:设两个笔袋的成本分别为a元、b元,由题意可知a(1+25%)=30,b(1﹣25%)=30解得a=24,b=40∴30×2﹣(24+40)=﹣4故答案为亏损了4元.【点评】本题考查的是一元一次方程在利润计算上的应用,计算利润问题抓住成本是关键,此题应该注意盈利25%与亏损25%的基数不一样.16.【分析】分析AB,CD,MN三者之间的关系,在通过长度推算整点的个数的范围【解答】解:MN=CB﹣CM﹣BN=CB﹣CA﹣BD=(2BC﹣CA﹣BD)=(CD+AB)∵线段AB覆盖8个整数点,7≤AB<9,∵线段CD覆盖2个整数点,1≤CD<3,4≤(CD+AB)<6,则线段MN覆盖个整数点为4,5,6故答案:4,5,6【点评】这题的难度较大,综合考察了线段的运算和线段覆盖的整点问题,一个典型的压轴题三、解答题(共8题,共72分)17.【分析】(1)根据角度的计算方法计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=115°70′=116°10′;(2)原式=×(﹣)×÷=﹣×=﹣.【点评】本题主要考查角度的计算和有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【分析】依次去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:2(x﹣1)﹣4=x+1,2x﹣2﹣4=x+1,2x﹣x=1+2+4,x=7.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.19.【分析】首先计算乘除,再合并同类项,将整式化为最简形式,然后把x的值代入即可.【解答】解:原式=x﹣=x+3,当x=﹣3时,原式=×(﹣3)+3=.【点评】本题考查了整式的混合运算﹣化简求值.先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.【分析】由一个人做要40小时完成,即一个人一小时能完成全部工作的,就是已知工作的速度.本题中存在的相等关系是:这部分人4小时的工作+增加2人后8小时的工作=全部工作.设全部工作是1,这部分共有x人,就可以列出方程.【解答】解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.【点评】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的,这一个关系是解题的关键.21.【分析】(1)通过数轴判断a,c,b的相对大小,从而确定绝对值里代数式的值的符号,再去掉绝对值,最后实现化简;(2)两个非负数互为相反数,只能各自为零.求出a、b、c的值再计算代数式的值.【解答】(1)解:观察数轴可知a<c<0<b,且|a|>|c|>|b|∴b﹣c>0,b+c<0,a﹣c<0a﹣b<0∴原式=2(b﹣c)+(b+c)+(c﹣a)+(a﹣b)=2b故化简结果为2b.(2)解:∵(c+4)2与|a+c+10|互为相反数,∴(c+4)2+|a+c+10|=0∴c+4=0,a+c+10=0∴c=﹣4,a=﹣6而b=|a﹣c|,∴b=2∴2b=4故(1)式的值为4.【点评】本题考查的是利用数轴比较数的大小,并进行化简,利用数轴判断绝对值内代数式的符号是解题关键.22.【分析】(1)分成三种分案进行讨论,列出一元一次方程组,即可求出方案;(2)根据(1)的方案算出每一种方案的利润,然后计算出捐出给工艺的钱,即可求出方案.【解答】解:(1)①当购进A和B两种品牌手机时,设买进A品牌手机a台时,则买进B品牌手机(50﹣a)台时,根据题意:1500a+2100(50﹣a)=90000,解得a=25,故可购进A品牌手机25台时,则买进B品牌手机25台.②当购进B和C两种品牌手机时,设买进B品牌手机b台时,则买进C品牌手机(50﹣b)台时,根据题意:2100b+2500(50﹣b)=90000,解得b=87.5>50,故舍去;③当购进A和C两种品牌手机时,设买进C品牌手机c台时,则买进A品牌手机(50﹣c)台时,根据题意:1500(50﹣c)+2500c=90000,解得c=15,故可购进C品牌手机15台时,则买进A品牌手机35台.故有两种进货方案,方案一:可购进A品牌手机25台时,则买进B品牌手机25台;方案二:可购进C品牌手机15台时,则买进A品牌手机35台.(2)方案一的利润:25(1650﹣1500)+25(2300﹣2100)=8750元,捐款数额:8750×50%=4375元;方案二的利润:15(2750﹣2500)+35(1650﹣1500)=9000元,捐款数额:9000×50%=4500元;故选择方案二,即可购进C品牌手机15台时,则买进A品牌手机35台.【点评】本题考查了一元一次方程的应用题,根据已知问题,列出一元一次方程使解答此题的关键.23.【分析】(1)①当点C在点B的左侧时,②当点C在点B的右侧时,根据线段的和差即可得到结论;(2)设BC=x,则AD=AB+BC+CD=12+x,根据线段中点的定义得到PD=AD=6+x,CQ=x,于是得到结论;(3)线段CD运动的时间为t,则AM=2t,BC=t,列方程即可得到结论.【解答】解:(1)①当点C在点B的左侧时,∵AB=8,BC=2,CD=4,∴AC=6,∴AD=AC+CD=10,②当点C在点B的右侧时,∵AB=8,BC=2,CD=4,∴AD=AB+BC+CD=14,故线段AD=10或14;故答案为:10或14;(2)设BC=x,则AD=AB+BC+CD=12+x,∵点P、Q分别为AD、BC的中点,∴PD=AD=6+x,CQ=x,∴PQ=PD﹣CD﹣CQ=6+x﹣4﹣x=2;(3)线段CD运动的时间为t,则AM=2t,BC=t,∴BM=AB﹣AM=8﹣2t,BD=BC+CD=t+4,∵点N是线段BD的中点,∴DN=BN=BD=t+2,∵MN=2DN,∴8﹣2t+t+2=2(t+2),解得:t=,故线段CD运动的时间为s.【点评】本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.24.【分析】(1)先求出∠AOD,然后计算出∴∠DOE,即可求出∠COE=∠COD﹣∠DOE;(2)通过设出已知角∠COD,∠BOC,然后根据题意,表示出∠COE和∠DOB;(3)分情况讨论,当OB在OD下方和OB在OD上方,进行计算.【解答】解:(1)∵∠AOB=180°,∠DOB=40°,∴∠AOD=140°,∵射线OE平分∠AOD,∴∠DOE=∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD﹣∠DOE=20°,故答案为:20;(2)∵∠AOB=2∠COD,∴设∠COD=x,∠BOC=y,则∠AOB=2x,∴∠BOD=x﹣y,∠AOD=3x﹣y,∵射线OE平分∠AOD,∴∠DOE=∠AOD=(3x﹣y),∴∠COE=∠DOE﹣∠COD=(3x﹣y)﹣x=(x﹣y),∴==;(3)由题意可知:∠DOF=30°﹣α,=20,此时,当OB在OD下方时,此时;当OB在OD上方时,此时.【点评】本题主要考查学生在学习过程中对角度关系及运算的灵活运用和掌握.此类题目的练习有利于学生更好的对角的理解.。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷(含解析)

2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷(含解析)

2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−2024的绝对值是( )A. 2024B. −2024C. 12024D. −120242.下列计算正确的是( )A. 5a2b−3ab2=2abB. 2a2−a2=aC. 4x2−2x2=2D. −(−2x)−5x=−3x3.根据等式的性质,下列变形正确的是( )A. 如果x3=0,那么x=3 B. 如x=y,那么x−4=4−yC. 如果−2x=6,那么x=3D. 如果8x=5x+3,那么x=14.下列说法正确的个数是( )①−|−3|=3.②(−1)2024=1.③倒数等于本身的数有1和−1.④单项式−2πa3的系数是−23,次数是2.⑤多项式2a−3b+1是三次三项式,常数项是1.A. 2个B. 3个C. 4个D. 5个5.如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,OB的方位角是( )A. 西偏北60°B. 北偏西60°C. 北偏东60°D. 东偏北60°6.如图是某个几何体的展开图,则这个几何体是( )A. 圆柱B. 正方体C. 长方体D. 三棱柱7.如图,O是直线AB上一点,OC是∠AOB的平分线,∠COD=32°,则∠AOD的度数是( )A. 78°B. 68°C. 58°D. 48°8.下面解方程变形正确的是( )A. 方程4x+1=2x+1,移项,得4x+2x=0B. 方程x+12=3x−12−1,去分母得x+1=3x−1−1C. 方程−56x=−5,系数化为1得x=−6D. 方程107x+10x=7.5+1,合并,得807x=8.59.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两个角是( )A. ∠α=∠βB. ∠α=∠γC. ∠β=∠γD. 无法确定10.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有4人不能就座.设该校准备的桌子数为x,则可列方程为( )A. 10(x−1)=8x−4B. 10(x+1)=8x−4C. 10(x−1)=8x+4D. 10(x+1)=8x+4二、填空题:本题共5小题,每小题3分,共15分。

人教版七年级上学期数学《期末考试试卷》含答案解析

人教版七年级上学期数学《期末考试试卷》含答案解析

人 教 版 数 学 七 年 级 上 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________满分120分 时间90分钟一、选择题1. 3的相反数是( )A. ﹣3B. 3C. 13D. ﹣132.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A. B. C. D.3.下列计算正确的是( )A. 236-=-B. 22321a a -=C. 110--=D. 2(2)42a b a b -=-4.如图,点A 、B 、C 是直线l 上的三个点,图中共有线段条数是( )A. 1条B. 2条C. 3条D. 4条5.下列说法错误的是( )A 若a b =,则22a b -=-B. 若ac bc =,则a b =C. 若a b =,则33a b -=-D. 若22a b =,则a b = 6.以下问题,不适合普查的是( )A. 学校招聘教师,对应聘人员的面试B. 进入地铁站对旅客携带的包进行的安检C. 调查本班同学的身高D. 调查我国民众对“香港近期暴力”行为的看法7.关于x 的方程3(1)60x m +-=的解是2-,则m 的值是( ) A. 12- B. 12 C. 2- D. 28.如果32m a b 与45n a b -是同类项,则2m n -= ( )A. 5B. 5-C. 2D. 2-9.大于﹣2且不大于2的整数共有( )A. 3B. 4C. 2D. 510.如图,已知90AOB ︒∠=,OC 是AOB ∠内任意一条射线,,OB OD 分别平分COD ∠,∠BOE ,下列结论:①COD BOE ∠=∠;②3COE BOD ∠=∠;③BOE AOC ∠=∠;④90AOC BOD ︒∠+∠=,其中正确的有( )A. ①②④B. ①③④C. ①②③D. ②③④二、填空题11.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额126900000000元,126900000000用科学记数法表示为___________.12.23x y -的次数为___________,系数为___________. 13.一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售___________. 14.小刚同学在一个正方体盒子的每个面上都写了一个字,分别是:我、喜、欢、数、学、课.其平面展开图如图所示,那么在该正方体盒子中,和“我”相对的面所写的字是___________.15.钟表在4点半时,它的时针与分针所成锐角是___________度.16.已知,,A B C 是同一直线上的三个点,且5,4AB cm BC cm ==,则AC =___________cm .17.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第98个图形中花盆的个数为_______.三、解答题(一)18.计算:201931(1)|16|28-+-÷⨯ 19.化简,求值:22(32)(45)x x x ---+,其中1x =-.20.如图,已知,,,A B C D 四点,按下列要求画图形:(1)画射线CD ;(2)画直线AB ;(3)连接DA ,并延长至E ,使得AE DA =.四、解答题(二)21.某学校举行“每天锻炼一小时,健康生活一辈子”为主题的体育活动,并开展了以下体育项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项。

2023-2024学年天津市和平区 七年级(上)期末数学试卷(含解析)

2023-2024学年天津市和平区  七年级(上)期末数学试卷(含解析)

2023-2024学年天津市和平区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题2分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算−3−2的值为( )A. −5B. −1C. 5D. 12.南京长江四桥线路全长约29000米,将29000用科学记数法表示为( )A. 0.29×105B. 2.9×103C. 2.9×104D. 29×1033.下列说法正确的是( )A. 单项式−3xy的系数是−3B. 单项式2πa3的次数是4C. 多项式x2y2−2x2+3是二次三项式D. 多项式x2−2x+6的项分别是x2、2x、34.如图所示,几何体由6个大小相同的立方体组成,其俯视图是( )A.B.C.D.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠BFE=( )A. 70°B. 65°C. 60°D. 50°6.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为( )A. 159°B. 141°C. 111°D. 69°7.下列等式变形错误的是( )A. 若a=b,则a1+x2=b1+x2B. 若a=b,则3a=3bC. 若a=b,则ax=bxD. 若a=b,则am =bm8.若(m−2)x|2m−3|=6是一元一次方程,则m等于.( )A. 1B. 2C. 1或2D. 任何数9.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x人,则可列方程为( )A. 8x+3=7x−4B. 8x−3=7x+4C. x−38=x+47D. x+38=x−4710.将一副三角板按如图所示的位置摆放,其中∠α与∠β一定互余的是( )A. B.C. D.11.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN 的长度是( )A. 3cmB. 5cmC. 7cmD. 7cm或3cm12.现定义运算“∗”,对于任意有理数a,b满足a∗b={2a−b,a≥ba−2b,a<b.如5∗3=2×5−3=7,1 2∗1=12−2×1=−32,若x∗3=5,则有理数x的值为( )A. 4B. 11C. 4或11D. 1或11二、填空题:本题共6小题,每小题3分,共18分。

广东省中山市2023-2024学年七年级上学期期末数学试题(含解析)

广东省中山市2023-2024学年七年级上学期期末数学试题(含解析)

A.16B.26C.﹣16D10.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分)14a b a(1)画射线;(2)连接;(3)在直线l 上确定点D 四、解答题(二)(共21.第19届亚运会于2023年的精神,在比赛场上屡创佳绩.本次亚运会中国队获得金、银、铜牌共银牌的2倍少21枚,铜牌比银牌少22.一般情况下,算式AB BC 24a b +=(1)请计算图中“工”形框中七个数的和是中间数(2)在数阵中任意做一个这样的“工”形框,(1)中的关系是否仍成立(3)用这样的“工”形框能框出和为2023的七个数吗能,请写出理由.24.对于数轴上的三点A ,B ,C ,给出如下定义:若的“距离和m 点”.如图,点A 表示的数为(1)若点N 表示的数为,点N 为点A ,B 的“距离和m 点”,求m 的值;(2)点D 在数轴上,若点D 是点A ,B 的“距离和7点”,求点D 表示的数;3-2-【分析】分别将甲乙丙三位同学折成的无盖长方体的容积计算出来,即可比较大小.【详解】甲:长方体的长为5cm ,宽为3 cm ,高为3 cm ,容积为乙:长方体的长为10 cm ,宽为2 cm ,高为2 cm ,容积为丙:长方体的长为6 cm ,宽为4 cm ,高为2 cm ,容积为所以,丙>甲>乙故选C【点睛】本题主要考查了长方体的体积,掌握长方体的体积公式是解题的关键.11.【分析】根据相反数的定义直接求得结果.【详解】解:5的相反数是.故答案为:.【点睛】本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.12.1【分析】本题考查了一元一次方程解得定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把代入,然后解关于m 的方程即可.【详解】解:把代入,得:,解得:.故答案为:1.13.2【分析】此题考查了线段的和差计算,正确理解线段的数量关系是解题的关键.根据,得到,即,即可求出.【详解】解:∵,∴,故,∵,∴,353345cm ⨯⨯=3102240cm ⨯⨯=364248cm ⨯⨯=5-5-5-3x =2mx m -=3x =2mx m -=32m m -=1m =AD BC =AC CD BD CD +=+AC BD =BD AD BC =AC CD BD CD +=+AC BD =2cm =AC 2cm BD =∵两点之间线段最短,∴此时最小.20.【分析】本题主要考查了角的度数的计算,邻补角的定义,角平分线的定义AD CD +20DOE ∠=︒则七个数的和为:,故七个数的和为是中间数的7倍.(3)解:设中间数为x ,依题得,解得:,经检验289处于数表的第一列,故不能框出和为2023的七个数.24.(1)(2)点D 表示的数为3或(3)点E 表示的数为或或或1或或3【分析】本题考查了数轴上表示有理数,一元一次方程的应用:(1)根据若,则称点C 叫做点A ,B 的“距离和m 点”的定义,列式计算得m 的值;(2)依题意,结合点D 是点A ,B 的“距离和7点”,设D 点表示的数为x ,进行分类讨论,然后列式计算,即可作答.(3)①点E 是点A ,B 的“距离和6点”时,设E 点表示的数为,列式计算;或点A 是点B ,E 的“距离和6点”时,或点B 是点A ,E 的“距离和6点”时,列式计算,即可作答.【详解】(1)解:∵点N 为点A ,B 的“m 和距离点”,且点N 在数轴上表示的数为,∴,,∴(2)解:设D 点表示的数为x ,当D 点在线段上时,,不符合题意;当D 点在A 点左侧时,,解得:;当D 点在点右侧时,,解得:;∴点D 表示的数为:3或;(3)解:①点E 是点A ,B 的“距离和6点”时,设E 点表示的数为,当E 点在线段上时,,不符合题意;()()()()()()2018161618207x x x x x x x x -+-+-+++++++=72023x =289x =5m =4-4- 3.5-2- 2.5AC CB m +=y 2-1AN =4BN =5m AN BN =+=AB 5AD BD AB +==()327x x --+-+=4x =-B 327x x ++-=3x =4-y AB 5AE BE AB +==当E 点在A 点左侧时,,解得:;当E 点在点右侧时,,解得:;∴点E 表示的数为:或②点A 是点B ,E 的“距离和6点”时,∵,∴,∴点E 表示的数为:或.③点B 是点A ,E 的“距离和6点”时,∵,∴,∴点E 表示的数为:1或3∴点E 表示的数为或或或1或2.5或3.()326y y --+-+= 3.5y =-B 326y y ++-= 2.5y =3.5- 2.556AE AB AE +=+=1AE =4-2-56BE AB BE +=+=1BE =4- 3.5-2-。

七年级(上)期末数学试卷(含答案解析)

七年级(上)期末数学试卷(含答案解析)

七年级(上)期末数学试卷(含答案解析)一、选择题(本大题共10小题,共30.0分)1.在下列有理数:-5,-(-3)3,|-|,0,-22中,负数有()A. 1个B. 2个C. 3个D. 4个2.随着北京公交车票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:另外,一卡通刷卡实行8折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是20,那么小明乘车的费用是()A. 1.6元B. 2元C. 2.4元D. 3.2元3.下列各组中,不是同类项的是()A. 52与25B. -ab与baC. 0.2a2b与-a2bD. a2b3与-a3b24.下列说法:①倒数等于本身的数只有1;②若a、b互为相反数,那么a、b的商必定等于-1;③对于任意实数x,|x|+x一定是非负数;④两个负数,绝对值小的反而大,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个5.在有理数-32,3.5,-(-3),|-2|、(-)2,-3.1415926中,负数的个数是()A. 1个B. 2个C. 3个D. 4个6.数18000用科学记数法表示为()A. 0.18×104B. 1.8×104C. 18×104D. 1.8×1057.下列各组数中,相等的一组是()A. (-2)3与-23B. (-2)2与-22C. (-3×2)3与3×(-2)3D. -32与(-3)+(-3)8.如图几何体的俯视图是()A.B.C.D.9.要使多项式不含的项,则的值是A. B. C. D.10.如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A. 64°B. 66°C. 74°D. 86°二、填空题(本大题共10小题,共40.0分)11.单项式-4πa3b的系数是______.12.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b-c|-2|b-a|+|2c|=______.13.已知有理数a、b在数轴上的位置如图所示,化简|a-b|+|a+b|的结果为______.14.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则-2mn+-x=______.15.将直角三角形按如图放置,直角顶点重合,则∠AOB+∠COD=______.16.若∠A的补角等于116°,则∠A= .17.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a+b+c的值为______.18.如图.AC,BD交于点O.图中共有______ 条线段,它们分别是______ .19.废纸回收能减少树木的砍伐量,保持森林覆盖率,有利于封山育林减少水土流失,有利于生态环境,能减少化学原料的运用与排放,减少污染,有利于环境维护和降低消费本钱.若回收废纸1kg,可生产(结再生纸0.6kg,小明和小亮每学期分别能回收讲义等废纸a kg,b kg,这些废纸可生产再生纸______kg.果用含a,b的代数式表示)20.若x2=9,则x= ______ ;若x3=-27,x= ______ ;已知|x|=9,则x= ______ .三、计算题(本大题共1小题,共5.0分)21.先化简,再求值:5a2-[a2-(2a-5a2)-2(a2-3a)],其中a=4.四、解答题(本大题共7小题,共45.0分)22.某一出租车一天下午以菜市场为出发地在东西方向营运, 约定向东为正,向西为负,行车里程(单位:千米)依先后次序记录如下: +8,-3,-4,+2,-8,+13,-2(1)将最后一名乘客送到目的地,出租车离出发点菜市场多远?在菜市场的什么方向?(2)若每千米耗油0.2升,问从出发地出发到收工时共耗油多少升?23.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c-a|+|c-b|+|a+b|.24.由角的旋转的定义可知,平角的两边成一条直线,能不能说直线就是平角?周角两边重合成同一条射线,能不能说周角就是射线?为什么?25.如图,已知∠1+∠2=180°,∠3=∠B,对DE∥BC说明理由.理由:∵∠1+∠2=180°(已知)且∠1+______=180°(邻补角定义),∴∠2=______,∴BD∥EF (______),∴∠3=______(两直线平行,内错角相等),又∵∠3=∠B(已知)∴______=______(等量代换),∴DE∥BC (______).26.如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到______的距离,______是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是______(用“<”号连接)27.已知长方形的长为a,宽为b.(1)求阴影部分的面积.(用a、b字母表示)(2)当a=5,b=3时,求阴影部分的面积.28.已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为______.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.答案和解析1.【答案】B【解析】解:∵-(-3)3=27,|-|=,-22=-4,∴-5,-(-3)3,|-|,0,-22中,负数有-5,-22,故选B.首先化简各数,根据负数的定义分别进行判断,从而得出负数的个数即可.本题主要考查了正数和负数以及绝对值和乘方等知识,正确化简各数是解题关键.2.【答案】C【解析】解:小明乘车|20-5|=15(站),对应的票价为3元,3×80%=2.4(元),故选:C.先计算出小明乘车是15站,对照表格,对应的票价是3元,根据一卡通刷卡实行8折优惠,即可计算出费用.本题考查了有理数的减法,绝对值,根据题意求出小明乘车路程,对照表格,得出对应的票价,这是解题的关键.3.【答案】D【解析】解:A.52与25是同类项,故此选项不符合题意;B.-ab与ba所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;C.0.2a2b与-a2b所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;Da2b3与-a3b2所含字母相同,但相同字母的指数不同,不是同类项,故此选项符合题意.故选:D.根据同类项的定义(所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项)即可作出判断.本题考查了同类项,掌握同类项的定义是解答本题的关键.4.【答案】C【解析】解:①倒数等于本身的数只有1,错误,还有-1;②若a、b互为相反数,那么a、b的商必定等于-1,错误,a,b不能等于0;③对于任意实数x,|x|+x一定是非负数,正确;④两个负数,绝对值小的反而大,正确.故选:C.直接利用倒数以及绝对值和相反数的性质分别分析得出答案.此题主要考查了倒数以及绝对值和相反数的性质,正确把握相关性质是解题关键.5.【答案】B【解析】解:-32=-9,-(-3)=3,|-2|=2,,∴-32,-3.1415926是负数,一共2个,故选:B.根据有理数的乘方法则、相反数的概念、绝对值的性质计算,根据负数的概念判断即可.本题考查的是有理数的乘方、绝对值的性质、正数和负数,掌握有理数的乘方法则、绝对值的性质是解题的关键.6.【答案】B【解析】解:18000=1.8×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:A.(-2)3=-8,-23=-8,相等,此选项符合题意;B.(-2)2=4,-22=-4,不相等,此选项不符合题意;C.(-3×2)3=(-6)3=-216,3×(-2)3=3×(-27)=-81,不相等,此选项不符合题意;D.-32=-9,(-3)+(-3)=-6,不相等,此选项不符合题意;故选:A.根据乘方的定义和有理数混合运算顺序逐一计算即可判断.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.8.【答案】C【解析】解:从上面看,是一个矩形,矩形内部是一个由虚线围成的小矩形.故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.9.【答案】D【解析】由题意得,,,,故选D。

人教版七年级上学期数学《期末考试卷》含答案解析

人教版七年级上学期数学《期末考试卷》含答案解析
19.解方程
(1)5(2﹣x)=﹣(2x﹣7);
(2)
[答案](1)x=1;(2)x=
[解析]
[分析]
(1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
[详解](1)去括号得:10﹣5x=7﹣2x,
移项得:﹣5x+2x=7﹣10,
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.-2020的相反数是()
A.-2020B.2020C. D.
13.计算:3+2×(﹣4)=_____.
14.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为_____度.
15.方程x+5= (x+3)的解是________.
16.若x、y为有理数,且|x+2|+(y﹣2)2=0,则( )2019的值为_____.
17.若代数式x2+3x﹣5 值为2,则代数式2x2+6x﹣3的值为_____.
A.1个B.2个C.3个D.4个
9.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()
A.a+b>0B.ab>0C.a﹣b<oD.a÷b>0
10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()
(2)(﹣34)× +(﹣16)

【人教版】七年级上册期末数学试卷(含答案)

【人教版】七年级上册期末数学试卷(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!七年级上学期期末数学试卷一、选择题:本题共12小题,每小题3分,共36分.每小题有四个选项,其中只有一个是正确的.1.6的相反数是( )A.6B.﹣6C.D.﹣2.如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是( )A.B.C.D.3.在2015年深圳高交会上展出了现实版“钢铁侠”战衣﹣﹣马丁飞行喷射包,可连续飞行30分钟,载重120公斤,其网上预售价为160万元,数据160万元用科学记数法表示为( )A.1.6×104元B.1.6×105元C.1.6×106元D.0.16×107元4.如图,现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,可以为( )A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.两点确定一条直线D.两点之间,线段最短5.小明每个月收集废电池a个,小亮比小明多收集20%,则小亮每个月收集的废电池数为( )A.(a+20%)个B.a(1+20%)个C.个D.个6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是( )A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查7.如图,下列表示角的方法中,不正确的是( )A.∠A B.∠E C.∠αD.∠18.若x=3是方程ax+2x=14﹣a的解,则a的值为( )A.10B.5C.4D.29.小亮为表示出2015年他们家在“生活开支”项目的变化情况,他应该采用的统计图是( )A.折线统计图B.条形统计图C.扇形统计图D.以上均可以10.当x的值变大时,代数式﹣2x+3的值( )A.变小B.不变C.变大D.无法确定11.下列各式一定成立的是( )A.﹣B.|﹣a|=a C.(﹣a)3=a3D.(﹣a)2=a212.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、B、D三点在同一直线上,BM为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数是( )A.60°B.67.5°C.75°D.85°二、填空题:每小题3分,共12分.请把答案填在答题卷相应的表格里.13.如果节约20元记作+20元,那么浪费10元记作 元.14.若3a m+3b n+2与﹣2a5b是同类项,则mn= .15.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中与“价”字相对的字是 .16.如图是用小棒按一定规律摆成的一组图案,第1个图案中有5根小棒,第2个图案中有9个小棒,…,若第n个图案中有65根小棒,则n的值为 .三、解答题:本题7题,共52分.17.计算:(1)﹣14﹣(﹣22)+(﹣36).(2)﹣22+|﹣36|×().18.(1)化简:﹣3(x2+2xy)+6(x2﹣xy)(2)先化简,再求代数式的值:2(x2y+xy2)﹣2(x2y﹣2)﹣(xy2+2),其中x=2015,y=﹣1.19.(1)解方程:5x+12=2x﹣9(2)解方程:.20.2015年,深圳市人居环境委通报了2014年深圳市大气PM2.5来源研究成果.报告显示主要来源有,A:机动车尾气,B:工业VOC转化及其他工业过程,C:扬尘,D:远洋船,E:电厂,F:其它.某教学学习小组根据这些数据绘制出了如下两幅尚不完整的统计图(图1,图2).请你根据统计图中所提供的信息解答下列问题:(1)图2的扇形统计图中,x的值是 ;(2)请补全图1中的条形统计图;(3)图2的扇形统计图中,“A:机动车尾气”所在扇形的圆心角度数为 度. 21.如图,平面上有射线AP和点B、点C,按下列语句要求画图:(1)连接AB;(2)用尺规在射线AP上截取AD=AB;(3)连接BC,并延长BC到E,使CE=BC;(4)连接DE.列方程解应用题:本题共3小题,第(1)小题4分,第(2)小题5分,共9分。

2023-2024学年北京市东城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市东城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市东城区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.我国的长城始建于西周时期,被国务院确定为全国重点文物保护单位.长城总长约6700000米.数据6700000用科学记数法表示应为()A. B. C. D.3.若数在数轴上表示的点的位置如图所示,则下列结论正确的是()A. B. C. D.4.下列说法中正确的是()A.是单项式B.的系数是C.是二次二项式D.与是同类项5.下列选项中,计算错误的是.()A. B.C. D.6.若是关于x的方程的解,则m的任是.()A. B. C. D.87.如图所示四幅图中,符合“射线PA与射线PB是同一条射线”的图为.()A. B. C. D.8.如图,OA 的方向是北偏东,OB 的方向是西北方向,若,则OC 的方向是.()A.北偏东B.北偏东C.北偏东D.北偏东9.王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是.()A. B. C. D.10.某商店在甲批发市场以每包m 元的价格进了60包茶叶,又在乙批发市场以每包n 元的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店的盈亏情况为.()A.盈利元B.亏损元C.盈利元D.没盛利也没亏损二、填空题:本题共8小题,每小题2分,共16分。

11.一个单项式含有字母x 和y ,系数是2,次数是3,这个单项式可以是__________.12.比较大小:__________,__________填“>”“=”或“<”号13.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房,求该店有客房多少间?设该店有客房x 间,则可列方程为__________.14.如图,O 是直线AB 上一点,若,则__________.15.如图,C 为线段AD 上一点,点B 为CD 的中点,且,则__________16.已知点是数轴上的两个点,点A到原点的距离等于3,点B在点A左侧,并且距离A点2个单位长度,则点B表示的数是__________.17.已知a,b是常数,若的项不含二次项,则__________.18.对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到,则称为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为例如523为325的“倒序数”,__________;对于任意三位数满足:的值是__________.三、计算题:本大题共2小题,共20分。

2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)

2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)

20232024学年全国初中七年级上数学人教版期末试卷一、选择题(每题3分,共30分)1. 下列数中,最小的数是()A. 0B. 2C. 3D. 1/22. 下列四个数中,最大的数是()A. 1B. 0C. 1/2D. 3/43. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a 3 > b 3C. a/3 > b/3D. 3a > 3b4. 下列等式中,正确的是()A. 2x + 3 = 5x 7B. 3x 4 = 2x + 4C. 4x + 5 = 6x 1D. 5x 6 = 7x + 25. 下列函数中,y随x的增大而增大的是()A. y = 2x + 1B. y = 3x 2C. y = x + 3D. y = 4 2x6. 下列图形中,是轴对称图形的是()A. 矩形B. 梯形C. 圆D. 正方形7. 下列关于角的说法,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度8. 下列关于三角形的说法,正确的是()边 C. 三角形的任意两边之差小于第三边 D. 三角形的任意两边之和等于第三边9. 下列关于平行线的说法,正确的是()A. 平行线在同一平面内,永不相交B. 平行线可以在同一平面内相交C. 平行线不在同一平面内,也可以相交D. 平行线不在同一平面内,一定不相交10. 下列关于四边形的说法,正确的是()A. 四边形的内角和是360度B. 四边形的任意两边之和大于第三边C. 四边形的任意两边之差小于第三边D. 四边形的任意两边之和等于第三边二、填空题(每题3分,共30分)1. 若a = 2,b = 3,则a + b = _______。

2. 若a = 5,b = 7,则a b = _______。

3. 若a = 4,b = 3,则a b = _______。

4. 若a = 6,b = 2,则a / b = _______。

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)

七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。

1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。

2023-2024学年吉林省松原市扶余市七年级(上)期末数学试卷+答案解析

2023-2024学年吉林省松原市扶余市七年级(上)期末数学试卷+答案解析

2023-2024学年吉林省松原市扶余市七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是中国古代数学著作《九章算术》,“方程”一章中首次正式引入了负数,在生活中,我们规定元表示收入100元,那么元表示()A.支出80元B.收入20元C.支出20元D.收入80元2.将选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A. B. C. D.3.在,,,2xy ,中,整式有()A.2个B.3个C.4个D.5个4.按图中程序运算,如果输入,则输出的结果是()A.1B.3C.5D.75.已知,,则A 、B 表示式子是()A.B. C.D.6.若单项式与的和仍为单项式,则() A.B.3C.4D.7.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利,另一件亏损,卖这两件衣服总的是()A.盈利8元B.亏损8元C.不盈不亏D.亏损15元8.某射箭运动员在一次比赛中前6次射击共击中52环,如果他要打破89环次射击,每次射击最高中10环的记录,则他第7次射击不能少于()A.6环B.7环C.8环D.9环9.把一副三角板按如图方式的位置摆放,则形成两个角,设分别是,,若,则()A.B.C.D.10.如图所示,在直线PQ上要找一点C,且使,则点C应在()A.PQ之间找B.在点P左边找C.在点Q右边找D.在PQ之间或在点Q右边找二、填空题:本题共5小题,每小题3分,共15分。

11.如图,两个完全相同的三角形ABC和三角形的顶点C,重合.若且,则______.12.定义一种新运算:a※解决下列问题:※______.当时,2※※的结果为______.13.我们规定能使等式成立的一对数为“好友数对”.例如当,时,能使等式成立,则是“好友数对”.若是“好友数对”,则______.14.若关于x、y的代数式中不含三次项,则的值为______.15.有若干个数,第一个数记为,第二个数记为,……,第n个数记为,,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”,______.三、解答题:本题共8小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上)期末数学试卷一、选择题(每小题3分,共30分):1.﹣2的倒数是()A.﹣ B.C.﹣2 D.22.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108B.91.2×109C.9.12×1010D.0.912×10103.下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④4.下列几何体中,从正面看(主视图)是长方形的是()A.B.C. D.5.下列运算中,正确的是()A.﹣2﹣1=﹣1 B.﹣2(x﹣3y)=﹣2x+3yC.D.5x2﹣2x2=3x26.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离7.已知2x3y2m和﹣x n y是同类项,则m n的值是()A.1 B.C.D.8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2 B.3 C.4 D.69.有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>110.下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大二、填空题(每小题3分,共18分):11.单项式的系数是.12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是.15.如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要根小棒.三、解答题(共52分,其中17题8分,18题9分,19题9分):17.计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().18.(1)化简(2m+1)﹣3(m2﹣m+3)(2)(﹣4x2+2x﹣8y)﹣(﹣x﹣2y)19.解方程(1)3(2x﹣1)=5x+2(2).20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于度.(3)请将图2的统计图补充完整.(4)通过计算得出类礼盒销售情况最好.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分):1.﹣2的倒数是()A.﹣ B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.阿里巴巴数据显示,2015年天猫商城“双11”全球狂欢交易额超912亿元,数据912亿用科学记数法表示为()A.912×108B.91.2×109C.9.12×1010D.0.912×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于912亿有11位,所以可以确定n=11﹣1=10.【解答】解:912亿=912000 000 000=9.12×1010.故选C.3.下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①检测深圳的空气质量,应采用抽样调查;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况,意义重大,应采用全面调查;③为保证“神舟9号”成功发射,对其零部件进行检查,意义重大,应采用全面调查;④调查某班50名同学的视力情况,人数较少,应采用全面调查,故选:A.4.下列几何体中,从正面看(主视图)是长方形的是()A.B.C. D.【考点】简单几何体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选B.5.下列运算中,正确的是()A.﹣2﹣1=﹣1 B.﹣2(x﹣3y)=﹣2x+3yC.D.5x2﹣2x2=3x2【考点】有理数的混合运算;合并同类项;去括号与添括号.【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【解答】解:因为﹣2﹣1=﹣3,﹣2(x﹣3y)=﹣2x+6y,3÷6×=3×,5x2﹣2x2=3x2,故选D.6.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离【考点】直线的性质:两点确定一条直线.【分析】依据两点确定一条直线来解答即可.【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:B.7.已知2x3y2m和﹣x n y是同类项,则m n的值是()A.1 B.C.D.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m=1,n=3,求出n,m的值,再代入代数式计算即可.【解答】解:∵2x3y2m和﹣x n y是同类项,∴2m=1,n=3,∴m=,∴m n=()3=.故选D.8.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm.A.2 B.3 C.4 D.6【考点】两点间的距离.【分析】根据MN=CM+CN=AC+CB=(AC+BC)=AB即可求解.【解答】解:∵M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=4.故选C.9.有理数a、b在数轴上的位置如图所示,下列选项正确的是()A.a+b>a﹣b B.ab>0 C.|b﹣1|<1 D.|a﹣b|>1【考点】数轴.【分析】根据数轴可以得到b<﹣1<0<a<1,从而可以判断各选项中式子是否正确.【解答】解:由数轴可得,b<﹣1<0<a<1,则a+b<a﹣b,ab<0,|b﹣1|>1,|a﹣b|>1,故选D.10.下列说法中,正确的是()A.绝对值等于它本身的数是正数B.任何有理数的绝对值都不是负数C.若线段AC=BC,则点C是线段AB的中点D.角的大小与角两边的长度有关,边越长角越大【考点】绝对值;两点间的距离;角的概念.【分析】根据绝对值、线段的中点和角的定义判断即可.【解答】解:A、绝对值等于它本身的数是非负数,错误;B、何有理数的绝对值都不是负数,正确;C、线段AC=BC,则线段上的点C是线段AB的中点,错误;D、角的大小与角两边的长度无关,错误;故选B.二、填空题(每小题3分,共18分):11.单项式的系数是﹣.【考点】单项式.【分析】根据单项式系数的概念求解.【解答】解:单项式的系数为﹣.故答案为:﹣.12.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数是64°.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOB的度数,再利用平角求出∠BOD的度数,利用OE平分∠DOB,即可解答.【解答】解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=26°×2=52°,∴∠BOD=180°﹣∠AOB=180°﹣52°=128°,∵OE平分∠DOB,∴∠BOE=BOD=64°.故答案为:64°.13.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)= 1.【考点】有理数的混合运算.【分析】根据给出的运算方法把式子转化为有理数的混合运算,进一步计算得出答案即可.【解答】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.14.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是100元.【考点】一元一次方程的应用.【分析】设这种服装每件的成本是x元,根据题意列出一元一次方程(1+20%)•90%•x﹣x=8,求出x的值即可.【解答】解:设这种服装每件的成本是x元,由题意得:(1+20%)•90%•x﹣x=8,解得:x=100.答:这种服装每件的成本是100元.故答案为:100元.15.如图是一块长为a,宽为b(a>b)的长方形空地,要将阴影部分绿化,则阴影面积是ab﹣.【考点】列代数式.【分析】根据题意和图形,可以用相应的代数式表示出阴影部分的面积.【解答】解:由图可得,阴影部分的面积是:ab﹣π=ab﹣,故答案为:ab﹣.16.如图所示,用长度相等的小棒按一定规律摆成一组图案,第一个图案需要6根小棒,第2个图案需要11根小棒,第3个图案需要16根小棒…,则第n个图案需要5n+1根小棒.【考点】规律型:图形的变化类.【分析】由图案的变化,可以看出后面图案比前面一个图案多5根小棒,结合数据6,11,16可得出第n个图案需要的小棒数.【解答】解:图案(2)比图案(1)多了5根小棒,图案(3)比图案(2)多了5根小棒,根据图形的变换规律可知:每个图案比前一个图案多5根小棒,∵第一个图案需要6根小棒,6=5+1,∴第n个图案需要5n+1根小棒.故答案为:5n+1.三、解答题(共52分,其中17题8分,18题9分,19题9分):17.计算(1)10﹣(﹣5)+(﹣9)+6(2)(﹣1)3+10÷22×().【考点】有理数的混合运算.【分析】(1)先化简,再分类计算即可;(2)先算乘方,再算乘除,最后算加法.【解答】解:(1)原式=10+5﹣9+6=12;(2)原式=﹣1+10÷4×=﹣1+=﹣.18.(1)化简(2m+1)﹣3(m2﹣m+3)(2)(﹣4x2+2x﹣8y)﹣(﹣x﹣2y)【考点】整式的加减.【分析】(1)、(2)先去括号,再合并同类项即可.【解答】解:(1)原式=2m+1﹣3m2+3m﹣9=5m﹣3m2﹣8;(2)原式=﹣x2+x﹣2y+x+2y=﹣x2+x.19.解方程(1)3(2x﹣1)=5x+2(2).【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6x﹣3=5x+2,移项合并得:x=5;(2)去分母得:10x+15﹣3x+3=15,移项合并得:7x=﹣3,解得:x=﹣.20.在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场中的D类礼盒有250盒.(2)请在图1扇形统计图中,求出A部分所对应的圆心角等于126度.(3)请将图2的统计图补充完整.(4)通过计算得出A类礼盒销售情况最好.【考点】条形统计图;扇形统计图.【分析】(1)从扇形统计图中得到D类礼盒所占的百分比,然后用这个百分比乘以1000即可得到商场中的D类礼盒的数量;(2)从扇形统计图中得到A类礼盒所占的百分比,然后用这个百分比乘以360°即可得到A部分所对应的圆心角的度数;(3)用销售总量分别减去A、B、D类得销售量得到C类礼盒的数量,然后补全条形统计图;(4)由条形统计图得到礼盒销售量最大的类型,因此可判断礼盒销售情况最好的类型.【解答】解:(1)商场中的D类礼盒的数量为1000×25%=250(盒);(2)A部分所对应的圆心角的度数为360°×35%=126°;(3)C部分礼盒的销售数量为500﹣168﹣80﹣150=102(盒);如图,(4)A礼盒销售量最大,所以A礼盒销售情况最好.故答案为250,126,A.21.列方程解应用题某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【考点】一元一次方程的应用.【分析】设小明家到西湾公园距离x千米,根据“骑自行车比公交车多用1.6小时”列出方程求解即可.【解答】解:设小明家到西湾公园距离x千米,根据题意得:=+1.6,解得:x=16.答:小明家到西湾公园距离16千米.22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.【考点】角平分线的定义;角的计算;翻折变换(折叠问题).【分析】(1)由折叠的性质可得∠A′BC=∠ABC=55°,由平角的定义可得∠A′BD=180°﹣∠ABC﹣∠A′BC,可得结果;(2)由(1)的结论可得∠DBD′=70°,由折叠的性质可得==35°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE=×180°=90°;(3)由折叠的性质可得,,∠2=∠EBD=∠DBD′,可得结果.【解答】解:(1)∵∠ABC=55°,∴∠A′BC=∠ABC=55°,∴∠A′BD=180°﹣∠ABC﹣∠A′BC=180°﹣55﹣55°=70°;(2)由(1)的结论可得∠DBD′=70°,∴==35°,由折叠的性质可得,∴∠CBE=∠A′BC+∠D′BE=×180°=90°;(3)不变,由折叠的性质可得,,∠2=∠EBD=∠DBD′,∴∠1+∠2===90°,不变,永远是平角的一半.。

相关文档
最新文档