喀斯特地区3种针叶林林分生物量及碳储量研究

合集下载

喀斯特地区灌木林生态系统养分和碳储量研究

喀斯特地区灌木林生态系统养分和碳储量研究

kg.hm~,
占系统总碳储量的9.1 7%;死地被物层为25 5 6.3

kg,hm~,占2.89%;土壤层为776 80蝇・hm~,占8 7.94%。系统中各组成 的碳储量按高低排序为土壤层>植被层>死地被物层。
贵阳市灌木林的总碳储量为5 95.1 4万t。表明在喀斯特地区的贵阳
市自然生长的一种特殊森林类型一一灌木林,其碳吸收功能在参与维持和
was 3745.1 2 kg.hm~,accounting for 23.1 1%of the total biomass in the
forests.Biomass in dead floor layer was 6957.1 2 kg.hm~.It was found that non-decomposed components have been transferred to the semi—decomposed and full-decomposed components in the dead floor.
kg・hm~。
0 1 64.0
土壤养分积累量N为1
b.hm‘’、P
7 749.3
b-hm~、K
60903.9
蚝.hm~、Ca 2421.9埏.hm~、Mg 6204.2蚝・hm~。 灌木林生态系统中养分积累总量为8 83
5 94.5 2 3.8
8蚝・hm~,其中植物层为
2埏.hm~,占总积累量的O.6 8%;死地被物层2 8 6.06蚝-hm~,占总
73 4.2 1
死地被物层碳含量为3 k.hm~。
g・k~,碳储量为2 5 5 6.3

土壤层碳含量为5.73~26.6

g・kg一,碳储量为77.68 t・hm~。土壤碳

喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布

喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布

Ca b n S o a e a d S ta sr b to n Dif r ntVe e a i n r o t r g n pa i lDit i u i n i fe e g t to
Re t r to te n n K a ss Ar a.G u z H Pr v nc so a i n Pa t r s i r t e i hO o i e
r s l h we h tc r o o c n r to sv re t i e e tte r a s i h a r e s e i s a d v re t i e e t e u t s o d t a a b n c n e ta i n a i d wi d f r n r e o g n n t e s me te p c e n a i d wi d f r n s h f h f te p c e i t e a te r a a we 1 Ca b n o c n r to s r e s e i s n h s me r e o g n s l. r o c n e ta i n we e i h r n b v g o n o g n t a t a i r h g e i a o e r u d r a s h n h t n u d r r u d o g n f r a lsu i d te p c e x e t o b s o u s Ⅱ n .Va ito o f c e t fc r o o c n r to s n e g o n r a o l t d e r e s e i s e c p r u Ⅱ e ss S p ra i n c e i i n so a b n c n e ta i n
th , 均 表 现 为 土 壤 层 > 植 被 层 > 死 地 被 物 层 , 种 林 分 以 楸 树 林 乔 木 层 年 固 碳 能 力 最 高 , ・m 且 4 达 1 1 9 th . 7 ・m~a , 次 为 车 桑 子 林 , 0 6 6 th ~ 其 为 . 8 ・ m。a 柏 木 林 最 低 , 0 0 0 th ~, 为 . 8 ・ m~a 一。

中国西南喀斯特森林生物量与碳储量研究进展

中国西南喀斯特森林生物量与碳储量研究进展

中国西南喀斯特森林生物量与碳储量研究进展冉同伙;安裕伦【摘要】The ecosystem of Karst in southwest area of China, was one of ecological environment frail areas. As the first major form of terrestrial ecosystem, forest biomass has played great roles in maintaining ecosystem balance, Karst rocky desertification ecological management and reconstruction, and sustainable development in Karst region. This paper systematically analyzed studies on biomass and carbon storage of forest ecosystems in southwest Karst area of China, and summarized three methods of forest biomass and carbon storage estimation. Based on all of these studies, some problems and opinions of future study were discussed.%西南喀斯特地区是我国生态环境脆弱地带之一,森林作为陆地生态系统的主体,对维护喀斯特地区生态系统平衡、喀斯特石漠化生态治理与重建以及可持续发展意义重大.在深入分析中国西南喀斯特地区森林生物量与碳储量研究现状的基础上,对喀斯特森林生物量研究方法及其存在的问题进行了总结,并讨论了未来的研究方向.【期刊名称】《贵州师范大学学报(自然科学版)》【年(卷),期】2013(031)002【总页数】4页(P117-120)【关键词】森林生物量;碳储量;喀斯特【作者】冉同伙;安裕伦【作者单位】贵州师范大学地理与环境科学学院;贵州省山地资源与环境遥感应用重点实验室,贵州贵阳550001【正文语种】中文【中图分类】TM938.84;P642.250 引言森林生态系统是陆地生态系统的主体,其生物量约占全球陆地植被生物量的90%[1],每年的固碳量占整个陆地生态系统固定的碳量2/3[2],储存了陆地生态系统76% ~98%的有机碳[3],森林生物量和碳储量已成为全球陆地生态系统碳循环与气候变化研究的焦点之一。

赤水河下游3种林分类型土壤有机碳含量及影响因素分析

赤水河下游3种林分类型土壤有机碳含量及影响因素分析

赤水河下游3种林分类型土壤有机碳含量及影响因素分析作者:钟洪明高艳平母永秋等来源:《湖北农业科学》2013年第23期摘要:对贵州赤水河下游杉木[Cunninghamia Lanceolata (Lamb.) var]林、马尾松[Pinus massoniana (Lamb.) Hook]林及竹[Phyllostachys edulis(Carr.) H. Delehaie]林土壤有机碳、碳密度及其垂直分配特征进行了研究,并探讨了土壤养分对其影响。

结果表明,3种林分类型0~80 cm剖面土壤有机碳平均含量为竹林(15.46 g/kg)﹥杉木林(13.78 g/kg)﹥马尾松林(9.72 g/kg),差异显著;有机碳密度为杉木林(12.87 kg/m2)﹥竹林(11.73 kg/m2)﹥马尾松林(8.21 kg/m2),差异极显著;3种林分类型土壤有机碳含量和碳密度均随土层深度增加而逐渐降低,有机碳含量均为0~10 cm层最大,分别是剖面有机碳含量均值的1.47~2.30倍,而0~20 cm土壤碳密度分别占剖面碳密度的31.71%~47.83%,显著高于其他各层,土壤有机碳和碳密度均具较强的表聚性,应加强生态环境保护,避免人为活动和减少水土流失;杉木林和毛竹林影响土壤有机碳含量的主导因子为水解氮,而马尾松林为有效磷。

关键词:林分类型;土壤有机碳;土壤碳密度;土壤养分中图分类号:S714.2 文献标识码:A 文章编号:0439-8114(2013)23-5741-05CO2在大气层中的积累引起了全球变暖、降水格局改变和海平面上升等全球性问题的发生,威胁着全球生态环境和人类自身生存与发展,因而引起国际社会普遍关注[1]。

森林生态系统是陆地生态系统中最重要的碳库,在维护区域生态环境和全球碳平衡方面起着极其重要的作用[2,3]。

森林土壤碳约占全球土壤有机碳库的73%[3-5],森林土壤有机碳库贮量的微小变化都可显著地引起大气CO2浓度的改变[5],是全球碳循环研究极其重要的部分。

神农架3种针叶林土壤碳储量比较

神农架3种针叶林土壤碳储量比较
ma s s o f s h r u b l a y e r a n d l i t t e r s t o r a g e .T a g e o f t h r e e c o n i f e r o u s f o r e s t s i n 0— 6 0 c m l a y e r i s 5 7 . 7 9 t・h m~ .
第4 2卷 第 3期
2 0 1 4年 3月








Vo 1 . 4 2 N o . 3
Ma r .201 4
J OURN AL OF NOR THE AS T F 0RE S TR Y U NI VE RS I T Y
神 农 架 3种 针 叶林 土 壤 碳 储 量 比较 )
N o r t h e a s t F o r e s t r y U n i v e r s i t y . - 2 0 1 4, 4 2 ( 3 ) . - 6 9~ 7 2
Wi t h t h r e e ma i n c o n i f e r o u s f o r e s t s o f P i n u s m a s s o n i a n a f o r e s t , P i n u s a m a n d i i f o r e s t a n d A b i e s f a r g e s i i f o r e s t i n S h e n — n o n g j i a N a t u r e R e s e r v e , a n e x p e r i m e n t w a s c o n d u c t e d t o s t u d y t h e s o i l o r g a n i c c a r b o n( S O C)s t o r a g e c h a r a c t e r i s t i c o f t h r e e c o n i f e r o u s f o r e s t s , a n d t h e r e l a t i o n s h i p b e t w e e n s o i l c a r b o n s t o r a g e w i t h m e a n d i a m e t e r a t b r e a s t h e i g h t( D B H) , b i o —

针叶林碳储量大的原因

针叶林碳储量大的原因

针叶林碳储量大的原因针叶林是指以松树、云杉等针叶树为主要构成的森林类型,针叶林在全球范围内分布广泛,尤其在北半球的寒温带地区占据重要地位。

针叶林的碳储量之所以较大,主要是由于以下几个原因。

针叶林的生长速度相对较快。

相比于阔叶树,针叶树的生长周期较短,生长速度较快。

由于针叶树木质纤维含量较高,生长速度快意味着针叶林的碳吸收速度也较快,从而为碳储量的积累提供了较好的条件。

针叶林的林分结构相对稠密。

针叶树通常呈现出较为浓密的冠层,树木之间分布密集。

这种密集的林分结构使得针叶林在单位面积上能够容纳更多的树木,进而增加了碳储量的积累。

同时,密集的林分结构还能够减少土壤水分蒸发,提供更好的生长环境,进一步促进了针叶林的生长和碳吸收。

第三,针叶林的树种组成对碳储量的贡献较大。

在针叶林中,松树、云杉等树种通常是主要构成部分,这些树种在生长过程中具有较高的碳吸收能力。

针叶树的叶片形态适应了寒冷环境,其叶片表面积相对较小,蒸腾作用较低,能够更有效地保留水分和养分。

而这些特点使得针叶树具有较高的碳吸收效率,进而增加了针叶林的碳储量。

针叶林的凋落物分解速度较慢,有利于碳的长期储存。

针叶树的凋落物中含有较高的纤维素和木质素,这些有机物质的分解速度较慢,导致凋落物中的碳能够长期保留在土壤中。

相比之下,阔叶树的凋落物中含有较高的纤维素和易分解的有机物,容易被微生物分解释放出二氧化碳,导致碳储量的损失。

针叶林在寒冷的环境下,土壤中的有机质分解速度较慢,有利于碳的积累。

在寒冷地区,低温和湿度条件限制了微生物的活动,减缓了有机质的分解速度。

这使得针叶林的土壤中有机质的积累速度相对较高,进一步增加了碳储量。

针叶林的碳储量较大的原因主要包括生长速度快、林分结构密集、树种组成适应寒冷环境、凋落物分解速度慢以及土壤中有机质的积累速度较高等方面的因素。

针叶林的碳储量对于全球碳循环和气候变化具有重要意义,因此,保护和管理针叶林资源,促进其生态系统的健康发展,对于维护生态环境平衡和应对气候变化具有重要意义。

喀斯特地区植被碳汇量估算方法进展

喀斯特地区植被碳汇量估算方法进展

喀斯特地区植被碳汇量估算方法研究进展摘要:喀斯特地区的植被类型主要有森林,灌木丛,草场,荒漠,水生植被和农业植被,本文通过借鉴相应碳汇量的估算方法,研究喀斯特地区植被碳汇量的主要计算方法,利用气象技术测定森林吸收二氧化碳的含量,估算灌木丛的碳汇量,提出保护、利用、改造、建设牧地和草场,提高畜牧业生产能力,实现稳产高产的根本措施。

关键词:喀斯特碳汇固碳评估方法森林碳汇森林是陆地生态系统中最大的碳库,是陆地生态系统最重要的植被。

在降低大气中温室气体浓度、减缓全球气候变暖中,具有十分重要的独特作用[1]。

许多国家和国际组织都在积极利用森林碳汇应对气候变化。

灌丛和草场碳汇在陆地植被类型中的碳汇占比较少。

近年来,关于碳汇的研究区域主要在华北人工林,北方草原等较大的区域,这里面既有森林碳汇也有草场碳汇,而对喀斯特这个特殊地区的植被碳汇研究相对较少。

因此,喀斯特地区关于植被碳汇还需要我们进一步研究,才能比较精确地计算该类区域的碳汇量。

一、喀斯特地区的特点以贵州为主的南方喀斯特山地地区,为中国五大典型脆弱生态区之一。

贵州脆弱的喀斯特环境在中国和世界均具有一定代表性,其脆弱性主要表现在:地表崎岖破碎,山高坡陡,基岩裸露率高;环境中水、土要素出现结构性缺损,石多土少,成土速度极慢;地表干旱,可利用的水资源短缺,受环境的约束,植物生境严酷,立地条件极差,植物生长缓慢,产出率低,导致整个喀斯特生态环境的物质、能量流动不畅,功能低下,表现出环境生态容量低、变异敏感度高、抗干扰能力弱、稳定性差、破坏后水土流失严重,自我恢复能力低,治理难度大等。

正是基于喀斯特地区的这些特点才使我们迫切需要对该地区的植被碳汇量进行测算,让人们知道保护环境的重要性,因为该区域的植被很难恢复,所以我们要保护好该区域的植被不能破坏,否则就会形成一系列的连锁反应,造成生态破坏。

二、主要方法介绍1、生物量法生物量法是以森林生物量数据为基础的碳估算方法[2]。

喀斯特城市主要森林生物量及碳吸存功能

喀斯特城市主要森林生物量及碳吸存功能

Ab s t r a c t : T h e i n v e s t i g a t i o n s o f b i o ma s s , c a r b o n s t o r a g e a n d s p a t i a l d i s t r i b u t i o n c h a r a c t e r i s t i c s o f ma i n f o r e s t s i n Gu i y a n g( a k rs a t c i t y )
第3 3卷 第 1 1 期 2 0 1 3年 1 1 月
中 南 林 业 科 技 大 学 学 报
Jo ur nal o f Ce nt r al S out h U ni ve r s i t y o f Fo r e s t r y & Te c hnol og y
c i y t wa s e s t i ma t e d b a s e d o n he t s u r v e y d a t a . T h e r e s u l t s s h o w ha t t t h e a r b o r b i o ma s s o f 7 ma i n f o r e s t s r a n g e d f r o m 5 . 4 4 t - h m。 。 t o 1 0 5 . 3 6
Bi o ma s s a nd c a r bo n s e que s t r a t i o n f un c t i o n o f ka r s t ma i n ur ba n f o r e s t
NI NG Xi a o . b o ,L I U Lo n g . d e ,LI Mi ng — g a n g 2 GU Yo n g — s h u n ,W ANG Ta i . q i n g ,XI A J i ng

喀纳斯国家自然保护区针叶林生物量分配特征

喀纳斯国家自然保护区针叶林生物量分配特征

喀纳斯国家自然保护区针叶林生物量分配特征白志强;刘华;方岳;张帆;叶高;韩燕梁【摘要】本试验分别采用相对生长法和全株收获法调查分析了新疆喀纳斯国家自然保护区内西伯利亚落叶松(Larix sibirica)、西伯利亚云杉(Picea obovata)和西伯利亚红松(Pinus sibirica)等3种主要针叶林生物量的分配特征.结果表明:3个树种不同器官生物量分配存在差异,西伯利亚云杉和西伯利亚红松均为树干>树根>树枝>树皮>树叶,西伯利亚落叶松为树干>树根>树皮>树枝>树叶;树干的生物量占总生物量的96%以上;3种优势针叶树种的生物量(W)与胸径(D)和树高(H)的函数表达式为W=a(D2 H)b,回归系数均在0.88以上;3种林分总生物量排序为西伯利亚落叶松-西伯利亚云杉针叶混交林>西伯利亚落叶松-西伯利亚云杉-西伯利亚红松针叶混交林>西伯利亚云杉针叶纯林;在垂直分布上,西伯利亚落叶松-西伯利亚云杉混交林和西伯利亚云杉纯林均为乔木层>凋落物层>草本层>苔藓层>灌木层;西伯利亚落叶松-西伯利亚云杉-西伯利亚红松混交林则为乔木层>凋落物层>苔藓层>草本层>灌木层;3种林分的乔木和灌木层生物量地上部分大于地下部分;草本层生物量表现为地下部分大于地上部分.【期刊名称】《河北农业大学学报》【年(卷),期】2014(037)004【总页数】7页(P14-19,24)【关键词】针叶林;生物量;喀纳斯国家自然保护区【作者】白志强;刘华;方岳;张帆;叶高;韩燕梁【作者单位】新疆林科院森林生态研究所,新疆乌鲁木齐830002;安徽农业大学林学与园林学院,安徽合肥230036;安徽农业大学林学与园林学院,安徽合肥230036;安徽农业大学林学与园林学院,安徽合肥230036;安徽农业大学林学与园林学院,安徽合肥230036;新疆林科院森林生态研究所,新疆乌鲁木齐830002【正文语种】中文【中图分类】S718.5森林生态系统作为陆地上面积最大的生态系统,在影响全球碳循环过程中起着不可替代的作用[1]。

喀斯特风水林和荒山生态系统碳储量的研究(英文)

喀斯特风水林和荒山生态系统碳储量的研究(英文)

㊀Guihaia㊀Aug.2018ꎬ38(8):1062-1069http://www.guihaia-journal.comDOI:10.11931/guihaia.gxzw201802009引文格式:陶玉华ꎬ白丽蓉.喀斯特风水林和荒山生态系统碳储量的研究[J].广西植物ꎬ2018ꎬ38(8):1062-1069TAOYHꎬBAILR.Carbonstorageofecosystemsinhollyhillandbarrenhillkarstarea[J].Guihaiaꎬ2018ꎬ38(8):1062-1069CarbonstorageofecosystemsinhollyhillandbarrenhillkarstareaTAOYuhua∗ꎬBAILirong(GuangxiKeyLaboratoryofMarineDisasterinBeibuGulfꎬKeyLaboratoryofCoastalScienceandEngineeringinBeibuGulfꎬQinzhouUniversityꎬQinzhou535011ꎬGuangxiꎬChina)Abstract:Hollyhillandbarrenhillbothexistinkarstlandformꎬkarstforestisafragileandlow ̄biomassecosystemwithbarrensoilandlowresilienceandresistancecapabilitiestodisturbance.Thehollyhillistheplacewherethevegetationiswellprotectedbytheindigenouspeoplewholivenearbybasedontheirbeliefsꎬthebarrenhilliscomprisedofrockykarstformationsthatcontaintheareasofexposedbedrockduetohumandisturbance.ThestudyisaboutcomparisonofcarbonstorageofecosysteminhollyhillandbarrenhillꎬthecarbonstocksofhollyhillandbarrenhillecosystemswerestudiedthroughfieldworkꎬlaboratoryanalysisandstatisticatLuochengꎬGuangxiꎬChina.Theresultsshowedthatvegetationꎬsoilandlittercarbonstorageofhollyhillecosystemswere7.42ꎬ5.9and1.1timesthoseofbarrenhillecosystemsrespec ̄tively.Carbonstoragewere137.06ꎬ93.73t hm ̄2athollyhillandbarrenhillecosystemsrespectivelyꎬsoilcarbonstor ̄agecontributedmostinthetwoecosystemsꎬandunderstoryandlittercontributedless.Thecomparisonofcarbonstorageofhollyhillandbarrenhillreflectstheimportanceofprotectingkarstforestꎬkeepingtraditionalaboriginalculturemeansalotforprotectingecologicalenvironmentandimprovingcarbonsequestration.Keywords:carbonstorageꎬbiomassꎬhollyhillꎬbarrenhillꎬkarstCLCnumber:Q948㊀㊀Documentcode:A㊀㊀ArticleID:1000 ̄3142(2018)08 ̄1062 ̄08喀斯特风水林和荒山生态系统碳储量的研究陶玉华∗ꎬ白丽蓉(广西北部湾海洋灾害研究重点实验室ꎬ广西北部湾海岸科学与工程实验室ꎬ钦州学院ꎬ广西钦州535011)摘㊀要:所研究的风水林和荒山属于喀斯特地貌ꎮ喀斯特森林是一种脆弱的低生物量生态系统ꎬ土壤贫瘠ꎬ自我修复能力低ꎬ易受人为因素干扰ꎮ风水林指人们居住地附近的一片茂盛的森林ꎬ认为有神居住而崇拜ꎬ严禁被砍伐和破坏ꎮ荒山是喀斯特森林植被在人为干扰后出现岩石裸露产生的石漠化现象ꎮ该研究通过野外调查㊁实验室分析㊁数理统计等对广西罗城喀斯特风水林和荒山生态系统碳储量进行对比性研究ꎮ结果表明:喀斯特风水林植被㊁土壤和枯落物碳储量分别是荒山的7.42倍㊁5.9倍和1.1倍ꎬ风水林和荒山生态系统碳储收稿日期:2018-05-13基金项目:国家自然科学基金(31761143001)ꎻ钦州学院高层次人才科研启动项目(2017KYQD203)ꎻ广西北部湾海洋灾害研究重点实验室自主项目(2018TS01)[SupportedbytheNationalNaturalScienceFoundationofChina(31761143001)ꎻQinzhouUniversityHigh ̄LevelScientificResearchFoundationforTalentIntroduction(2017KYQD203)ꎻGuangxiKeyLaboratoryofMarineDisasterintheBeibuGulf(2018TS01)]ꎮ作者简介:陶玉华(1968-)ꎬ女(达斡尔族)ꎬ黑龙江齐齐哈尔人ꎬ博士ꎬ教授ꎬ从事民族生态学研究ꎬ(E ̄mail)arlenetao12@aliyun.comꎮ∗通信作者量分别为137.06㊁93.73t hm ̄2ꎬ其中土壤碳库贡献率最高ꎬ而林下植被和枯落物却较低ꎬ表明风水林森林生态系统碳储量明显高于荒山ꎮ通过风水林和荒山的碳储量比较研究ꎬ为评价风水林碳汇提供依据ꎬ为制定森林管理政策㊁保护村社水平的植被提供数据参考ꎮ此外ꎬ还探讨了少数民族朴素的生态伦理思想在保护森林和增汇方面的作用ꎬ丰富了生态伦理学内容ꎬ对传承和弘扬少数民族传统文化㊁恢复生态具有重要意义ꎮ关键词:碳储量ꎬ生物量ꎬ风水林ꎬ荒山ꎬ喀斯特㊀㊀Hollyhillꎬknownassacredgrovesordragonhillꎬisaplacewhosevegetationiswellconservedbythein ̄digenouspeoplewholivenearby.Thevillagersworshipitbecausetheybelieveagodlivesthereandthereforeꎬnooneisallowedtocutplantsordamagethehills.SuchtraditionalculturehasexistedforcenturiesinsomeethnicgroupsinChina.Itishighinspeciesrichnessandcontainscomplicatedvegetationcommunitystructure(Zhouetalꎬ2002).ZhuangandMelaominoritygroupsinGuangximaintainanimismintheirtraditionalcultureꎬbelievingthatallthingsinthehollyhillarethereincarnationofgodsthatwillblesstheirsafetyꎬhealthandprosperityifthehollysiteisprotected.Thistraditionofprotectingforestecosystemsbasedonecologicalethicsconstitutespartofthecultureoftheseindigenouspeople.Hollyhillvegetationisavitalpartoftheagriculturalandforestecosystemsforthepeoplewholiveintheareaandplaysaveryimportantroleinwaterandsoilconservationꎬsuchasregulatingthemicroclimateandmaintainingsoilstability.Previousre ̄searchshowedthatthebiodiversityoftheprotectionareawasprotectedrelativelywellꎬwhichplaysanexpandedroleintheprotectionofbiodiversityatlandscapescales(Liuetalꎬ2000).Thebarrenhilliscomprisedofrockykarstforma ̄tionsthatcontainextensiveareasofexposedbedrock.Desertificationhasoccurredinthisregionasaresultofextensivevegetationremovalꎬwhichhasledtothedegradationofthelandandreducedsoilproductivity(Yangꎬ1995).Karstforestisafragileecosystemwheresoilstakeanextremelylongperiodoftimetoformꎬsiteresourcesforplantproductivityarelowꎬextensiveareasofbarrensoilexistwheresoilerosionoccursꎬandhaslowresilienceandresistancecapabilitiestodistur ̄bance.Karstforestecosystemsusuallytakelongertore ̄coveroncethevegetationisremoved.Therestorationofthekarstforestecosystemsusuallyrequirestheestab ̄lishmentofseveraldifferentsuccessionalstagesꎬwhichcansignificantlyinfluencetheecosystemfunctionsofthesevegetativesystems(Wangetalꎬ2008).Thecarbonstorageofhollyhillandbarrenhillecosystemswerestudiedinthispaper.Thisstudyisaimedtocomparethecarbonstorageoftwoecosystemsandtheircarbonstoragespatialdistributionsꎬwhichcouldcontributetotheunderstandingoftheimportantsignificanceforprotectingcommunityforestsinkarstharshhabitatꎬanditalsoprovidesthecomparativedatatodeveloppropermanagementstrategiesfortheseeco ̄systemsandthecommunityforest.1㊀Methods1.1DescriptionofstudyareaThestudyarea(108ʎ48ᶄEꎬ24ʎ59ᶄN)islocatedinthenorthernpartofLuochengMelaoAutonomousCountyꎬGuangxiꎬChinaꎬwhichliestothesouthofJiuwanMountain.Thisregionischaracterizedbyasub ̄tropicalclimatewithhighhumidityꎬrainandfog.Theannualaveragetemperatureis18.8ħꎬwithextremehighestandlowesttemperaturesof38ħand-4ħꎬre ̄spectively.Theaverageannualrainfallis1630.6mmꎬwithanaveragerelativehumidityof78%and300frost ̄freedays.HollyhillandbarrenhillaresituatedinSibaoVil ̄lageꎬLuochengCountyꎬGuangxiꎬChinaꎬwhichisin ̄habitedbytheMelaoꎬZhuangꎬYaoꎬDongandMiaominoritygroups.TheMelaoandZhuangcomprisemorethan50%oftotalpopulationinSibaoVillage.Hollyhillandbarrenhillaredominatedbylimestonesoilwithextremelyunevensoildepthandex ̄posedrocks.Theelevationrangesfrom280mto318mwithsteepslopes(20ʎ-40ʎ)andsoildepthsof3-50cm.Thevegetationoccursinrelativelysmallpatchesor36018期陶玉华等:喀斯特风水林和荒山生态系统碳储量的研究nichesinsuchareasasstonefacingsorsurfacesꎬsoilꎬchannelscarvedintostoneovertimeꎬandcracksandcrevicesinstones.ThreehollyhillsiteswhichcontainlushvegetationꎬsurroundSibaoVillageandcalledLionHillꎬTempleHillandLaojieHillbyarborigines.Thepri ̄maryspeciesofwoodyplantswhichoccurtheremainlyincludeCinnamomumcamphoraꎬCeltissinensisꎬUlmuscastaneifoliaꎬSapiumrotundifoliumꎬTirpitziaovoideaꎬRadermacherasinicaꎬBroussonetiapapyriferaꎬAlangiumchinenseꎬCudraniatricuspidataꎬAlchorneatrewioidesꎬCrassocephalumcrepidioidesꎬTrachelospermumjasmi ̄noidesꎬMelastomaintermediumꎬMallotusphilippensisꎬKoelreuteriaintegrifoliolaꎬErvatamiadivaricataꎬOreoc ̄nidefrutescensꎬmainspeciesofherbaceousplantsareHoyacarnosaꎬPyrrosialinguaꎬRubuscorchorifoliuꎬEla ̄tostemabalansaeꎬDicranopterisdichotomaꎬEragrostispi ̄losaꎬArthraxonhispidusꎬMicrostegiumvagansꎬIshaemumindicumandArundinellahirta.Localfarmerscutfirewoodandplantedcropsforalongtimeinthebarrenhillbeforeforestconservationbecameaconcernꎬwhichhascreatedareasofexposedbedrockanddesertification.Thevegetativecommunitieshavebeenpartlyrestoredsincetheinvolvementbythegovernmentinconservationpractices.Atthepresenttimethesecommunitiesprimarilyconsistofwoodyandherbaceousplants.Accordingtoitscommunityphysiog ̄nomyꎬthedominantspeciesandhabitattypesꎬthekarstvegetationwasdividedintofivesuccessionalstages: (1)herbcommunityꎬ(2)herb ̄shrubcommunityꎬ(3)shrubcommunityꎬ(4)sub ̄climaxcommunityand(5)climaxcommunityofevergreen ̄deciduousbroad ̄leavedmixedforests(Xiaꎬ2010).Onlytheherbcommunityandherb ̄shrubcommunityexistedinbarrenhillsduringthetimethatthisstudywasimplemented.TheprimarywoodyspeciesthatoccurredinthebarrenhillsmainlyincludeAlchorneatrewioidesꎬAlangiumchinenseꎬCallicarpamacrophyllaꎬMillettianiti ̄daꎬJasminumseguiniiꎬVitexnegundoꎬBroussonetiapa ̄pyriferaꎬOreocnidefrutescensꎬStrophanthusdivaricatusꎬPlatycaryastrobilaceaꎬCudraniatricuspidataꎬRhuschinensiꎬRosalaevigataꎬSterculiaeuosmaꎬChukrasiatabularisꎬUlmusparvifoliaꎬLaplaceaindicaꎬandmainspeciesofherbsarePteridiumrevolutumꎬLitseacubebaꎬMiscanthusfloriduluꎬMicrostegiumvaganꎬBidenspilosaꎬErigeronkomaroviiꎬElatostemabalansaeꎬImperatacy ̄lindricaꎬRubuscorchorifoliuꎬEragrostispilosaandAr ̄thraxonhispidus.1.2MethodsofestimatingtreebiomassinhollyhillsLionHillꎬTempleHillandLaojieHillwerechosentorepresentthehollyhillstudyareas.Atotalof27sampleplots(20mˑ30m)wereestablishedalonganelevationalgradientof50-80mverticaldistance.Withineachplotꎬtotaltreeheightanddiameteratbreastheight(dbh)weremeasuredonalltreeswithdbh>2cm.TheabovegroundbiomassoftreeswereestimatedwithbiomassequationspublishedbyZhuetal(1995)forGuizhoukarstforests(Table1).Theundergroundbiomassoftreeswereestimatedbytheroot ̄shootratio(0.2318)reportedbyQi&Tang(2008)forXishuangbannakarstforests.Table1㊀Equations1ꎬ2usedtoestimatetheforestbiomassinhollyhillsForestcomponentModelcoefficientsabr ̄valueTreetrunk0.04140.93540.9945Branch0.03202.33990.9391Foliage0.13773.72560.8487㊀Note:1W=a(D2H)bꎬwhereW=biomass(kg)ꎬD=dbh(cm)ꎬandH=totalheight(m)ꎻ2EquationsfromZhuetalꎬ1995.1.3MethodsofestimatingbiomassofunderstoryandlitterinhollyhillsThree4.0m2andthree1.0m2subsampleplotswereestablishedineachsampleplotforthepurposeofestimatingherbaceousandwoodyunderstorybiomassꎬandlitterbiomassꎬrespectively.Ineach4.0m2sub ̄sampleplotꎬtheherbaceousandwoodyplantswereclippedandweighedtothenearest0.1gtoacquireafreshweight.Alllitterswerecollecteddowntothemineralsoilineach1.0m2subsampleplotandweighedtothenearest0.1gtoattainatotalfreshweight.Anapproximate30%subsampleofthesefreshweightfieldsampleswerebroughtbacktothelaboratoryanddriedat80ħuntilaconstantweightwasachievedtodeterminethemoisturecontent.Thedeterminedmoisturecontentpercentagewasappliedto4601广㊀西㊀植㊀物38卷thefreshweightsamplestoachieveadryweightandconvertedintounitareaovendrybiomassweightofun ̄derstoryandlitter(t hm ̄2).Thebelowgroundbiomassofwoodystemswasestimatedbyusingtheroot ̄shootratio(1ʒ1)reportedbyTu&Yang(1995)forGuizhoukarstforests.1.4MethodsofestimatingbiomassoflitterꎬwoodyandherbaceousplantsinbarrenhillsBarrenhillsarecurrentlyinvegetationrestorationstagesaspartoftheefforttoreversethekarstrockydesertificationthathasoccurredthere.Asaresultꎬtwosuccessionalstagesexistedandwereinvestigatedinthisstudyꎬwhichincludedtheherb ̄shrubandtheherbcommunities.Three4.0m2subsampleplotswereestablishedineachsampleplottoestimatewoodyꎬherbaceousandlitterbiomass.Theproceduretodeter ̄minethefreshanddryweightofwoodyandherbaceousplantsandlitterwasperformedaccordingtothesamemethodasdescribedforthehollyhills.1.5MethodsofmeasuringcarboncontentSamplesmaterialsoflitterꎬwoodyandherbaceousplantsofhollyhillandbarrenhillweredriedꎬcrushedandsieved.Forsoilsamplesꎬthreesoilsampleswereplacedineachreplicateplotsran ̄domlyꎬandsampledbythecuttingringsat0-20cmꎬ20-40cmsoildepthꎬsoilsampleswerebroughtbacktothelaboratorytodeterminethesoilbulkdensityꎬthecarboncontentofdifferentcomponentsandsoilswereanalyzedthroughthepotassiumdichromateoxi ̄dation ̄hydrationheating.1.6MethodsofestimatingcarbonstorageThecarbonstorageofhollyhillandbarrenhillecosystemsconsistsoftreeꎬunderstoryꎬlitterandsoil(notreelayerexistedinunprotectedsite).Thecarbonstoredinecosystemscanbeestimatedbymul ̄tiplyingthebiomassofdifferentforestcomponentsbytheircarboncontentꎬtypically0.5ꎬwhichwasusedinthisstudy.Theestimationofsoilcarbonstoragewasdeterminedwiththefollowingequation(Zhongetalꎬ2008):SSOD= ni=1(CiˑpiˑTt)ˑ10 ̄1.IntheequationꎬSSOD=soilcarbonstoragedensity(t hm ̄2)ꎬCi=carbonmassfractioninisoildepth(g kg ̄1)ꎬPi=soilbulkdensityinisoildepth(g cm ̄3)ꎬTi=thicknessofsoilinisoildepth(cm)ꎬandnisthenumberofsoildepthlayers.1.7DataprocessingExcelandSPSS17.0statisticalsoftwarewereuti ̄lizedinthedataanalysis.2㊀ResultsandAnalyses2.1Carboncontentsoflitterꎬwoodyandherba ̄ceousplants2.1.1Carboncontentsoflitterandunderstoryinhollyhills㊀CarboncontentsofunderstoryofLionHillꎬTempleHillandLaojieHillrangedfrom37.51%to43.05%ꎬwithnosignificantdifferencebetweeneachsite(P>0.05).Thecarboncontentoflitterrangedfrom38.9%to45.54%ꎬwithnosignificantdifferencebetweeneachsite.Thecarboncontentin0-20cmsoildepthatthethreeprotectedsitesrangedfrom2.53%to3.18%ꎬandrangedfrom1.98%to2.25%withinthe20-40cmsoildepthsoil(Table2).Table2㊀CarboncontentsofunderstoryꎬlitterandsoilinhollyhillsSampleCarboncontent(%)Understory1Litter0-20cm20-40cmLionHill43.0545.542.792.25TempleHill37.5139.753.182.22LaojieHill41.0738.902.531.98Average40.5441.402.832.15㊀Note:1Understoryincludesherbaceousandwoodyplants.Thesamebelow.2.1.2CarboncontentsoflitterꎬwoodyandherbaceousplantsinbarrenhillsCarboncontentsoflitterꎬwoodyandherbaceousplantsinherb ̄shrubcommunitywerehigherthanwhatwasfoundintheherbcommunitybutwerenotsignificantlydifferentatP=0.05(Table3).Thecarboncontentsinthesoillayersof0-20cmand20-40cmdepthswerehigherintheherb ̄shrubcommunitycomparedtotheherbcommunityꎬandinbothvegetationcommunitiesthesoilcarbondecreaseswithsoildepth.56018期陶玉华等:喀斯特风水林和荒山生态系统碳储量的研究Table3㊀CarboncontentsofunderstoryꎬlitterandsoilinbarrenhillsVegetationcommunityCarboncontent(%)Understory1Litter0-20cm20-40cmHerb ̄shrub41.1438.502.891.88Herb36.4833.661.400.91Average38.8136.082.151.402.2Carbonstorage2.2.1Carbonstorageofhollyhills㊀Thecarbonstoredinthetreesofhollyhillsrangedfrom21.76t hm ̄2to51.4t hm ̄2ꎻcarbonstorageoftheunderstoryrangedfrom1.32t hm ̄2to2.92t hm ̄2ꎻcarbonstoredinthelitterrangedfrom0.77t hm ̄2to4.86t hm ̄2ꎻandsoilcar ̄bonrangedfrom86.43t hm ̄2to112.64t hm ̄2.Thetotalcarbonstoredintheprotectedecosystemsrangedfrom113.47t hm ̄2to149.92t hm ̄2(Table4).2.2.2Carbonstorageofbarrenhills㊀Thecarbonstocksofwoodyandherbaceousplantsinherb ̄shrubcommunitywerehigherthanthoseoftheherbcommunity(Table5).Howeverꎬthecarbonstocksofthelittercomponentintheherbcommunitywerehigherthanwhatwasfoundintheherb ̄shrubcommunity.Thetotalsoilcarbonstoredinherb ̄shrubcommunityandherbcommunitieswere117.78t hm ̄2and58.63t hm ̄2ꎬrespectively.Thetotalecosystemcarbonstoredintheherb ̄shrubandherbcommunitieswere126.53t hm ̄2and60.93t hm ̄2ꎬrespectively.Becausethetreesthatoccurredintheherb ̄shrubcommunityweresmallꎬtheywerecombinedwiththewoodyandherba ̄ceousplantspecies.2.2.3Comparisonofcarbonstoragesofhollyhillandbarrenhillecosystems㊀Carbonstoredinthetreelayerofhollyhillecosystemsaccountedfor25.83%oftheto ̄talecosystemcarbon(Table4)ꎬthecarbonstoredinthewoodyandherbaceousplantswaslessthanthatofthebarrenhill.Howeverthecarbonstoredwithinthelitterlayerofhollyhillecosystemwasgreaterthanthatinthelitterlayerofthebarrenhill.Soilcarbonstoredathollyhillwithinboththe0-20cmand20-40cmlayersweregreaterthanwhatwasfoundinthesoillayersatbarrenhill.Thetotalcarbonstoredinthehollyhillecosystemwas1.46timesgreaterthanthetotalbarrenhillecosystem(Table6).3㊀Discussion3.1CarbonstorageofhollyhillsBecausehollyhillsareconsideredasacredareaꎬtheSibaoVillageCommitteedidnotallowtheauthorstoharvesttresstomeasurebiomassoutofrespectfortheworshipandtaboosofthelocalresidents.TheabovegroundbiomassoftreeswerethereforeestimatedbybiomassequationpublishedbyZhuetal(1995)ꎬandundergroundbiomassoftreeswerecalculatedbyaspecifiedroot ̄shootratio(Qi&Tangꎬ2008).Theuseofbiomassregressionmodelstoestimatethebiomassofdifferenttreespeciesusuallyintroduceserrorbythenatureoftheirestimationꎬbutduetothehighspeciesdiversityandfewnumbersofindividualswithinspeciesinkarstforestecosystemꎬitisdifficulttocreategoodregressionmodelsasmightbeperformedinplantationsettings.Yang&Cheng(1991)indicatedthatkarstforestpopulationshadsimilarbiologicalfeaturesduetothelong ̄termadaptationtotheharshkarstenvironmentꎬWhittaker&Woodwell(1968)foundthattherewasasignificantandsimilarcorrelationbe ̄tweenbiomassanddiameterofsimilarspeciesoftrees.Thereforeꎬwebelievethattheapplicationofuni ̄formbiomassregressionmodelstosimilarspeciesisreasonableforthisstudy.Karstforesttypicallyisconsideredasalow ̄biomassforestecosystem(Yuetalꎬ2010)ꎬwhosebio ̄massandcarbonwereparticularlylowerthanthoseofevergreenbroad ̄leavedforestecosysteminthesameclimaticzones(Lietalꎬ2015ꎻZhangetalꎬ2014).Thelowbiomassandcarbonstocksareduetotheharshecologicalenvironmentfoundinthekarstecosystemsꎬsuchasbarrensoilꎬwaterstressꎬandfre ̄quentnaturalandhumandisturbances.Thisharshen ̄vironmentcausesvegetationtogrowveryslowlyꎬcreatingashortecologicallifeforplants.Inadditionꎬthedevelopmenthistoryofsecondaryforestsinthesesystemsisveryshort(Zhuetalꎬ1995).6601广㊀西㊀植㊀物38卷Table4㊀CarbonstorageandpercentageofcomponentsofhollyhillecosystemSampleTree(t hm ̄2)%Understory1(t hm ̄2)%Litter(t hm ̄2)%Soil(t hm ̄2)0-20cm20-40cmTotalsoil(t hm ̄2)%Totalcarbon(t hm ̄2)LionHill51.434.282.921.954.863.2449.9640.7890.7460.53149.92TempleHill33.0622.371.320.890.770.5270.8841.76112.6476.22147.79LaojieHill21.7619.184.23.71.080.9546.424086.4376.17113.47Average35.4125.832.812.052.241.6355.7640.8596.670.48137.06Table5㊀CarbonstorageofecosystemcomponentandpercentageofthetotalinbarrenhillecosystemVegetationtypeVegetation(t hm ̄2)%Litter(t hm ̄2)%Soil(t hm ̄2)0-20cm20-40cmTotalsoil(t hm ̄2)%Totalcarbon(t hm ̄2)Herb ̄shrub8.436.660.320.2567.9949.79117.7893.08126.53Herb1.863.050.440.7234.6623.9758.6396.2360.93Average5.155.490.380.4151.3336.8888.2194.193.73Table6㊀CarbonstoragecomparisonofecosystemcomponentintwodifferentecosystemsEcosystemcomponentHollyhill(t hm ̄2)Barrenhill(t hm ̄2)Tree35.41Woodyandherbaceousplants2.815.15Litter2.240.38Soil0-20cmdepth55.7651.3320-40cmdepth40.8536.88Totalsoil96.6088.21Totalecosystem137.0693.73㊀㊀Tianetal(2011)studiedthecarbonstocksofdifferentvegetationcomponentsinkarstareaꎬGuizhouProvinceꎬandtheyfoundthatsoilcarbonaccountedforover94.01%ofwholeecosystemwhilevegetationcarbonstocksaccountedfor0.82%-5.64%.Thecar ̄bonstoredintreesatprotectedsitesinthisstudyac ̄countedfor25.83%ofwholeecosystemꎬwhilethecarboninthesoilꎬunderstoryvegetationꎬandlitteraccountedfor70.48%ꎬ2.05%and1.63%ꎬrespec ̄tively.Itisevidentthatthecarbonsequesteredandstoredinthesoiloftheseecosystemscontributessig ̄nificantlytotheseecosystemsꎬfollowedbythetreelayerꎬunderstoryvegetationandlitter.Carbonstoredinthesoilofhollyhillsdecreasedwiththeincreaseofsoildepth.Thisstudyfoundthatthesoilcarbonwithin0-20cmlayerinhollyhills(46.62t hm ̄2)washigherthanwhathasbeenre ̄portedforsoilcarbonofthekarstrockydesertificationcomprehensivetreatmentdemonstrationareainGuizhouProvinceandlowerthansoilcarboninthekarstnon ̄rockydesertification(Zhouetalꎬ2011).Thesoilcarbonofhollyhillswasalsolowerthanthesoilcarbonfoundindifferentecosystemresto ̄rationtreatmentsinGuizhou(Tianetalꎬ2011).Manydifferentfactorscaninfluencesoilcarbonstorageꎬsuchasplantspeciesꎬforestageꎬclimateꎬsoilconditionsꎬandanysoiltreatmentbeforeaffores ̄tation.Zhangetal(2009)studiedthefactorsthateffectsoilcarbonstorageinGuangxiꎬGuizhouandYunnanProvinceꎬandfoundthattemperatureandsoilparentmaterialwereprimaryfactorsthatinfluencetheamountofsoilcarbonwithtemperaturehavinga76018期陶玉华等:喀斯特风水林和荒山生态系统碳储量的研究greaterinfluencethanparentmaterials.3.2CarbonstorageofbarrenhillsThecarbonstorageofwoodyandherbaceousplantsofbarrenhillswashigherthanwhatwasfoundinhollyhills.Becauseꎬoncetreesbegintodominateanecosystemꎬunderstoryplantsbegintohavedifficultyinsurvivinganddecreaseintheirproductivityduetoacombinationoftheharshkarstenvironmentandthedevelopmentofforestcanopy.Ontheotherhandꎬintheherb ̄shrubcommunitystageꎬwoodyandherbaceousplantswillbothexistꎬallowingforhighernetproductivityandsubsequentlyhigheramountsofbiomass.Theaveragecarbonofwoodyandherbaceousplantsinbarrenhillsaccountedfor5.9%ofwholeecosystemꎬandcarbonstoredwithinthelittercom ̄prisedonly0.44%oftheentireecosystem.Thetotalcarbonstockwithintheherb ̄shrubcommunitywashigherthanthatintheherbcommunity(126.93t hm ̄2>60.93t hm ̄2)ꎬwhichcanbeattributedtothehighersoilcarbonwithintheherb ̄shrubcommunitycomparedtotheherbcommunity.Soilcarbonstocksinherb ̄shrubcommunityandherbcommunitywere117.78t hm ̄2and58.63t hm ̄2ꎬaccountingfor93.08%ꎬ96.23%ofeachecosystemꎬrespectively.Thecarbonstoredinsoilaccountedforthemajorityofthecarbonstoredwithinbarrenhille ̄cosystemꎬwhereasthecarbonstoredinthevegetationandlittercontributedmuchlesstothetotalcarbonstock.Soilcarbonwithin0-20cmdepthintheherbcommunityandtheherb ̄shrubcommunitywere34.66t hm ̄2and67.99t hm ̄2ꎬrespectively.Soilcarbonstocksincreasedwiththesuccessionofdifferentsuc ̄cessionalstages.Yanetal(2011)reportedthatthesoilcarbonstoredindifferentrockydesertificationgradesrangedfrom5.2t hm ̄2to169.1t hm ̄2ꎬandthatthesoilcarbonstockdecreasedasrockyde ̄sertificationbecamemoreserious.Liuetal(2006)thoughtthatsoilnotonlyaffectedvegetationcommunityoccurrenceꎬdevelopmentandrateofsuc ̄cessionꎬbutalsohadanimportantinfluenceontheprocessꎬproductivityandstructureofecosystems.Assuccessionprogressedꎬthedynamicsofthevegetationcommunityenrichedsoilresourcesꎬincreasedspatialheterogeneityꎬandmaintainedtherelationshipbetweendifferentspeciesofplantsandbiodiversity.3.3ComparisonofcarbonstoragebetweenhollyhillandbarrenhillecosystemsThetotalcarbonstocksofhollyhillandbarrenhillecosystemswere137.06t hm ̄2and93.73t hm ̄2ꎬrespectivelyꎬbothwellbelowthereportedaver ̄ageof258.83t hm ̄2forforestecosystemsinChina(Zhouetalꎬ2000).Thisispartlyduetothefactthatthesoilcarbonfoundinthisstudy(88.21-96.6t hm ̄2)ismuchlowerthantheaveragesoilcarbonre ̄portedforChinaforestecosystem(193.55t hm ̄2).Theselowsoilcarbonstocksmaybethefol ̄lowingresults:(1)Theharshkarsthabitatsaffectecosystemcarbonstorageꎬthelandusechangeafterkarstdesertificationaffectsignificantlythesoilorganiccarbonꎬaslanduseintensityincreasesꎬtheoccurrenceofherbaceousplantswillincreaseattheexpenseofwoodyplants.Oneofthehighestimpactsoflandusechangethatcausesthegreatestalterationtonaturalvegetationandecosystemprocessisthecon ̄versionofnaturalplantcommunitiestofarmland.Es ̄waranetal(1993)demonstratedthatdestroyingorconvertingforestlandtootherlandusescanreducethesoilcarbonbyasmuchas20%-50%.Landusechangesoftendamagethesoilaggregatestructureꎬandrateofcarbonsequestrationwaslowerthantherateobservedinabovegroundvegetation.(2)Therateofsoilrespirationishigherinmiddlesubtropicalclimatezoneandrainfallamountsarehigh.ThiscausesmoreCO2releaseintoatmospherefollowingdecompositionoflitterwhichmeanslesscarbonaccumulatesinthesoilꎬwhichisacommonfeatureofsoilinmiddlesub ̄tropicalclimateregionsofChina.4㊀ConclusionComparingtobarrenhillecosystemꎬthecarbonstorageofhollyhillecosystemwashigherꎬ1.46timesthatofbarrenhillꎬandthecarboncontentofundersto ̄ryꎬlitterandsoilwerehigherthanthoseofbarren8601广㊀西㊀植㊀物38卷hill.Thecarbonstorageofsoilandtreeswerethemaincarbonpoolinthehollyhillecosystemꎬsoilcar ̄bonstoragecontributedmostꎬaccountingfor70.48%ofecosystemꎬcarbonstocksofunderstoryandlittercontributedless.Soilcarbonstoragecontributedmostinthebarrenhillecosystemꎬaccountingfor94.1%ofecosystem.Soilcarbonstoragedecreasedassoildepthincreaseintwoecosystems.Asafragileecosystemꎬkarstvegetationoncedestroyedꎬitwilltakealongtimetorecoverꎬfurthermoreꎬmanpowerꎬmaterialsandfinanceneedtobeinputduringtreatingrockyde ̄sertificationꎬlocalvillagersprotectkarstforestecosys ̄temswellbytheirsimpleecologicalethicsꎬwhichhasimportantsignificanceforprotectingcommunityforestsatcommunitylevelꎬespeciallyinkarstharshhabitatꎬthefunctionofthesetraditionalaboriginalknowledgecannotbeignored.Qualifyingcarbonstorageofthesetwoecosystemscanofferthereferenceformanagingcommunityforestꎬmakingpoliciesandcarbonseques ̄trationimprovement.Reference:ESWARANHꎬBERGEVDꎬRRICHPꎬ1993.Organiccarboninsoilsoftheworld[J].SoilSciSocAmJꎬ57(1):192-194.HUFꎬDUHꎬZENGFPꎬetalꎬ2017.CarbonstorageanditsallocationinkarstforestatdifferentstandagesinGuangxiꎬChina[J].ChinJApplEcolꎬ28(3):721-729.LIWBꎬHUYQꎬXUMFꎬetalꎬ2015.Standstructureandbio ̄masscarbondensityinasubtropicalevergreenbroadleavedforestofheterogeneousdiversity[J].JFujianAgricForUnivꎬ44(3):256-263.LIUAZꎬPEISJꎬCHENSYꎬ2000.Nationality ssacredgrovesandbiodiversityconservationinChuxiongꎬYunnan[J].ChinJApplEcolꎬ11(4):489-492.LIUZKꎬWANGSPꎬCHENZZꎬetalꎬ2006.PropertiesofsoilnutrientsandplantcommunityafterrestgrazinginInnerMon ̄goliasteppeꎬChina[J].ActaEcolSinꎬ26(6):2048-2056.QIJFꎬTANGJWꎬ2008.BiomassanditsallocationpatternofmonsoonrainforestoverlimestoneinXishuangbannaofSouthwestChina[J].ChinJEcolꎬ27(2):167-177.TIANDLꎬWANGXKꎬFANGXꎬetalꎬ2011.Carbonstorageandspatialdistributionindifferentvegetationrestorationpat ̄ternsinkarstsareaꎬGuizhouProvince[J].SciSilvSinꎬ47(9):7-14.TUYLꎬYANGJꎬ1995.StudyonbiomassofthekarstscrubcommunityincentralregionofGuizhouProvince[J].CarSinꎬ14(3):199-208.WANGKLꎬSUYRꎬZENGFPꎬetalꎬ2008.EcologicalprocessandvegetationrestorationinkarstregionofSouthwestChina[J].ResAgricModernꎬ29(6):641-645.WHITTAKERRHꎬWOODWELLGMꎬ1968.DimensionandproductionrelationsoftreesandshrubsintheBrookhavenForestꎬNewYork[J].JEcolꎬ56(1):1-25.XIAHBꎬ2010.BiomassandnetprimaryproductionindifferentsuccessionalstagesofkarstvegetatmninMaolanꎬSWChina[J].GuizhouForSciTechnolꎬ38(2):1-7.YANJHꎬZHOUCYꎬWENABꎬetalꎬ2011.Relationshipbe ̄tweensoilorganiccarbonandbulkdensityintherockydeser ̄tificationprocessofkarstecosysteminGuizhou[J].JTropSubtropBotꎬ19(3):273-278.YANGHKꎬCHENGSZꎬ1991.StudyonbiomassofthekarstforestcommunityinMaolanꎬGuizhouProvince[J].ActaEcolSinꎬ11(4):307-312.YANGHKꎬ1995.Karstdesertificationandassessmentofitsdisasters[J].MarGeolQuatGeolꎬ15(3):137-147.YUWLꎬDONGDꎬNIJꎬ2010.Comparisonsofbiomassandnetprimaryproductivityofkarstandnon ̄Karstforestsinmoun ̄tainousareasꎬSouthwesternChina[J].JSubtropResourcEnvironꎬ5(2):25-30.ZHANGYꎬSHIXZꎬYUDSꎬetalꎬ2009.Factorsaffectingva ̄riationofsoilorganiccarbondensityinYunnanꎬGuizhouꎬGuangxiregion[J].ActaPedolSinꎬ46(3):526-531.ZHANGZꎬZHONGQLꎬCHENGDLꎬetalꎬ2014.TheStruc ̄turecharacteristicsofcarbonstorageofecosystemofever ̄greenbroad ̄leavedmixedforestwithdifferentforestagesinthenorth ̄westofFujianProvince[J].EcolEnvironSciꎬ23(2):203-210.ZHONGXFꎬYANGYSꎬGAORꎬetalꎬ2008.Carbonstorageandallocationinold ̄growthCunninghamialanceolataplanta ̄tioninsubtropicalChina[J].JSubtropResourcEnvironꎬ3(2):11-18.ZHOUYRꎬYUZLꎬZHAOSDꎬ2000.CarbonstorageandbudgetofmajorChineseforesttypes[J].ActaPhytoecolSinꎬ24(5):518-522.ZHOUHꎬZHAODGꎬLUHHꎬ2002.SignificanceofecologicalethicsofculturaltraditioninDeityMountainforests[J].ChinJEcolꎬ21(4):60-64.ZHOUWLꎬXIONGKNꎬLONGJꎬetalꎬ2011.Organiccarbondensityfeaturesandregionalvariationofthetopsoilinkarstdemonstrationareasofrockydesertificationintegratedreha ̄bilitation[J].ChinJSoilSciꎬ42(5):1131-1137.ZHUSQꎬWEILMꎬCHENZRꎬetalꎬ1995.PreliminarystudyonbiomasscomponentsofkarstforestinMaolanofGuizhouProv ̄inceꎬChina[J].ActaPhytoecolSinꎬ19(4):358-367.96018期陶玉华等:喀斯特风水林和荒山生态系统碳储量的研究。

贵州脆弱生态区三种森林类型土壤碳氮磷含量及储量分布特征

贵州脆弱生态区三种森林类型土壤碳氮磷含量及储量分布特征

贵州脆弱生态区三种森林类型土壤碳氮磷含量及储量分布特征岑佳宝;武燕;徐艳梅;宋雪红;刘梅;谢静怡;王浪;张宏程【期刊名称】《黑龙江农业科学》【年(卷),期】2024()6【摘要】为探究不同森林类型的土壤养分贮存能力,以贵州喀斯特脆弱生态区3种森林类型(柳杉针叶林、枫香阔叶林及二者组成的针阔混交林)土壤为研究对象,分析不同森林类型土壤有机碳、全氮、全磷含量及储量的分布特征,并探讨土壤碳、氮、磷含量及储量与叶片、枯落物、腐殖质碳、氮、磷之间的耦合关系。

结果表明,(1)针叶林土壤有机碳含量为26.51 g·kg^(-1)、全氮含量为1.18 g·kg^(-1)、全磷含量为0.44 g·kg^(-1);阔叶林土壤有机碳含量为22.95 g·kg^(-1)、全氮含量为1.06 g·kg^(-1)、全磷含量为0.39 g·kg^(-1);针阔混交林土壤有机碳含量为30.02 g·kg^(-1)、全氮含量为1.17 g·kg^(-1)、全磷含量为0.40 g·kg^(-1)。

针叶林土壤有机碳储量为48.62 t·hm^(-2)、全氮储量为2.16 t·hm^(-2)、全磷储量为0.81 t·hm^(-2);阔叶林土壤有机碳储量为48.13 t·hm^(-2)、全氮储量为2.21 t·hm^(-2)、全磷储量为0.84 t·hm^(-2);针阔混交林土壤有机碳储量为60.43 t·hm^(-2)、全氮储量为2.37 t·hm^(-2)、全磷储量为0.80 t·hm^(-2)。

(2)林型变化对土壤有机碳、全磷含量及有机碳储量存在显著影响,针阔混交林有机碳含量及储量均显著高于针叶林和阔叶林,而针叶林全磷含量显著高于阔叶林。

(3)林型变化对全氮含量、全氮储量及全磷储量均无显著影响。

针叶林碳储量大的原因

针叶林碳储量大的原因

针叶林碳储量大的原因针叶林是指由针叶树种主导的森林类型,其碳储量较大的原因主要有以下几个方面。

针叶林在生长过程中具有较高的净生产力。

针叶树种生长速度相对较快,且具有较长的生命周期,因此能够积累更多的生物质。

针叶树种的叶片形态特征使得它们能够更有效地利用光能,进行光合作用,将二氧化碳转化为有机物质。

同时,针叶林的树木通常较为高大,树冠茂密,能够更充分地利用空间资源,增加光合作用的面积,进一步提高净生产力。

针叶林在生长过程中积累的生物质相对较多。

针叶树种的木材密度较大,纤维素含量高,因此针叶林的木材生物量较大。

此外,针叶树种的枝叶落叶周期较长,枯落物也能够积累较多。

这些积累的生物质在逐渐分解的过程中会释放出二氧化碳,但由于针叶林的生长速度较快,能够快速吸收大量的二氧化碳,使得针叶林的碳储量保持相对较高的水平。

第三,针叶林的土壤有助于碳的储存。

针叶树种的根系发达,能够深入土壤中,与土壤形成较为紧密的关联。

针叶树种通常喜欢生长在酸性土壤中,而酸性土壤有利于有机质的稳定,减少有机质分解速率,从而有助于碳的长期储存。

此外,针叶林的枯枝落叶也会在降解过程中释放出一些有机酸,进一步降低土壤的pH值,增加土壤的碳储存能力。

针叶林的生态系统稳定性较高,有利于碳的长期储存。

针叶林对环境的适应性较强,能够在较为恶劣的环境条件下生存和生长。

针叶树种能够忍受较低的温度和较强的风力,也能够适应较贫瘠的土壤条件。

这使得针叶林在较大范围内分布,并且相对稳定。

相比之下,一些热带季雨林等其他类型的森林容易受到人类活动的干扰和破坏,导致碳储量的减少。

针叶林碳储量大的原因主要包括:高净生产力、大量生物质积累、土壤有利于碳的储存以及生态系统的稳定性。

针叶林的碳储量对于全球碳循环和气候变化有着重要的影响,因此保护和恢复针叶林资源对于维持生态平衡和应对气候变化具有重要意义。

同时,我们也需要认识到不同类型的森林在碳储量方面的差异,并采取相应的保护和管理措施,以最大程度地发挥森林在碳循环中的作用。

川西亚高山森林植被生物量及碳储量遥感估算研究的开题报告

川西亚高山森林植被生物量及碳储量遥感估算研究的开题报告

川西亚高山森林植被生物量及碳储量遥感估算研究的开题报告一、选题背景及意义森林植被是陆地上最重要的碳汇,对于全球碳循环和气候变化具有重要的影响。

中国川西亚高山森林是青藏高原生态系统中的重要组成部分,是珍贵的生物多样性和生态系统功能区之一。

然而,受到气候变化和人类活动的影响,川西亚高山森林植被的生物量和碳储量变化情况尚不清楚。

遥感技术具有广阔的应用前景,可以对大面积的地表植被生物量和碳储量进行估算。

该研究通过遥感技术,对川西亚高山森林植被生物量和碳储量进行估算,可以为川西亚高山森林生态系统的保护和管理提供科学依据。

二、研究内容和计划1. 已有研究综述和评估通过文献综述和现有研究的评估,概述川西亚高山森林植被生物量和碳储量的研究现状和进展情况,分析遥感技术在该领域的应用趋势和优势。

2. 遥感数据处理与生物量估算利用多源遥感数据(包括Landsat 8 OLI和HJ-1A/B CCD),进行数据预处理、特征提取和分类,获取川西亚高山森林植被覆盖信息和NDVI 值。

根据现有野外调查数据,构建生物量估算模型,建立植被生物量和碳储量遥感估算的方法。

3. 生物量和碳储量遥感估算基于模型和遥感数据,对川西亚高山森林植被的生物量和碳储量进行遥感估算,制作植被生物量和碳储量分布图。

4. 结果解释和讨论对遥感估算结果进行科学解释和讨论,探讨川西亚高山森林植被生物量和碳储量的空间变化特征及其与环境因素的关系,为该地区生态系统的保护和管理提供科学依据。

5. 结论和展望总结遥感估算结果和分析结论,展望川西亚高山森林植被生物量和碳储量遥感估算的应用前景和发展趋势,并提出下一步研究的建议和方向。

三、预期研究成果本研究旨在利用遥感技术对川西亚高山森林植被生物量和碳储量进行估算,预期产生以下成果:1. 探讨川西亚高山森林植被生物量和碳储量的空间变化特征及其与环境因素的关系。

2. 构建川西亚高山森林植被生物量和碳储量遥感估算的方法,为遥感技术在该领域的应用提供科学依据。

喀斯特风水林和荒山生态系统碳储量的研究

喀斯特风水林和荒山生态系统碳储量的研究

喀斯特风水林和荒山生态系统碳储量的研究陶玉华;白丽蓉【摘要】所研究的风水林和荒山属于喀斯特地貌.喀斯特森林是一种脆弱的低生物量生态系统,土壤贫瘠,自我修复能力低,易受人为因素干扰.风水林指人们居住地附近的一片茂盛的森林,认为有神居住而崇拜,严禁被砍伐和破坏.荒山是喀斯特森林植被在人为干扰后出现岩石裸露产生的石漠化现象.该研究通过野外调查、实验室分析、数理统计等对广西罗城喀斯特风水林和荒山生态系统碳储量进行对比性研究.结果表明:喀斯特风水林植被、土壤和枯落物碳储量分别是荒山的7.42倍、5.9倍和1.1倍,风水林和荒山生态系统碳储量分别为137.06、93.73 t·hm-2,其中土壤碳库贡献率最高,而林下植被和枯落物却较低,表明风水林森林生态系统碳储量明显高于荒山.通过风水林和荒山的碳储量比较研究,为评价风水林碳汇提供依据,为制定森林管理政策、保护村社水平的植被提供数据参考.此外,还探讨了少数民族朴素的生态伦理思想在保护森林和增汇方面的作用,丰富了生态伦理学内容,对传承和弘扬少数民族传统文化、恢复生态具有重要意义.【期刊名称】《广西植物》【年(卷),期】2018(038)008【总页数】8页(P1062-1069)【关键词】碳储量;生物量;风水林;荒山;喀斯特【作者】陶玉华;白丽蓉【作者单位】广西北部湾海洋灾害研究重点实验室, 广西北部湾海岸科学与工程实验室, 钦州学院, 广西钦州 535011;广西北部湾海洋灾害研究重点实验室, 广西北部湾海岸科学与工程实验室, 钦州学院, 广西钦州 535011【正文语种】中文【中图分类】Q948Holly hill,known as sacred groves or dragon hill,is a place whose vegetation is well conserved by the indigenous people who live nearby.The villagers worship it because they believe a god lives there and therefore,no one is allowed to cut plants or damage the hills.Such traditional culture has existed for centuries in some ethnic groups in China.It is high in species richness and contains complicated vegetation community structure (Zhou et al,2002).Zhuang and Melao minority groups in Guangxi maintain animism in their traditional culture,believing that all things in the holly hill are the reincarnation of gods that will bless their safety,health and prosperity if the holly site is protected.This tradition of protecting forest ecosystems based on ecological ethics constitutes part of the culture of these indigenous people.Holly hill vegetation is a vital part of the agricultural and forest ecosystems for the people who live in the area and plays a very important role in water and soil conservation,such as regulating the microclimate and maintaining soil stability.Previous research showed that the biodiversity of the protection area was protected relatively well,which plays an expanded rolein the protection of biodiversity at landscape scales (Liu et al,2000).The barren hill is comprised of rocky karst formations that contain extensive areas of exposed bedrock.Desertification has occurred in this region as a result of extensive vegetation removal,which has led to the degradation of the land and reduced soil productivity (Yang,1995).Karst forest is a fragile ecosystem where soils take an extremely long period of time to form,site resources for plant productivity are low,extensive areas of barren soil exist where soil erosion occurs,and has low resilience and resistance capabilities to distur-bance.Karst forest ecosystems usually take longer to recover once the vegetation is removed.The restoration of the karst forest ecosystems usually requires the establishment of several different successional stages,which can significantly influence the ecosystem functions of these vegetative systems (Wang et al,2008).The carbon storage of holly hill and barren hill ecosystems were studied in this paper.This study is aimed to compare the carbon storage of two ecosystems and their carbon storage spatial distributions,which could contribute to the understanding of the important significance for protecting community forests in karst harsh habitat,and it also provides the comparative data to develop proper management strategies for these ecosystems and the community forest.1 Methods1.1 Description of study areaThe study area (108°48′E,24°59′ N) is located in the northern part of Luocheng Melao Autonomous County,Guangxi,China,which lies to thesouth of Jiuwan Mountain.This region is characterized by a subtropical climate with high humidity,rain and fog.The annual average temperature is 18.8 ℃,with extreme highest and lowest temperatures of 38 ℃ and -4 ℃,respectively.The average annual rainfall is 1 630.6 mm,with an average relative humidity of 78% and 300 frost-free days.Holly hill and barren hill are situated in Sibao Village,LuochengCounty,Guangxi,China,which is inhabited by the Melao,Zhuang,Yao,Dong and Miao minority groups.The Melao and Zhuang comprise more than 50% of total population in Sibao Village.Holly hill and barren hill are dominated by limestone soil with extremely uneven soil depth and exposed rocks.The elevation ranges from 280 m to 318 m with steep slopes (20°-40°) and soil depths of 3-50 cm.The vegetation occurs in relatively small patches or niches in such areas as stone facings or surfaces,soil,channels carved into stone over time,and cracks and crevices in stones.Three holly hill sites which contain lush vegetation,surround Sibao Village and called Lion Hill,Temple Hill and Laojie Hill by arborigines.The primary species of woody plants which occur there mainly include Cinnamomum camphora,Celtis sinensis,Ulmus castaneifolia,Sapium rotundifolium,Tirpitzia ovoidea,Radermachera sinica,Broussonetia papyrifera,Alangium chinense,Cudrania tricuspidata,Alchornea trewioides,Crassocephalumcrepidioides,Trachelospermum jasminoides,Melastomaintermedium,Mallotus philippensis,Koelreuteria integrifoliola,Ervatamia divaricata,Oreocnide frutescens,main species of herbaceous plants areHoya carnosa,Pyrrosia lingua,Rubus corchorifoliu,Elatostema balansae,Dicranopteris dichotoma,Eragrostis pilosa,Arthraxon hispidus,Microstegium vagans,Ishaemum indicum and Arundinella hirta. Local farmers cut firewood and planted crops for a long time in the barren hill before forest conservation became a concern,which has created areas of exposed bedrock and desertification.The vegetative communities have been partly restored since the involvement by the government in conservation practices.At the present time these communities primarily consist of woody and herbaceous plants.According to its community physiognomy,the dominant species and habitat types,the karst vegetation was divided into five successional stages:(1) herb community,(2) herb-shrub community,(3) shrub community,(4) sub-climax community and (5) climax community of evergreen-deciduous broad-leaved mixedforests(Xia,2010).Only the herb community and herb-shrub community existed in barren hills during the time that this study was implemented. The primary woody species that occurred in the barren hills mainly include Alchornea trewioides,Alangium chinense,Callicarpa macrophylla,Millettia nitida,Jasminum seguinii,Vitex negundo,Broussonetia papyrifera,Oreocnide frutescens,Strophanthus divaricatus,Platycarya strobilacea,Cudrania tricuspidata,Rhus chinensi,Rosa laevigata,Sterculia euosma,Chukrasia tabularis,Ulmus parvifolia,Laplacea indica,and main species of herbs are Pteridium revolutum,Litsea cubeba,Miscanthus floridulu,Microstegium vagan,Bidens pilosa,Erigeron komarovii,Elatostema balansae,Imperata cylindrica,Rubus corchorifoliu,Eragrostis pilosa and Arthraxon hispidus.1.2 Methods of estimating tree biomass in holly hillsLion Hill,Temple Hill and Laojie Hill were chosen to represent the holly hill study areas.A total of 27 sample plots (20 m × 30 m) were established along an elevational gradient of 50-80 m vertical distance.Within each plot,total tree height and diameter at breast height (dbh) were measured on all trees with dbh>2 cm.The aboveground biomass of trees were estimated with biomass equations published by Zhu et al (1995) for Guizhou karst forests (Table 1).The underground biomass of trees were estimated by the root-shoot ratio (0.231 8) reported by Qi &Tang (2008) for Xishuangbanna karst forests.Table 1 Equations1,2 used to estimate the forest biomass in holly hillsForest componentModel coefficientsabr-valueTree trunk0.041 40.935 40.994 5Branch0.032 02.339 90.939 1Foliage0.137 73.725 60.848 7 Note:1 W=a(D2H)b,where W=biomass (kg),D=dbh (cm),and H=total height (m);2 Equations from Zhu et al,1995.1.3 Methods of estimating biomass of understory and litter in holly hills Three 4.0 m2 and three 1.0 m2 subsample plots were established in each sample plot for the purpose of estimating herbaceous and woody understory biomass,and litter biomass,respectively.In each 4.0 m2 subsample plot,the herbaceous and woody plants were clipped and weighed to the nearest 0.1 g to acquire a fresh weight.All litters were collected down to the mineral soil in each 1.0 m2 subsample plot and weighed to the nearest 0.1 g to attain a total fresh weight.An approximate 30% subsample of these fresh weight field samples were brought back tothe laboratory and dried at 80 ℃ until a constant weight was achieved to determine the moisture content.The determined moisture content percentage was applied to the fresh weight samples to achieve a dry weight and converted into unit area ovendry biomass weight of understory and litter (t·hm-2).The belowground biomass of woody stems was estimated by using the root-shoot ratio (1∶1) reported by Tu &Yang (1995) for Guizhou karst forests.1.4 Methods of estimating biomass of litter,woody and herbaceous plants in barren hillsBarren hills are currently in vegetation restoration stages as part of the effort to reverse the karst rocky desertification that has occurred there.As a result,two successional stages existed and were investigated in this study,which included the herb-shrub and the herb communities.Three 4.0 m2 subsample plots were established in each sample plot to estimate woody,herbaceous and litter biomass.The procedure to determine the fresh and dry weight of woody and herbaceous plants and litter was performed according to the same method as described for the holly hills. 1.5 Methods of measuring carbon contentSamples materials of litter,woody and herbaceous plants of holly hill and barren hill were dried,crushed and sieved.For soil samples,three soil samples were placed in each replicate plots randomly,and sampled by the cutting rings at 0-20 cm,20-40 cm soil depth,soil samples were brought back to the laboratory to determine the soil bulk density,the carbon content of different components and soils were analyzed through thepotassium dichromate oxidation-hydration heating.1.6 Methods of estimating carbon storageThe carbon storage of holly hill and barren hill ecosystems consists of tree,understory,litter and soil (no tree layer existed in unprotected site).The carbon stored in ecosystems can be estimated by multiplying the biomass of different forest components by their carbon content,typically 0.5,which was used in this study.The estimation of soil carbon storage was determined with the following equation (Zhong et al,2008):In the equation,SSOD = soil carbon storage density (t·hm-2),Ci=carbon mass fraction in i soil depth (g·kg-1),Pi = soil bulk density in i soil depth (g·cm-3),Ti = thickness of soil in i soil depth (cm),and n is the number of soil depth layers.1.7 Data processingExcel and SPSS 17.0 statistical software were utilized in the data analysis.2 Results and Analyses2.1 Carbon contents of litter,woody and herbaceous plants2.1.1 Carbon contents of litter and understory in holly hills Carbon contents of understory of Lion Hill,Temple Hill and Laojie Hill ranged from 37.51% to 43.05% ,with no significant difference between each site(P>0.05).The carbon content of litter ranged from 38.9% to 45.54%,with no significant difference between each site.The carbon content in 0-20 cm soil depth at the three protected sites ranged from 2.53% to 3.18%,and ranged from 1.98% to 2.25% within the 20-40 cm soil depth soil (Table 2).Table 2 Carbon contents of understory,litter and soil in hollyhillsSampleCarbon content (%)Understory1Litter0-20 cm20-40 cmLionHill43.0545.542.792.25Temple Hill37.5139.753.182.22LaojieHill41.0738.902.531.98Average40.5441.402.832.15Note:1 Understory includes herbaceous and woody plants.The same below.2.1.2 Carbon contents of litter,woody and herbaceous plants inbarren hills Carbon contents of litter,woody and herbaceous plants in herb-shrub community were higher than what was found in the herb community but were not significantly different at P=0.05 (Table 3).The carbon contents in the soil layers of 0-20 cm and 20-40 cm depths were higher in the herb-shrub community compared to the herb community,and in both vegetation communities the soil carbon decreases with soil depth.Table 3 Carbon contents of understory,litter and soil in barren hillsVegetation communityCarbon content (%)Understory1Litter0-20cm20-40 cmHerb-shrub41.1438.502.891.88Herb36.4833.661.400.91Average38.8136.082.151.4 02.2 Carbon storage2.2.1 Carbon storage of holly hills The carbon stored in the trees of holly hills ranged from 21.76 t·hm-2 to 51.4 t·hm-2;carbon storage of the understory ranged from 1.32 t·hm-2 to 2.92 t·hm-2;carbon stored in the litter ranged from 0.77 t·hm-2 to 4.86 t·hm-2;and soil carbon ranged from 86.43 t·hm-2 to 112.64 t·hm-2.The total carbon stored in the protected ecosystems ranged from 113.47 t·hm-2 to 149.92 t·hm-2 (Table 4).2.2.2 Carbon storage of barren hills The carbon stocks of woody andherbaceous plants in herb-shrub community were higher than those of the herb community (Table 5).However,the carbon stocks of the litter component in the herb community were higher than what was found in the herb-shrub community.The total soil carbon stored in herb-shrub commu nity and herb communities were 117.78 t·hm-2 and 58.63 t·hm-2,respectively.The total ecosystem carbon stored in the herb-shrub and herb communities were 126.53 t·hm-2 and 60.93 t·hm-2,respectively.Because the trees that occurred in the herb-shrub community were small,they were combined with the woody and herbaceous plant species.2.2.3 Comparison of carbon storages of holly hill and barren hill ecosystems Carbon stored in the tree layer of holly hill ecosystems accounted for 25.83% of the total ecosystem carbon (Table 4),the carbon stored in the woody and herbaceous plants was less than that of the barren hill.However the carbon stored within the litter layer of holly hill ecosystem was greater than that in the litter layer of the barren hill.Soil carbon stored at holly hill within both the 0-20 cm and 20-40 cm layers were greater than what was found in the soil layers at barren hill.The total carbon stored in the holly hill ecosystem was 1.46 times greater than the total barren hill ecosystem (Table 6).3 Discussion3.1 Carbon storage of holly hillsBecause holly hills are considered a sacred area,the Sibao Village Committee did not allow the authors to harvest tress to measure biomassout of respect for the worship and taboos of the local residents.The aboveground biomass of trees were therefore estimated by biomass equation published by Zhu et al(1995),and underground biomass of trees were calculated by a specified root-shoot ratio (Qi &Tang,2008).The use of biomass regression models to estimate the biomass of different tree species usually introduces error by the nature of their estimation,but due to the high species diversity and few numbers of individuals within species in karst forest ecosystem,it is difficult to create good regression models as might be performed in plantation settings.Yang &Cheng (1991) indicated that karst forest populations had similar biological features due to the long-term adaptation to the harsh karst environment,Whittaker&Woodwell (1968) found that there was a significant and similar correlation between biomass and diameter of similar species oftrees.Therefore,we believe that the application of uniform biomass regression models to similar species is reasonable for this study.Karst forest typically is considered as a low-biomass forest ecosystem (Yu et al,2010),whose biomass and carbon were particularly lower than those of evergreen broad-leaved forest ecosystem in the same climatic zones (Li et al,2015;Zhang et al,2014).The low biomass and carbon stocks are due to the harsh ecological environment found in the karst ecosystems,such as barren soil,water stress,and frequent natural and human disturbances.This harsh environment causes vegetation to grow very slowly,creating a short ecological life for plants.In addition,the development history of secondary forests in these systems is very short (Zhu et al,1995).Table 4 Carbon storage and percentage of components of holly hill ecosystemSampleTree(t·hm-2)%Understory1(t·hm-2)%Litter(t·hm-2)%Soil(t·hm-2)0-20 cm20-40 cmTotal soil(t·hm-2)%T otalcarbon(t·hm-2)Lion Hill51.434.282.921.954.863.2449.9640.7890.7460.53149.92Temple Hill33.0622.371.320.890.770.5270.8841.76112.6476.22147.79LaojieHill21.7619.184.23.71.080.9546.424086.4376.17113.47Average35.4125.832. 812.052.241.6355.7640.8596.670.48137.06Table 5 Carbon storage of ecosystem component and percentage of the total in barren hill ecosystemVegetationtypeVegetation(t·hm-2)%Litter(t·hm-2)%Soil (t·hm-2)0-20cm20-40 cmTotal soil(t·hm-2)%Total carbon(t·hm-2)Herb-shrub8.436.660.320.2567.9949.79117.7893.08126.53Herb1.863.050.440.723 4.6623.9758.6396.2360.93Average5.155.490.380.4151.3336.8888.2194.193.73Table 6 Carbon storage comparison of ecosystem component in two different ecosystemsEcosystem componentHolly hill(t·hm-2 )Barrenhill(t·hm-2 )Tree 35.41—Woody and herbaceousplants2.815.15Litter2.240.38Soil0-20 cm depth55.7651.3320-40 cm depth 40.8536.88Total soil 96.6088.21Total ecosystem137.0693.73Tian et al(2011) studied the carbon stocks of different vegetation components in karst area,Guizhou Province,and they found that soil carbon accounted for over 94.01% of whole ecosystem while vegetation carbon stocks accounted for 0.82%-5.64%.The carbon stored in trees at protected sites in this study accounted for 25.83% of wholeecosystem,while the carbon in the soil,understory vegetation,and litter accounted for 70.48%,2.05% and 1.63%,respectively.It is evident that the carbon sequestered and stored in the soil of these ecosystems contributes significantly to these ecosystems,followed by the tree layer,understory vegetation and litter.Carbon stored in the soil of holly hills decreased with the increase of soil depth.This study found that the soil carbon within 0-20 cm layer in holly hills (46.62 t·hm-2) was higher than what has been reported for soil carbon of the karst rocky desertification comprehensive treatment demonstration area in Guizhou Province and lower than soil carbon in the karst non-rocky desertification (Zhou et al,2011).The soil carbon of holly hills was also lower than the soil carbon found in different ecosystem restoration treatments in Guizhou (Tian et al,2011).Many different factors can influence soil carbon storage,such as plant species,forest age,climate,soil conditions,and any soil treatment before affores-tation.Zhang et al (2009) studied the factors that effect soil carbon storage in Guangxi,Guizhou and Yunnan Province,and found that temperature and soil parent material were primary factors that influence the amount of soil carbon with temperature having a greater influence than parent materials.3.2 Carbon storage of barren hillsThe carbon storage of woody and herbaceous plants of barren hills was higher than what was found in holly hills.Because,once trees begin to dominate an ecosystem,understory plants begin to have difficulty in surviving and decrease in their productivity due to a combination of theharsh karst environment and the development of forest canopy.On the other hand,in the herb-shrub community stage,woody and herbaceous plants will both exist,allowing for higher net productivity and subsequently higher amounts of biomass.The average carbon of woody and herbaceous plants in barren hills accounted for 5.9% of whole ecosystem,and carbon stored within the litter comprised only 0.44% of the entire ecosystem.The total carbon stock within the herb-shrub community was higher than that in the herb community (126.93 t·hm-2>60.93 t·hm-2),which can be attributed to the higher soil carbon within the herb-shrub community compared to the herb community.Soil carbon stocks in herb-shrub community and herb community were 117.78 t·hm-2 and 58.63 t·hm-2,accounting for93.08%,96.23% of each ecosystem,respectively.The carbon stored in soil accounted for the majority of the carbon stored within barren hill ecosystem,whereas the carbon stored in the vegetation and litter contributed much less to the total carbon stock.Soil carbon within 0-20 cm depth in the herb community and the herb-shrub community were 34.66 t·hm-2 and 67.99 t·hm-2,respectively.Soil carbon stocks increased with the succession of different successional stages.Yan et al (2011) reported that the soil carbon stored in different rocky desertification grades ranged from 5.2 t·hm-2 to 169.1 t·hm-2,and that the soil carbon stock decreased as rocky desertification became more serious.Liu et al (2006) thought that soil not only affected vegetation community occurrence,development and rate of succession,but also hadan important influence on the process,productivity and structure of ecosystems.As succession progressed,the dynamics of the vegetation community enriched soil resources,increased spatial heterogeneity,and maintained the relationship between different species of plants and biodiversity.3.3 Comparison of carbon storage between holly hill and barren hill ecosystemsThe total carbon stocks of holly hill and barren hill ecosystems were 137.06 t·hm-2 and 93.73 t·hm-2,respectively,both well below the reported average of 258.83 t·hm-2 for forest ecosystems in China (Zhou et al,2000).This is partly due to the fact that the soil carbon found in this study (88.21-96.6 t·hm-2) is much lower than the average soil carbon reported for China forest ecosystem (193.55 t·hm-2).These low soil carbon stocks may be the following results:(1) The harsh karst habitats affect ecosystem carbon storage,the land use change after karst desertification affect significantly the soil organic carbon,as land use intensity increases,the occurrence of herbaceous plants will increase at the expense of woody plants.One of the highest impacts of land use change that causes the greatest alteration to natural vegetation and ecosystem process is the conversion of natural plant communities to farmland.Eswaran et al(1993) demonstrated that destroying or converting forest land to other land uses can reduce the soil carbon by as much as 20%-50%.Land use changes often damage the soil aggregate structure,and rate of carbon sequestration was lower than the rate observed in aboveground vegetation.(2) The rate of soil respiration ishigher in middle subtropical climate zone and rainfall amounts are high.This causes more CO2 release into atmosphere following decomposition of litter which means less carbon accumulates in the soil,which is a common feature of soil in middle subtropical climate regions of China.4 ConclusionComparing to barren hill ecosystem,the carbon storage of holly hill ecosystem was higher,1.46 times that of barren hill,and the carbon content of understory,litter and soil were higher than those of barren hill.The carbon storage of soil and trees were the main carbon pool in the holly hill ecosystem,soil carbon storage contributed most,accounting for 70.48% of ecosystem,carbon stocks of understory and litter contributed less.Soil carbon storage contributed most in the barren hill ecosystem,accounting for 94.1% of ecosystem.Soil carbon storage decreased as soil depth increase in two ecosystems.As a fragile ecosystem,karst vegetation once destroyed,it will take a long time torecover,furthermore,manpower,materials and finance need to be input during treating rocky desertification,local villagers protect karst forest ecosystems well by their simple ecological ethics,which has important significance for protecting community forests at communitylevel,especially in karst harsh habitat,the function of these traditional aboriginal knowledge cannot be ignored.Qualifying carbon storage of these two ecosystems can offer the reference for managing community forest,making policies and carbon sequestration improvement.Reference:【相关文献】ESWARAN H,BERG EVD,RRICH P,anic carbon in soils of the world [J].Soil Sci Soc Am J,57(1):192-194.HU F,DU H,ZENG FP,et al,2017.Carbon storage and its allocation in karst forest at different stand ages in Guangxi,China [J].Chin J Appl Ecol,28(3):721-729.LI WB,HU YQ,XU MF,et al,2015.Stand structure and biomass carbon density in a subtropical evergreen broadleaved forest of heterogeneous diversity [J].J Fujian Agric For Univ,44(3):256-263.LIU AZ,PEI SJ,CHEN SY,2000.Nationality’s sacred groves and biodiversity conservation in Chuxiong,Yunnan [J].Chin J Appl Ecol,11(4):489-492.LIU ZK,WANG SP,CHEN ZZ,et al,2006.Properties of soil nutrients and plant community after rest grazing in Inner Mongolia steppe,China [J].Acta Ecol Sin,26(6):2048-2056.QI JF,TANG JW,2008.Biomass and its allocation pattern of monsoon rain forest over limestone in Xishuangbanna of Southwest China [J].Chin J Ecol,27(2):167-177.TIAN DL,WANG XK,FANG X,et al,2011.Carbon storage and spatial distribution in different vegetation restoration patterns in karsts area,Guizhou Province [J].Sci Silv Sin,47(9):7-14. TU YL,YANG J,1995.Study on biomass of the karst scrub community in central region of Guizhou Province [J].Car Sin,14(3):199-208.WANG KL,SU YR,ZENG FP,et al,2008.Ecological process and vegetation restoration in karst region of Southwest China [J].Res Agric Modern,29(6):641-645.WHITTAKER RH,WOODWELL GM,1968.Dimension and production relations of trees and shrubs in the Brookhaven Forest,New York [J].J Ecol,56 (1):1-25.XIA HB,2010.Biomass and net primary production in different successional stages of karst vegetatmn in Maolan,SW China [J].Guizhou For Sci Technol,38(2):1-7.YAN JH,ZHOU CY,WEN AB,et al,2011.Relationship between soil organic carbon and bulk density in the rocky desertification process of karst ecosystem in Guizhou [J].J Trop Subtrop Bot,19(3):273-278.YANG HK,CHENG SZ,1991.Study on biomass of the karst forest community in Maolan,Guizhou Province [J].Acta Ecol Sin,11(4):307-312.YANG HK,1995.Karst desertification and assessment of its disasters [J].Mar Geol Quat Geol,15(3):137-147.YU WL,DONG D,NI J,parisons of biomass and net primary productivity of karst and non-Karst forests in mountainous areas,Southwestern China [J].J Subtrop Resourc Environ,5(2):25-30.ZHANG Y,SHI XZ,YU DS,et al,2009.Factors affecting va-riation of soil organic carbon density in Yunnan,Guizhou,Guangxi region [J].Acta Pedol Sin,46(3):526-531.ZHANG Z,ZHONG QL,CHENG DL,et al,2014.The Structure characteristics of carbon storage of ecosystem of ever-green broad-leaved mixed forest with different forest ages in the north-west of Fujian Province [J].Ecol Environ Sci,23(2):203-210.ZHONG XF,YANG YS,GAO R,et al,2008.Carbon storage and allocation in old-growth Cunninghamia lanceolata plantation in subtropical China [J].J Subtrop Resourc Environ,3(2):11-18.ZHOU YR,YU ZL,ZHAO SD,2000.Carbon storage and budget of major Chinese forest types [J].Acta Phytoecol Sin,24(5):518-522.ZHOU H,ZHAO DG,LU HH,2002.Significance of ecological ethics of cultural tradition in Deity Mountain forests [J].Chin J Ecol,21(4):60-64.ZHOU WL,XIONG KN,LONG J,et al,anic carbon density features and regional variation of the topsoil in karst demonstration areas of rocky desertification integrated rehabilitation [J].Chin J Soil Sci,42(5):1131-1137.ZHU SQ,WEI LM,CHEN ZR,et al,1995.Preliminary study on biomass components of karst forest in Maolan of Guizhou Province,China [J].Acta Phytoecol Sin,19(4):358-367.。

针叶林平均储碳量

针叶林平均储碳量

针叶林平均储碳量
根据研究数据显示,针叶林是地球上最重要的陆地生态系统之一,其在储存碳量方面
起着至关重要的作用。

据统计,在不同地区和气候条件下,针叶林的平均储碳量有所不同,但针叶林的平均储碳量较高。

针叶林的储碳来源主要包括林木的生物质和土壤有机碳。

针叶树种的长寿和较大的生
物量使其能够储存更多的碳。

并且,针叶林的土壤通常具有较高的有机质含量,有利于碳
的积累。

由于气候变化和人类活动的影响,针叶林的储碳能力可能会受到一定程度的影响。


球变暖可能导致针叶林的生长受到限制,从而减少了其储碳能力。

尽管如此,针叶林作为重要的碳汇,其储碳能力仍然非常可观。

相关研究表明,全球
范围内的针叶林平均储碳量约为XXX吨碳/公顷。

这一数字并不是固定不变的,因各地区的差异和气候条件的变化而有所不同。

需要注意的是,针叶林储碳量的准确估计需要进行详细的调研和数据收集,因此本文
所提及的数字仅仅为一般参考,并不代表具体地区的真实情况。

对于具体地区的储碳量,
建议参考相关的科研文献和专业机构的数据报告来获取更准确的信息。

喀斯特区次生林土壤和优势树种叶片的化学计量特征及季节变化

喀斯特区次生林土壤和优势树种叶片的化学计量特征及季节变化

喀斯特区次生林土壤和优势树种叶片的化学计量特征及季节变化喀斯特地貌是中国南方地区的一种特殊地貌类型,其地表岩溶特征明显,土地贫瘠,常常出现地下水溶洞和地表裸露石灰岩。

这种地貌条件形成了独特的次生林土壤和植被群落,对土壤和植被的化学计量特征及季节变化进行研究,对于了解喀斯特地区的生物地球化学过程、丰富土地资源利用方式,具有重要的理论和应用意义。

(一)土壤碳、氮、磷的化学计量特征研究表明,喀斯特地区次生林土壤碳素和氮素含量较低,磷素含量也一般较低。

土壤碳氮比和氮磷比通常较低,且具有明显的季节变化特征。

土壤碳氮比通常在3-10左右,氮磷比通常在5-15左右,随着季节的变化,这两个比值也会有所波动。

土壤微生物生物量碳和氮是土壤中生物可利用的碳和氮的重要指标,其化学计量特征对土壤养分状况和生物地球化学过程有重要影响。

研究发现,喀斯特地区次生林土壤微生物生物量碳和氮的含量较低,微生物碳氮比较高,且具有明显的季节变化特征。

这提示土壤中微生物对碳、氮的利用有一定的季节性变化,可能与土壤温度、湿度等环境因素有关。

(二)叶片叶绿素、总酚、可溶性糖的化学计量特征叶绿素是植物叶片中重要的光合色素,总酚和可溶性糖是植物叶片中重要的抗氧化物质和碳源。

研究发现,喀斯特地区优势树种叶片中叶绿素、总酚和可溶性糖的含量较低,叶绿素/总酚比和总酚/可溶性糖比也较低,同时具有明显的季节变化特征。

这提示叶片中的光合作用和抗氧化能力存在季节性变化,可能与气温、光照等环境因素有关。

三、结语通过对喀斯特地区次生林土壤和优势树种叶片的化学计量特征及季节变化进行研究,我们发现,喀斯特地区土壤和植被的化学计量特征较低,且具有明显的季节变化特征。

这提示喀斯特地区的土壤和植被养分状况不容乐观,季节性气候变化可能对土壤和植被的生物地球化学过程产生重要影响。

未来需要进一步加强对喀斯特地区生物地球化学过程的研究,以丰富土地资源利用方式,推动喀斯特地区的生态环境保护和可持续发展。

喀斯特区次生林土壤和优势树种叶片的化学计量特征及季节变化

喀斯特区次生林土壤和优势树种叶片的化学计量特征及季节变化

喀斯特区次生林土壤和优势树种叶片的化学计量特征及季节变化喀斯特地区是中国特有的地貌类型,其地质构造独特,岩溶地貌发育。

喀斯特次生林是该地区最为典型的植被类型之一,土壤和植被在喀斯特次生林生态系统中发挥着非常重要的作用。

土壤和植被的化学计量特征是研究生态系统结构和功能的重要内容之一。

本文旨在探讨喀斯特次生林土壤和优势树种叶片的化学计量特征及其季节变化。

1. 土壤碳、氮、磷的含量及比值的季节变化喀斯特地区的土壤普遍贫瘠,土壤碳、氮、磷等养分含量较低。

根据野外调查数据,喀斯特次生林土壤的碳、氮、磷含量分别为15.2±2.4 g/kg、1.21±0.16 g/kg、0.42±0.07 g/kg。

季节变化方面,研究表明,随着气温的升高和水分的增加,土壤中的碳、氮、磷含量均呈现增加的趋势,其中以春季和夏季增加最为显著。

土壤中碳氮比和碳磷比的季节变化规律与养分含量类似,均呈现春夏季逐渐升高的趋势。

这与喀斯特地区气候特点和植被生长季节密切相关。

2. 土壤微生物生物量碳和氮的季节变化土壤微生物生物量碳和氮是土壤活性有机碳和氮的重要指标,可以反映土壤微生物的活跃程度和养分循环速率。

研究发现,喀斯特次生林土壤微生物生物量碳和氮含量分别为308.9±47.2 mg/kg和32.6±5.8 mg/kg。

季节变化方面,微生物生物量碳和氮含量在春夏季明显高于秋冬季,其中以夏季最高。

这表明喀斯特次生林土壤微生物的活跃度和生物量在生长季节较高,为土壤养分的转化和循环提供了有力的支持。

喀斯特次生林中的优势树种主要包括马尾松、油茶、黄连木等,它们的叶片化学计量特征对于研究生态系统的养分循环具有重要意义。

研究表明,马尾松叶片的碳、氮、磷含量分别为462±29 mg/g、11.2±1.3 mg/g、0.95±0.12 mg/g;油茶叶片的碳、氮、磷含量分别为435±34 mg/g、12.5±1.4 mg/g、1.02±0.14 mg/g;黄连木叶片的碳、氮、磷含量分别为419±27 mg/g、13.6±1.2 mg/g、1.08±0.11 mg/g。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

喀斯特地 区 3 种针 叶林林分生物量及碳储 量研究
刘之 洲 , 宁 晨“ , 闫文德 , 倪 晓薇 , 陈 毅“ , 宁晓波
( i . 中南林业科技 大学,湖南 长 沙 4 1 0 0 0 4 ;2 . 南方林业生态应用技 术 国家工程 实验 室 ,湖南 长 沙 4 1 0 0 0 4 : 3 . 贵州省林业厅 ,贵 州 贵阳 5 5 0 0 0 1 )
Thr e e ki nds o f pi ne f or e s t bi o m as s a nd c a r bon s t or a ge r e s e a r c h i n kar s l a ndf o r m
LI U Zh i z h o u , N1 NG Ch e n , YAN We n d e , NI Xi a o we i , CHEN Yi , NI NG Xi a o o b
V_ 0 1 . 3 7 No . 1 0
0c t .2 0 1 7
D o i : 1 0 . 1 4 0 6 7  ̄ . c n k i . 1 6 7 3 - 9 2 3 x . 2 0 1 7 . 1 0 . 0 1 7
h t t p : / / q k s . c s u f t . e d u . c n
贵 州 喀 斯特 地 区 针 叶 林 管 理 及 运 营 提 供 基 础 数 据 。
关键词 :针 叶林生态系统 ;碳含量 ;生物量 :碳储量 ;马尾松 ;湿地松 ; 中图分 类号:¥ 7 1 8 . 5 5 6 文献标志码:A 文章编号 :1 6 7 3 . 9 2 3 X( 2 0 1 7 ) 1 0 . 0 1 0 5 . 0 7
摘 要 以贵州喀斯特地 区 3 种针叶林为研究对象 , 采用标准样地调 查和 生物 量实测数据 , 对各生态系统的生物量、 碳 含量 以及 碳储量进 行研究 分析 。结果表 明:马尾松天然 林、马尾松人 工林和湿地松 人工林生态 系统乔木生物 量 分别 为 1 0 3 . 4 6 、1 4 0 . 5 5 、1 6 4 . 1 5 t f h l T l 2 ;林下植被 及死地被物 层生物量分 别为 7 . 7 6 2 、6 . 9 9 4 、8 . 6 2 2 t / h n - l 2 。林木 各 器官含碳量:马尾松天然林 0 . 4 2 7 ~O . 5 3 0 g C / g 、马尾松人 工林 0 . 4 4 3 ~0 . 5 7 4 g C / g 、 湿地松人 工林 0 . 4 4 4 ~0 . 4 6 6 g C / g 。3种森 林生态 系统碳储 量分别 为:马尾松天 然林 6 7 8 . 0 2 5 t / h l T l 2 、马尾松 人工林 7 7 7 . 1 1 t h u n 。 、湿地松 人工 林 8 3 4 . 1 3 5 t / h n . 1 2 。其 中植被层分 别为 4 8 . 1 9 9 、7 0 . 7 8 8 、7 6 . 4 3 8 t / h m ;死 地被物 层为 0 . 6 6 7 、0 . 6 5 9 、O . 7 4 2 t / h l T l 2 : 土 壤层为 6 2 9 . 1 5 9 、7 0 5 . 6 6 4 、7 5 6 . 9 5 5 t / h l n 2 。碳储量分布格 局为土壤层 >植被 层>死地被物层 。研 究结果可 以为
2 . Na io t n a l En g i n e e r i n g La b. f o r Ap pl i e d Te c no h l o y g o fF o r e s t r y nd a Ec o l o y g i n So u t h Ch i n a , Ch ng a s h a 41 0 0 0 4 , Hu n n, a Ch i n a ;
第3 7卷 第 1 O期 2 0 1 7年 l 0月
中 南 林 业 科 技 大 学 学 报
J o u r n a l o f Ce n t r a l S o u t h Un i v e r s i t y o f Fo r e s t r y& T e c h n o l o g y
3 . F o r e s t r y B u r e a u o f Gu i z h o u P r o v i n c e , Gu i y a n g 5 5 0 0 0 1 , G u i z h o u , Ch i n a )
Abs t r a c t :Af f o r e s t a io t n nd a r e s t o r a t i o n a e r v i t a l c o n t r i b u t o r s f o r o fs e t t i n g g r e e n h o u s e g a s e mi s s i o n s . Ho we v e r , wh e n c o mp a r e d t o n a i t v e s p e c i e s , h o w f a s t - g r o wi n g e x o ic t t r e e s p e c i e s wi l l i n lu f e n c e he t l o c a l e c o s y s t e m p r o c e s s em a r i n s p o o r l y u n d e st r o o d. I n hi t s s t u d y , he t c a r b o n
( 1 . Ce n t r a l S o u t hUn i v e r s i t y o f F o r e s t r y a n d T e c h n o l o g y , C h ng a s h a 4 1 0 0 0 4 , Hu n n, a C h i n a ;
相关文档
最新文档