计算方法习题集及解答(总结版)

合集下载

四年级运算定律与简便计算练习题大全[3]

四年级运算定律与简便计算练习题大全[3]

(完整版)四年级运算定律与简便计算练习题大全(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)四年级运算定律与简便计算练习题大全(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)四年级运算定律与简便计算练习题大全(word版可编辑修改)的全部内容。

四年级上册简便运算一、运算定律及性质1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)2、乘法交换律:a×b=b×a 4、乘法结合律:(a×b)×c=a×(b×c)5、乘法分配律:(a+b)×c=a×c+b×c 6、减法的性质:a—b—c=a—(b+c)7、除法的性质:a÷b÷c=a÷(b×c)1.加法①45+32+55 ②63+28+72+372、减法①145-36—45 ②283—56—44 ③197-(42+97)3、乘法①25×13×4 ②125×32×25 ③24×102 ④21×99 ⑤56×23+44×23⑦178×45—45×78 ⑧34×99+344、除法①3000÷125÷8 ②810÷18 ③720÷18÷4 ④630÷(21×2)三、加减凑整法①145+201 ②234+98 ③163-102 ④236-199四年级下册简便计算归类总结简便计算第一种第二种84x101 (300+6)x12 504x25 25x(4+8)第三种第四种99x64 99X13+1399x16 25+199X25第五种第六种125X32X8 3600÷25÷425X32X125 8100÷4÷7588X125 3000÷125÷872X125 1250÷25÷5第七种1200-624—762100—728—772273-73—27847—527—273第八种278+463+22+37732+580+2681034+780320+102425+14+186第九种214—(86+14)787—(87—29) 365—(65+118)455—(155+230)第十种576—285+85 825—657+57 690—177+77755-287+87第十一种871-299157-99363—199968-599第十二种178X101—17883X102—83X217X23—23X7第十三种64÷(8X2)1000÷(125X4)四年级运算定律与简便计算练习题一、判断题。

小数除法计算题(5篇)

小数除法计算题(5篇)

小数除法计算题(5篇)小数除法计算题(5篇)小数除法计算题范文第1篇【教材简析】这部分内容是在小数除以整数的基础上进行教学的,为了分散教学难点,这节课只教学被除数的小数位数不少于除数的小数位数的除法计算。

例5先通过一个简洁的购物情意,引导同学列出小数除以小数的算式。

接着,提出“除数是小数的除法怎样计算”这个问题,让同学在小组里沟通。

通过沟通,使同学初步熟悉到:(1)可以把除数是小数的除法转化为除数是整数的除法来计算;(2)可以用商不变的规律来实现这种转化。

在此基础上,示范移动被除数和除数小数点的过程,然后让同学完成余下的计算,使同学理解并把握一个数除以小数的详细方法。

最终,通过争论对计算方法加以总结。

“练一练”首先支配除数和被除数同时移动小数点的专项练习,以突出本节课的学习重点,接着支配先估算再计算的练习,主要解决商是否大于1的问题。

练习十七支配不同形式的练习,让同学巩固计算方法,其中第3题还可以使同学体会商的变化规律。

【教学目标】1.通过自主探究,让同学理解并把握一个数除以小数的计算方法,能正确口算、笔算相应的式题。

2.让同学在探究计算方法的过程中,进一步体会“转化”思想的价值,感受数学思索的严谨性,培育对数学学习的乐观情感。

【教学重难点】教学重点:让同学利用商不变的规律,用“转化”的方法将除数转化成为整数的除法,理解除数是小数的除法的算理及计算方法。

教学难点:学会转化的方法。

【教学预备】多媒体课件、小物品、直尺【教学过程】一、复习导入师:同学们,请口算下面各题,再思索一下有什么规律?(同学口答)师:对!这就是我们以前学习的商不变规律。

(出示商不变规律,生齐读)师:出示4.5÷1.5,这个商是多少呢?这道题与前面几题有什么不同之处?引出课题并板书:除数是小数的除法。

师:今日我们就要用商不变的规律来学数是小数的除法。

我们分小组来比一比,看哪一组同学这节课学的最好,学的最仔细,我们来比比看好不好。

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

北师大版七年级数学上册第三章《整式及其加减》练习题含答案解析 (31)

一、选择题1. 小明与小亮在操场上练习跑步,小明的速度是 x m/s ,小亮的速度是 y m/s ,小亮比小明跑得快,两人从同一地点同时起跑 a s 后,小明落后小亮 ( ) A . (ax −ay ) m B . (ay −ax ) m C . (ax +ay ) mD . axy m2. 小明用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是 8 时,输出的数据是 ( )输入⋯12345⋯输出⋯3223512310730⋯ A . 839B . 738C . 637D . 5363. 如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是 ( )A .B .C.D.4.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,⋯,依此规律跳动下去,点P第99次跳动至点P99的坐标是( )A.(26,50)B.(−26,50)C.(25,50)D.(−25,50)5.1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,如图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A.13B.242243C.211243D.322436.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,⋯以此类推,第n次平移将长方形A n−1B n−1C n−1D n−1沿A n−1B n−1的方向向右平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为( )A.5n+6B.5n+1C.5n+4D.5n+37.下列计算正确的是( )A.3a2+a=4a2B.−2(a−b)=−2a+bC.a2b−2a2b=−a2b D.5a−4a=18.下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小“三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,⋯⋯,按此规律,图形⑧中共有n个小三角形,这里的n=( )A.32B.41C.51D.539.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品的价格为( )A.52a元B.25a元C.53a元D.35a元10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形,⋯⋯,如此下去,则第2018个图中共有正方形的个数为( )A.2018B.2019C.6052D.6056二、填空题11.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,⋯,则第n−1(n为正整数,n⋯2)个图案由个▲组成.12.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.13.有理数a,b,c,d在数轴上的位置如图,则∣a−b∣+∣b−c∣−∣d−a∣=.14.在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,−1),C(−1,−1),D(−1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,⋯⋯,按此操作下去,则P2020的坐标为.15.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等.小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48.若将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0对准乙尺的刻度m,则此时甲尺的刻度n会对准乙尺的刻度为.(用含m,n的式子表示)16.观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形中共有个点.+(b+c)m−m2的值为.17.若a,b互为倒数,b,c互为相反数,m的绝对值为1.则abm三、解答题18.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为ℎ(单位为:cm).(1) 用m,n,ℎ表示所需地毯的面积;(2) 若m=160,n=60,ℎ=75,求地毯的面积.19.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a,三角形的高为ℎ.(1) 用式子表示阴影部分的面积;(2) 当a=2,ℎ=1时,求阴影部分的面积.220.阅读下面材料:在数轴上5与−2所对的两点之间的距离:∣5−(−2)∣=7;在数轴上−2与3所对的两点之间的距离:∣−2−3∣=5;在数轴上−8与−5所对的两点之间的距离:∣(−8)−(−5)∣=3.在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=∣a−b∣=∣b−a∣.回答下列问题:(1) 数轴上表示−2和−5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为∣x+2∣;(2) 七年级研究性学习小组在数学老师指导下,对式子∣x+2∣+∣x−3∣进行探究:请你在草稿纸上画出数轴,当表示数x的点在−2与3之间移动时,∣x−3∣+∣x+2∣的值总是一个固定的值为:.21.学校操场上的环形跑道长400米,小胖、小杰的速度分别是a米/分,b米/分(其中a>b).两人从同一地点同时出发,求:(1) 如果两人反向而行,则经过多长时间两人第一次相遇?(2) 如果两人同向而行,则经过多长时间两人第一次相遇?22.归纳.人们通过长期观察发现,如果早晨天空中有棉絮状的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学里,我们也常用这样的方法探求规律,例如:三角形有3个顶点,如果在它的内部再画n个点,并以(n+3)个点为顶点画三角形,那么最多以剪得多少个这样的三角形?为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.(1) 完成表格信息:,;(2) 通过观察、比较,可以发现:三角形内的点每增加1个,最多可以剪得的三角形增加个.于是,我们可以猜想:当三角形内的点的个数为n时,最多可以剪得个三角形.像这样通过对现象的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.在日常生活中,人们互相交谈时,常常有人在列举了一些现象后,说“这(即列举的现象)说明⋯⋯”其实这就是运用了归纳的方法.用归纳的方法得出的结论不一定正确,是否正确需要加以证实.(3) 请你尝试用归纳的方法探索(用表格呈现,并加以证实):1+3+5+7+⋯+(2n−1)的和是多少?23.探索规律,观察下面由⋇组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.⋯(1) 请猜想1+3+5+7+9+⋯+19=;(2) 请猜想1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3)=;(3) 请计算:101+103+⋯+197+199.24.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”.如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1) 图2是显示部分代数式的“等和格”,可得a=(用含b的代数式表示);(2) 图3是显示部分代数式的“等和格”,可得a=,b=;(3) 图4是显示部分代数式的“等和格”,求b的值(写出具体求解过程).25.A,B两地果园分别有橘子40吨和60吨,C,D两地分别需要橘子30吨和70吨;已知从A,B到C,D的运价如表: 到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1) 若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元.(2) 用含x的式子表示出总运输费(要求:列式,化简).(3) 求总运输费用的最大值和最小值.(4) 若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=−(x−25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.答案一、选择题 1. 【答案】B【知识点】简单列代数式2. 【答案】D【解析】 ∵ 第 n 个数据的规律是:n+2n (n+1), 故 n =8 时为:8+28×9=1072=536. 【知识点】用代数式表示规律3. 【答案】C【解析】由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有C . 【知识点】用代数式表示规律4. 【答案】D【知识点】点的平移、用代数式表示规律5. 【答案】C【解析】根据题意知:第一阶段时,余下的线段的长度之和为 23, 第二阶段时,余下的线段的长度之和为 23×23=(23)2, 第三阶段时,余下的线段的长度之和为 23×23×23=(23)3, ⋯, 以此类推,当达到第五个阶段时,余下的线段的长度之和为 (23)5=32243, 取走的线段的长度之和为 1−32243=211243. 【知识点】用代数式表示规律6. 【答案】A【解析】每次平移 5 个单位,n 次平移 5n 个单位,即 BN 的长为 5n ,加上 AB 的长即为 AB n 的长,AB n =5n +AB =5n +6. 【知识点】用代数式表示规律7. 【答案】C【解析】3a2,a不是同类项,不能合并,故A错误;−2(a−b)=−2a+2b,故B错误;a2b−2a2b=−a2b,故C正确;5a−4a=a,故D错误,故选:C.【知识点】合并同类项、去括号8. 【答案】C【解析】设第m个图形中有a m(m为正整数)个小三角形.观察图形,可知:a1=1+1=2,a2=(1+2)+3=6,a3=(1+2+3)+5=11,a4= (1+2+3+4)+7=17,⋯,∴a m=(1+2+⋯+m)+2m−1=m(m+1)2+2m−1=12m2+52m−1(m为正整数),∴n=a8=12×82+52×8−1=51.【知识点】用代数式表示规律9. 【答案】C【知识点】用字母表示数10. 【答案】C【解析】第1个图形有正方形1个,第2个图形有正方形4个,第3个图形有正方形7个,第4个图形有正方形11个,⋯,第n个图形有正方形(3n−2)个,当n=2018时,3×2018−2=6052个正方形.【知识点】用代数式表示规律二、填空题11. 【答案】(3n−2)【解析】观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;⋯第n−1个图形有3n−3+1=3n−2个三角形.【知识点】用代数式表示规律12. 【答案】82【知识点】用代数式表示规律13. 【答案】c+d−2b【解析】根据数轴右侧的数大于左侧的数,则右侧数减去左侧数为正,去掉绝对值,∵a−b>0,b−c<0,d−a<0,∴∣a−b∣=a−b,∣b−c∣=−(b−c),∣d−a∣=−(d−a),故∣a−b∣+∣b−c∣−∣d−a∣=a−b−(b−c)+(d−a)=a−b−b+c+d−a=c+d−2b.【知识点】整式的加减运算、绝对值的几何意义14. 【答案】(0,2)【解析】∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,−1)的对称点P2的坐标(0,−2),点P2关于点C(−1,−1)的对称点P3的坐标为(−2,0),点P3关于点D(−1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2020÷4=505,∴点P2020的坐标与点P4的坐标相同,∴点P2020的坐标为(0,2).【知识点】坐标平面内图形轴对称变换n+m15. 【答案】43【知识点】简单列代数式16. 【答案】165【解析】第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点(在第一个图形的基础上,外面又包了一个三角形,三个顶点,在三边上多了三个点);第三个图形有3+6+9=3×(1+2+3)=18个点;(在第二个图形基础上,外面又包了一个三角形,在三边上多了三个点,即:在第一图形的基础上多了两个三角形,从里向外,依次多6个点,9个点,包括增加的三角形的顶点)⋯第n个图形有3+6+9+⋯+3n=3×(1+2+3+⋯+n)=3n(n+1)个点;2=165个点,当n=10时,3×10×112故答案为:165.【知识点】用代数式表示规律17. 【答案】0或−2【解析】ab=1,c+d=0.∣m∣=1.−1=0或−2.原式=1m【知识点】简单的代数式求值三、解答题18. 【答案】(1) 地毯的面积为:(mn+2nℎ)cm2.(2) 地毯总长:60×2+160=280(cm),160×60+2×60×75=18600(cm2),答:地毯的面积为18600cm2.【知识点】简单的代数式求值、简单列代数式19. 【答案】aℎ=a2−2aℎ.(1) 阴影部分的面积为:a2−4×12时,(2) 当a=2,ℎ=12原式=a2−2aℎ=22−2×2×12=2.【知识点】简单列代数式、简单的代数式求值20. 【答案】(1) 3;∣x−3∣;x;−2(2) 5【解析】(1) 数轴上表示−2和−5的两点之间的距离=∣−2−(−5)∣=3;数轴上表示数x和3的两点之间的距离=∣x−3∣;数轴上表示数x和−2的两点之间的距离表示为∣x+2∣.(2) 当−2≤x≤3时,∣x+2∣+∣x−3∣=x+2+3−x=5.【知识点】绝对值的几何意义、整式的加减运算、数轴的概念21. 【答案】(1) 400a+b分钟.(2) 400a−b分钟.【知识点】简单列代数式22. 【答案】(1) 5;7(2) 2;(2n+1)(3)加数的个数和1+3221+3+5321+3+5+742⋯⋯1+3+5+7+⋯+(2n−1)n2证明:∵S=1+3+5+7+⋯+(2n−5)+(2n−3)+(2n−1),∴S=(2n−1)+(2n−3)+(2n−5)+⋯+7+5+3+1,∴S+S=2n⋅n=2n2,2S=2n2,S=n2.【解析】(1) 由图形规律可得,答案为5,7.(2) ∵5−3=7−5=2,∴三角形内的点每增加1个,最多可以剪得的三角形增加2个;∵三角形内点的个数为1时,最多剪出的小三角形个数3=2×1+1,三角形内点的个数为2时,最多剪出的小三角形个数5=2×2+1,三角形内点的个数为3时,最多剪出的小三角形个数7=2×3+1,∴三角形内点的个数为n时,最多剪出的小三角形个数2n+1.【知识点】用代数式表示规律、整式的加减运算23. 【答案】(1) 100(2) (n+2)2(3)101+103+⋯+197+199 =(1+1992)2−(1+992)2=10000−2500=7500.【解析】(1) 1+3+5+7+9+⋯+19=(1+192)2=100.(2)1+3+5+7+9+⋯+(2n−1)+(2n+1)+(2n+3) =(1+2n+32)2=(n+2)2.【知识点】用代数式表示规律24. 【答案】(1) −b(2) −2;2(3) 2a2+a+(a−2a2)=a2+2a+(a+3),a2+a=−3,2a2+a+(a+3)=b+3a2+2a+(a2+2a),b=−2a2−2a+3,b=−2(a2+a)+3=6+3=9.【知识点】整式的加减运算25. 【答案】(1) (40−x),12(40−x).(2) 从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40−x)吨,运费为每吨12元;从B果园运到C地(30−x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:15x+12(40−x)+10(30−x)+9(30+x)=2x+1050.(3) 因为总运费=2x+1050,当x=30时,有最大值2×30+1050=1110元.当x=0时,有最小值2×0+1050=1050元.(4) 25大4360【解析】(1) 因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40−x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40−x)吨.(4) w=−(x−25)2+4360,因为二次项系数−1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.【知识点】二次函数的最值、简单的代数式求值、整式加减的应用、简单列代数式。

计算方法习题集及答案(总结版)

计算方法习题集及答案(总结版)

雅克比法:
3 10 12 5
3 (k ) 2 (k ) x1( k +1) = − 5 x2 − 5 x3 −
,x
( k +1) 2
(k ) 1 (k ) =1 4 x1 − 2 x 3 + 5
18 i
,x
( k +1) 3 −4
(k ) 3 =−1 + 10 x (2 k ) + 5 x1
取初始向量 x
(2) x (3) x
3
= 1+ x2 =
,对应迭代公式 x 对应迭代公式 x
0
k +1
= 3 1 + x k2 ;
2
1 , x −1
k
+1 =
1 xk − 1

0
判断以上三种迭代公式在 x 解: (1) ϕ ( x) = 1 + x1
2
= 1 .5
的收敛性,选一种收敛公式求出 x
2 x3

2 3
= 1 .5
5
习题 3
1.
设有方程组
5 x1 + 2 x 2 + x3 = −12 − x1 + 4 x 2 + 2 x3 = 20 2 x − 3x + 10 x = 3 2 3 1
( k +1) (k )

(1)
考察用 Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; −x (2) 用 Jacobi 法及 Gauss-Seidal 法解方程组,要求当 x
1.
x
k +1 k k
'
<1
公式收敛

结构力学习题集(下)_结构的动力计算习题与答案

结构力学习题集(下)_结构的动力计算习题与答案

结构⼒学习题集(下)_结构的动⼒计算习题与答案第九章结构的动⼒计算⼀、判断题:1、结构计算中,⼤⼩、⽅向随时间变化的荷载必须按动荷载考虑。

2、仅在恢复⼒作⽤下的振动称为⾃由振动。

3、单⾃由度体系其它参数不变,只有刚度EI 增⼤到原来的2倍,则周期⽐原来的周期减⼩1/2。

4、结构在动⼒荷载作⽤下,其动内⼒与动位移仅与动⼒荷载的变化规律有关。

5、图⽰刚架不计分布质量和直杆轴向变形,图a 刚架的振动⾃由度为2,图b 刚架的振动⾃由度也为2。

6、图⽰组合结构,不计杆件的质量,其动⼒⾃由度为5个。

7、忽略直杆的轴向变形,图⽰结构的动⼒⾃由度为4个。

8、由于阻尼的存在,任何振动都不会长期继续下去。

9、设ωω,D 分别为同⼀体系在不考虑阻尼和考虑阻尼时的⾃振频率,ω与ωD 的关系为ωω=D 。

⼆、计算题:10、图⽰梁⾃重不计,求⾃振频率ω。

l l /411、图⽰梁⾃重不计,杆件⽆弯曲变形,弹性⽀座刚度为k ,求⾃振频率ω。

12、求图⽰体系的⾃振频率ω。

l l0.5l 0.513、求图⽰体系的⾃振频率ω。

EI = 常数。

ll 0.514、求图⽰结构的⾃振频率ω。

l l15、求图⽰体系的⾃振频率ω。

EI =常数,杆长均为l 。

16、求图⽰体系的⾃振频率ω。

杆长均为l 。

17、求图⽰结构的⾃振频率和振型。

l /218、图⽰梁⾃重不计,W EI ==??2002104kN kN m 2,,求⾃振圆频率ω。

B2m2m19、图⽰排架重量W 集中于横梁上,横梁EA =∞,求⾃振周期ω。

EIEIW20、图⽰刚架横梁∞=EI 且重量W 集中于横梁上。

求⾃振周期T 。

EIEIWEI 221、求图⽰体系的⾃振频率ω。

各杆EI = 常数。

a aa22、图⽰两种⽀承情况的梁,不计梁的⾃重。

求图a 与图b的⾃振频率之⽐。

l /2/2(a)l /2l /2(b)23、图⽰桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。

求⽔平⾃振周期T 。

word版,乘法运算定律与简便计算练习题大全

word版,乘法运算定律与简便计算练习题大全

(二)乘除法运算定律乘法互换律定义:互换两个因数的地点,积不变。

字母表示:abba比如:85×18=18×8523×88=88×23乘法联合律定义:先乘前两个数,或许先乘后两个数,积不变。

字母表示:(a b) c a (b c) 乘法联合律的应用鉴于要娴熟掌握一些相乘后积为整十、整百、整千的数。

比如:25×4=100,125×8=1000例5.简易计算:(1)25×9×4(2)25×12(3)125×56贯通融会:简易计算(1)25×16 (2)125×33×8(3)32×25×125(4)24×25×125(5)48×125×63(6)25×15×16乘法分派律定义:两个数的和与一个数相乘,能够先把它们与这个数分别相乘,再相加。

字母表示:(a b) c a c b c,或许是a (b c) a b a c简易计算中乘法分派律及其逆运算是运用最宽泛的一个,一个要掌握它和它的逆运算。

例6.简易计算:(1)125×(8+16)(2)150×63+36×150+150(3)12×36+120×42+12×220(4)33×13+33×79+33×12简易计算(二)——加减乘除综合简易计算除了乘法分派律常常独自使用外,大部分的简易计算都同时包含了加减法、乘除法的运算定律率,看下边例题:例7.利用乘法分派律计算:(1)88×(12+15)(2)46×(35+56)例8.简易计算:(1)16×56-16×13+16×61-16×5(2)43×23+18×23-23×9+48(1)97×15(2)102×99(3)35×8+35×6-4×35随堂练习:简易计算例9.简易计算:(1)63+71+37+29(2)85-17+15-33(3)34+72-43 28(1)48×1001(2)57×99(3)539×236+405×236+236×56(4)99×85(5)103×26(6)97×15+15×4例10.简易计算:(1)125×25×32(2)600÷25÷40(3)25×64×125(7)25×32×125(8)64×25×125(9)26×(5+8例11.简易计算:(1)17×62+17×31+12×17(2)8.×36+567×36+36×341+36(10)22×46+22×59-22×2(11)175×463+175×547-175例12.简易计算:字母表示:a b c a c b例13.简易计算:1000÷25÷8(12)26×35+26×450+260×19+26×3(13)82×470-82×13+820×68除法联合律:从被除数里面连续除以两个数,等于被除数除以这两个数的积。

初中物理计算题解题方法技巧

初中物理计算题解题方法技巧

初中物理计算题解题方法技巧初中物理的解题需要掌握一些方法,不然的话每一道题都要花费大量的时间去计算,将会得不偿失,小编在这里整理了相关资料,希望能帮助到您。

初中物理计算题解题方法技巧1.分析法:把从所求结论追溯到已知条件的方法称为分析法。

用分析法探求解题思路是初中解题中用得较多得的方法,也称为反推法。

当遇到一个问题不知如何入手时,可从“结论”出发,一步步往回探索,这样就会摸清路子。

分析法解题的程序为:(1)反复读题找条件:找出题目给出的直接条件、间接条件及隐含条件;(2)确定对象作简图;(3)分析过程找规律:在分析过程中,找出解题所需要的物理概念、定律、公式等;(4)返回列式求答案:按分析过程的顺序,一步步返回结论。

分析法解物理题的好处:目标集中,方向明确,过程严密,由果索因,步步为营,理论根据充分,很容易成功,并有利于培养学生的逻辑思维能力。

2.假设法:在解答某些物理习题时,若能针对问题进行一些合理而又巧妙的假设,就会使问题易于理解,易于分析和求解,收到化难为易的功效。

有时对于某些习题的题设条件明显不足,给解题造成困难时,若能假设一些合理的条件,则会使问题迎刃而解。

3.整体思维法:就是把彼此独立而又有一定联系的物体或物理过程作为一个整体来分析处理的方法。

4.简化法这种方法是把题目中的复杂情境或复杂现象进行梳理,找出题目中的相关环节或相关点,使要解决的复杂的问题突出某个物理量的关系或某个规律特点.这样使复杂得到简化,可以在计算解答的过程中减少一些混淆和混乱,把要解答的问题解决.例如电路中的电流表可以当作导线,电压表当作断路对电路进行简化,判断电路是并联还是串联。

5.隐含条件法这种方法是通过审题,从题目中所叙述的物理现象或给出的物理情境及元件设备等各个环节中,挖掘出解答问题所需要的隐含在其中的条件,这种挖掘隐含条件能使计算环节减少,而且所得到的答案误差也小.6.极值法这种方法也叫端点法.它对不定值问题和变化范围问题的解答有重要的实用价值.用这种方法解答问题时,应改弄清要研究的是哪个变化的物理量的值或者是哪个物理量的变化范围,然后确定变化的规律或方向,最后用相对应的物理规律或物理概念,一个对应点一个对应点地计算取值.例如:连接有滑动变阻器的电路,当滑片P从a端移到b 端时,求电路的电流表(或电压表)的示数变化范围,或者反过来告诉你某个表的示数变化范围,让你利用这些数据求某个未知物理量等。

初一上册数学有理数的乘法试题及答案

初一上册数学有理数的乘法试题及答案

初一上册数学有理数的乘法试题及答案一、选择题(共14小题)1.计算:2×(﹣3)的结果是()A.6B.﹣6C.﹣1D.5【考点】有理数的乘法.【专题】计算题.【分析】根据有理数乘法法则进行计算即可.【解答】解:2×(﹣3)=﹣6;故选B.【点评】此题考查了有理数的乘法,掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘是解题的关键.2.计算:(﹣2)×3的结果是()A.﹣6B.﹣1C.1D.6【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣2)×3=﹣2×3=﹣6.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.3.计算:2×(﹣3)=()A.﹣6B.﹣5C.﹣1D.6【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:2×(﹣3)=﹣6.故选A.【点评】本题考查了有理数的乘法,熟记运算法则是解题的关键.4.(﹣2)×3的结果是()A.﹣5B.1C.﹣6D.6【考点】有理数的乘法.【专题】计算题.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.5.计算(﹣6)×(﹣1)的结果等于()A.6B.﹣6C.1D.﹣1【考点】有理数的乘法.【专题】计算题.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选:A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.6.(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣6【考点】有理数的乘法.【分析】根据两数相乘,异号得负,可得答案.【解答】解:原式=﹣3×3=﹣9,故选:A.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.7.计算﹣4×(﹣2)的结果是()A.8B.﹣8C.6D.﹣2【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:﹣4×(﹣2),=4×2,=8.故选:A.【点评】本题考查了有理数的乘法,是基础题,熟记运算法则是解题的关键.8.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是()A.100B.80C.50D.120【考点】有理数的乘法.【分析】从一楼到五楼共经过四层楼,所以用20乘以4,再根据有理数的乘法运算法则进行计算即可得解,【解答】解:从一楼到五楼要经过的台阶数为:20×(5﹣1)=80.故选B.【点评】本题考查了有理数的乘法,要注意经过的楼层数为所在楼层减1.9.计算(﹣1)×3的结果是()A.﹣3B.﹣2C.2D.3【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣1)×3=﹣1×3=﹣3.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.10.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.【考点】有理数的乘法.【分析】根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.故选:D.【点评】本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.11.下列运算结果正确的是()A.﹣87×(﹣83)=7221B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66D.【考点】有理数的乘法;有理数大小比较;有理数的减法.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A【点评】此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.12.若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2D.﹣【考点】有理数的乘法.【专题】计算题.【分析】根据乘积是1的两个数互为倒数解答.【解答】解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选:D.【点评】本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.13.算式743×369﹣741×370之值为何?()A.﹣3B.﹣2C.2D.3【考点】有理数的乘法.【分析】根据乘法分配律,可简便运算,根据有理数的减法,可得答案.【解答】解:原式=743×(370﹣1)﹣741×370=370×(743﹣741)﹣743=370×2﹣743=﹣3,故选:A.【点评】本题考查了有理数的乘法,乘法分配律是解题关键.14.若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为何?()A.24B.48C.72D.240【考点】有理数的乘法.【分析】根据有理数的乘法,求出所有因子的最小公倍数,然后求出与720的最大公因数,即为最大公因子.【解答】解:1、2、3、4、6、8、12、16、24最小公倍数是48,48与720的最大公因数是48,所以,a与720的最大公因子是48.故选B.【点评】本题考查了有理数的乘法,确定出所有因子的最小公倍数是解题的关键.三年级数学上册《乘数末尾有0的乘法》教学设计三年级数学上册《乘数末尾有0的乘法》教学设计范文(通用3篇)教学目标:1.进一步掌握三位数乘两位数的笔算方法,提高计算的正确率和速度。

(完整版)线性代数习题集

(完整版)线性代数习题集

一. 判断题(正确打√,错误打×)1. n 阶行列式ij a 的展开式中含有11a 的项数为1-n 。

( × ) 正确答案:)!1(-n解答:方法1因为含有11a 的项的一般形式是n nj ja a a 2211,其中n j j j 32是1-n 级全排列的全体,所以共有)!1(-n 项. 方法2 由行列式展开定理=nnn n n n a a a a a a a a a212222111211n n A a A a A a 1121211111+++ ,而n n A a A a 112121++ 中不再含有11a ,而11A 共有)!1(-n 项,所以含有11a 的项数是)!1(-n .注意:含有任何元素ij a 的项数都是)!1(-n 。

2. 若n 阶行列式ij a 中每行元素之和均为零,则ij a 等于零。

( √ )解答:将nnn n nn a a a a a a a a a212222111211中的n 、、、 32列都加到第一列,则行 列式中有一列元素全为零,所以ij a 等于零. 3.3322441144332211000000a b b a a b b a a b a b b a b a =。

( √ )解答:方法1按第一列展开332244114411414133224133224144332211)(0000000a b b a a b b a a b b a b b a a a b b a b b a b b a a a a b a b b a b a =-=-=。

方法2 交换2,4列,再交换2,4行2233441144332211443322110000000000000000000000a b b a a b b a a b b a a b b a a b a b b a b a =-==33224411a b b a a b b a 。

方法3 Laplace 展开定理:设在n 行列式D 中任意取定了)11(-≤≤n k k 个行,由这k 行元素所组成的一切k 阶子式与它们的代数余子式的乘积之和等于行列式D 。

小学二年级数学计算技巧附练习题(含答案)

小学二年级数学计算技巧附练习题(含答案)

小学二年级数学计算技巧附练习题(含答案)1. 加法计算技巧- 把个位数对齐,逐位相加。

- 如果个位相加超过10,将十位上的进位加到十位数上。

练题:1. 12 + 5 = ?2. 18 + 7 = ?3. 23 + 9 = ?4. 31 + 6 = ?5. 47 + 8 = ?答案:1. 12 + 5 = 172. 18 + 7 = 253. 23 + 9 = 324. 31 + 6 = 375. 47 + 8 = 552. 减法计算技巧- 把个位数对齐,逐位相减。

- 如果个位需要借位,从十位数上借位。

练题:1. 25 - 9 = ?2. 37 - 6 = ?3. 42 - 8 = ?4. 56 - 7 = ?5. 60 - 4 = ?答案:1. 25 - 9 = 162. 37 - 6 = 313. 42 - 8 = 344. 56 - 7 = 495. 60 - 4 = 563. 倍数和除数计算技巧- 如果一个数字能够被另一个数字整除,那么它们是倍数和除数的关系。

练题:1. 12是2的倍数吗?2. 18是3的倍数吗?3. 27是5的倍数吗?4. 36是9的倍数吗?5. 45是6的倍数吗?答案:1. 12是2的倍数。

2. 18是3的倍数。

3. 27不是5的倍数。

4. 36是9的倍数。

5. 45不是6的倍数。

4. 数字排序- 对一组数字进行升序或降序排列。

练题:将以下数字从小到大排列:7,1,9,4,3答案:1, 3, 4, 7, 95. 数字图形填充- 根据给定的图形规则填充数字图形。

练题:根据以下规则填充图形:11211答案:11211以上是小学二年级数学计算技巧的练习题和答案。

希望能够帮助你提高数学计算能力!。

算法设计与分析第二版课后习题解答

算法设计与分析第二版课后习题解答

算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求//输入:一个正整数n 2//输出:。

step1:a=1;step2:若a*a<n 转step 3,否则输出a;step3:a=a+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。

b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。

a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1,0) = 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈1300 与2·14142/11 ≈2600 倍之间。

6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

人教版数学四年级下册:运算定律与简便计算 练习题大全

人教版数学四年级下册:运算定律与简便计算 练习题大全

运算定律与简便计算各种题型;共39页附详细的解题步骤2.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。

字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。

例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。

减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。

字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。

字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。

例如:103=100+3,1006=1000+6,…凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。

例如:97=100-3,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。

例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。

混凝土结构设计习题集和答案(精心整理)

混凝土结构设计习题集和答案(精心整理)

混凝土结构设计习题一、填空题(共48题)3.多跨连续梁板的内力计算方法有_ 弹性计算法__和 塑性计算法___ 两种方法。

6.对于跨度相差小于10%的现浇钢筋混凝土连续梁、板,可按等跨连续梁进行内力计算。

8、按弹性理论对单向板肋梁楼盖进行计算时,板的折算恒载 p g g 21'+=, 折算活载p p 21'= 10、对结构的极限承载能力进行分析时,满足 机动条件 和 平衡条件 的解称为上限解,上限主梁的跨度以 5~8 m 29、单向板肋梁楼盖的结构布置一般取决于 建筑功能 要求,在结构上应力求简单、整齐、经济、适用。

柱网尽量布置成 长方形 或 正方形 。

主梁有沿 横向 和 纵向 两种布置方案。

31、单向板肋梁楼盖的板、次梁、主梁均分别为支承在 次梁 、 主梁 、柱或墙上。

计算时对于板和次梁不论其支座是墙还是梁,将其支座均视为 铰支座 。

由此引起的误差,可在计算时所取的 跨度 、 荷载 及 弯矩值 中加以调整。

32、当连续梁、板各跨跨度不等,如相邻计算跨度相差 不超过10% ,可作为等跨计算。

这时,当计算各跨跨中截面弯矩时,应按 各自的跨度 计算;当计算支座截面弯矩时,则应按相邻两跨计算跨度的平均值 计算。

33、对于超过五跨的多跨连作用续梁、板,可按 五跨 来计算其内力。

当梁板跨度少于五跨时,仍按 实际跨数 计算。

34、作用在楼盖上的荷载有永久荷载和可变荷载。

永久荷载是结构在使用期间内基本不变的荷载;可变荷载是结构在使用或施工期间内时有时无的可变作用的荷载。

35、当楼面梁的负荷面积很大时,活荷载全部满载的概率比较小,适当降低楼面均布活荷载更能符合实际。

因此设计楼面梁时,应按《荷载规范》对楼面活荷载值乘以折减系数后取用。

39、内力包络图中,某截面的内力值就是该截面在任意活荷载布置下可能出现的最大内力值。

根据弯矩包络图,可以检验受力纵筋抵抗弯矩的能力并确定纵筋的截断或弯起的位置和数量。

计算方法习题集

计算方法习题集

计算方法习题集(一)考核知识点误差的**型别;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

(二)複习要求1.知道产生误差的主要**。

2.了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关係。

3.知道四则运算中的误差传播公式。

一、重点内容一个物理量的真实值和我们算出的值往往不相等,其差称为误差。

引起误差的原因是多方面的,主要有:模型误差,观测误差,截断误差,舍入误差。

在计算方法中主要讨论的是截断误差和舍入误差。

误差:设精确值x*的近似值为x,差e=x-x*称为近似值x的误差(绝对误差)。

误差限近似值x的误差限是误差e的一个上界,即|e|=|x-x*|≤ε。

相对误差er是误差e与精确值x*的比值,。

常用计算。

相对误差限是相对误差的最大限度,,常用计算相对误差限。

有效数字如果近似值x的误差限ε是它某一个数位的半个单位,我们就说x 準确到该位。

从这一位起到前面第一个非0数字为止的所有数字称为x的有效数字。

二、难点内容(1)设精确值x*的近似值x,x=±…an×10m,a1,a2,…,an是0~9之中的自然数,且a1≠0,|x-x*|≤ε=×10m-l,1≤l≤n。

则x有l位有效数字。

(2)设近似值x=±…an×10m有n位有效数字,则其相对误差限(3)设近似值x=±…an×10m的相对误差限不大于则它至少有n位有效数字。

(4)要求精确到10-3,取该数的近似值应保留4位小数。

三、例题例1设x*==…近似值x==×101,即m=1,它的误差是0.XX…,有,即n=3,故x=有3为有效数字。

x=3.14準确到小数点后第2位。

近似值x=,它的误差是…,有,即m=1,n=5,x=有5位有效数字。

近似值x=,它的误差是…,有即m=1,n=4,x=有4位有效数字。

这就是说某数有s位数,若末位数字是四捨五入得到的,那幺该数有s位有效数字;若末位数字不是四捨五入得到的,那幺该数有s位或s-1位有效数字。

工程力学(一)习题集及部分解答指导

工程力学(一)习题集及部分解答指导

工程力学学习参考资料第一章静力学基础一、判断题1-1.如物体相对于地面保持静止或匀速运动状态,则物体处于平衡。

()1-2.作用在同一刚体上的两个力,使物体处于平衡的必要和充分条件是:这两个力大小相等、方向相反、沿同一条直线。

( ) 1-3.静力学公理中,二力平衡公理和加减平衡力系公理仅适用于刚体。

( ) 1-4.二力构件是指两端用铰链连接并且指受两个力作用的构件。

( ) 1-5.对刚体而言,力是滑移矢量,可沿其作用线移动。

()1-6.对非自由体的约束反力的方向总是与约束所能阻止的物体的运动趋势的方向相反。

()1-7.作用在同一刚体的五个力构成的力多边形自行封闭,则此刚体一定处于平衡状态。

()1-8.只要两个力偶的力偶矩相等,则此两力偶就是等效力偶。

()二、单项选择题1-1.刚体受三力作用而处于平衡状态,则此三力的作用线( )。

A、必汇交于一点B、必互相平行C、必都为零D、必位于同一平面内1-2.力的可传性()。

A、适用于同一刚体B、适用于刚体和变形体C、适用于刚体系统D、既适用于单个刚体,又适用于刚体系统1-3.如果力F R是F1、F2二力的合力,且F1、F2不同向,用矢量方程表示为F R= F1+ F2,则三力大小之间的关系为()。

A、必有F R= F1+ F2B、不可能有F R= F1+ F2C、必有F R>F1, F R>F2D、必有F R<F1, F R<F21-4.作用在刚体上的一个力偶,若使其在作用面内转移,其结果是()。

A、使刚体转动B、使刚体平移C、不改变对刚体的作用效果D、将改变力偶矩的大小三、计算题1-1.已知:F1=2000N,F2=150N,F3=200N,F4=100N,各力的方向如图1-1所示。

试求各力在x、y轴上的投影。

解题提示F x= + F cosαF y= + F sinα注意:力的投影为代数量;式中:F x、F y的“+”的选取由力F的指向来确定;α为力F与x轴所夹的锐角。

算法设计与分析习题解答(第2版)

算法设计与分析习题解答(第2版)

第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。

常见的体积单位及换算 小学数学 习题集

常见的体积单位及换算 小学数学 习题集

一、选择题1. 下列说法正确的是( )。

A.一个正方体切为两半后,体积和表面积都不变B.容积的计算方法与体积的计算方法相同C.求木箱的容积就是求它的体积2. 梁老师买了一个小瓶装的矿泉水,净含量是()。

A.300毫升B.C.3. 一个水池能蓄水480m3,我们就说这个水池的()是480m3。

A.重量B.体积C.容积4. 6升=()毫升。

A.60 B.6000 C.6005. 要盛150毫升的水,选()作容器比较合适。

A.一个桶B.一个碗C.一个盆二、口算和估算6. 直接写得数。

210÷30= 780÷60= 720-80= 0×95= 1升-99毫升=1000÷8= 24×5= 488+13= 700÷50= 300-400÷8=三、填空题7. 450立方厘米=( )立方分米 0.36立方分米=( )升=( )毫升日=( )时平方千米=( )公顷8. 9.07立方米=( )立方米( )立方分米 26.3升=( )毫升=( )立方分米9. 把1升盐水装入容积是80毫升的盐水瓶里,能装满( )瓶,需要( )个瓶装。

10. 85000毫升=( )升=( )立方分米时=( )时( )分11. 在括号里填上“升”或“毫升”。

一个热水瓶的容量大约是2( );一瓶墨水大约是50( );小华今天早晨喝牛奶250( );浴缸的容量大约是400( )。

四、解答题12. 小明和他的4个好朋友一起去冷饮店买饮料喝,每人喝了2杯果汁,每杯果汁200毫升,他们一共喝了多少升果汁?13. 一个无盖长方体的铁皮水槽,长10分米,宽8分米,高6分米。

(铁皮厚度忽略不计)(1)做这个水槽至少需要铁皮多少平方分米?(2)这个水槽最多可以盛水多少升?14. 一个观赏鱼缸盛水约925升,是多少毫升?15. 一瓶2升的浓缩橙汁里加入800 mL水后,平均分给12位同学.每位同学喝250mL,够吗?。

凑十法练习题

凑十法练习题

凑十法练习题“凑十法”是数学中一种非常实用的方法,它可以帮助我们快速地计算出一些简单的加法或减法问题的结果。

为了帮助大家更好地掌握这种方法,以下是一些“凑十法”的练习题。

计算 9 + 5 + 4 + 8 + 2 + 7的和。

答案:这道题的答案是31。

我们可以使用“凑十法”来解答这个问题。

我们可以将9和2相加得到11,然后将11与8相加得到19,再将19与7相加得到26,最后将26与5和4相加得到31。

计算 80 - 3 - 2 - 5 - 10的差。

答案:这道题的答案是50。

我们可以使用“凑十法”来解答这个问题。

我们可以将80减去3得到77,然后将77减去2得到75,再将75减去5得到70,最后将70减去10得到60,因此答案为50。

计算 36 + 49 + 23 + 51的和。

答案:这道题的答案是169。

我们可以使用“凑十法”来解答这个问题。

我们可以将36和51相加得到87,然后将87与49和23相加得到169。

计算 98 - 27 - 36 - 44的差。

答案:这道题的答案是81。

我们可以使用“凑十法”来解答这个问题。

我们可以将98减去27得到71,然后将71减去36得到35,再将35减去44得到-9,因此答案为81。

通过以上这些练习题,我们可以更好地掌握“凑十法”这种计算方法,从而在解决数学问题时更加得心应手。

在数学启蒙教育中,凑十法和破十法是帮助孩子建立数学思维,提高计算能力的重要工具。

这两种方法在日常生活中非常实用,能够帮助孩子更好地理解数字和计算。

接下来,我们将通过一些练习题来帮助孩子掌握这两种方法。

解析:我们可以将9和6分成两部分,即9可以分成9和0,6可以分成5和1。

这样,我们就可以将问题转化为9+0+5+1=15。

解析:我们可以将8和5分成两部分,即8可以分成8和0,5可以分成4和1。

这样,我们就可以将问题转化为8+0+4+1=13。

解析:我们可以将14分成10和4,然后使用破十法,即从10中减去9,留下的差值加上4,即10-9+4=5。

简便计算教案和习题集

简便计算教案和习题集

一、使用加法结合律实行简算(a+b)+c=a+(b+c) 或a+b+c+d=(a+c)+(b+d)例1、5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)=10+10=20例2、37.24+23.79-17.24=37.24-17.24+23.79=20+23.79=43.79二、使用乘法结合律实行简算:这种题型往往含特殊数字之间相乘(a×b)×c=a×(b×c)特殊数字之间相乘:25×4=100 125×8=1000 25×8=200 125×4=500例3、4×3.78×0.25=4×0.25×3.78=1×3.78=3.78例4、125×246×0.8=125×0.8×246=100×246=246002.5×0.125×8×4等,如果遇到除法同样适用,或将除法变为乘法来计算。

如:8.3×67÷8.3÷6.7等。

三、利用乘法分配律实行简算:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c做这种题,一定不要急着去算,先要分析各数字之间的特殊关系。

也就是先要仔细观察,找到做题的窍门。

例5、(2.5+12.5)×40=2.5×40+12.5×40=100+500=600例6、3.68×4.79+6.32×4.79=(3.68+6.32)×4.79=10×4.79=47.9例7. 26.86×25.66-16.86×25.66=(26.86-16.86) ×25.66=10×25.66=256.6例8、 5.7×99+5.7= 5.7×(99+1)=5.7×100=570使用乘法分配律实行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

左边 ( )- 右边 证明:当 m=0 时
∑∞
= T0 h
T=
∆ i
h
2i
=
i=1
设 时等式成立,即 ( )- m=k
Tk h
∑∞
T=
∆ h (k ) 2k +2i i
i =1
当 时 m=k+1
∑ ∑ Tk+(1 h)-T=
4k
+1Tk
(
h 2
)

Tk
(h)
4k +1 −1
−T=
4k +1[T
+
∞ i =1
0
1
2
3
4
5
6
7
8
1.5 1.44444 1.47929 1.456976 1.47108 1.46209 1.46779 1.4416 1.46647
9 1.4650
10
11
1.46593 1.4653
x* ≈ 1.466
迭代公式(2):
k
0
xk
1.5
12 1.46572
13 1.46548
14 1.46563
xk +1
=
ln(4 − xk ln 2
)
k
0
1
2
3
4
5
6
7
8
9
10
2
xk 1.5 1.322 1.421 1.367 1.397 1.380 1.390 1.384 1.387 1.386 1.386
x* ≈ 1.386
2. 方程 x3 − x2 −1 = 0 在 x = 1.5附近有根,把方程写成三种不同的等价形式:
又 ∑ ∑ n
n
lim (
p→∞ i=1
xi
)p 1/ p
≥ lim( p→∞ i=1
xr
)p 1/ p
=
xr
即 x ∞ ≥ xr x ∞ = xr

设 ,不妨设 , x = (x1,...xn ) ≠ 0
A≠0
令 ∑ ∑ ∑ ∑ n
µ
=
max
1≤i≤n
j =1
aij
n
n
n
Ax

=
max
1≤i≤n
j =1
, A = (aij ) ∈ R n×n .
∑ ∑ ∑ x
n

=
lim (
p→∞
i =1
xi
)p 1/ p
= lim p→∞
xr
[ n ( xi x i=1 r
) p ]1/ p
≤ lim p→∞
xr
[ n ( xr x i=1 r
) p ]1/ p
= lim p→∞
xr
⋅ n1/ p
=
xr
即 x ∞ ≤ xr
局部收敛于 x* 的迭代公式。 解:
方程 等价于 x = ϕ(x)
x = 0.5[ϕ(x) − 3x]
构造迭代公式 xk+1 = −0.5[ϕ(xk ) − 3xk ] 令φ(x) = −0.5[ϕ(x) − 3x]
3
由于 在 上也一阶可微 ϕ(x) [a,b]
( )迭代公式 , 公式收敛 1
xk +1
=
cos
xk
+ sin 4
xk
,ϕ(x)
=
cos
x + sin 4
x
ϕ(x)' < 1
k
0
1
2
3
xk
0
0.25
0.25098
0.25098
x* ≈ 0.25098
( ) , , 局部收敛 2 ϕ(x) = ln(4 − x) ln 2
x0 = 1.5
ϕ (x0 )' < 1
习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法
试证明 2.
x

=
max
1≤i≤n
xi
,
证明:
( )令 1
xr
=
max
1≤i≤n
xi
及 ∑ x = (x1, x2 ,L xn )T ∈ Rn
n
A

= max 1≤i≤n
j =1
aij
解: x = 325 =& 0.314159292 ×101 133
该近似值具有 为有效数字。 x − x∗ = π − 355 = 0.266×10−6 ≤ 0.5×101−7
7
113
1
4. 若 T(h)逼近其精确值 T 的截断误差为
∑∞
R(T ) := T (h) − T = Ai h2i
i =1
15
16
1.465534 1.465595
1 1.481
2 1.473
3 1.469
4 1.467
5 1.466
6 1.466
x* ≈ 1.466
3. 已知 x = ϕ(x) 在[a,b]内有一根 x* ,ϕ(x) 在[a,b]上一阶可微,且∀x ∈[a,b], ϕ′(x) − 3 < 1,试构造一个
其中,系数 与 无关。试证明由 Ai h
T0
(h)
Tm( h)
= =
T 4
(h) m Tm
−1
(h 2 4m
) − Tm−1 −1
(h)
,
m = 1,2,L
所定义的 的逼近序列 的误差为 , T
{Tm (h)}
∑∞
Tm (h) − T = Ai(m) h 2m+2
i =1
其中诸 Ai(m) 是与 h 无关的常数。
∆( i
k
)
(
h 2
)2
k
+2i
]

[T
4k+1 −1
+
∞ i =1
∆( i
k
)
(h)2
k
+
2i
]
−T
∑ 即证。 ∞
=
∆(k i
)
(h)
2(
k
+1) + 2 i
i =1
习题 2
1. 试构造迭代收敛的公式求解下列方程:
( )1 x = cos x + sin x ;
。 (2) x = 4 − 2x
解: 4
解:
( )1
ϕ(x)
=1+
1 x2
ϕ
' ( x)
=

2 x3
ϕ(x0)' < 1 局部收敛
( ) 局部收敛 2 ϕ(x) = 1+ x2
ϕ
'
(x)
=

2
x(
2 3
3
ϕ (x0 )' < 1
( )3
ϕ(x) =
1 x −1
迭代公式(1):
ϕ
'
(
x)
=

1
(
x


1)
2 3
2
ϕ(x0)' > 1 不是局部收敛
x j = sign(ai0 j )( j = 1, 2,..., n)
j =1
显然 且 任意分量为 , x0 ∞ =1 Ax0
∑ ∑ n
n
a x = a i=1 i0 j j
i=1 i0 j
故有 ∑ ∑ 即证。 n
n
Ax0

=
max i
aij x j
i =1
=
ai0 j
j =1

3. 古代数学家祖冲之曾以 355 作为圆周率π 的近似值,问此近似值具有多少位有效数字? 113
( ) 对应迭代公式 1
x
=1+
1 x2
,
xk
+1=1+
1
x
2 k
;
( ) ,对应迭代公式 2 x3 = 1+ x2
xk +1 = 3 1 + xk2 ;
(3)
x2
=
1 x −1
,对应迭代公式
xk
+1
=
。 1
xk −1
判断以上三种迭代公式在 x0 = 1.5的收敛性,选一种收敛公式求出 x0 = 1.5附近的根到 4 位有效数字。
aij x j
≤ max 1≤i≤n
j =1
aij
xj
≤ max 1≤i≤n
xi
max
1≤i≤n
j =1
aij

x∞
即对任意非零 x ∈ Rn ,有 Ax ∞ ≤ µ x∞
下面证明存在向量 x0
≠ 0 ,使得
Ax0 ∞ x0 ∞
=µ,
设 ,取向量 。其中 。 ∑n µ = ai0 j
x0 = (x1,...xn )T
相关文档
最新文档