2015年中考数学模拟试题及答案四

合集下载

山西省2015年中考模拟考试数学试题

山西省2015年中考模拟考试数学试题

山西省2015年中考模拟考试数学试题命题人侯来合 2014、12、28(考试形式:闭卷;全卷共五大题25小题;卷面分数:120分;考试时限:120分钟) 以下公式供参考:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b ,一、选择题.(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的选项前面的字母代号填写在第Ⅱ卷上指定的位置.01.实数a 、b 在数轴上的位置如图所示,则( ) A .b > 0 B .0> a C .b >a D .a>b02.如图是一个物体的三视图,则该物体的形状是( ) A .圆锥 B .圆柱C .三棱锥D .三棱柱03.下列四个数据中,是近似数的是( )A .三班有50人参加今年中考B .全市今年初中毕业学生有6321人C .我在初中学习了6本数学书D .玉泉铁塔高16.945米 04.在下列的计算中,正确的是( )A .2x +3y =5xyB .(a +2)(a -2)=a 2+4C .a 2•ab =a 3bD .(x -3)2=x 2+6x +905.如图,在△ABC 中,点D 、E 、F 分别是三边的中点,那么平移△ADE 可以得到( )A .△DBF 和△DEFB .△DBF 和△ABC C .△DEF 和△CEFD .△DBF 和△EFC06.据预报,2007年“五一”下雨的概率为80%,则下列理解正确的是( )A .“五一”80%的地区会下雨B .“五一”80%的时间会下雨C .“五一”一定会下雨D .“五一”下雨的可能性很大07.木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB 和CD ),这样做的根据是( )A .矩形的对称性B .矩形的四个角都是直角C .三角形的稳定性D .两点之间线段最短第9题图 A C 第7题图 B D 第1题图F第5题图E C D B A第2题图 主视图 左视图 俯视图08.某皮鞋店在近一周内各种皮鞋的售出情况记录如下表,该店老板决定下周要多进一些40码皮鞋,其决策的依据是一周内所销售皮鞋数量的( )A .平均数B .众数C .中位数D .方差09.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,OC =5 cm ,则OD 的长是( ) A .3 cm B .2.5 cm C .2 cm D .1 cm 10.学校升旗仪式上,匀速上升国旗的高度与时间的关系可以用图象近似地刻画,其图象是( )二、填空题.(本大题共5小题,每小题3分,共15分) 请将下列各题的答案填写在第Ⅱ卷上指定的位置. 11.巴黎与北京两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数).2007年“中法文化交流之春”活动内容中的“城堡文化艺术展”将于5月26日在北京时间9:00开幕,那么实况转播开幕式从法国巴黎时间 开始.12.如图,AB 是⊙O 的切线,OB =2OA ,则∠B 的度数是__________.13.为测量校园平地上一棵大树的高度,学校数学兴趣小组做了如下的探索.他们根据光的反射原理,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面镜子放在离树底B 有9米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE =0.9米,若观察者目高CD =1.65米,则树的高度AB 约为________米.14.为了迎接国家普及九年级义务教育验收,某学校对家长进行了教育教学工作满意度地调查,随机调查了25名家长,调查的结果如右表.根据表中给出的信息,请你估计一下本校800名家长中对学校教育教学工作不.满意的有 人. 15.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成.依此规律,第n 个图案中白色正方形的个数为 .…第1个第2个第3个第15题图A B O第12题图第13题图三、解答题.(本大题共4小题,16-18每小题 6分,19题7分共25分) 16.先化简(1+1x -1)÷xx 2-1,再选择一个恰当的x 的值代入并求值.17.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O .(1)用尺规作出OC 、OB 中点,分别为E 、F (保留作图痕迹,不写作法与证明); (2)连结AE 、DF ,求证AE=DF .18.2007年3月12日植树节,某中学教师参加义务植树活动,准备种植一批树苗.活动采用分工负责制,若每位教师种植10棵树苗,则还剩88棵;若每位教师种植12棵树苗,则有—名教师种植的树种苗不到4棵,求准备种植树苗的棵数与参加植树的教师人数.19.如图,电路图上有A 、B 、C 、D 四个开关和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于 ;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.ABOCD第17题图第19题图四、解答题.(本大题共3小题,每小题8分,共24分)20.如图,已知△ABC 内接于⊙O ,点D 在OC 的延长线上,∠B=∠D=30°.(1)AD 是⊙O 的切线吗?说明理由; (2)若OD ⊥AB ,BC =5,求AD 的长.21.心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分). (1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知——自主探索,合作交流——总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不底于40.请问这样的课堂学习安排是否合理?并说明理由.O 第20题图● BC D A22.如图,是学校背后山坡上一棵原航空标志的古柏树AB 的示意图,在一个晴天里,数学教师带领学生进行测量树高的活动.通过分组活动,得到以下数据:一是测得太阳光线AC 与垂线AB 的夹角∠CAB 为150; 二是测得树在斜坡上影子BC 的长为10m ;三是测得影子BC 与水平线的夹角∠BCD 为300; 请你帮助计算出树的高度AB (精确到0.1m ).五、解答题.(本大题共2小题,23小题12分24小题14分,共26分)23.如图,在△ABC 中,AB =4,AC =6,D 是BC 上的一个动点,过D 作DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .(1)△BDE 和△DCF 有怎样特殊的关系,为什么? (2)当D 运动到什么位置时,四边形AEDF 是菱形;(3)存在长与宽的比为2:1的矩形AEDF 吗?若不存在,说明理由;若存在,求出其面积.AB C FD E 第23题图第23题图24.如图,已知矩形ABCO在坐标系的第一象限,它的长AO是宽OC的3倍,且有两边在坐标轴上.将△ACO沿对角线AC翻折得△ACP,P点落在经过矩形ABCO四个顶点的⊙E上,⊙E的半径为R.(1)用R的式子表示点B的坐标;(2)若抛物线y=ax2+3x+c经过P、A两点,请你判断点C是否在此抛物线上;(3)若(2)中的抛物线的顶点为Q,该抛物线与x轴的另一个交点为M,那么直线OB将△AMQ 的面积分为两个部分的比值k是否是一个定值?如果不是,请说明理由;如果是,请求出其比值k.第25题图。

2015年中考模拟考试名校联考数学试题及答案com

2015年中考模拟考试名校联考数学试题及答案com

2015年中考模拟考试名校联考数学试题时间120分钟 满分150分 2015、2、23一、选择题(共10小题,每小题4分,满分40分)1.2009)1(-的相反数是( ) A .1 B .1- C .2009 D .2009-2.函数y=+中自变量x 的取值范围是( )A.x ≤2B.x=3C.x 〈2且x ≠3D.x ≤2且x ≠3 3. 某校九年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .中位数B .众数C .平均数D .极差4.如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④. 其中单独能够判定 ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .45. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x 满足的方程是( )A. 50+50(1+x 2)=196B. 50+50(1+x)+50(1+x)²=196C. 50(1+x 2)=196D. 50+50(1+x)+50(1+2x)=1966.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小7. 2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km 之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为( )A.0.38×106B.0.38×105 C .3.8×104 D .3.8×105 8.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点, 则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6 9. 已知二次函数y=ax 2+bx+c 的图像如图所示,下列五个结论中: ①2a-b 〈0;②abc 〈0;③a+b+c 〈0;④a-b+c 〉0;⑤4a+2b+c 〉0, 错误的有() A.1个 B.2个 C.3个 D.4个12 AC AD ·AB=x-3- 2 x xyO A B 6题O yx 第9题图第8题图 -1 110. 如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ). A .(2010,2) B .(2012,-2 ) C .(0,2) D .(2010,-2 )二、填空题(共8小题,每小题4分,共32分)11.当x ≤0时,化简21x x --的结果是 .12.已知x 1、x 2是方程x 2-2x-3=0的两实数根,则 | x 1一 x 2| 的值为 .13. 因式分解2x 2-2=14.已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122OO =,则1O ⊙和2O ⊙的位置关系是 . 15.将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,,则图中阴影部分面积为 cm 2.16. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17. 对于非零的两个实数a ,b ,a ⊕b若2⊕(2x-1)=1,则x 的值为 。

2015年北京市中考数学最新模拟试卷

2015年北京市中考数学最新模拟试卷

2015年北京市中考最新数学模拟试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.实数﹣2015的相反数是()A.2015 B.1/2015 C.﹣2015 D.—1/20152.下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.3.截至2014年3月底,某市人口总数已达到4230000人.将4230000用科学记数法表示()A.0.423×107 B.4.23×106 C.42.3×105 D.423×104x-4=()4.若x=1,则||A.3 B.-3 C.5 D.-55.关于x的方程=1的解是()A.x=4 B.x=3 C.x=2 D.x=16.在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为87.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里8.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G,若∠1=42°,则∠2的大小是()A.56°B.48°C.46°D.40°二、填空题(本题共16分,每小题4分)9.分解因式:(2a+1)2﹣a2=_________.10.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=_________。

11.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为______cm2.12.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m>nx+4n>0的整数解为______。

山西省2015年中考模拟数学试题

山西省2015年中考模拟数学试题

山西省2015年中考模拟考试数 学 试 题命题:山西省2015年中考模拟试题命题组 2015、1、22 一、选择题(本大题共7个小题,每小题3分,共21分)每小题只有一个正确选项1.9的算术平方根是( )A .3B .±3C . 3D .± 3 2.下列计算中,正确的是( )A .2a 2·3b 3=6a 5B .(-2a )2=-4a 2C .(a 5)2=a 7 D .x -2=1x23.下列图形是轴对称图形又是中心对称图形的是( )4.下列平面图形中,不能镶嵌平面的图形是( )A .任意一个三角形B .任意一个四边形C .任意一个正五边形D .任意一个正六边形5.不等式组⎩⎨⎧≤-<+5148x x x 的解集是 ( )A. 5≤xB. 53≤<-xC.53≤<xD. 3-<x 6. 函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥27.将腰长为6cm,底边长为5cm 的等腰三角形废料加工成菱形工件,菱形的一个内角恰好是这个三角形的一个角,菱形的其它顶点均在三角形的边上,则这个菱形的边长是( ) cm .A. 3B. 2.5C. 3或2.5D.3或1130二、填空题(本大题共6个小题,每小题3分,共18分)8.32-的倒数的绝对值 。

ADCB 9.点11(,)A x y ,点22(,)B x y 是双曲线2y x=上的点,若120x x <<,则y 1 y 2(填“=”、“>”、“<”)。

11. 分解因式:=+-b ab b a 22 . 12、如图,□ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果32=BC BE ,那么=∆∆DAF BEF S S .13.直线y = 2x +6与两坐标轴围成的三角形面积是14.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形 纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE分别交AB 、AC 于点E 、G ,连接GF .下列结论 ①∠ADG =22.5°;②tan ∠AED =2;③AGDOGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE =2OG .其中正确的结论有:三、解答题(本大题共81分)17.计算:102)21()3(23---+-+-(6分)18.化简求值:a -b a ÷(a -2ab -b 2a),其是a =2010,b =2009.(6分)19.某马戏团有一架如图所示的滑梯,滑梯底端B 到立柱AC 的距离BC 为8m ,在点B 处测得点D 和滑梯顶端A 处的仰角分别为26.57º和36.87º.求点A 到点D 的距离(结果保留整数); (6分) A GDB C O EF16题20.端午节吃粽子时中华民族的传统习惯.五月初五早晨,小丽的妈妈用不透明的器皿装着一些粽子(粽子除内部馅料不同外,其他一切相同),其中香肠馅粽子两个,还有一些绿豆馅粽子,现小丽从中任意拿出一个是香肠馅粽子的概率为 12.(1)求袋子中绿豆馅粽子的个数;(2)小丽第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小丽两次拿到的都是..绿豆馅粽子的概率.(8分)21.去年,某校开展了主题为“健康上网,绿色上网”的系列活动,经过一年的努力,取得了一定的成效.为了解具体情况,学校随机抽样调查了初二某班全体学生每周上网所用时间,同时调查了使用网络的学生上网的最主要目的,并用得到的数据绘制了下面两幅统计图.请你根据图中提供的信息,回答下列问题:(1)在这次调查中,初二该班共有学生多少人?(2)如果该校初二有660名学生,请你估计每周上网时间超过4小时的初二学生大约有多少人?(3)请将图2空缺部分补充完整,并计算这个班级上网的学生中,每周利用网络查找学习资料的学生有多少人?(9分)22.如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动 (不与B 、C 重合),过点D 作DE ∥BC ,DE 交AB 的延长线于点E , 连结AD 、BD .(1)求证:∠AD B=∠E . (2)当点D 运动到什么位置时,DE 是的⊙O 切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径.(10分)23.九江市自来水公司采取分段收费标准,下图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系.(1)小明家二月份用水8吨,应交水费______元;4% 14% 40%%看新闻查找学习资料 其它上 网目的游戏 娱乐图2(注:每组数据只含最大值,不含最小值.)时间(小时)5 10 15 20 2530 0~2 0人数(人) 2~4 4~6 6以上 5 251852图1y 3813(元)(2)按上述分段收费标准,小明家三、四月份应分别交水费25.5 元和18元,问四月份比三月份节约用水多少吨?(3)今年我国长江流域的周边省市发生了严重旱灾,九江市自来水 公司成本上升,为了不亏损,同时为了节约用水,决定从五月份起 要采取提高10吨以上部分的水价的提价政策,每1吨提价0.5元; 结果小明家比计划节约用水3吨,但收费却与计划相同, 问:小明家五月份的实际用水量是多少?(10分)24、.对于正六边形ABCDEF 进行如下探究:(1)在图1中,CD =6,G 是CB 和FA 延长线的交点,求△CFG 的周长;(2)在图2中,CD =a ,G 、H 是直线AF 上两点,P 是CD 上任一点(不与C 、D 重合),PG ∥BC ,PH ∥DE ,求△PGH 的周长;(3)在图3中,点P 是CD 上的一动点(不与C 、D 重合),PG ∥BC ,PH ∥DE ,四边形BCPG与四边形EDPH 的周长和为m ,问:五边形PGAFH 的周长会随P 点的位置的变化而变化吗?若变,请说明如何变化;若不变,请求出PGAFH 的周长。

山西省2015年中考模拟考试名校联考数学试题及答案

山西省2015年中考模拟考试名校联考数学试题及答案

CB山西省2015年中考模拟考试名校联考数学试题时间120 分钟 满分120分 2015、2、15一、选择题(每小题3分,共30分)1.下列图形是电视台的台徽,其中为中心对称图形的是( )2.点),2(a -关于原点对称后的坐标为)3,(b ,则b a -的值为 ( ) A .1 B .-5 C .-1 D .5 3.下面的计算一定正确的是 ( )A .6332b b b =+B .2229)3(q p pq -=-C .853153.5y y y =D .339b b b =÷ 4.在ABC Rt ∆中,4,3==b a ,则A sin 的值是 ( )A .53B .54C .43 D .不确定5.若2=+b a ,则b b a 422+-的值是 ( ) A .2 B .3 C .4 D .66.如图,ABC ∆中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作ABC ∆的位似图形C B A ''∆,并把ABC ∆的边长放大到原来的2倍.设点B 的对应点'B 的横坐标是a ,则点B 的横坐标是( )A .)3(21+-aB .)1(21+-aC .)1(21--aD .a 21- 7.假定鸟卵孵化后,雏鸟为雌与雄的概率相同,如果三枚卵全部成功孵化,则这三只雏鸟中恰有两只雌鸟的概率是 ( )A .81B .21C .83D .858.若不等式组⎩⎨⎧<-->-+012012a x a x 的解集为10<<x ,则a 的值为( )A .1B .2C .3D .4 9.方程2222+-=x x x的解的范围是( ) A .01<<-x B .10<<xC .21<<xD .32<<x 第10题图10.如图,四边形ABCD 中,AD AB =,︒=∠90DAB ,AC 与BD 交于点H ,BC AE ⊥于点E ,AE 交BD 于点G ,点F 是BD 的中点,连接EF ,若10=HG ,6=GB ,1tan =∠ACB ,则下列结论:①CBD DAC ∠=∠;②HG GB DH =+;③HC AH 54=;④EF EB EC 2=-;其中正确结论是( )A .只有①②B .只有①③④C .只有①④D .只有②③④二、填空题(每小题3分,共18分)11. 实数227,-83π中的无理数是 . 12.把二次函数2)1(2+-=x y 的图象绕顶点旋转180°后得的图象的解析式为 .13.若3tan =α(α为锐角),则ααααcos 2sin cos sin 2+-= .14.一组数据1-,3,0,5,x 的极差是7,那么这组数据的平均数是 . 15. 如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为 (若结果带根号则保留根号)16.如图,已知△ABC ,过点A 作外接圆的切线交BC 的延长线于点P ,22=PA PC ,点D 在AC 上,且21=CD AD ,延长PD 交AB 于点E ,则BE AE 的值为 . 三、解答题(共72分)17.已知ABC ∆的两边恰好是方程 ()()()x x x --=-5152的两根,第三边长为整数,则在所有可能组成的三角形中是直角三角形的概率为多少?(本题6分)18.如图在ABC ∆中,A ∠、B ∠ 、C ∠均为锐角,其对边分别 为a 、b 、c 。

2015年中考模拟考试名校联考数学试题

2015年中考模拟考试名校联考数学试题

2015年中考模拟考试名校联考数学试题时间120分钟 满分120分 2015、2、19一、选择题(每小题3分共45分)1.下列计算正确的是A .030=B .33-=--C .331-=-D .39±= 2. 自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测, 在会展期间,参观中国馆的人数估计可达到14 900 000,此数(保留两个有效 数字)用科学记数法表示是A. 61.5010⨯B.810149.0⨯C.7109.14⨯D. 71.510⨯ 3.不等式组的解集在数轴上表示正确是的是(5. 菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为A .(21),B .(12),C .(211)+,D .(121)+,6. 如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于(A )(B )(C ) (D )220,10x x ->⎧⎨+⎩≥xyO C B AA .42°B .48°C .52°D .58°7.如图所示的物体的俯视图是( )ABCD8.已知△ABC 的外接圆O 的半径为3,AC=4,则 B sin ( )A. 31B. 43C. 54D. 329.如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是 A BCD10.(贵州黔东南州)抛物线y =x 2-4x +3的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为( ) A .(4,-1) B .(0,-3) C .(-2,-3) D .(-2,-1)火车隧道oy xoy x oyxoyx11. 受季节的影响,某种商品每件按原售价降价10%,又降价a 元,现每件售价为b 元,那么该商品每件的原售价为( )A a bB a b ..()+--+110%110%)(元元C b a D b a ..()----110%110%)(元元())等于(,则已知βαβα+=-+-01tan 21sin ..122A. 105°B. 75°C. 60°D. 90°13. 在矩形ABCD 中,AB =3cm ,AD =2cm ,则以AB 所在直线为轴旋转一周所得的圆柱的表面积为( ) A c m B c m ..172022ππC c mD c m..213022ππ 14如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的 顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为 A .-3 B .1 C .5 D .813.关于这15名同学每天使用的零花钱,下列说法正确的是( )A .众数是5元B .平均数是2.5元C .极差是4元D .中位数是3元每天使用零花钱(单位:元) 0 1 3 4 5 人数 1 3 5 42yxOD CB (4,4)A (1,4)二.填空题(每题3分共21分)16.把代数式 322363x x y xy -+分解因式,结果正确的是( )17.已知圆锥的底面直径为4,母线长为6,则它的侧面展开图的圆心角为_____. 18.把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:. 19.通过平移把点A(2,-3)移到点A ’(4,-2),按同样的平移方式,点B(3,1)移到点B ′, 则点B ′的坐标是 ________20.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为________.21.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段L1、L2分别表示小敏、小聪离B 地的距离y (km )与已用时间x (h )之间的关系,则A 、B 两地的距离是_______km.ABCEFD(第20题图)22.观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )个正方形的左下角三 解答题(54分)23.(6分)已知x 是一元二次方程0132=-+x x 的实数根,那求代数式)252(6332--+÷--x x xx x 的值.24.(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.25.(10)如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E 点,AE=2,ED=4.(1)求证: ABE∆~ABD∆;(2) 求tan ADB∠的值;(3)延长BC至F,连接FD,使BDF∆的面积等于83,求EDF∠的度数FOEADBC26.(10分).2011年,山东济南被教育部列为“减负”工作改革试点地区。

2015中考数学模拟试题及答案

2015中考数学模拟试题及答案

2015年中考数学模拟试题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共120分,考试时间120分钟. 注意事项:1.答题前情考神仔细阅读答题卡上的注意事项,情务必按照相关要求作答.2.考试结束后,监考人员将本试卷和答题卡一并收回.第I 卷(选择题 共60分)一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对的3分,选错,不选或选出的答案超过一个,均记零分) 1.3-的倒数是( )A .13-B .13C .3-D .32.2007年我市初中毕业生约为3.94万人,把3.94万用科学记数表示且保留两个有效数字为( )A.44.010⨯ B.43.910⨯C.43910⨯D.4.0万3.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行.那么,在形成的这个图中与α∠互余的角共有( ) A.4个B.3个C.2个D.1个4.在平面直角坐标系中,若点()2P x x -,在第二象限,则x 的取值范围为( )A.0x >B.2x <C.02x <<D.2x >5.已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个6.如图,所给图形中是中心对称图形但不是轴对称图形的是( )A . B. C . D .7.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( )A .平均数B .众数C .中位数D .方差8.在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )A. B. C. D.9.如图,五边形ABCDE 中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于( )A.180 B.360 C.270 D.9010.已知方程组42ax by ax by -=⎧⎨+=⎩,的解为21x y =⎧⎨=⎩,,则23a b -的值为( ) A.4B.6C.6-D.4-11.抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值范围是( )A. 14<<-xB. 13<<-xC. 4-<x 或1>xD. 3-<x 或1>x12.如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值 是( ) A .4.75B .4.8C .5D.13.如图,⊙O 1,⊙O ,⊙O 2的半径均为2cm ,⊙O 3,⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,(第12题)A(第11题图)则四边形O 1O 4O 2O 3的面积为( )A .12cm 2B .24cm 2C .36cm 2D .48cm 214.如图,矩形ABCD 中,P 为CD 中点,点Q 为AB 上的动点(不与A ,B 重合).过Q作QM ⊥PA 于M ,QN ⊥PB 于N .设AQ 的长度为x ,QM 与QN 的长度和为y .则能表示y 与x 之间的函数关系的图象大致是( )A . B. C . D .15.有三张正面分别写有数字﹣2,-1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率为( )A .B .C .D . 16.若分式的值为零,则x 的值( )A.2 B.-2 C. 2 D.不存在17.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

山西省2015年中考模拟考试数学试题

山西省2015年中考模拟考试数学试题

A BCab1 2第5题 山西省2015年中考模拟考试数学试题及答案(考试时间:120分钟 卷面总分:120分) 2015、1、5一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. -4的倒数是( )A .4B .-4C .41 D .41-2.下列运算正确的是( )A .1122-⎛⎫=- ⎪⎝⎭B .236·a a a =C .|6|6-=D 4=±3.PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为( )A. 5105.2⨯B. 6105.2⨯C. -52.510⨯D. -62.510⨯4.下列几何体的主视图与众不同的是( )5. 如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠2=63°,则∠1的度数为( ) A .63° B .27° C .37° D .47°6.某车间3月下旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产的零件的次品数的( )A .众数是0B .极差是2C .平均数是2D .中位数是2 7.一次函数y=kx+b(k ≠0)的图像如图所示,当y<0时x 的取值范围是( ) A. x<0 B. x>0 C. x<2 D. x>28.一次函数y=ax+b(a ≠0)、二次函数y=ax 2+b x 和反比例函数)0(≠=k xky 在同一直角坐标系中的图像如图所示,A 点的坐标为(-2,0),则下列结论中,正确的是( )A .a=b+kB .b=2a+kC .a>k>0D . a>b>0二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.函数y=x +1的自变量x 的取值范围是 .10.分解因式 a 2+3a = . 11.一个正多边形的每个外角为40°,则这个正多边形的边数为 .A B C D第7题 第8题12.已知△ABC 与△DEF 相似且周长比为2∶5,则△ABC 与△DEF 的面积比为 . 13.已知实数a 是关于x 的方程2310x x --=的一根,则代数式3a 2-9a+1值为_____. 14.如图,在正方形网格中,tanC=________;A第14题 第17题 第18题15.若反比例函数xky =.的图像经过点(-3,2),则k 的值为____. 16.下列四个函数:①21y x =-+,②32y x =-,③3y x=-,④22y x =+(x <0)中,y 随x 的增大而增大的函数是 (选填序号).17.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于 x 轴的直线交⊙M 于P ,Q 两点,点 P 在点Q 的右方,若点P 的坐标是(-1,2),则点 Q 的横.坐标..是________ 18.如图,边长为8的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是_________. 三、解答题(本大题共10小题,共76分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)(1)计算20140-9-2cos60° ; (2)解方程3513+=+x x20.(本小题满分6分)先化简,再求值:(x -3)(x +3)—(x —2)2 ,其中x=41.21.(本小题满分8分)已知:如图,点P 是平行四边形ABCD 的边CD 上的一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 度数;(2)如果AD =5 ,AP =8,那么PB 的长是多少?22.(本小题满分8分)有四张背面图案相同的卡片A 、B 、C 、D ,其正面分别画有四个不同的几何图形(如图)小刚同学将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片用A 、B 、C 、D 表示) (2)求摸出的两张卡片图形都是中心对称图形的概率.23.(本题满分8分)2014年世界杯足球赛于北京时间6月13日2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随 (1)a=_____,b=_____;(2)根据以上信息,请直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.A D C B24.(本小题满分10分)如图,已知AB 为⊙O 的直径,弦CD 与直径AB 交于点E ,分别连接AD 、AC 、BC ,15BAC ∠=︒,255,15,3BE DE EC ===. (1)求ADC ∠的度数; (2)求的长.25.(本小题满分8分)如图,某海关缉私艇在C 处发现在北偏东30方向km 40的A 处有一艘可疑船只,测得它正以h km 60的速度向正东方向航行,缉私艇随即以h km 360的速度在B 处拦截.(1)缉私艇从C 处到B 处需航行多长时间?(2)缉私艇的航行方向是北偏东多少度?26.(本小题满分10分)小聪和小明沿同一条路从学校出发到射阳图书馆查阅资料,学校与图书馆的距离是4千米,小聪骑自行车,小明步行,当小聪到达图书馆时小明刚好出发,小聪在图书馆查阅资料后沿原路返回到学校,图中的折线O —A —B —C 和线段ED 分别表示两人离学校的路程S(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)直接写出小聪离学校的路程s 和他离开学校的时间t 的函数关系式. (2)当小聪与小明迎面相遇时,他们离图书馆的路程是多少千米?(3)在小明前往图书馆的过程中,求小明出发多少分钟与小聪相距52千米?DCAB·E O27.(本题12分)问题情境:如图,正方形ABCD的边长为4,点E是射线BC上的一个动点,连结AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B坐在点B′处.自主探究:(1)当=1时,如图1,延长AB′,交CD于点M.①CF的长为;②易证:AM=FM(不要求证明)(2)当点B′恰好落在对角线AC上时,如图2,求此时CF的长,并求出的值拓展运用:(3)当=2时,求sin∠DAB′的值.三、解答题 19、(8分)(1)-3………………(4分) (2)x =2………(3分)检验………………(1分) 20、(8分)化简得4x -13………………(6分) 求值得-12………………………(2分) 21、(8分)(1)90°………………(4分) (2)6………………………(4分) 22、(8分)(1)略………………(4分) (2)P (两张都是中心对称图形)=41………………(4分)(不注下标扣1分) 23、(10分)(1)a =30%………(2分) b =5%………………(2分)(2)………………(4分)(3)1440(分)………………(2分) 24、(10分)(1)∠ADC =75°………………(4分) (2)的长为 225………………(6分)25、(10分)(1)32小时…………(5分) (2)60°………………(5分) 26、(10分)(1)当0≤t ≤15时,S =154t ………………(1分) 当15<t ≤30时,S =4………………(1分) 当30<t ≤45时,S =-154t ………………(1分) (2)34km ………………(3分) (注:结果为38km 扣1分)(3)19分钟…………(2分)或21分钟…………(2分)(注:结果为34或36分钟的各扣1分) 27、(12分)(1)①CF =4…………(2分) (2)CF 为42…………(3分)CE BE 的值为22………………(3分) (3)135………………(2分) 或53………………(2分) 28、(12分) (1)4212++-=x x y …………(4分) (2)当G (2,4)时…………(2分)S 四边形ABCG 最大为6…………(2分) (3)(-2,0)………(2分) 或(2,0)………(2分)。

2015年中考模拟考试名校联合考试数学试题及答案

2015年中考模拟考试名校联合考试数学试题及答案

2015年中考模拟考试名校联合考试数学试题时间120分钟 满分130分 2015、2、17 一、选择题(每小题3分,共24分)1.下列运算结果为负数的是A .(-3)0B .-3-C . ()23- D .()23--2A .+5B .5C .-5D .625 3.x 2·x 3=( )A .x 5B .x 6C .x 8D .x 9 4.计算6tan45°-2cos60°的结果是A .4B .4C .5D .55.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是A .15mB .60mC .20mD .m6.在平面直角坐标系中,若将抛物线y =2x 2-4x +3先向右平移3个单位,再向上平移2个单位,则经过两次平移后的抛物线的顶点坐标是 A .(-2,3) B .(-1,4) C .(1,4) D .(4,3)7.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是8.将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A 与DC 边的中点M 重合,折痕为EF ;②翻折纸片,使C 落在ME 上,点C 的对应点为H ,折痕为MG ;③翻折纸片,使B 落在ME 上,点B 的对应点恰与H 重合,折痕为GE .根据上述过程,长方形纸片的长宽之比的值为A .32B C D二、填空题(每小题3分,共30分)9.分解因式:x 2y -y 3= ▲ .10,若锐角α满足2sin(α-15°)-1=0,则tan α= ▲ . 11.如图,在△ABC 中,DE ∥BC ,23DE BC =,△ADE 的面积是8,则△ABC 的面积为 ▲ .12.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D ,已知cos ∠ACD =35,BC =4,则AC 的长为 ▲ .13.小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是 ▲ 米.14.现定义运算“★”,对于任意实数a 、b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5,若x ★2=6,则实数x 的值是 ▲ . 15.某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有 ▲ 名学生.16.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 两点间的距离为 ▲ 米.17.若抛物线y =x 2+bx +c 与x 轴只有一个交点,且过点A(m ,n),B(m +6,n),则n = ▲ .18.如图,在平面直角坐标系xOy 中,已知抛物线y =-x(x -3)(0≤x ≤3)在x 轴上方的部分,记作C 1,它与x 轴交于点O ,A 1,将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,…则C n 的顶点坐标为 ▲ (n 为正整数,用含n 的代数式表示).三、解答题(共76分)19.(本题6分)(1)计算:()2012015sin 6023π-⎛⎫+-+- ⎪⎝⎭.(2)先化简,再求值:22144111x xx x-+⎛⎫-÷⎪--⎝⎭,其中x=3.20.(本题6分)解方程:(1)x(x+3)=7(x+3) (2)312 22x x-= +-21.(本题6分)已知关于x的方程mx2-(m+2)x+2=0 (m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.22.(本题7分)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了本市全部5000名司机中的部分司机后,整理相关数据并制作了右侧两个不完整的统计图:克服酒驾——你认为哪一种方式更好?A.司机酒驾,乘客有责,让乘客帮助监督B.在车上张贴“请勿喝酒”的提醒标志C.签订“永不酒驾”保证书D.希望交警加大检查力度E.查出酒驾,追究就餐饭店的连带责任根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中m=▲;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机抽取100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?23.(本题7分)4张相同的卡片上分别写有数字1,2,3,4,将卡片的背面向上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号1,2,3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出一个球,将摸到的球的标号作为减数.(1)求这两个数的差为0的概率;(2)如果游戏规则规定:当抽到的这两个数的差为非负数时,则甲获胜;否则,乙获胜,你认为这样的规则公平吗?如果不公平,请说明理由.24.(本题8分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船c的求救信号.已知A、B两船相距+3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C≈1.41≈1.73)25.(本题7分)如图,AD 是△ABC 的中线,点E 在AC 上,BE 交AD 于点F .某数学兴趣小组在研究这个图形时得到如下结论:(1)当12AF AD =时,AE AC =13; (2)当13AF AD =时,AE AC =15;(3)当14AF AD =时,AE AC =17;...猜想:当11AF AD n =+时,AEAC=?并说明理由.26.(本题8分)某班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元. (1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有 ▲ 天每天销售利润不低于4800元.(请直接写出结果)27.(本题10分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.28.(本题11分)如图1,在平面直角坐标系xOy中,直线l:y=34x+m与x轴、y轴分别交于点A和点B(0,-1),抛物线y=12x2+bx+c经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB在平面内经过一定的平移得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标为▲.。

2015年中考模拟考试名校联考数学试题及答案

2015年中考模拟考试名校联考数学试题及答案

2015年中考模拟考试名校联考数学试题时间 120分钟 满分 120分 2015、2、19 一、选择题(每小题3分,共24分)1.下列各数0.1010010001,2π,4,cos30°,310中无理数有( )个 A.1个 B.2个 C.3个 D.4个2.下列运算正确的是( )A.3273-= B.2)2(2-=- C.222-=- D.93=±3.如图,一个四棱锥(底面是矩形,四条侧棱等长) ,它的俯视图是( )4. 如图,小虎在篮球场上玩, 从点O 出发, 沿着O →A →B →O 的路径匀 速跑动,能近似刻画小虎所在位置距出发点O 的距离S 与时间t 之间的函数关系的大致图象是 ( )5.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32, 2AC =,则sin B 的值是( )A .23B .32C .34D .436.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个B .6个C .34个D .36个7.边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m+3B .m+6C .2m+3D .2m+68. 如图,在平面直角坐标系中,A ⊙与y 轴相切于原点O ,平行于x 轴的直线交A ⊙于M 、N 两点,若点M 的坐标是(42)--,,则点N的坐标为( )A .(1,-2)B .(-1,-2)C .(-1.5,-2)D .(1.5,-2)二、填空题(每小题3分,满分24分)9.2008年北京奥运会全球共选拔21880名火炬手,将这个数据精确到千位,用科学记数法表示为______________.10.一罐饮料净重500克,罐上标注脂肪含量≤0.5%,则这罐饮料中脂肪含量最多_______克11.若622=-n m ,且2m n -=,则=+n m 33 .12.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后得到正方形A 1B 2C 3D ,点B 1的坐标为___________13. 为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元)与用水量x (吨) 之间的函数关系如图.按上述分段收费标准,小明家三月份交水费 26元,则三月份用水__________吨.ABC14.如图,要制作底边BC 的长为44cm ,顶点A 到BC 的距离与BC 长的比为1:4的等腰三角形木衣架,则腰AB 的长_______cm (结果保留根号的形式).15.如图,将一块含45°角的直角三角尺ABC 在水平桌面上绕点B 按顺时针方向旋转到A 1BC 1的位置,若AB=8cm ,那么点A 旋转到A 1所经过的路线长为_______cm.16. 如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,空白矩形面积分别为S 1,S 2,若1S =阴影,则12S S += .三、解答题(每小题6分,满分36分)17.计算:1021********-⎪⎭⎫⎝⎛-+--⨯+-.18.解不等式组⎪⎩⎪⎨⎧-≤->-x x x x 31211435并把解集在数轴上表示出来.19.解方程:xx 2111122-=--20.袋子中装有三个完全相同的球,分别标有:“1”“2”“3”,小颖随机从中摸出一个球不放回...,并以该球上的数字作为十位数;小颖再摸一个球,以该球上的数字作为个位数,那么,所得数字是偶数的概率是多少?(要求画出树状图或列出表格进行解答.)21.某市根据2010年农林牧渔业产值的情况,绘制了如下两幅统计图,请你结合图中所给信息解答下列问题:(1)2010年全市农林牧渔业的总产值为亿元;(2)扇形统计图中林业所在扇形的圆心角为度(精确到度);(3)根据本地实际,市政府大力发展林业产业,计划2012年林业产值达60.5亿元,求这两年林业产值的年平均增长率.22.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA.求证:△ADE≌△BCE四、(每小题8分,满分16分)23.已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且CB=CD ,CF ⊥AB 于点F ,CE⊥AD 的延长线于点E . (1)试说明:DE =BF ; (2)若∠DAB =60°,AB =6,求CF 的长.24.如图,直线y=x+m 和抛物线y=x 2+bx+c 都经过点A (1,0),B (3,2).(1)求m 的值和抛物线的解析式; (2)求抛物线的对称轴和顶点坐标;(3)若此抛物线与y 轴交于点C ,点P 是x 轴上的一个动点,当点P 到C 、B 两点的距离之和最小时,求出点P 的坐标.五、(每小题10分,满分20分)25.如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)26.已知:如图①,在Rt ACB △中,90C ∠=,4cm AC =,3cm BC =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为(s)t (02t <<),解答下列问题: (1)当t 为何值时,PQ BC ∥?(2)设AQP △的面积为y (2cm ),求y 与t 之间的函数关系式;(3)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形?若存在,求出此时t 的值;若不存在,说明理由.AQ CPB图①AQCPBP '图②参考答案题号 1 2 3 4 5 6 7 8 答案 BCCBABCB17. 解:原式=-1+2-2-2---------------------------------4分 =-3 ------------------------------------6分 18. 解:由①得:345>-x x3>x ----------------------------1分由②得:x x 236-≤-623-≤+-x x6-≤-x --------------------------------3分-----------5分∴原不等式组的解集为:6≥x --------------- ---6分题号 9 10 11 12 13 14 15 16 答案 2.2×104259(4,0) 12 5116π419. 解:去分母得2-2x+1=-1----------------------------3分 整理方程得:-2x=-4x=2----------------------------5分经检验x=2是原方程的解.∴原方程的解为x=2----------------------------6分 20. 1 2 3 1 11 12 13 2 21 22 23 3313233列出表格或画出树状图得----------------- -----4分P(两位数)=31-----------------------6分21.解:(1) 221 (2) 81 (每空1分)(3)设今明两年林业产值的年平均增长率为x .-------------------- ····· 3分 根据题意,得250(1)60.5x += ----------------------------4分解得:10.1x ==10% ,2 2.1x =-(不合题意,舍去) ---------------5分 答:今明两年林业产值的年平均增长率为10%.------------------6分22.解:(1)∵四边形ABCD 是正方形,∴∠ADC=∠BCD=90°,AD=BC .----------------------------2分∵△CDE 是等边三角形,∴∠CDE=∠DCE=60°,DE=CE .---------------------------4分∵∠ADC=∠BCD=90°,∠CDE=∠DCE=60°,∴∠ADE=∠BCE=30°.---------------------------5分在△ADE 和△BCE .∵AD=BC ,∠ADE=∠BCE ,DE=CE ,∴△ADE ≌△BCE .---------------------------6分23.(1)∵ 弧CB=弧CD∴ CB=CD ,∠CAE=∠CAB---------------------------2分 又∵ CF ⊥AB ,CE ⊥AD∴ CE=CF ---------------------------3分 ∴ △CED ≌△CFB---------------------------4分 ∴ DE=BF---------------------------5分(2)易得:△CAE ≌△CAF---------------------------6分易求:323CF ---------------------------8分24.解:(1)把点A (1,0)代入直线y=x+m 得:0=1+m ,解得m=-1 ………………………………………1分把点A (1,0)B (3,2)代入抛物线y=x 2+bx+c⎩⎨⎧=++=++2901c b c b 解得⎩⎨⎧=-=23c b 所以y=x-1,y=x 2-3x+2;………………………………………3分(2)由(1)知,该抛物线的解析式为:y=x 2-3x+2,∴y=(x-23)2-41, ∴抛物线的对称轴是:x=23; 顶点坐标是(23,-41);………………………………………5分 (3)作C (0,2)关于x 轴的对称点C 1(0,-2)。

2015年黑龙江省龙东地区中考数学模拟试卷04(含答案,优化版)

2015年黑龙江省龙东地区中考数学模拟试卷04(含答案,优化版)

2015年黑龙江省龙东地区中考模拟试卷04数学满分120分 考试时间120分钟一.选择题(共10小题)1. 下列四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 2. 函数yx 的取值范围是( )A .x ≥﹣5B .x ≤﹣5C .x ≥5D .x ≤5 3. 下列计算正确的是( )A .2a 3+a 2=3a 5B .(3a )2=6a 2C .(a +b )2=a 2+b 2D .2a 2•a 3=2a 54. 如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数为( )A .4个B .5个C .6个D .7个5. 在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( ) A .38B .12C .58D .346. 如果2ab =,则2222a ab b a b -++=( ) A .45 B .1 C .35D .27. 如图,在⊙O 中,直径CD 垂直于弦AB ,若∠C =25°,则∠ABO 的度数是( )A .25°B .30°C .40°D .50°第7题图 第8题图 第9题图 第10题图8. 二次函数y =ax 2+bx +c 的图象如图所示,则关于此二次函数的下列四个结论①a <0;②c >0;③b 2﹣4ac >0;④ba<0中,正确的结论有( ) A .一个 B .二个 C .三个 D .四个9. 某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m (吨)与时间t (小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是( ) A .8.4小时 B .8.6小时 C .8.8小时 D .9小时10.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别在BC 、CD 上,且BE =CF ,连接BF 、DE 交于点M ,延长ED 到H 使DH =BM ,连接AM ,AH ,则以下四个结论:①△BDF ≌△DCE ;②∠BMD =120°;③△AMH 是等边三角形;④S 四边形ABCD2.其中正确结论的个数是( ) A .1 B .2C .3D .4xyO二.填空题(共10小题)11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为___________.12.如图,要使平行四边形ABCD是矩形,则应添加的条件是___________(只填一个).13.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是___________元.14.一组数据2,3,x,5,7的平均数是4,则这组数据的众数是___________.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为___________.16.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由___________个▲组成.17.如图,M为反比例函数y=kx的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为___________.第17题图第18题图第20题图18.如图,Rt△ABC中,∠ACB=90°,将其折叠,使A落在边CB上的A′处,折痕为CD,若∠BDC=95°,则∠A′DB=___________°.19.如果关于x的二次函数y=ax2﹣2x+a2的图象经过点(1,﹣2),则a的值为___________.20.如图,在△ABC中,C1,C2是AB边上的三等分点,A1,A2,A3是BC边上的四等分点,AA1与CC1交于点B1,CC2与C1A2交于点B2,记△AC1B1,△C1C2B2,△C2BA3的面积为S1,S2,S3.若S1+S3=9,S2=___________.三.解答题(共6小题)21.先化简,再求值:22221244a b a ba b a ab b--÷-+++.其中a=2sin60°﹣tan45°,b=1.22.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为___________.23.在直角坐标平面内,O为原点,二次函数y=﹣x2+bx+c的图象经过A(﹣1,0)和点B(0,3),顶点为P.(1)求二次函数的解析式及点P的坐标;(2)如果点Q是x轴上一点,以点A、P、Q为顶点的三角形是直角三角形,求点Q的坐标.24.高邮市团委在“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:栽下的各品种树苗棵数统计表若经观测计算得出丙种树苗的成活率为89.6%,请你根据以上信息解答下列问题:(1)这次栽下的四个品种的树苗共___________棵,乙品种树苗___________棵;(2)图1中,甲___________%、乙___________%,并将图2补充完整;(3)求这次植树活动的树苗成活率.25.小明和爸爸从家一起出发,沿相同的路线以相同的速度步行去体育馆看球赛,途中发现忘带球票,小明立即以更快的速度跑步返回家取票,爸爸继续以原来的速度步行前往体育馆.小明上楼取票用了几分钟后骑自行车沿原来的路线骑向体育馆,小明追上爸爸后用自行车带着爸爸一起前往体育馆,自行车的速度是出发时步行速度的3倍.如图是小明和爸爸距体育馆的路程y(米)与出发的时间x(分)的函数图象.根据图象解答下列问题.(1)小明家与体育馆的相距___________米,小明上楼取票用了___________分钟.(2)求爸爸步行时距体育馆的路程y(米)与出发时间x(分)函数关系式.(3)爸爸从家里出发后,经过多少分钟,小明追上了爸爸?(4)若小明和爸爸到达体育馆的实际时间为t1,按原计划步行到达体育馆的时间为t2,则t2﹣t1=___________分.26.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD﹣2DE;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是___________;27.商场销售某种品牌的空调和电风扇:(1)已知购进8台空调和20台电风扇共需17400元,购进10台空调和30台电风扇共需22500元,求每台空调和电风扇的进货价;(2)已知空调标价为2500元/台,电风扇标价为250元/台.若商场购进空调和电风扇共60台,并全部打八折出售,设其中空调的数量为a台,商场通过销售这批空调和电风扇获得的利润为w元,求w和a之间的函数关系式;(3)在(2)的条件下,若这批空调和电风扇的进货价不超过45300元,商场通过销售这批空调和电风扇获得的利润又不低于6000元,问商场共有多少种不同的进货方案,哪种进货方案获得的利润最高?最高利润是多少?28.如图,平行四边形ABCD在平面直角坐标系中,S ABCD=24,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求sin∠ABC的值;(2)若E为x轴上一点,且S△AOE=163,求经过点D、E两点的直线的解析式;(3)M点在平面直角坐标系内,在直线AB上是否存在点P,使以点A、C、P、M为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.黑龙江省龙东地区中考数学模拟试卷04参考答案与试题解析一.填空题(共30小题)1.D .2.C .3.D .4.B .5.C .6.C .7.C .8.D .9.C .10.C .11.2.5×107.12.∠ABC=90°或AC=BD .13.200.14.3.15.83π.16.3n+1.17.4.18.10.19.﹣1.20.4.21.解:原式=ba b,a=2sin60°﹣tan45°1,b=1时,原式.22.解:(1)将A ,B ,C ,分别右平移3个单位长度,再向上平移1个单位长度,可得出平移后的△A 1B 1C 1;(2)将△A 1B 1C 1三顶点A 1,B 1,C 1,绕原点旋转180°,即可得出△A 2B 2C 2; (3)∵△A ′B ′C ′与△ABC 是中心对称图形, 连接AA ′,BB ′CC ′可得出交点:(1,0),故答案为:(1,0).23.解:(1)由题意,得-1-b+c=0;c=3,解得:b=2,c=3,∴二次函数的解析式是y=﹣x 2+2x+3,变形为:y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴点P 的坐标是(1,4);(2)P (1,4),A (﹣1,0),∴AP 2=20.设点Q 的坐标是(x ,0),则AQ 2=(x+1)2,PQ 2=(x ﹣1)2+16,当∠AQP=90°时,AQ 2+PQ 2=AP 2,(x+1)2+(x ﹣1)2+16=20, 解得x 1=1,x 2=﹣1(不合题意,舍去)∴点Q 的坐标是(1,0).当∠APQ=90°时,AP 2+PQ 2=AQ 2,20+(x+1)2+16=(x+1)2,解得x=9,∴点Q 的坐标是(9,0). 当∠PAQ=90°时,不合题意.综上所述,所求点Q 的坐标是(1,0)或(9,0).24.解:(1)这次栽下的四个品种的树苗总棵树是:125÷25%=500(棵), 则乙品种树苗的棵树是:500﹣150﹣125﹣125=100(棵),故答案为:500,100; (2)甲所占的百分比是:150500×100%=30%, 乙所占的百分比是:100500×100%=20%, 丙种成活的棵树:125×89.6%=112(棵).故答案为:30,20. (3)成活的总棵树是:135+85+112+117=449(棵), 则成活率是:449500×100%=89.8%. 25.解:(1)由题意,得:小明家与体育馆的相距2400米,小明上楼取票用了12﹣8=4分钟.(2)设爸爸步行时距体育馆的路程y (米)与出发时间x (分)函数关系式为y=kx+b ,由直线过点(0,2400),(5,2000),得2400=b ;2000=5k+b ,解得:k=-80;b=2400,∴y=﹣80x+2400;(3)由题意,得:爸爸步行的速度是(2400﹣2000)÷5=80米/分,自行车速度是80×3=240 米/分, 设爸爸从家里出发后,经过a 分钟,小明追上了爸爸,由题意,得80a=240(a ﹣12),解得:a=18 答:爸爸从家里出发后,经18分钟时,小明追上了爸爸. (4)由题意,得:2400÷80﹣[12+2400÷240]=8分钟.26.证明略27.解:(1)设每台空调、电风扇的进货价分别为x,y元,由题意可得:8x+20y=17400;10x+30y=22500,解得:x=1800;y=150.所以每台空调进货价为1800元,每台电风扇进货价为150元;(2)根据题意可得出:w=(2500×0.8﹣1800)a+(250×0.8﹣150)(60﹣a)=150a+3000,(3)由题意可得:1800a+150(60-a)≤45300;150a+3000≥6000,解得:20≤a≤22,∴a=20或21或22,∴有三种方案:①空调20电风扇40;②空调21电风扇39;③空调22电风扇38.方案③,当a=22时,w最大,最大值为6300元.28.略。

经典2015年中考数学模拟试题

经典2015年中考数学模拟试题

2015年中考数学模拟试题数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至4页,第Ⅱ卷5至12页,满分120分.考试时间120分钟.第Ⅰ卷(选择题 共42分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考生号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上. 3. 考试结束,将本试卷和答题卡一并收回.一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的. 1. 2-的绝对值是( ) A .12-B .2C .12D .2- 2.玉树地震后,某市人民献爱心为玉树捐人民币:203000000元,这个数用科学记数法表示为 ( )A .92.0310⨯ B .62.0310⨯ C .720.310⨯ D .82.0310⨯3.函数3-=x y 中,自变量x 的取值范围是 ( )A .x >3B .x ≥3C .x >-3D .x ≥-3 4. 下列运算中,正确的是( )A .x 3·x 3=x 6B .3x 2+2x 3=5x 2C .(x 2)3=x 5D .(x+y 2)2=x 2+y 4 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 6.若|2|20x y y -++=,则xy 的值为( ) A .2 B . 8 C .5D .6-7.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )第13题A B C D8.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接BD .若BD 平分∠ABC ,则下列结论错误的是 ( ) A .BC =2BE B .∠A =∠EDA C .BC =2AD D .BD ⊥AC9.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 ( ) A .24 B .4 C .33 D .5210.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是 ( ) A .21 B .31 C .41D .5111. 把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得 ( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-2 12. 下列命题中的假命题是( )A .一组对边平行且相等的四边形是平行四边形B .一组对边相等且有一个角是直角的四边形是矩形C. 一组邻边相等的平行四边形是菱形 D .一组邻边相等的矩形是正方形13.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是( ) A .12B .52 C. 2 D .5514.如图,在矩形ABCD中,AB=4,BC=6,当直角三角板MPN的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点Q.BP=x,CQ=y,那么y与x之间的函数图象大致是()第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目及座号填写清楚.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上. 15. 分解因式:34x x -= . 16.不等式组23010x x -<⎧⎨+≥⎩的整数解为 .17.如图,在△ABC 中,90︒=∠BAC 2==AC AB ,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 . 第17题图18. 如图,D 、E 两点分别在AC 、AB 上,且DE 与BC 不平行,请填上一个你认为合适的条件: ,使得△ADE ∽△ABC.19. 如图,ABC ∆中,︒=∠90ACB ,︒=∠30B ,1=AC ,过点C 作AB CD ⊥1于1D ,过1D 作BC D D ⊥21于2D ,过2D 作AB D D ⊥32于3D ,这样继续作下去,……,线段1+n n D D 等于(n 为正整数) .A BC D E 2 1 (第18题图) (第19题图) C A CB 1D 2D4D6D 5D 3D ABCD.O三、开动脑筋,你一定能做对!(本大题共3小题,6+7+7=20分) 20.化简2111x x x x⎛⎫-÷ ⎪--⎝⎭,并选择你最喜欢的数代入求值.21.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.22.如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1) 求证:四边形AECF是平行四边形;(2) 若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.F ED CB A四、认真思考,你一定能成功!(本大题共2小题,9+10=19分)23.如图,A是⊙O外一点,B是⊙O上一点,AO•的延长线交⊙O于点C,连结BC,∠C=22.5°,∠A=45°。

2015年中考模拟考试名校联考数学试题及答案

2015年中考模拟考试名校联考数学试题及答案

山西省2015年中考模拟考试名校联考数学试题时间120分钟 满分120分 2015、2、18一、选择题(每小题2分,共24分)1.计算-3+3的结果是A .0B .-6C .9D .-9 2.如图,AB ∥CD ,∠BAC =120°,则∠C 的度数是A .30°B .60°C .70°D .80°3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为 A .3.5×107 B .3.5×108 C .3.5×109 D .3.5×1010 4.下列学习用具中,不是轴对称图形的是5.二次函数y =(x-1)2+8的图像的顶点坐标是 A .(-1,8) B .(1,8)C .(-1,2)D .(1,-4)6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是A .⎩⎪⎨⎪⎧x ≥-1x <2 B .⎩⎪⎨⎪⎧x ≤-1x >2 C .⎩⎪⎨⎪⎧x <-1x ≥2 D .⎩⎪⎨⎪⎧x >-1x ≤27.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方 形(阴影部分)的概率是19,则大、小两个正方形的边长之比是A .3∶1B .8∶1C .9∶1D .22∶1AB CD第2题图 123412341 2 3 4 05 6123第7题图8.如果相切两圆的半径分别为2 cm 和3cm ,那么两圆的圆心距是( ) A .1cm B .5cm C .3cm D .1cm 或5cm 9.有一种公益叫“光盘”.所谓“光盘”,就是吃光你盘子中的食物,杜绝“舌尖上的浪费”.某校九年级开展“光盘行动”宣传活动,根据各班级参加该活动的总人次折线统计图,下列说法正确的是A .极差是40B .中位数是58C .平均数大于58D .众数是510.小明的父母出去散步.从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后用15分钟返回家,则表示父亲、母亲离家距离与时间的关系是A .④②B .①②C .①③D .④③11.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2).将△ABO 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线(0)ky x x=>上,则k 的值为A .2B .3C .4D .612.二次函数2y ax bx c =++的图象如图所示,在下列说法中:①abc >0;②0a b c ++>;③420a b c -+>;④当1x >时,y 随着x 的增大而增大.正确的说法个数是 A .1 B .2 C .3 D .第9题图123456班23156478九年级宣传“光盘行二、填空题(每小题3分,共18分)13.分解因式:m 2-10m =________________.14.若方程组⎩⎪⎨⎪⎧x +y =73x -5y =-3,则3(x +y )-(3x -5y )的值是__________.15.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为 只.16.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是 cm 2. 17.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,AC =4,BC =2.则sin ∠ABD = . 18.如图,在平面直角坐标系中,∠AOB=30°,点A 坐标为(2,0).过A 作 AA 1⊥OB ,垂足为点A 1;过点A 1作A 1A 2⊥x 轴,垂足为点A 2;再过点A 2作A 2A 3⊥OB ,垂足为点A 3;再过点A 3作A 3A 4⊥x 轴,垂足为点A 4;……;这样一直作下去,则A 2013的纵坐标为 .第17题 第18题三、解答题(共78分.解答应写出文字说明、证明过程或演算步骤)19.(本题共2个小题,共10分)(1) 计算:1)31(12360sin 2----+︒⋅(2) 已知a2+2a=-1,求2a(a+1)-(a+2)(a-2)的值.20.(本题满分8分)一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?21.(本题满分6分)如图,在方格纸中,△PQR的三个顶点及A,B,C, D,E 五个点都在小方格的顶点上.现以A,B,C,D,E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等.22.(本题满分10分)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了本市全部8000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中(2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机 王明被选中的概率是多少?23.(本题满分8分)如图,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90°,D 在AB 上。

2015年天津市中考数学模拟试题

2015年天津市中考数学模拟试题

天津市2015年中考数学模拟试题 第I 卷(选择题)一、选择题(题型注释)1.-2的绝对值是 ( )A .2B .-2C .21 D .12- 2.cos60°的值等于( )A .12B .22C .32D .333.下列四张扑克牌中,属于中心对称的图形是( )A B C D4.我国稀土资源的总储藏量约为1050 000 000吨,是全世界稀土资源最丰富的国家,将1050 000 000吨用科学计数法表示为( )A .91.0510⨯吨B .101.0510⨯吨C .810.510⨯吨D .100.10510⨯吨5.如图,李师傅做了一个零件,请你告诉他这个零件的主视图是()A .B .C .D .6.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 度数为( )A .116° B.32° C .58° D .42°7.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m ,水面最深地方的高度为1m ,则该输水管的半径为( )A .2mB .2.5mC .4mD .5m8.已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是 A .k >2 B .k ≥2 C .k ≤2 D .k <29.圆锥的底面半径为2,母线长为4,则它的侧面积为 ( )A .4πB .8πC .16πD .43π10.某种手机经过四、五月份连续两次降价,每部手机由3200元降到2500元。

设平均每月降价的百分率为x ,则根据题意列出的方程是( ).A 、 2500)1(32002=-xB 、2500)1(32002=+xC 、2500)21(3200=-xD 、250032002=-x11.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是 ( )A .31B .52C .51D .53 12.小明从图所示的二次函数y=ax 2+bx+c 的图象中,观察得出了下面五条信息:①c <0;②abc >0;③a-b+c >0;④2a-3b=0;⑤c-4b >0,你认为其中正确信息的个数有( )A 、2个B 、3个C 、4个D 、5个第II 卷(非选择题)13.若分式的值为0,则x 的值等于______________14.如果正比例函数y kx =的图象经过点(1,-2),那么k 的值等于 .15.小华抛一枚质地均匀的硬币,连续抛五次,硬币落地均正面朝上,如果第六次抛硬币,那么硬币正面朝上的概率为.16.二次函数622+-=x x y 的最小值是 .17.已知在□ABCD 中,AB=5cm ,AD=8cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF=________cm .18.如图,已知等腰△ABC ,AD 是底边BC 上的高,AD :DC=1:3,将△ADC 绕着点D 旋转,得△DEF ,点A 、C 分别与点E 、F 对应,且EF 与直线AB 重合,设AC 与DF 相交于点O ,则:AOF DOC S S ∆∆= .D C B A三、计算题(题型注释)19.解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥20.学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有 万人次到图书馆阅读,其中商人占百分比为 %;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?21.如图,AB是⊙O的直径,C是⊙O上一点,AC平分∠BAD;AD⊥CD,垂足为D.(1)求证:CD是⊙O的切线(2)若⊙O的直径为5,CD=2.求AC的长.四、解答题(题型注释)22.(本题满分10分)某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物AB 的高,他们来到与建筑物AB在同一平地且相距12米的建筑物CD上的C处观察,测得某建筑物顶部A的仰角为30°、底部B的俯角为45°.求建筑物AB的高(精确到1米).(可供选用的数据:2≈1.4,3≈1.7).23.由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?24.已知:如图①,在矩形ABCD 中,AB=5,AD=320,AE ⊥BD ,垂足是E.点F 是点E 关于AB 的对称点,连接AF 、BF.(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.25.(本题满分12分)如图,已知抛物线32++=bx ax y 经过点()1,0B -、()3,0C ,交y 轴于点A .(1)求此抛物线的解析式;(2)抛物线第一象限上有一动点M ,过点M 作MN x ⊥轴,垂足为N ,请求出ON MN 2+的最大值,及此时点M 坐标;(3)抛物线顶点为K ,KI x ⊥轴于I 点,一块三角板直角顶点P 在线段KI 上滑动,且一直角边过A 点,另一直角边与x 轴交于(),0Q m ,请求出实数m 的变化范围,并说明理由.参考答案1.A .2.A .3.B4.A .5.A6.B .7.B8.A9.B10.A. 11.B .12.C .13.814.-215.1216.517.318.3245.19.解得:23<x ≤220.(1)8,12.5%;(2)将条形统计图补充完整见解析;(3)10500.21.(1)CD 是⊙O 的切线。

山西省2015年中考模拟考试数学试题及答案

山西省2015年中考模拟考试数学试题及答案

山西省2015年中考模拟考试数学试题参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b --. 2015、1、24一、选择题(每小题3分,共24分)1. 计算-2+3的结果A .1B .-1C .-5D .-62.国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是 A .6969元B .7735元C .8810元D .10255元 3.下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是 A.正方体 B.圆锥 C.球 D .圆柱 4.不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为5.已知A ∠、B ∠互余,A ∠比B ∠大30.设A ∠、B ∠的度数分别为x 、y ,下列方程组中符合题意的是A .180,30x y x y +=⎧⎨=-⎩ B . 180,30x y x y +=⎧⎨=+⎩ C .90,30x y x y +=⎧⎨=+⎩ D .90,30x y x y +=⎧⎨=-⎩A .B .C .D .6.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是 A .0.1B .0.2C .0.3D .0.77.下列命题中,真命题是A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形8.已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为A.-1 B . 1 C. -3 D. -4二、填空题(本题有6小题,每小题3分,共18分)9.因式分解:24xy x -= ▲ .10.近年来,义乌市对外贸易快速增长.右图是根据我市2004年至2007年出口总额绘制的条形统计图,观察统计图可 得在这期间我市年出口总额的极差是 ▲ 亿美元. 11.函数1y x a=-,当2x =时没有意义,则a 的值为 ▲ . 12.如图,若//AB CD ,EF 与AB CD 、分别相交于点E F 、,EP 与EFD ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则 ▲ 度.13.李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图像经过第一象限;乙:它的图像也经过第二象限;丙:在第一象限内函数值y 随x 增大而增大.在你 学过的函数中,写出一个满足上述特征的函数解析式 ▲ . 14.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .(1)当AE =5,P 落在线段CD 上时,PD = ▲ ;(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 ▲ .三、解答题(本题有8小题共78分)15.(132cos458-+;(2)解方程:1321xx =+(8分)16.如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为4米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米)(7分)17.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A的概率.(8分)18.已知:如图△ABC 内接于⊙O ,OH AC ⊥于H ,过A 点的切线与OC 的延长线交于点D ,30B ∠=0,OH = (1)AOC ∠的度数;(2)劣弧AC 的长(结果保留π); (3)线段AD 的长(结果保留根号).(9分)19.义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为144万辆.己知2005年底全市汽车拥有量为100万辆.请解答如下问题: (1)2005年底至2007年底我市汽车拥有量的年平均增长率?(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过160万辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位)(10分)22.已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(-),点B的坐标为(-6,0).(1)若三角形OAB关于y轴的轴对称图形是三角形O A B'',请直接写出A、B的对称点A'B'、的坐标;(2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=a的值;(3)若三角形OAB绕点O按逆时针方向旋转α度(090α<<).①当α=30时点B恰好落在反比例函数k=的图像上,求k的值.yx②问点A、B能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能,请说明理由.(12分)23.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=12,求22BE DG+的值.(12分)24.如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4. ①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC重合),在直线..AB ..上是否存在点P ,使PD E ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.(14分)部分参考答案和评分细则二、填空题(本题有6小题,每小题3分,共18分)11.(2)(2)x y y +- 12. 8.04 13. 214.060 15. 形如2(0,0),(0,0)y kx b k b y ax bx c a b =+>>=++>> 16.(1)2 (2)8三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17. 解:(1)32cos458-+=222+(每项算对各给1分)3分 =2.5……………………………………………………………………………… 1分(2.)321x x =+ ………………………………………………………………………1分1x = ……………………………………………………………………………2分 经检验:1x =是原方程的解 …………………………………………………1分18. 解: 0tan30=4CD (3)分 CD = …………2分CE 1.68 4.0+≈ ……2分∴ 这棵树的高大约有4.0米高. ……………………………………………………1分19. 解:(1)用列表法或树状图表示所有可能结果如下:……………………………………4分 (12)树状图:(2)P (恰好选中医生甲和护士A )=16 ………………………………………3分 ∴恰好选中医生甲和护士A 的概率是16……………………………………1分20.解:(1)060AOC ∠= ………………………………2分(2)在三角形AOC 中,OH AC ⊥∴ 01030OHAO COS == ……………………1分∴AC 的长= 6010101801803n r πππ⨯⨯==……1分 ∴AC 的长是103π……………………………………………………………………1分(3) ∵AD 是切线 ∴AD OA ⊥ ……………………………………………………1分∵060AOC ∠= ∴AD =…………………………………………………1分∴线段AD 的长是……………………………………………………………1分21.解:(1)设年平均增长率为x ,根据题意得:272893(1)114508x +=…………………3分解得1x ≈0.2526,2x ≈ 2.2526- (不合题意,舍去) …………………………1分 ∴所求的年平均增长率约为25.3%. ……………………………………………1分(2)设每年新增汽车为x 辆,根据题意得:[]114508(14%)(14%)158000x x -+-+≤……………………………………3分解得26770.12x ≤ …………………………………………………………………1分∴每年新增汽车最多不超过26770辆 ……………………………………………1分22.解:(1)(6,0)A B '' ………(每个点坐标写对各得2分)………………………4分(2) ∵3y = ∴3=1分∴x =…………………1分∴a =…………………2分(3) ① ∵030α=∴相应B 点的坐标是 (3)--…………………………………………………1分∴.k =…………………………………………………………………………1分 ② 能 ………………………………………………………………………………1分当060α=时,相应A ,B 点的坐标分别是(3),(3,----,经经验:它们都在y x=的图像上∴060α= ………………………………………………………………………1分23.解:(1)①,BG DE BG DE =⊥ ………………………………………………………………2分 ②,BG DE BG DE =⊥仍然成立 ……………………………………………………1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形∴ BC CD =,CG CE =, 090BCD ECG ∠=∠= ∴BCG DCE ∠=∠…………………………………………………………………1分∴BCG DCE ∆≅∆ (SAS )………………………………………………………1分∴BG DE = C B G C D E ∠=∠又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ …………………………………………………………………………1分(2)BG DE ⊥成立,BG DE =不成立 …………………………………………………2分简要说明如下∵四边形ABCD 、四边形CEFG 都是矩形,且AB a =,BC b =,CG kb =,CE ka =(a b ≠,0k >)∴BC CG b DC CE a==,090BCD ECG ∠=∠= ∴BCG DCE ∠=∠∴BCG DCE ∆∆………………………………………………………………………1分∴CBG CDE ∠=∠ 又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ ……………………………………………………………………………1分(3)∵BG DE ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+又∵3a =,2b =,k =12 ∴ 222222365231()24BD GE +=+++=………………………………………………1分 ∴22654BE DG += ………………………………………………………………………1分24.解:(1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………………………4分 (2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二:① 以点D 为直角顶点,作1PP x ⊥轴Rt ODE ∆在中,2OE OD =∴,设2OD b OE b ==,.1Rt ODE Rt PPD ∆≈∆,(图示阴影) 4b ∴=,28b =,在上面二图中分别可得到P 点的生标为P (-12,4)、P (-4,4)E 点在0点与A 点之间不可能;② 以点E 为直角顶点同理在②二图中分别可得P 点的生标为P (-83,4)、P (8,4)E 点在0点下方不可能. ③ 以点P 为直角顶点同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4), E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类):第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22b y b x -=-+,令4y =得3(8,4)2b P -.由已DE ==2332640b b -+=解得 121883b b P P ==∴=3b ,将之代入(-8,4)(4,4)、22(4,4)P -; 第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE =即12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、 6(4,4)P -(6(4,4)P -与2P 重合舍去). 综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).。

山西省2015年中考模拟考试一模名校联考数学试题及答案

山西省2015年中考模拟考试一模名校联考数学试题及答案

山西省2015年中考模拟考试一模名校联考数学试题考试时间:120分钟 满分:120分一、选择题(每小题3分共18分) 2015、2、101.13-的倒数是A .13B .3-C .3D . 13-2. 下列计算正确的是 A .()623a a -=- B .222()ab a b -=- C .235325a a a += D .336a a a =÷3.地球与月球的平均距离大约为384000千米.将数384000用科学记数法表示为 A .60.38410⨯B .63.8410⨯C .53.8410⨯D .338410⨯4.已知一元二次方程的两根分别是3和-5,则这个一元二次方程是A .x 2-2x+15=0B .x 2+2x -15=0C .x 2-x -6=0D .x 2-2x -15=0 5.如图,在Rt△ABC 中,∠C=90°,sinA=32,那么tanB 的值是 A .25B .35 C .552 D .326.已知二次函数2(0)y ax bx c a =++≠的图像如图所示,且关于x一元二次方程20ax bx c m ++-=有实数根,下列结论: ①abc >0;②24b ac ->0;③m >2- 其中,正确的个数是A .0B .1C .2D .3二、填空题(每小题3分共30分):7.使式子有意义的x 的取值范围是 .8.一组数据3、-4、1、-2的极差为 . 9.因式分解:a 3-a =_____________.10.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为 . 11.如图,四边形ABCD 是⊙O 的内接四边形,如果∠AOC +∠ABC =90°,那么∠ADC 的度数为 .(第11题)(第12题) (第13题)(第5题)(第6题)12.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为等腰三角形的概率是 .13.如图,AB 为半圆的直径,且AB=3,半圆绕点B 顺时针旋转45°,点A 旋转到A′的位置,则图中阴影部分的面积为 (结果保留π).14.Rt△ABC 中,∠C=90°,AB=9,点G 是△ABC 的重心,则CG 的长为 . 15.抛物线2y x =-沿y 轴向上平移若干个单位长度后,新抛物线与x 轴的两个交点和顶点构成等腰直角三角形,则新抛物线的解析式为 . 16.如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,且DE∥AC,若S △DEC :S △ADC =1:3,则S △BDE :S △ACD = .三、解答题(共72分)17.(本题12分)计算: (1)21()4sin 60tan 452--- 21)218.(本题8分)先化简,再求值:22111121x x x x x x -⎛⎫+÷ ⎪+--+⎝⎭,其中1x =19.(本题8分)作为某市政府民生实事之一的公共自行车建设工作已基本完成,某部门对2014年九月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计九月份(30天)共租车多少万车次; (3)市政府在公共自行车建设项目中共投入7650万元,若 2014年 各月份的租车量与九月份的租车量基本相同,每车次平均收入租 车费0.1元,请估计2014年租车费收入占总投入的百分率.20.(本题8分)(1)如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规,按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆.(2)在你所作的图中,①AB与⊙O的位置关系是______;(直接写出答案)②若AC=6,BC=8,求⊙O的半径.21.(本题10分)在一个不透明的箱子里,装有2个红球和2个黄球,它们除了颜色外均相同.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)小明、小亮都想去观看足球比赛,但是只有一张门票,他们决定通过摸球游戏确定谁去.规则如下:随机地从该箱子里同时取出2个球,若两球颜色相同,小明去;若两球颜色不同,小亮去.这个游戏公平吗?请你用树状图或列表的方法,帮小明和小亮进行分析.22.(本题10分)我国深潜器目前最大的深潜极限为7062.68m,某天深潜器在海面下1800米处作业(如图),测得正前方海底沉船C 的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B 点,此时测得海底沉船C 的俯角为60°。

2015中考数学模拟试题含答案

2015中考数学模拟试题含答案

2015年中考数学模拟试卷一、选择题(本大题满分36分,每小题3分.) 1. 2 sin 60°的值等于 A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2) D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第12题图)(第17题图)(第18题图)(第7题图)° (第11题图)22-1n m mn m n -÷+)(20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分。

2015年九年级数学中考模拟试题

2015年九年级数学中考模拟试题

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2015年九年级数学中考模拟试题考试范围:xxx ;考试时间:100分钟;命题人: 题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人 得分一、选择题(题型注释)1.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 不与点B ,C 重合),现将△PCD 沿直线PD 折叠,使点C 落下点C ′处;作∠BPC ′的平分线交AB 于点E .设BP=x ,BE=y ,那么y 关于x 的函数图象大致应为( )A .B .C .D .2.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a ﹣b=0;④8a+c <0;⑤9a+3b+c <0,其中结论正确有( )个。

A .2个 B .3个 C .4个 D .5个3.已知二次函数c x x y ++=2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一试卷第2页,总10页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………个交点坐标是A.(1,0)B.(-1,0)C.(2,0)D.(-2,0)4.如图,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为A. 2010B. 2011C. 20102D. 201125.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A .B .C .D .6.二次函数y=ax 2+bx+c(a ≠0)的图象所示,若∣ax 2+bx+c ∣=k(k ≠0)有两个不相等的实数根,则k 的取值范围是( )A. k<﹣3B. k>﹣3C. k<3D. k>3 7.已知:M 、N 两点关于y 轴对称,且点M 在双曲线xy 21=上,点N 在直线3+=x y 上,设点M 的坐标为),(b a ,则二次函数x b a abx y )(2++-=( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………A .有最大值,最大值为29-B .有最大值,最大值为29C .有最小值,最小值为29D .有最小值,最小值为29-试卷第4页,总10页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题(题型注释)8.已知抛物线y=x 2﹣k 的顶点为P ,与x 轴交于点A ,B ,且△ABP 是正三角形,则k 的值是9.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a-b=0;④8a+c <0;⑤9a+3b+c <0,其中结论正确的是 ( ).(填正确结论的序号)10.如图,一段抛物线:y=-x (x-3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2; 将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3; …如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m=( ). 评卷人 得分三、解答题(题型注释)11.(8分)拱桥的形状是抛物线,其函数关系式为231x y -=,当水面离桥顶的高度为325m 时,水面的宽度为多少米?……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………12.如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B ,且顶点为C .(1)求这个二次函数的解析式; (2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下方的一点,且∆ABP 的面积为10,求点P 的坐标.13.如图,抛物线y=ax 2+32x+c 与x 轴交于点A (4,0)、B (-1,0),与y 轴交于点C ,连接AC ,点M 是线段OA 上的一个动点(不与点O 、A 重合),过点M 作MN ∥AC ,交OC 于点N ,将△OMN 沿直线MN 折叠,点O 的对应点O ′落在第一象限内,设OM=t ,△O ′MN 与梯形AMNC 重合部分面积为S . (1)求抛物线的解析式;(2)①当点O ′落在AC 上时,请直接写出此时t 的值; ②求S 与t 的函数关系式;(3)在点M 运动的过程中,请直接写出以O 、B 、C 、O ′为顶点的四边形分别是等腰梯形和平行四边形时所对应的t 值.14.如图,直线y=﹣3x ﹣3与x 轴、y 轴分别相交于点A 、C ,经过点C 且对称轴为x=1的抛物线y=ax 2+bx+c 与x 轴相交于A 、B 两点. (1)试求点A 、C 的坐标; (2)求抛物线的解析式;(3)若点M 在线段AB 上以每秒1个单位长度的速度由点B 向点A 运动,同时,点N 在线段OC 上以相同的速度由点O 向点C 运动(当其中一点到达终点时,另一点也随之停止运动),又PN ∥x 轴,交AC 于P ,问在运动过程中,线段PM 的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.试卷第6页,总10页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………15.已知抛物线y=3ax 2+2bx+c(1)若a=b=1,c=-1求该抛物线与x 轴的交点坐标; (2)若a=13,c=2+b 且抛物线在22x -≤≤区间上的最小值是-3,求b 的值; (3)若a+b+c=1,是否存在实数x ,使得相应的y 的值为1,请说明理由.16.如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B 、C 两点的抛物线()20y ax bx c a =++≠与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =.(1)求A 点的坐标及该抛物线的函数表达式; (2)求出∆PBC 的面积;(3)请问在对称轴2x =右侧的抛物线上是否存在点Q ,使得以点A 、B 、C 、Q 所围成的四边形面积是∆PBC 的面积的9172?若存在,请求出点Q 的坐标;若不存在,请说明理由.17.如图,抛物线y=ax 2+ bx + c 交x 轴于A 、B 两点,交y 轴于点C ,对称轴为直线x=1,已知:A(-1,0)、C(0,-3)。

2015年重庆市中考最新数学模拟试卷

2015年重庆市中考最新数学模拟试卷

2015年重庆市中考最新数学模拟试卷一、选择题(本大题共12小题,每小题4分共48分)1.﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300B5.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()22227.如图,直线l1∥l2,l3⊥l4,∠1=44°,那么∠2的度数()8.分式方程的解为()﹣==9.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则平行四边形ABCD的面积是()absinαB abcosαA.x<﹣1 B.x>3 C ﹣1<x<3 D.x<﹣1或x>311.正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是()A.(2,0)B.(3,0)C.(2,﹣1)D.(2,1)12.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()13.分解因式:ax4﹣9ay2=_________.14.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为_______m.15.当x=﹣1时,代数式÷+x的值是_________.16.如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=_________.17.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为________.18.在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为_________,点A2015的坐标为_________;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为_________.三、解答题(本大题共2小题,每小题7分,共14分)19.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.20.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本大题共4小题,每小题10分,共40分)21.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.22.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.23.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.24.已知关于x的方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)试说明x1<0,x2<0;(3)若抛物线y=x2﹣(2k﹣3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OA•OB﹣3,求k的值.五、解答题(本大题共2个小题,每小题12分,共24分)25.如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.26.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?。

山西省2015年中考模拟考试数学试题

山西省2015年中考模拟考试数学试题

山西省2015年中考模拟考试数学试题命题人 侯来合 2015、2、18一、选择题(每小题3分,共21分)。

1.4-的绝对值是 A .4 B .4- C .41D .41- 2.下列立体图形中,侧面展开图是扇形的是 3.下面的图形中,既是轴对称图形又是中心对称图形的是 .B.4.下列运算正确的是A .22a a a =⋅B .33)(ab ab =C .632)(a a =D .5210a a a =÷ 5.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为A .25°B .30°C .40°D .50° 6.下列说法中正确的是 A .“打开电视,正在播放《新闻联播》”是必然事件;B .某次抽奖活动中奖的概率为1001,说明每买100张奖券,一定有一次中奖;C .数据1,1,2,2,3的众数是3;D .想了解盐城市城镇居民人均年收入水平,宜采用抽样调查.7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共30分)9.点A (﹣3,0)关于y 轴的对称点的坐标是 ▲ . 10.函数y=3-x 中自变量x 的取值范围是____▲_____, 11.因式分解:a 2+2a +1= ▲ .12. PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数(第5题图)A BOD A .B .C .D .法表示为____▲_____,13.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为___▲_____cm 2. 14.如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S ,乙2S 之间的大小关系是 ▲ . 15.已知a+2b=43a+2b=8⎧⎨⎩,则a+b 等于 ▲ 16.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 ▲ .17.已知⊙O 1与⊙O 2的半径分别是方程2430x x -+=的两根,且122O O t =+,若这两个圆相切..,则t = ▲ . 18.任何实数a ,可用[]a 表示不超过a 的最大整数,如[][]13,44==,现对72进行如下操作:172821−−−→=−−−→=−−−→=第次第2次第3次,这样对72只需进行3次操作后变为1,那么只需进行3次操作后变为1的所有正整数中,最大的是 ▲ .三、解答题(共69分)19.(本题满分10分) (1)计算:;.(2)解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来.(第 14 题)89 1 2 3 4 56 7 8 9 1020.(本题满分6分) 学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A 层次:很感兴趣;B 层次:较感兴趣;C 层次:不感兴趣),并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题: ⑴ 此次抽样调查中,共调查了 ▲ 名学生; ⑵ 将图①、图②补充完整;⑶ 求图②中C 层次所在扇形的圆心角的度数;⑷ 根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣(包括A 层次和B 层次).21.(本题满分6分)一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字.(1)从这个袋子中任意摸一只球,所标数字是奇数的概率是 ▲ ;(2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)22.(本题满分8分)如图,一艘核潜艇在海面下500米A 点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B 点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度?(保留根号)(第20题图)23. (本题满分8分)如图,PA 、PB 分别切⊙O 于A 、B ,连接PO 、AB 相交于D ,C 是⊙O 上一点,∠C=60°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年度第二学期九年级数学试题一、选择题:本大题共10小题,每小题3分,共30分。

每小题所给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内. 1. (-2)0的相反数等于( )A.1B.-1C.2D.-2 2.下列计算正确的是( )A.a 2+a 3=a 5B. a 6÷a 3=a 2C. 4x 2-3x 2=1D.(-2x 2y )3=-8 x 6y 33.下列图形中,既是轴对称图形又是中心对称图形的共有( )A. 1个 B .2个C .3个D .4个4.第八届中国(深圳)文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为( ) A . 1.433×1010B .1.433×1011C .1.433×1012D .0.1433×10125.如图,正方体表面上画有一圈黑色线条,则它的左视图是( )A .B .C .D .6.如果,则( )A .a < B. a ≤ C. a > D. a ≥7.已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A.B.C.D.8.如图所示,一个60o 角的三角形纸片,剪去这个600角后,得到 一个四边形,则么的度数为( )A. 120OB. 180O .C. 240OD. 30009.对于非零的实数a 、b ,规定a ⊕b=﹣.若2⊕(2x ﹣1)=1,则x=(). . .10.如图,矩形中,,,是的中点,点在矩形的边上沿运动,则的面积与点经过的路程之间的函数关系用图象表示大致是下图中的 ( )A B C D二、填空题:本大题共8小题,每小题3分,共24分。

把答案写在题中的横线上. 11. 因式分解:.中,自变量14.已知方程的两个解分别为、,则的值为 .15.如图,现有一个圆心角为90°,半径为16cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 cm.16. 抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 .17、关于的方程有增根,则=------18.观察下列各式: 13=12 13+23=32 13+23+33=62 13+23+33+43=102 …猜想13+23+33+…+103= . 三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或验算步骤. 19.(5分)计算:20.(5分)已知= -3,=2,求代数式的值.21.(5分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段a , c ,∠.求作:△ABC ,使BC =a ,AB =c ,∠ABC =∠.22、(5分)如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m ,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m ,请你计算出该建筑物的高度.(取=1.732,结果精确到1m )23、(6分)如图,四边形ABCD 的对角线AC 、BD 交于点O ,BE ⊥AC 于E ,DF ⊥AC 于F ,点O 既是AC 的中点,又是EF 的中点. (1) (3分)求证:△BOE ≌△DOF ;(2) (3分)若OA =BD ,则四边形ABCD 是什么特殊四边形?请说明理由.四. 解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或验算步骤.24(7分)、某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)(3分)该顾客至少可得到_____元购物券,至多可得到_______元购物券; (2)(4分)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.25、(7分)2011年,陕西西安被教育部列为“减负”工作改革试点地区。

学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)(2分)此次抽样调查中,共调查了 名学生;(2)(1分)将图①补充完整;(3)(2分)求出图②中C 级所占的圆心角的度数; (4)(2分)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?26.(8分)如图,直线与双曲线相交于两点,点的坐标为(1)(2分)求反比例函数的表达式; (2(3分))根据图象直接写出当时,的取值范围;(3)(3分)计算线段的长.27.(8分)已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E . (1)(4分)求证:DE 是⊙O 的切线;(2)(4分)若DE=6cm ,AE=3cm ,求⊙O 的半径.28.(10分)如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB绕O点按逆时针方向旋转90°得到△COD.(1) (3分)求C,D两点的坐标;(2) (3分)求经过C,D,B三点的抛物线的解析式;(3) (4分)设(2)中抛物线的顶点为P,AB的中点为M(2,1),试判断△PMB是钝角三角形,直角三角形还是锐角三角形,并说明理由.九年级数学试题答案一、选择题:本大题共10小题,每小题3分,共30分。

1、B ;2、D ;3、B ;4、B ;5、B ;6、B ;7、B ;8、C ;9、A ;10、A ; 二、 填空题:本大题共8小题,每小题3分,共24分。

11、2(2)a a -;12、4或6;13、_x≥-2;14、3 ;15、4 ;16、﹣3<x <1; 17、7;18、552; 三、解答题(一):本大题共5小题,共26分19、(5分)解:原式=421212=3+--+--。

20(5分)、解:原式=()21=a b a b ab ab a b ++⋅+。

(3分) 当a= -3,b =2时,原式=()11=326--⨯。

(2分)21、(5分)解:(1)作图如下,△ABC 即为所求。

22、(5分)解:设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m .在Rt △AEC 中,tan ∠CAE =AE CE,即tan30°=100+x x ,∴33100=+x x ,3x =3(x +100) 解得x =50+503=136.6,∴CD =CE +ED =(136.6+1.5)=138.1≈138(m) 答:该建筑物的高度约为138m 。

23、(6分)解:(1)(3分)证明:∵BE ⊥AC .DF ⊥AC ,∴∠BEO =∠DFO =90°。

∵点O 是EF 的中点,∴OE =OF 。

,又∵∠DOF =∠BOE ,∴△BOE ≌△DOF (ASA )。

(2(3分))四边形ABCD 是矩形。

理由如下:∵△BOE ≌△DOF ,∴OB =OD 。

又∵OA =OC ,∴四边形ABCD 是平行四边形。

∵OA =12BD ,OA =12AC ,∴BD =AC 。

∴平行四边形ABCD 是矩形。

四. 解答题(二):本大题共5小题,共40分. 24、(7分)解:(1)(3分)10,50;(2)(4分)解法一(树状图):从上图可以看出,共有12种等可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)= ; 解法二(列表法):(以下过程同“解法一”)25(7分)解:(2分)(1)200;(2)(1分)2001205030--=(人). (3(2分)C 所占圆心角度数360(125%60%)54=⨯--=°°.(4)(2分)80000×(25%+60%)=68000∴估计我市初中生中大约有6800026、(8分)解:(1)(2分)把12A (,)代入k y x =得:2k =,即反比例函数的表达式是2y x=;(2)(3分)把12A (,)代入y mx =得:2m =,即直线的解析式是2y x =,解方程组22y x y x⎧=⎪⎨⎪=⎩得出B点的坐标是12--(,),∴当kmx x>时,x 的取值范围是10x -<<或1x >;(3)(3分)过A 作AC x ⊥轴于C , ∵12A (,), ∴21AC OC ==,, 由勾股定理得:AO同理求出OB = ∴AB =27、(8分)解:(1(4分))证明:连接OD .∵OA=OD ,∴∠OAD=∠ODA .(1分) ∵∠OAD=∠DAE ,∴∠ODA=∠DAE .(2分) ∴DO ∥MN .(3分) ∵DE ⊥MN , ∴∠ODE=∠DEM=90°. 即OD ⊥DE .(4分) ∵D 在⊙O 上,∴DE 是⊙O 的切线.(5分) (2)(4分)解:∵∠AED=90°,DE=6,AE=3,∴.(6分) 连接CD . ∵AC 是⊙O 的直径, ∴∠ADC=∠AED=90°.(7分)∵∠CAD=∠DAE ,∴△ACD ∽△ADE .(8分) ∴. ∴. 则AC=15(cm ).(9分)∴⊙O 的半径是7.5cm .(10分) 28.(10分)解:(1) (3分)由旋转的性质可知:OC =OA =2,OD =OB =4.∴C 、D 两点的坐标分别是C (-2,0),D (0,4).(2) (3分)设所求抛物线的解析式为y =ax 2+bx +c .根据题意,得⎪⎩⎪⎨⎧==+-=++.4,024,0416c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧==-=.4,1,21c b a ∴所求抛物线的解析式为.4212++-=x x y (3)(4分)如图,△PMB 是钝角三角形,图中,PH 是抛物线=++-=4212x x y29)1(212+--x 的对称轴, M 、P 点的坐标分别为).29,1(),1,2(P M ∴点M 在PH 的右侧, ∵∠PHB =90°,∠1>90°,∠PMB >∠1,∴∠PMB >90°,则△PMB为钝角三角形.1210态度层。

相关文档
最新文档