高考数学 知识点专题精讲与知识点突破:函数(含答案解析)

合集下载

高考数学复习高频考点题型专题讲解与训练10---函数的图象(附解析答案)

高考数学复习高频考点题型专题讲解与训练10---函数的图象(附解析答案)

高考数学复习高频考点题型专题讲解与训练专题10:函数的图象1. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数 x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e ,1)B. [−32e ,34)C. [32e ,34)D. [32e ,1)2. 已知定义在 R 上的函数 y =f (x ) 对任意的 x 都满足 f (x +2)=f (x ),当 −1≤x <1 时,f (x )=x 3,若函数 g (x )=f (x )−log a ∣x∣(a >0,且 a ≠1)至少有 6 个零点,则 a 的取值范围是 ( )A. (0,15]∪(5,+∞)B. (0,15)∪(5,+∞)C. (17,15]∪(5,7]D. (17,15)∪[5,7)3. 如图,长方形 ABCD 的边 AB =2,BC =1,O 是 AB 的中点,点 P 沿着边 BC ,CD 与 DA 运动,记 ∠BOP =x .将动点 P 到 A ,B 两点距离之和表示为 x 的函数 f (x ),则 y =f (x ) 的图象大致为 ( )A. B. C. D.4. 将函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角θ,曲线C都仍然是一个函数的图象,则α的最大值为( )A. πB. π2C. π3D. π45. 如图,正三角形ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量OP⃗⃗⃗⃗⃗ 在a= (1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是( )A. B.C. D.6. 经济学家在研究供求关系时,一般用纵轴表示产品价格(自变量),用横轴表示产品数量(因变量).某类产品的市场供求关系在不受外界因素(如政府限制最高价格等)的影响下,市场会自发调解供求关系:当产品价格P1低于均衡价格P0时,则需求量大于供应量,价格会上升为P2;当产品价格P2高于均衡价格P0时,则供应量大于需求量,价格又会下降,价格如此继续波动下去,产品价格将会逐渐靠近均衡价格P0.能正确表示上述供求关系的图形是( )A. B.C. D.7. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e )B. (ln33,e)C. (0,ln33]D. [ln33,1e )8. 已知函数 f (x )=x −4+9x+1,x ∈(0,4).当 x =a 时,f (x ) 取得最小值 b ,则函数 g (x )=(1a )∣x+b∣ 的图象为 ( )A. B.C. D.9. 定义在 R 上的奇函数 f (x ) 满足:①对任意 x ,都有 f (x +3)=f (x ) 成立;②当 x ∈[0,32] 时,f (x )=32−∣∣32−2x ∣∣,则方程 f (x )=1∣x∣在区间 [−4,4] 上根的个数是 ( ) A. 4B. 5C. 6D. 710. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x ≥0 时,f (x )=12(∣x −a 2∣+∣x −2a 2∣−3a 2).若 ∀x ∈R ,f (x −1)≤f (x ),则实数 a 的取值范围为 ( ) A. [−16,16]B. [−√66,√66]C. [−13,13]D. [−√33,√33]11. 如图可能是下列哪个函数的图象 ( )A. y=2x−x2−1B. y=2x sinx4x+1C. y=(x2−2x)e xD. y=xlnx12. 如图,圆C:(x−1)2+(y−1)2=1在直线l:y=x+t下方的弓形(阴影部分)的面积为S,当直线l由下而上移动时,面积S关于t的函数图象大致为( ).A. B.C. D.13. 已知函数 f (x )=x −[x ],其中 [x ] 表示不超过实数 x 的最大整数.若关于 x 的方程f (x )=kx +k 有三个不同的实根,则实数 k 的取值范围是 ( )A. (−1,−12]∪[14,13)B. [−1,−12)∪(14,13]C. [−13,−14)∪(12,1]D. (−13,−14]∪[12,1)14. 已知函数 f (x )={∣log 2x ∣,0<x <2,sin (π4x),2≤x ≤10, 若存在实数 x 1,x 2,x 3,x 4,满足 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则(x 3−2)⋅(x 4−2)x 1⋅x 2 的取值范围是( )A. (4,16)B. (0,12)C. (9,21)D. (15,25)15. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数 f (x )={1,x ∈Q,0,x ∈∁R Q.被称为狄利克雷函数,其中 R 为实数集,Q 为有理数集,则关于函数 f (x ) 有如下四个命题:①f(f (x ))=1;②函数 f (x ) 是偶函数;③任取一个不为零的有理数 T ,f (x +T )=f (x ) 对任意的 x ∈R 恒成立;④存在三个点 A(x 1,f (x 1)),B(x 2,f (x 2)),C(x 3,f (x 3)),使得 △ABC 为等边三角形.其中真命题的个数为 ( )A. 1B. 2C. 3D. 416. 已知函数 f (x )=∣log 2∣x −1∣∣,且关于 x 的方程 [f (x )]2+af (x )+2b =0 有 6 个不同的实数根,若最小的实数根为 −3,则 a +b 的值为 ( )A. −2B. 4C. 6D. 817. 定义在 R 上的函数 f (x )=xsin2xx 2+a 的图象如图所示,则实数 a 的可能值为 ( )A. 16B. 14C. 12D. 118. 下列四个函数①f (x )=x +1,②f (x )=2x 3,③f (x )=xsinx ,④f (x )=x cosx 的图象能等分圆 O:x 2+y 2=1 的面积的是 ( )A. ②③B. ②④C. ②③④D. ①②③④19. 某市2015年前n个月空气质量优良的总天数S n与n之间的关系如图所示.若前m月的月平均空气质量优良天数最大,则m值为( )A. 7B. 9C. 10D. 1220. 如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O沿l1以1m/s的速度匀速竖直向上移动,且在t=0时,圆O与l2相切于点A,圆O被直线l2所截得到的两段圆弧中,位于l2上方的圆弧的长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )A. B.C. D.21. 一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n(n∈N∗),则该函数的图象是( )A. B.C. D.22. 已知函数f(x)=x2−2(a+2)x+a2,g(x)=−x2+2(a−2)x−a2+8,设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A−B=( )A. 16B. −16C. a2−2a−16D. a2+2a−1623. 如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )A. B.C. D.24. 给出幂函数(1) f (x )=x ,(2) f (x )=x 2,(3) f (x )=x 3,(4) f (x )=√x ,(5) f (x )=1x ,其中满足条件 f (x 1+x 22)>f (x 1)+f (x 2)2(x 1>x 2>0) 的函数的个数是 ( ) 个.A. 1B. 2C. 3D. 425. 已知函数 f (x )={x 2+5x,x ≥0,−e x +1,x <0.若 f (x )≥kx ,则 k 的取值范围是 ( ) A. (−∞,0]B. (−∞,5]C. (0,5]D. [0,5]26. 若函数 y =a x +b 的图象如图所示,则函数 y =1x+a +b +1 的图象为 ( )A. B.C. D.27. 设函数 f (x )=∣2x −1∣,c <b <a ,且 f (c )>f (a )>f (b ),则 2a +2c 与 2 的大小关系式 ( )A. 2a +2c >2B. 2a +2c ≥2C. 2a +2c ≤2D. 2a +2c <228. 函数 f (x )=e x +e −xe x −e −x (x ≠0) 的图象大致为 ( ) A. B.C. D.29. 若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称.则称点对[P,Q]是函数y=f(x)的一对"友好点对"(点对[P,Q]与[Q,P]看作同一对"友好点对").已知函数f(x)={log2x(x>0)−x2−4x(x≤0),则此函数的"友好点对"有( )A. 0对B. 1对C. 2对D. 3对30. 若函数f(x)=a2x−4,g(x)=log a∣x∣(a>0且a≠1),且f(2)⋅g(−2)<0,则函数f(x)、g(x)在同一坐标系内的大致图象是( )A. B.C. D.31. 定义域为R的函数f(x)={1∣x−1∣,x≠11,x=1,若关于x的函数ℎ(x)=f2(x)+bf(x)+12有5个不同的零点x1,x2,x3,x4,x5,则x12+x22+x32+x42+x52等于( )A. 2b 2+2b2B. 16C. 5D. 1532. 关于x的方程(x2−1)2−∣x2−1∣+k=0,给出下列四个命题:①存在实数k,使得方程恰有2个不同的实根;②存在实数k,使得方程恰有4个不同的实根;③存在实数k,使得方程恰有5个不同的实根;④存在实数k,使得方程恰有8个不同的实根.其中假命题的个数是( )A. 0B. 1C. 2D. 333. 已知a>0且a≠1,函数f(x)={(a−1)x+3a−4(x≤0),a x(x>0)满足对任意实数x1≠x2,都有f(x2)−f(x1)x2−x1>0成立,则a的取值范围是( )A. (0,1)B. (1,+∞)C. (1,53]D. [53,2)34. 已知函 f (x )={∣lgx ∣,0<x ≤10−12x +6,x >10,若 a ,b ,c 互不相等,且 f (a )=f (b )=f (c ),则 abc 的取值范围是 ( )A. (1,10)B. (5,6)C. (10,12)D. (20,24)35. 已知函数 f (x )=x 2+2x +a (a >0),f (m )<0,则 ( )A. f (m +x +1x )<0B. f (m +x +1x )≤0C. f (m +x +1x )>0D. f (m +x +1x ) 符号不确定36. 已知函数 f (x )={kx +k (1−a 2),(x ≥0,)x 2+(a 2−4a )x +(3−a )2,(x <0),其中 a ∈R ,若对任意的非零实数 x 1,存在唯一的非零实数 x 2(x 2≠x 1),使得 f (x 2)=f (x 1) 成立,则 k 的最小值为 ( )A. −115B. 5C. 6D. 837. 若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的"自公切线".下列方程:①x2−y2=1,②y=x2−∣x∣,③y=3sinx+4cosx,④∣x∣+1=√4−y2,对应的曲线中存在"自公切线"的有( )A. ①③B. ①④C. ②③D. ②④38. 已知函数f(x)的定义域为R.若∃常数c>0,对∀x∈R,有f(x+c)>f(x−c),则称函数f(x)具有性质P.给定下列三个函数:①f(x)=∣x∣;②f(x)=sinx;③f(x)=x3−x.其中,具有性质P的函数的序号是( )A. ①B. ③C. ①②D. ②③39. f(x)=(x−a)(x−b)−2(其中a<b),且α,β是方程f(x)=0的两根,α<β,则实数a,b,α,β的大小关系为( )A. α<a<b<βB. α<a<β<bC. a<α<b<βD. a<α<β<b40. 已知函数f(x)=ln(x+1),x∈(0,+∞),下列结论错误的是( )A. ∀x1,x2∈(0,+∞),(x2−x1)[f(x2)−f(x1)]≥0B. ∀x 1∈(0,+∞),∃x 2∈(0,+∞),f (x 1)−f (x 2)<x 2−x 1C. ∀x 1∈(0,+∞),∃x 2∈(0,+∞),x 2f (x 1)>x 1f (x 2)D. ∃x 1,x 2∈(0,+∞),f (x 1)+f (x 2)2>f (x 1+x 22)41. 设定义域为 R 的函数 f (x )={|lg|x −1||,x ≠1,0,x =1,则关于 x 的方程 [f (x )]2+bf (x )+c =0 有 7 个不同实数解的充要条件是 ( )A. b <0 且 c >0B. b >0 且 c <0C. b <0 且 c =0D. b ≥0 且 c =042. 已知函数 f (x )=x 1+∣x∣(x ∈R ) 时,则下列结论不正确的是 ( )A. ∀x ∈R ,等式 f (−x )+f (x )=0 恒成立B. ∃m ∈(0,1) ,使得方程 ∣f (x )∣=m 有两个不等实数根C. ∀x 1,x 2∈R ,若 x 1≠x 2 ,则一定有 f (x 1)≠f (x 2)D. ∃k ∈(1,+∞) ,使得函数 g (x )=f (x )−kx 在 R 上有三个零点43. 定义:区间 [x 1,x 2](x 1<x 2) 的长度等于 x 2−x 1.函数 y =∣log a x ∣(a >1) 的定义域为 [m,n ](m <n ),值域为 [0,1].若区间 [m,n ] 的长度的最小值为 34,则实数 a 的值为 ( )A. 54B. 2C. 154D. 444. 直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数 f(x) 的图象恰好通过 k(k ∈N ∗) 个格点,则称函数 f(x) 为 k 阶格点函数.下列函数:①f(x)=sinx ;②f(x)=π(x −1)2+3 ;③f(x)=(13)x ;④f(x)=log 0.6x .其中是一阶格点函数的有 ( )A. ①②B. ①④C. ①②④D. ①②③④45. 已知函数 f (x )=4∣x∣+2−1 的定义域为 [a,b ],其中 a 、b ∈Z ,且 a <b .若函数 f (x )的值域为 [0,1],则满足条件的整数对 (a,b ) 共有 ( )A. 2 个B. 5 个C. 6 个D. 8 个46. 已知函数 f (x )={−x x+1,−1<x ≤0,x,0<x ≤1与函数 g (x )=a (x +1) 在 (−1,1] 上有 2 个交点,若方程 x −1x =5a 的解为正整数,则满足条件的实数 a 有 ( )A. 0 个B. 1 个C. 2 个D. 3 个47. 已知函数 f (x )={2x+2+a,x ≤0,f (x −1)+1,x >0,若对任意的 a ∈(−3,+∞),关于 x 的方程 f (x )=kx 都有 3 个不同的根,则 k 等于 ( )A. 1B. 2C. 3D. 448. 已知函数 y =f (−∣x∣) 的图象如图所示,则函数 y =f (x ) 的图象不可能是 ( )A. B.C. D.49. 设函数的集合 P ={f (x )=log 2(x +a )+b∣∣a =−12,0,12,1;b =−1,0,1},平面上点的集合 Q ={(x,y )∣x =−12,0,12,1;y =−1,0,1},则在同一直角坐标系中,P 中函数 f (x ) 的图象恰好经过 Q 中两个点的函数的个数是 ( )A. 4B. 6C. 8D. 1050. 已知函数 f (x )=∣x 2+3x ∣,x ∈R .若方程 f (x )−a∣x −1∣=0 恰有 4 个互异的实数根,则实数 a 的取值范围为 .51. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是 .52. 已知函数 f (x )={(12)x +34,x ≥2,log 2x,0<x <2. 若函数 g (x )=f (x )−k 有两个不同的零点,则实数 k 的取值范围是 .53. 对于函数 f (x )={sinπx,x ∈[0,2],12f (x −2),x ∈(2,+∞), 有下列 5 个结论: ①任取 x 1,x 2∈(0,+∞),都有 ∣f (x 1)−f (x 2)∣≤2;②函数 y =f (x ) 在区间 (4,5) 上单调递增;③f (x )=2kf (x +2k )(k ∈N +),对一切 x ∈(0,+∞) 恒成立;④函数 y =f (x )−ln (x −1) 有 3 个零点;⑤若关于 x 的方程 f (x )=m (m <0) 有且只有两个不同实根 x 1,x 2,则 x 1+x 2=3. 则其中所有正确结论的序号是 .(请写出全部正确结论的序号)54. 关于函数 f (x )=b ∣x∣−a (a >0,b >0) 有下列命题:①函数 f (x ) 的值域为 (−∞,0)∪(0,+∞);②直线 x =k 与函数 f (x ) 的图象有唯一交点;③函数 y =f (x )+1 有两个零点;④函数定义域为 D ,则任意的 x ∈D ,f (x )=f (−x ).其中所有叙述正确的命题序号是 .55. 如果是函数y=sinπxx2−bx+c 的图象的一部分,若图象的最高点的坐标为(12,43),则b+c=.56. 设a∈R,若x>0时均有[(a−1)x−1](x2−ax−1)≥0,则a=.57. 对于函数y=f(x)(x∈R),给出下列命题:(1)在同一直角坐标系中,函数y=f(1−x)与y=f(x−1)的图象关于直线x=0对称;(2)若f(1−x)=f(x−1),则函数y=f(x)的图象关于直线x=1对称;(3)若f(1+x)=f(x−1),则函数y=f(x)是周期函数;(4)若f(1−x)=−f(x−1),则函数y=f(x)的图象关于点(0,0)对称.其中所有正确命题的序号是 .58. 已知函数 f (x )={|log 3x|,0<x <313x 2−103x +8,x ≥3,若存在实数 a ,b ,c ,d ,满足f (a )=f (b )=f (c )=f (d ),其中 d >c >b >a >0,则 abcd 的取值范围是 .59. 在平面直角坐标系 xOy 中,将函数 y =√3+2x −x 2−√3(x ∈[0,2]) 的图象绕坐标原点 O 按逆时针方向旋转角 θ,若 ∀θ∈[0,α],旋转后所得曲线都是某个函数的图象,则 α 的最大值为 .60. 已知函数 f (x )={∣log 3x ∣,0<x <3,sin π3x,3≤x ≤9,若存在实数 a ,b ,c ,d 满足 a <b <c <d ,且 f (a )=f (b )=f (c )=f (d ),则 (c−3)(d−3)ab 的取值范围是 .61. 已知函数 f (x )={∣2x −1∣−1,x ≤1x 2−3x+3x−1,x >1,下列关于函数 g (x )=[f (x )]2+af (x )−1(其中 a 为常数)的叙述中:①对 ∀a ∈R ,函数 g (x ) 至少有一个零点;②当a=0时,函数g(x)有两个不同零点;③∃a∈R,使得函数g(x)有三个不同零点;④函数g(x)有四个不同零点的充要条件是a<0.其中真命题有.(把你认为真命题的序号都填上)62. 已知函数y=x(x−1)(x+1)的图象如图所示.令f(x)=x(x−1)(x+1)+0.01,则下列关于f(x)=0的解的叙述正确的是(填写序号).①有三个实根;②当x>1时,恰有一个实根;③当0<x<1时,恰有一个实根;④当−1<x<0时,恰有一个实根;⑤当x<−1时,恰有一个实根(有且只有一个实根).63. 某食品的保鲜时间t(单位:小时)与储藏温度x(单位:∘C)满足函数关系t={64,x≤0,2kx+6,x>0.且该食品在4∘C的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论:①.该食品在6∘C的保鲜时间是8小时;②.当x∈[−6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;③.到了此日13时,甲所购买的食品还在保鲜时间内;④.到了此日14时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论的序号是.64. [x]表示不超过x的最大整数,定义函数f(x)=x−[x].则下列结论中正确的有.①函数f(x)的值域为[0,1];②方程 f (x )=12 有无数个解;③函数 f (x ) 的图象是一条直线;④函数 f (x ) 是 [k,k +1](k ∈Z ) 上的增函数.65. 已知函数 f (x )=∣∣log a ∣x −1∣∣∣(a >0,a ≠1),若 x 1<x 2<x 3<x 4,且 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 1x 1+1x 2+1x 3+1x 4= .66. 将函数 y =∣∣12x −1∣∣+∣∣12x −2∣∣+1 的图象绕原点顺时针方向旋转角 θ(0≤θ≤π2) 得到曲线 C .若对于每一个旋转角 θ,曲线 C 都是一个函数的图象,则 θ 的取值范围是 .67. 设函数 f (x )={x 2−4x +1(x ≥0),3x +2(x <0), 若互不相等的实数 x 1,x 2,x 3 满足 f (x 1)=f (x 2)=f (x 3),则 x 1+x 2+x 3 的取值范围是 .68. 已知函数f(x)=∣lg(x−1)∣.若a≠b,f(a)=f(b),则a+2b的取值范围是.69. 已知函数y=f(x)和y=g(x)在[−2,2]的图象如图所示.给出下列四个命题:①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;③方程f[f(x)]=0有且仅有5个根;④方程g[g(x)]=0有且仅有4个根,其中正确的命题是.(将所有正确的命题序号填在横线上)70. 对于实数 a 和 b ,定义运算" ∗ ":a ∗b ={a 2−ab,a ≤b,b 2−ab,a >b.设 f (x )=(2x −1)∗(x −1),且关于 x 的方程 f (x )=m (m ∈R ) 恰有三个互不相等的实数根 x 1,x 2,x 3,则 x 1x 2x 3 的取值范围是 .71. 设函数 f 0(x )=(12)∣x∣,f 1(x )=∣∣f 0(x )−12∣∣,f n (x )=∣∣∣f n−1(x )−(12)n ∣∣∣,n ≥1,n ∈N ,则方程 f n (x )=(1n+2)n有 个实数根.72. 已知 f (x )=m (x −2m )(x +m +3),g (x )=2x −2.若同时满足条件:①∀x ∈R ,f (x )<0 或g (x )<0;②∃x ∈(−∞,−4),f (x )g (x )<0,则 m 的取值范围是 .73. 已知 f (x ) 是定义在 [1,+∞) 上的函数,且 f (x )={1−∣2x −3∣,1≤x <212f (12x),x ≥2,则函数 y =2xf (x )−3 在区间 (1,2015) 上的零点的个数为 .74. 如图所示,函数 y =f (x ) 的图象由两条射线和三条线段组成.若 ∀x ∈R ,f (x )>f (x −1),则正实数 a 的取值范围为 .75. 已知函数 f (x )={∣x 2+5x +4∣,x ≤0,2∣x −2∣,x >0,若函数 y =f (x )−a∣x∣ 恰有 4 个零点,则实数 a 的取值范围为 .76. 已知定义在 [−1,1] 上的函数 f (x )=−2∣x∣+1,设 f 1(x )=f (x ),f n+1(x )=f [f n (x )],n ∈N +,若关于 x 的方程 f 3(x )−mx +m =0 有 5 个实数解,则实数 m 的取值范围是 .77. 设函数 f (x ) 的定义域为 D ,若存在非零实数 l 使得对于任意 x ∈M (M ⊆D ),有 x +l ∈D ,且 f (x +l )≥f (x ),则称 f (x ) 为 M 上的 l 高调函数.(1)如果定义域为 [−1,+∞) 的函数 f (x )=x 2 为 [−1,+∞) 上的 m 高调函数,那么实数 m 的取值范围是 .(2)如果定义域为 R 的函数 f (x ) 是奇函数,当 x ≥0 时,f (x )=∣x −a 2∣−a 2,且f (x ) 为 R 上的 4 高调函数,那么实数 a 的取值范围是 .参考答案,仅供参考1. D 【解析】法一:考虑函数 g (x )=e x (2x −1),以及函数 ℎ(x )=a (x −1),则题意要求存在唯一的整数 x 0 使得 g (x 0)<ℎ(x 0).注意到 gʹ(x )=e x (2x +1),尤其注意到 y =x −1 为 y =g (x ) 在 (0,−1) 处的切线,如图.于是可以确定符合题意的唯一整数 x 0=0,则 {f (0)<0f (1)≥0f (−1)≥0,解得 32e ≤a <1.法二:首先 f (0)=−1+a <0,所以唯一的整数为 0.而 f (−1)=−3e+2a ≥0,解得 a ≥32e .又 a <1,对 f (x ) 求导得 fʹ(x )=e x (2x +1)−a , 当 x <−12 时,fʹ(x )<0;当 x >0 时,fʹ(x )>0.从而 f (x ) 在 (−∞,−12) 上单调递减,在 (0,+∞) 上单调递增. 而当 a ≥32e 时,有 f (−1)≥0,f (0)<0,f (1)>0, 故在 (−∞,−1]∪[1,+∞) 上 f (x )≥0,f (0)<0,满足题意.所以满足条件的 a 的取值范围为 [32e ,1).2. A 【解析】由题意得,函数 g (x )=f (x )−log a ∣x∣ 的零点个数即为 y =f (x ) 与 y =log a ∣x∣ 的图象的交点个数. 因为 f (x +2)=f (x ),所以函数 f (x ) 是周期为 2 的周期函数, 又因为 f (x )=x 3(−1≤x <1), 所以函数 f (x ) 的图象如图所示.在同一坐标系中作出函数 y =log a ∣x∣={log a x,x >0log a (−x ),x <0 的图象(a >1 时,如图(1);0<a <1 时,如图(2)).由图象得,要使y=f(x)与y=log a∣x∣的图象至少有6个交点,则当a>1时log a5<1;当0<a<1时,log a5≥−1,解得a>5或0<a≤15.3. B【解析】当点P在BC上时,x∈[0,π4],y=PA+PB=√4+tan2x+tanx,y随x增大而增大,且y与x不为线性关系.由对称性可知,当P在DA上时,y单调递减,且y与x不为线性关系,当x=π4时,y=√5+1;当P在CD上运动时,x∈(π4,3π4],当x=π2时,PA+PB=2√2<√5+1,结合选项,故选B.4. D5. C【解析】设BC与y轴交于点M,则AGGM =21,又G(0,1),A(0,2),所以M(0,12),正三角形边长为√3.当点P运动到点B时,∠AGP=2π3,此时射影y取到最小值−√32,所以排除A,B.当点P从点B向点M运动时,2π3≤x≤π,∠PGM=π−x,所以−y12=tan(π−x),得y=12tanx,结合图象应该选C.6. D7. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y= ax在区间(0,3]上有三个交点.画图如下.当a≤0时,显然,不合乎题意,当a>0时,由图知,当x∈(0,1]时,存在一个交点,当x>1时,f(x)=lnx,可得g(x)=lnx−ax(x∈(1,3]),gʹ(x)=1x −a=1−axx,若gʹ(x)<0,可得x>1a ,g(x)为减函数,若gʹ(x)>0,可得x<1a,g(x)为增函数,此时y=f(x)与y=ax必须在[1,3]上有两个交点,即y=g(x)在[1,3]上有两个零点,所以{g(1a)>0,g(3)≤0,g(1)≤0,解得ln33≤a<1e,故函数g(x)=f(x)−ax在区间(0,3]上有三个零点时,ln33≤a<1e.8. B 【解析】f (x )=x −4+9x+1=(x +1)+9x+1−5≥2√(x +1)×9(x+1)−5=1, 当且仅当 (x +1)2=9,即 x =2(x =−4 舍去)时等号成立,故 a =2,b =1,所以函数 g (x )=(12)∣x+1∣,其图象是把函数 y =(12)∣x∣的图象向左平移一个单位得到.9. B 【解析】因为 f (x +3)=f (x ),所以 f (x ) 周期为 3,当 x ∈[0,32] 时,f (x )={2x,0<x ≤34,3−2x,34<x ≤32.画出 y =f (x ) 和 y =1∣x∣的图象如下.由图象知方程 f (x )=1∣x∣ 在区间 [−4,4] 上根的个数是 5 个. 10. B【解析】函数 f (x )=12(∣x −a 2∣+∣x −2a 2∣−3a 2).在 x ≥0 时的解析式等价于 f (x )={−x,0≤x ≤a 2,−a 2,a 2<x <2a 2,x −3a 2,x ≥2a 2. 因此根据奇函数的图象关于原点对称作出函数 f (x ) 在 R 上的大致图象如下,由∀x∈R,f(x−1)≤f(x),可得2a2−(−4a2)≤1,解得a∈[−√66,√66].11. C【解析】A 中,因为y=2x−x2−1,当x趋向于−∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,所以函数y=2x−x2−1的值小于0,所以 A 中的函数不满足条件;B 中,因为y=sinx是周期函数,所以函数y=2x sinx4x+1的图象是以x轴为中心的波浪线,所以 B 中的函数不满足条件;C 中,因为函数y=x2−2x=(x−1)2−1,当x<0或x>1时,y>0,当0<x<1时,y<0;且y=e x>0恒成立,所以y=(x2−2x)e x的图象在x趋向于−∞时,y>0,0<x<1时,y<0,在x趋向于+∞时,y趋向于+∞;所以 C 中的函数满足条件;D 中,y=xlnx 的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,所以y=xlnx<0,所以 D 中函数不满足条件.12. C【解析】由图1知当t≤−√2时,S=0.由图2知当t≥√2时,S=π.,且阴影部分的面积以t=0为分界点,离t=0越近增长得越快,对照当t=0时,S=π2图象知 C 符合题意.13. A【解析】如下图所示:y=kx+k表示恒过点A(−1,0)斜率为k的直线.若方程f(x)=kx+k有3个相异的实根,则函数f(x)=x−[x]与函数g(x)=kx+k的图象有且仅有3个交点.由图可得:当直线y=kx+k过(2,1)点时,k=13;当直线y=kx+k过(3,1)点时,k=14;当直线y=kx+k过(−2,1)点时,k=−1;当直线y=kx+k过(−3,1)点时,k=−12.则实数k的取值范围是14≤k<13或−1<k≤−12.14. B【解析】画出f(x)的图象如图所示,由图中可以看出:x1<1<x2<2<x3<4<8<x4<10,因为f(x1)=f(x2)=f(x3)= f(x4),所以−log2x1=log2x2,x3+x4=12,从而有x1⋅x2=1,又(x3−2)⋅(x4−2)= (x3−2)⋅(12−x3−2)=−(x3−6)2+16,所以(x3−2)⋅(x4−2)x1⋅x2的取值范围是(0,12) .15. D【解析】由狄利克雷函数的定义:若x∈Q,则f(f(x))=f(1)=1,若x∈∁R Q,则f(f(x))=f(0)=1;若x∈Q,则−x∈Q,则f(−x)=f(x)=1;若x∈∁R Q,则−x∈∁R Q,则f(−x)=f(x)=0;所以函数f(x)是偶函数;若x∈Q,因为T是非零的有理数,所以x+T∈Q,所以有f(x+T)=f(x)=1;若x∈∁R Q,则x+T∈∁R Q,所以f(x+T)=f(x),所以对任意的x∈R,有f(x+T)=f(x)恒成立;取A(−√33,0),B(√33,0),C(0,1),则△ABC为等边三角形,所以存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.16. A【解析】画出函数f(x)=∣log2∣x−1∣∣的图象,如图所示.设f(x)=t,则t2+at+2b=0.若关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数根,则关于t的方程t2+at+2b=0一定有一根为0,另一根为正,从而b=0,a<0,且两根分别为t1=0、t2=−a.(i)方程f(x)=−a(a<0)有4个实根,由最小的根为−3,得f(−3)=−a,解得a=−2;(ii)方程f(x)=0有x=0和x=2两个实根.综上,a+b=−2.17. A18. B19. C20. B【解析】解法一如图,设∠MON=α,由弧长公式知x=α,在Rt△AOM中,∣AO∣=1−t,cos x2=∣OA∣∣OM∣=1−t,所以y=cosx=2cos2x2−1=2(t−1)2−1(0≤t≤1).故其对应的大致图象应为 B.解法二由题意可知,当t=1时,圆O在直线l2上方的部分为半圆,所对应的弧长为π×1=π,所以cosπ=−1,排除 A,D;当t=12时如图所示,易知∠BOC=2π3,所以cos2π3=−12<0,排除 C.21. A【解析】由已知得f(a n)>a n,即y=f(x)的图象在y=x的图象的上方.22. B【解析】由f(x)=g(x),得(x−a)2=4.所以,当x=a−2和x=a+2时,两函数值相等,又f(x)的图象为开口向上的抛物线,g(x)的图象为开口向下的抛物线,则H1(x)={f(x),x≤a−2,g(x),a−2<x<a+2,f(x),x≥a+2, H2(x)={g(x),x≤a−2,f(x),a−2<x<a+2,g(x),x≥a+2.所以A=H1(x)min=f(a+2)=−4a−4,B=H2(x)max=g(a−2)=−4a+12,所以A−B=−16.23. B【解析】通过圆心角α将弧长x与时间t联系起来,圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cosα2=1−t,即cos x2=1−t,则y=cosx=2cos2x2−1=2(1−t)2−1=2(t−1)2−1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.24. A【解析】①不满足,函数f(x)=x的图象是一条直线,故当x1>x2>0时,f(x1+x22)=f(x1)+f(x2)2;②不满足,在第一象限,函数f(x)=x2的图象是凹形曲线,故当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2;③不满足,在第一象限,函数f(x)=x3的图象是凹形曲线,故当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2;④满足,函数f(x)=√x的图象是凸形曲线,故当x1>x2>0时,f(x1+x22)>f(x1)+f(x2)2;⑤不满足,当x1>x2>0时,f(x1+x22)<f(x1)+f(x2)2.25. D【解析】f(x)的图象如下图所示:令g(x)=kx,则使得f(x)的图象在g(x)图象的上方即可.g(x)的两个临界状态分别是k=0和与y=x2+5x(x≥0)相切的时候.当g(x)与y=x2+5x(x≥0)相切时,k=yʹx=0=5.所以0≤k≤5.26. C【解析】由图可知0<a<1,−2<b<−1.又函数y=1x+a+b+1的图象是由y=1x向左平移a个单位,向下平移∣b+1∣单位而得到的.结合四个选项可知C正确.27. D28. A【解析】提示:因为函数f(x)是奇函数,又f(x)=1+2e2x−1在x∈(−∞,0)∪(0,+∞)上单调递减.29. C【解析】函数f(x)={log2x(x>0)−x2−4x(x≤0)的图象(实线部分)及函数f(x)=−x2−4x(x≤0)的图象关于原点对称的图象(虚线部分)如图所示:则 A ,B 两点关于原点的对称点一定在函数 f (x )=−x 2−4x (x ≤0) 的图象上,故函数 f (x ) 的"友好点对"有 2 对. 30. B【解析】f (2)⋅g (−2)=a 0log a 2<0,得 0<a <1,所以 f (x )=a 2x−4 在 R 上为减函数,g (x )=log a ∣x ∣ 在 (0,+∞) 上为减函数,在 (−∞,0) 上为增函数.31. D 【解析】令 ℎ(x )=0,即 f 2(x )+bf (x )+12=0,由其有 5 个不同零点,结合函数 f (x ) 图象,可知,f (x )=1 应满足上述方程,再结合,两根之积为 12,则 f (x )=12 也满足方程; 因此,解上述 f (x )=1 和 f (x )=12,可得方程的 5 个不同的零点为 x 1=0 、 x 2=1 、 x 3=2 、 x 4=−1 、 x 5=3.32. A【解析】根据题意可令∣x2−1∣=t(t≥0),则原方程化为t2−t+k=0,设方程t2−t+k=0的两根为t1,t2(不妨设t1≤t2),则Δ=1−4k≥0,得k≤14.则{t1+t2=1,t1⋅t2=k,结合t=∣x2−1∣的图象可知:①当k<0时,t1<0<1<t2,所以原方程有2个不同的实根.②当k=0时,t1=0,t2=1,所以原方程有5个不同的实根.③当k=14时,t1=t2=12,所以原方程有4个不同的实根.④当0<k<14时,0<t1<t2<1,所以原方程有8个不同的实根.33. C【解析】由题意知f(x)在R上为增函数,画出函数图象的草图如图所示:所以 {a −1>0,a >1,3a −4≤1, 解得 1<a ≤53.34. C 【解析】作出函数 f (x ) 的图象如图, 不妨设 a <b <c ,则 −lga =lgb =−12c +6∈(0,1) ab =1,0<−12c +6<1 则 abc =c ∈(10,12).35. C【解析】设 f (x ) 的两个根分别为 x 1,x 2,且 x 1<x 2,则 (x 1−x 2)2=(x 1+x 2)2−4x 1x 2=4−4a ,因为 a >0,所以 x 2−x 1<2. 由 f (m )<0 可知 x 1<m <x 2,利用均值不等式可知 m +x +1x ≥m +2 或 m +x +1x ≤m −2,结合二次函数图象知 m +x +1x >x 2 或 m +x +1x <x 1,所以 f (m +x +1x )>0. 36. D 【解析】因为函数 f (x )={kx +k (1−a 2),(x ≥0),x 2+(a 2−4a )x +(3−a )2,(x <0),,其中 a ∈R ,所以x=0时,f(x)=k(1−a2).又由对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,所以函数必须为连续函数,即在x=0附近的左右两侧函数值相等,易知k≤0时,结合图象可知,不符合题意.所以k>0,且(3−a)2=k(1−a2),即(k+1)a2−6a+9−k=0有实数解,所以△=62−4(k+1)(9−k)≥0,解得k<0或k≥8.又因为k>0,所以k的取值范围为[8,+∞).37. C【解析】①中x2−y2=1是一个等轴双曲线,它不存在"自公切线";②如图所示,曲线在点(−12,−14)和点(12,−14)处的切线重合;③y=3sinx+4cosx=5sin(x+φ)(tanφ=43).如图,在所有的最高点处的切线重合,所以③存在"自公切线";④中曲线如图所示,不存在"自公切线".38. B【解析】对于①:因为f(x)=∣x∣是偶函数,所以当x=0时,对于∀c∈R,都有f(x+c)=f(x−c)成立,所以该函数不具有性质P;对于②:对于∀常数c>0,当x+c=−π2时,有f(x+c)≤f(x−c)成立,故该函数也不具有性质P;对于③:因为 f (x )=x 3−x 在 (−∞,−√33),(√33,+∞) 上单调递增,在 (−√33,√33) 上单调递减,所以 ∃ 常数 c >√33>0,对 ∀x ∈R ,有 f (x +c )>f (x −c ) 成立,所以该函数具有性质 P .39. A 【解析】f (x )=(x −a )(x −b )−2 的图象是由 f (x )=(x −a )(x −b ) 的图象向下平移 2 个单位得到的,如图:由图可得 α<a <b <β. 40. D【解析】函数图象可由 y =lnx 向左平移一个单位得到:当 x ∈(0,+∞) 时,函数 f (x )=ln (x +1) 为上凸的增函数,∣EF ∣=f (x 1)+f (x 2)2,∣EG ∣=f (x 1+x 22),∣EF ∣<∣EG ∣.41. C【解析】函数f(x)的图象如图所示,再由题关于x的方程[f(x)]2+bf(x)+c=0有7个不同的实数解,所以,关于f(x)的方程有两个不同解,且[f(x)]1=0,[f(x)]2>0,因此,c=0且b<0.42. D【解析】因为f(−x)=−x1+∣x∣=−f(x),所以f(x)为奇函数,故A正确;方程∣f(x)∣=m根的个数,就是函数y=∣f(x)∣与函数y=m的图象交点的个数,由图2可得B对;当x≥0时fʹ(x)=1(1+x)2>0,则f(x)在(0,+∞)为增函数,又因为f(x)为奇函数,所以f(x)在(−∞,0)上也为增函数,可得C对;对于D中,当x>0时,f(x)−kx=0,解得x=0或x=1k −1,由x=1k−1>0,得0<k<1,故D错.43. D【解析】作出函数y=∣log a x∣(a>1)的图象(如图),。

高考数学复习典型题型与知识点专题讲解4 函数的基本性质(解析版)

高考数学复习典型题型与知识点专题讲解4 函数的基本性质(解析版)

高考数学复习典型题型与知识点专题讲解4 函数的基本性质一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x =+>的单调性知识点2 二次函数区间求最值知识点3 已知一半求另一半(奇偶性) 知识点4单调奇偶联袂 二、题型归类练专练一、典型例型解题思维(名师点拨)知识点1 ()(0)af x x a x=+>的单调性例1.(2021·宁夏·平罗中学高一期中)已知4()f x x x=+. (1)判断()f x 的奇偶性;(2)判断函数()f x 在(2,)+∞的单调性并用定义证明. 【答案】(1)函数()f x 为奇函数;(2)()f x 在区间()2,+∞上是增函数;证明见详解. (1)解:由题可知,4()f x x x=+,则函数()f x 的定义域为{}|0x x ≠ ,关于原点对称,又44()()()f x x x f x x x-=--=-+=-, 所以函数()f x 为奇函数.(2)解:()f x 在区间()2,+∞上是增函数, 证明:12,(2,)x x ∀∈+∞且12x x <, 有12121244()()()()f x f x x x x x -=+-+ 121244()()x x x x =-+-121212(4)x x x x x x -=-, 122x x <<,1212124,40,0x x x x x x >->-<∴,121212(4)0x x x x x x -∴-<,即12()()f x f x <, ∴函数()f x 在区间()2,+∞上是增函数.名师点评:对于函数()(0)af x x a x =+>主要性质如下:①定义域(,0)(0,)-∞+∞; ②奇偶性:奇函数;③单调性:当0x >时;()(0)af x x a x =+>在上单调递减;在)+∞的单调增;④值域与最值:当0x >时;()(0)af x x a x =+>值域为)+∞,当x =小值特别提醒同学们函数()(0)af x x a x =+>我们称为对钩函数(耐克函数),注意需要0a >这个大前提,当0a ≤时都不再是对钩函数,此时不具有对钩函数的性质。

高考数学二轮复习专题突破—函数的单调性、极值与最值(含解析)

高考数学二轮复习专题突破—函数的单调性、极值与最值(含解析)

高考数学二轮复习专题突破—函数的单调性、极值与最值一、单项选择题1.(2021·浙江丽水联考)若函数f(x)=(x-a)3-3x+b的极大值是M,极小值是m,则M-m的值()A.与a有关,且与b有关B.与a有关,且与b无关C.与a无关,且与b无关D.与a无关,且与b有关2.(2021·山东青岛期末)若函数f(x)=x2-ax+ln x在区间(1,e)上单调递增,则实数a的取值范围是() A.[3,+∞) B.(-∞,3]C.[3,e2+1]D.[-e2+1,3],则下列关于函数f(x)的说法正确的是()3.(2021·陕西西安月考)已知函数f(x)=3xe xA.在区间(-∞,+∞)上单调递增B.在区间(-∞,1)上单调递减,无极小值C.有极大值3eD.有极小值3,无极大值e4.(2021·湖南岳阳期中)已知直线y=kx(k>0)和曲线f(x)=x-a ln x(a≠0)相切,则实数a的取值范围是()A.(-∞,0)∪(0,e)B.(0,e)C.(0,1)∪(1,e)D.(-∞,0)∪(1,e)5.(2021·湖北十堰二模)已知函数f(x)=2x3+3mx2+2nx+m2在x=1处有极小值,且极小值为6,则m=() A.5 B.3C.-2D.-2或56.(2021·四川成都二模)已知P是曲线y=-sin x(x∈[0,π])上的动点,点Q在直线x-2y-6=0上运动,则当|PQ|取最小值时,点P的横坐标为()A.π4B.π2C.2π3D.5π67.(2021·湖北荆门期末)已知曲线y=sinxe x+1(x≥0)的一条切线的斜率为1,则该切线的方程为()A.y=x-1B.y=xC.y=x+1D.y=x+2二、多项选择题8.(2021·广东湛江一模)已知函数f(x)=x3-3ln x-1,则()A.f(x)的极大值为0B.曲线y=f(x)在点(1,f(1))处的切线为x轴C.f(x)的最小值为0D.f(x)在定义域内单调9.(2021·山东淄博二模)已知e是自然对数的底数,则下列不等关系中错误的是()A.ln 2>2e B.ln 3<3eC.ln π>πe D.ln3ln π<3π10.(2021·辽宁沈阳二模)已知函数f(x)={2x+2,−2≤x≤1,lnx-1,1<x≤e,若关于x的方程f(x)=m恰有两个不同的根x1,x2(x1<x2),则(x2-x1)f(x2)的取值可能是()A.-3B.-1C.0D.2三、填空题11.(2021·福建三明二模)已知曲线y=ln x+ax与直线y=2x-1相切,则a=.12.(2021·江苏无锡月考)试写出实数a的一个取值范围,使函数f(x)=sinx-ae x有极值.13.(2021·四川成都月考)设函数f(x)=e x-2x,直线y=ax+b是曲线y=f(x)的切线,则2a+b的最大值是.四、解答题14.(2021·山东潍坊二模)已知函数f(x)=ax 2+bx+ce x的单调递增区间是[0,1],极大值是3e.(1)求曲线y=f(x)在点(-1,f(-1))处的切线方程;(2)若存在非零实数x0,使得f(x0)=1,求f(x)在区间(-∞,m](m>0)上的最小值.15.(2021·河北唐山期末)已知函数f(x)=a e x-x-1(a∈R),g(x)=x2.(1)讨论函数f(x)的单调性;(2)当a>0时,若曲线C1:y1=f(x)+x+1与曲线C2:y2=g(x)存在唯一的公切线,求实数a的值.16.(2021·浙江嘉兴月考)已知f(x)=a2ln x-1ax2-(a2-a)x(a≠0).2(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处取得极大值,求实数a的取值范围.答案及解析1.C解析因为f(x)=(x-a)3-3x+b,所以f'(x)=3(x-a)2-3,令f'(x)=3(x-a)2-3=0,得x=a-1或x=a+1,判断可得函数的极大值M=f(a-1)=-1-3(a-1)+b=2-3a+b,极小值m=f(a+1)=1-3(a+1)+b=-2-3a+b,因此M-m=4.故选C.2.B解析依题意f'(x)=2x-a+1x ≥0在区间(1,e)上恒成立,即a≤2x+1x在区间(1,e)上恒成立,令g(x)=2x+1x (1<x<e),则g'(x)=2-1x2=2x2-1x2=(√2x+1)(√2x-1)x2>0,所以g(x)在区间(1,e)上单调递增,而g(1)=3,所以a≤3,即实数a的取值范围是(-∞,3].故选B.3.C解析由题意得函数f(x)的定义域为R,f'(x)=3(1−x)e x.令f'(x)=0,得x=1,当x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,故f(1)是函数f(x)的极大值,也是最大值,且f(1)=3e,函数f(x)无极小值.故选C.4.A解析设直线y=kx(k>0)与曲线f(x)=x-a ln x(a≠0)相切于点P(x0,x0-a ln x0)(x0>0).由题意得,f'(x)=1-ax ,则以P为切点的切线方程为y-x0+a ln x0=1-ax0(x-x0),因为该切线过原点,所以-x0+a ln x0=1-ax0(-x0),因此ln x0=1,即x0=e,所以k=1-ae>0,得a<e,又a≠0,故实数a的取值范围是(-∞,0)∪(0,e).故选A.5.A解析f'(x)=6x2+6mx+2n.因为f(x)在x=1处有极小值,且极小值为6,所以{f'(1)=0, f(1)=6,即{6+6m+2n=0,2+3m+2n+m2=6,解得{m=5,n=−18或{m=−2,n=3.当m=5,n=-18时,f'(x)=6x2+30x-36=6(x+6)(x-1),则f(x)在区间(-∞,-6)上单调递增,在区间(-6,1)上单调递减,在区间(1,+∞)上单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=6.当m=-2,n=3时,f'(x )=6x 2-12x+6=6(x-1)2≥0, 则f (x )在R 上单调递增,f (x )无极值. 综上可得,m=5,n=-18. 6.C 解析 如图所示,要使|PQ|取得最小值,则曲线y=-sin x (x ∈[0,π])在点P 处的切线与直线x-2y-6=0平行,对函数y=-sin x 求导得y'=-cos x ,令y'=12,可得cos x=-12,由于0≤x ≤π,所以x=2π3.故选C . 7.C 解析 由题得y'=cosx·e x -sinx·e x(e x )2=cosx-sinxe x.设切点为(x 0,y 0)(x 0≥0),则y'|x=x 0=cos x 0-sin x 0e x 0,由y'|x=x 0=1,得e x 0=cos x 0-sin x 0.令f (x )=e x -cos x+sin x (x ≥0),则f'(x )=e x +sin x+cos x=e x +√2sin x+π4,当0≤x<1时,f'(x )>0,当x ≥1时,e x ≥e,√2sin (x +π4)≥-√2,f'(x )>0,所以∀x ≥0,f'(x )>0,所以f (x )在区间[0,+∞)上单调递增,则f (x )≥f (0)=0,所以方程e x 0=cos x 0-sin x 0只有一个实根x 0=0,所以y 0=sin0e 0+1=1,故切点为(0,1),切线斜率为1,所以切线方程为y=x+1.8.BC 解析 函数f (x )=x 3-3ln x-1的定义域为(0,+∞),f'(x )=3x 2-3x =3x (x 3-1).令f'(x )=3x (x 3-1)=0,得x=1,列表得:f (x ) 单调递减单调递增所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调,故C 正确,A,D 错误;对于B,由f (1)=0及f'(1)=0,所以曲线y=f (x )在点(1,f (1))处的切线方程为y-0=0(x-1),即y=0,故B 正确,故选BC .9.ACD 解析 令f (x )=ln x-xe ,x>0,则f'(x )=1x −1e ,令f'(x )=0,得x=e,当0<x<e 时,f'(x )>0,当x>e 时,f'(x )<0,所以f (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,故f (x )max =f (e)=ln e -ee =0,则f (2)=ln 2-2e <0得ln 2<2e ,故A 错误;f (3)=ln 3-3e <0得ln 3<3e ,故B 正确;f (π)=ln π-πe <0得ln π<πe ,故C 错误;对于D 项,令g (x )=lnx x,x>0,则g'(x )=1−lnx x 2,当0<x<e时,g'(x )>0,当x>e 时,g'(x )<0,所以g (x )在区间(0,e)上单调递增,在区间(e,+∞)上单调递减,则g (3)>g (π),得ln33>ln ππ,即ln3ln π>3π,故D 错误.故选ACD .10.BC 解析 画出函数f (x )的图象,如图,因为f (x )=m 的两根为x 1,x 2(x 1<x 2),所以x 1=m-22,x 2=e m+1,m ∈(-1,0],从而(x 2-x 1)·f (x 2)=e m+1-m-22m=m e m+1-m 22+m.令g (x )=x e x+1-12x 2+x ,x ∈(-1,0],则g'(x )=(x+1)e x+1-x+1.因为x ∈(-1,0],所以x+1>0,e x+1>e 0=1,-x+1>0, 所以g'(x )>0,从而g (x )在区间(-1,0]上单调递增.又g (0)=0,g (-1)=-52,所以g (x )∈-52,0,即(x 2-x 1)·f (x 2)的取值范围是-52,0,故选BC . 11.1 解析 由题意得函数y=ln x+ax 的定义域为x>0,y'=1x +a.设曲线y=ln x+ax 与直线y=2x-1相切于点P (x 0,y 0),可得1x 0+a=2,即ax 0=2x 0-1①,y 0=ln x 0+ax 0,y 0=2x 0-1,所以ln x 0+ax 0=2x 0-1②,联立①②,可得x 0=1,a=1. 12.(-√2,√2)(答案不唯一) 解析 f (x )=sinx-a e x的定义域为R ,f'(x )=cosx-sinx+ae x,由于函数f (x )=sinx-a e x有极值,所以f'(x )=cosx-sinx+ae x有变号零点,因此由cos x-sin x+a=0,即a=sin x-cosx=√2sin x-π4,可得a ∈(-√2,√2),答案只要为(-√2,√2)的子集都可以. 13.e 2-4 解析 f'(x )=e x -2.设切点为(t ,f (t )),则f (t )=e t -2t ,f'(t )=e t -2,所以切线方程为y-(e t -2t )=(e t -2)(x-t ),即y=(e t -2)x+e t (1-t ),所以a=e t -2,b=e t (1-t ),则2a+b=-4+3e t -t e t .令g (t )=-4+3e t -t e t ,则g'(t )=(2-t )e t .当t>2时,g'(t )<0,g (t )在区间(2,+∞)上单调递减;当t<2时,g'(t )>0,g (t )在区间(-∞,2)上单调递增,所以当t=2时,g (t )取最大值g (2)=-4+3e 2-2e 2=-4+e 2,即2a+b 的最大值为e 2-4. 14.解 (1)因为f (x )=ax 2+bx+ce x,所以f'(x )=-ax 2+(2a-b)x+b-ce x.因为e x >0,所以f'(x )≥0的解集与-ax 2+(2a-b )x+b-c ≥0的解集相同,且同为[0,1].所以有{a>0,2a-ba=1,b-c-a=0,解得a=b=c.所以f(x)=a(x 2+x+1)e x(a>0),f'(x)=-ax2+axe x(a>0).因为a>0,所以当x<0或x>1时,f'(x)<0,函数f(x)单调递减,当0≤x≤1时,f'(x)≥0,函数f(x)单调递增,且f'(1)=0,所以f(x)在x=1处取得极大值,又由题知,极大值为3e,所以f(1)=3ae =3e,解得a=1,所以a=b=c=1.所以f(x)=x 2+x+1e x,f'(x)=-x2+xe x.所以f(-1)=1e-1=e,f'(-1)=-2e-1=-2e.所以曲线y=f(x)在点(-1,f(-1))处的切线方程为y-e=-2e(x+1),即y=-2e x-e.(2)由(1)知函数f(x)在区间(-∞,0)上单调递减,在区间(0,1)上单调递增,且f(0)=1e0=1, 所以满足f(x0)=1(x0≠0)的x0∈(1,+∞).所以当0<m≤x0时,由函数f(x)的单调性易知,f(x)在区间(-∞,m]上的最小值为f(0)=1;当m>x0时,f(m)<f(x0)=f(0)=1,f(x)在区间(-∞,m]上的最小值为f(m)=m 2+m+1 e m.综上所述,f(x)在区间(-∞,m]上的最小值为{1,0<m≤x0, m2+m+1e m,m>x0.15.解 (1)f'(x)=a e x-1.当a≤0时,f'(x)<0恒成立,f(x)在区间(-∞,+∞)上单调递减.当a>0时,由f'(x)=0,得x=-ln a.当x<-ln a时,f'(x)<0,f(x)单调递减;当x>-ln a时,f'(x)>0,f(x)单调递增.综上,当a ≤0时,f (x )在区间(-∞,+∞)上单调递减;当a>0时,f (x )在区间(-∞,-ln a )上单调递减,在区间(-ln a ,+∞)上单调递增.(2)因为曲线C 1:y 1=a e x 与曲线C 2:y 2=x 2存在唯一的公切线,设该公切线与曲线C 1,C 2分别切于点(x 1,a e x 1),(x 2,x 22),显然x 1≠x 2.由于y 1'=a e x,y 2'=2x ,所以a e x 1=2x 2=ae x 1-x 22x 1-x 2,因此2x 2x 1-2x 22=a e x 1−x 22=2x 2-x 22,所以2x 1x 2-x 22=2x 2,即x 2=2x 1-2.由于a>0,故x 2>0,从而x 2=2x 1-2>0,因此x 1>1.此时a=2x2e x 1=4(x 1-1)e x 1(x 1>1).设F (x )=4(x-1)e x(x>1),则问题等价于当x>1时,直线y=a 与曲线y=F (x )有且只有一个公共点.又F'(x )=4(2−x)e x,令F'(x )=0,解得x=2,所以F (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减.而F (2)=4e 2,F (1)=0,当x →+∞时,F (x )→0, 所以F (x )的值域为0,4e 2,故a=4e 2. 16.解 (1)由题意得,当a=1时,函数f (x )=ln x-12x 2,其定义域为(0,+∞),因此f'(x )=1x -x=1−x 2x.令f'(x )>0,即1-x 2>0,得0<x<1,所以f (x )在区间(0,1)上单调递增; 令f'(x )<0,即1-x 2<0,得x>1,所以f (x )在区间(1,+∞)上单调递减. 故函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (2)由题意,函数f (x )=a 2ln x-12ax 2-(a 2-a )x (a ≠0)的定义域为(0,+∞),11且f'(x )=a 2x -ax-(a 2-a )=-a(x+a)(x-1)x .当a<0时,-a>0, ①若-1<a<0,令f'(x )>0,即(x+a )(x-1)>0,得x>1或0<x<-a ;令f'(x )<0,即(x+a )(x-1)<0,得-a<x<1,所以函数f (x )在区间(1,+∞),(0,-a )上单调递增,在区间(-a ,1)上单调递减.所以当x=1时,函数f (x )取得极小值,不符合题意.②若a=-1,可得f'(x )=(x-1)2x ≥0,此时函数f (x )在区间(0,+∞)上单调递增,函数f (x )无极值,不符合题意.③若a<-1,令f'(x )>0,即(x+a )(x-1)>0,得x>-a 或0<x<1,令f'(x )<0,即(x+a )(x-1)<0,得1<x<-a ,所以函数f (x )在区间(1,-a )上单调递减,在区间(0,1),(-a ,+∞)上单调递增,所以当x=1时,函数f (x )取得极大值,符合题意.当a>0时,-a<0.令f'(x )>0,即(x+a )(x-1)<0,得0<x<1;令f'(x )<0,即(x+a )(x-1)>0,得x>1,所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,所以当x=1时,函数f (x )取得极大值,符合题意.综上可得,实数a 的取值范围是(-∞,-1)∪(0,+∞).。

高考数学知识点精讲函数的奇偶性与周期性

高考数学知识点精讲函数的奇偶性与周期性

高考数学知识点精讲函数的奇偶性与周期性高考数学知识点精讲:函数的奇偶性与周期性在高考数学中,函数的奇偶性与周期性是非常重要的知识点,理解并掌握它们对于解决函数相关问题具有关键作用。

接下来,咱们就一起来详细探讨一下这两个重要的概念。

一、函数的奇偶性1、奇函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做奇函数。

比如说,常见的奇函数有 y = sin x ,y = x 等。

我们以 y = x 为例来直观地理解一下奇函数的特点。

当 x 取某个值时,比如 x = 3 ,那么 f(3) = 3 ;而当 x 取-3 时,f(-3) =-3 ,也就是 f(-3) = f(3) ,这就体现了奇函数的性质。

奇函数的图象关于原点对称。

这意味着,如果我们知道了函数在原点一侧的图象,就可以通过原点对称的方式得到另一侧的图象。

2、偶函数如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就叫做偶函数。

像 y = cos x ,y =|x| 等都是偶函数。

以 y =|x| 为例,当 x =3 时,f(3) = 3 ;当 x =-3 时,f(-3) = 3 ,即 f(-3) = f(3) ,这符合偶函数的定义。

偶函数的图象关于 y 轴对称。

同样,如果知道了函数在 y 轴一侧的图象,通过 y 轴对称就能得到另一侧的图象。

判断一个函数是奇函数还是偶函数,通常有以下几种方法:(1)定义法:就是根据奇函数和偶函数的定义,分别计算 f(x) 和f(x) 或者 f(x) ,看是否相等。

(2)图象法:通过观察函数的图象是否关于原点对称(奇函数)或者关于 y 轴对称(偶函数)来判断。

二、函数的周期性1、周期函数的定义对于函数 y = f(x) ,如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x) 都成立,那么就把函数 y = f(x) 叫做周期函数,周期为 T 。

高考数学二轮核心考点突破:专题05-函数与导数的综合应用(含答案)

高考数学二轮核心考点突破:专题05-函数与导数的综合应用(含答案)

专题05 函数与导数的综合运用【自主热身,归纳提炼】1、函数f (x )=13ax 3+12ax 2-2ax +2a +1的图像经过四个象限的充要条件是________.【答案】-65<a <-316【解析】:由f ′(x )=ax 2+ax -2a =0得x =1或x =-2,结合图像可知函数的图像经过四个象限的充要条件是⎩⎪⎨⎪⎧a <0,f 1>0,f -2<0或⎩⎪⎨⎪⎧a >0,f 1<0,f -2>0,解得-65<a <-316.2、 在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值为________.3、已知点A (0,1),曲线C :y =log a x 恒过点B ,若P 是曲线C 上的动点,且AB →·AP →的最小值为2,则实数a =________.【答案】e思路分析 根据条件,要求AB →·AP →的最小值,首先要将它表示成点P (x ,log a x )的横坐标x 的函数,然后再利用导数的方法来判断函数的单调性,由此来求出函数的最小值.点A (0,1),B (1,0),设P (x ,log a x ),则AB →·AP →=(1,-1)·(x ,log a x -1)=x -log a x +1.依题f (x )=x -log a x +1在(0,+∞)上有最小值2且f (1)=2,所以x =1是f (x )的极值点,即最小值点.f ′(x )=1-1x ln a=x ln a -1x ln a.若0<a <1,f ′(x )>0,f (x )单调递增,在(0,+∞)无最小值,所以a >1.设f ′(x )=0,则x =log a e ,当x ∈(0,log a e)时,f ′(x )<0;当x ∈(log a e ,+∞)时,f ′(x )>0,从而当且仅当x =log a e 时,f (x )取最小值,所以log a e =1,a =e.解后反思 本题的关键在于要能观察出f (x )=x -log a x +1=2的根为1,然后利用函数的极小值点为x =1来求出a 的值,因而解题过程中,不断地思考、观察很重要,平时学习中,要养成多思考、多观察的习惯. 4、 已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对数的底,则满足f (e x)<0的x 的取值范围为________. 【答案】(0,1)思路分析 注意到条件f (e x )<0,让我们想到需要研究函数f (x )的单调性,通过函数的单调性将问题进行转化化简. 【答案】: -1e【思路分析】 若ba 的最小值为λ,则b a≥λ恒成立,结合题意必有λa -b ≤0恒成立.由f (x )=(ln x +e x )-ax -b ≤0恒成立,得f ⎝ ⎛⎭⎪⎫1e =-1e a -b ≤0.猜想a >0,从而b a ≥-1e . f ′(x )=1x+(e -a )=e -a x +1x(x >0),当e -a ≥0,即a ≤e 时,f (e b )=(e -a )e b>0,显然f (x )≤0不恒成立. 当e -a <0,即a >e 时,当x ∈⎝⎛⎭⎪⎫0,1a -e 时,f ′(x )>0,f (x )为增函数;当x ∈⎝ ⎛⎭⎪⎫1a -e ,+∞时,f ′(x )<0,f (x )为减函数,所以f (x )max =f ⎝⎛⎭⎪⎫1a -e =-ln(a -e)-b -1. 由f (x )≤0恒成立,得f (x )max ≤0,所以b ≥-ln(a -e)-1,所以得b a ≥-ln a -e -1a.设g (x )=-ln x -e -1x(x >e),g ′(x )=xe -x +ln x -e +1x 2=ee -x+ln x -e x2. 由于y =e e -x +ln(x -e)为增函数,且当x =2e 时,g ′(x )=0,所以当x ∈(e,2e)时,g ′(x )<0,g (x )为减函数;当x ∈(2e ,+∞)时,g ′(x )>0,g (x )为增函数,所以g (x )min =g (2e)=-1e ,所以b a ≥-1e,当a=2e ,b =-2时,b a 取得最小值-1e.解后反思 在考试时,到上一步就可以结束了,胆大一点,到猜想a >0这步就可结束了.现证最小值能取到,当b a =-1e 时,f ⎝ ⎛⎭⎪⎫1e =0应该是极大值,所以f ′⎝ ⎛⎭⎪⎫1e =2e -a =0,此时a =2e ,b =-2,f (x )=ln x -e x+2,易证f ⎝ ⎛⎭⎪⎫1e =0也是最大值,证毕.8、若函数f (x )=x 2||x -a 在区间[0,2]上单调递增,则实数a 的取值范围是________.【答案】(-∞,0]∪[3,+∞)思路分析 含绝对值的函数需要去绝对值转化为分段函数,本题已知函数在[0,2]上为增函数,则需先讨论函数在[0,+∞)上的单调性,自然地分a ≤0和a >0两个情况进行讨论,得到函数在[0,+∞)上的单调性,结合函数单调性得到23a ≥2,从而解出a 的取值范围.先讨论函数在[0,+∞)上的单调性.当a ≤0时,f (x )=x 3-ax 2,f ′(x )=3x 2-2ax ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,则也在[0,2]上单调递增,成立;当a >0时,f (x )=⎩⎪⎨⎪⎧ax 2-x 3, 0≤x ≤a ,x 3-ax 2, x >a .①当0≤x ≤a 时,f ′(x )=2ax -3x 2,令f ′(x )=0,则x =0或x =23a ,则f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减;②当x >a 时,f ′(x )=3x 2-2ax =x (3x -2a )>0,所以f (x )在(a ,+∞)上单调递增,所以当a >0时,f (x )在⎣⎢⎡⎭⎪⎫0,23a 上单调递增,在⎝ ⎛⎭⎪⎫23a ,a 上单调递减,在(a ,+∞)上单调递增.要使函数在区间[0,2]上单调递增,则必有23a ≥2,解得a ≥3.综上,实数a 的取值范围是(-∞,0]∪[3,+∞).【关联1】、若函数f (x )=⎪⎪⎪⎪⎪⎪e x2-a e x (a ∈R )在区间[1,2]上单调递增,则实数a 的取值范围是________. 【答案】: ⎣⎢⎡⎦⎥⎤-e 22,e 22 【解析】:【思路分析】 本题所给函数含有绝对值符号,可以转化为g (x )=e x2-ae x 的值域和单调性来研究,根据图像的对称性可得g (x )=e x2-aex 只有单调递增和单调递减这两种情况.设g (x )=e x2-ae x ,因为f (x )=|g (x )|在区间[1,2]上单调递增,所以g (x )有两种情况:①g (x )≤0且g (x )在区间[1,2]上单调递减. 又g ′(x )=e x 2+2a2·e x,所以g ′(x )=e x 2+2a2·ex≤0在区间[1,2]上恒成立,且g (1)≤0. 所以⎩⎪⎨⎪⎧2a ≤-e x2,e 2-ae≤0,无解.②g (x )≥0且g (x )在区间[1,2]上单调递增,即g ′(x )=e x 2+2a2·ex≥0在区间[1,2]上恒成立,且g (1)≥0,所以⎩⎪⎨⎪⎧2a ≥-e x 2,e 2-ae≥0,解得a ∈⎣⎢⎡⎦⎥⎤-e 22,e 22.综上,实数a 的取值范围为⎣⎢⎡⎦⎥⎤-e 22,e 22.【关联2】、若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.【答案】: (-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解. 函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|. 令g(x)=x 3+(2-a)x 2+(1-2a)x -a ,则g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a). 令g′(x)=0得x 1=-1,x 2=2a -13.①当2a -13<-1,即a<-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g′(x)<0,解得2a -13<x<-1.所以g(x)的单调增区间是⎝ ⎛⎭⎪⎫-∞,2a -13,(-1,+∞),单调减区间是⎝ ⎛⎭⎪⎫2a -13,-1.又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝ ⎛⎭⎪⎫a ,2a -13,(-1,+∞),单调减区间是(-∞,a),⎝ ⎛⎭⎪⎫2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1). ,图1)②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),单调减区间是(-∞,-1),满足条件,故a =-1.,图2)③当2a -13>-1,即a>-1时,令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g ′(x)<0,解得-1<x<2a -13.所以g(x)的单调增区间是(-∞,-1),⎝⎛⎭⎪⎫2a -13,+∞,单调减区间是⎝ ⎛⎭⎪⎫-1,2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是⎝⎛⎭⎪⎫-1,2a -13,(a ,+∞),单调减区间是(-∞,-1),⎝ ⎛⎭⎪⎫2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a≥72,又因为a>-1,故a≥72(此种情况函数f(x)图像如图3).综上,实数a 的取值范围是(-∞,-1]∪⎣⎢⎡⎭⎪⎫72,+∞.9、 已知函数f (x )=⎩⎪⎨⎪⎧-|x 3-2x 2+x |, x <1,ln x , x ≥1,若对于∀t ∈R ,f (t )≤kt 恒成立,则实数k 的取值范围是________.【答案】: [1e ,1] 【思路分析】 本题条件“∀t ∈R ,f (t )≤kt ”的几何意义是:在(-∞,+∞)上,函数y =f (t )的图像恒在直线y =kt 的下方,这自然提示我们利用数形结合的方法解决本问题.令y =x 3-2x 2+x ,x <1,则y ′=3x 2-4x +1=(x -1)·(3x -1),令y ′>0,即(x -1)(3x -1)>0,解得x <13或x >1.又因为x <1,所以x <13.令y ′<0,得13<x <1,所以y 的增区间是(-∞,13),减区间是(13,1),所以y极大值=427.根据图像变换可作出函数y =-|x 3-2x 2+x |,x <1的图像.又设函数y =ln x (x ≥1)的图像经过原点的切线斜率为k 1,切点(x 1,ln x 1),因为y ′=1x ,所以k 1=1x 1=ln x 1-0x 1-0,解得x 1=e ,所以k 1=1e .函数y=x 3-2x 2+x 在原点处的切线斜率k 2=y ′x =0=1.因为∀t ∈R ,f (t )≤kt ,所以根据f (x )的图像,数形结合可得1e≤k ≤1.10、 已知a 为常数,函数f(x)=xa -x 2-1-x2的最小值为-23,则a 的所有值为________. 【答案】: 4,14解法1(构造三角形) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,由根号内的结构联想到勾股定理,从而构造△ABC 满足AB =a ,AC =1,AD ⊥BC ,AD =x ,则BD =a -x 2,DC =1-x 2,则S △ABC =12BC ·AD =12x(a -x 2+1-x 2)=12AB ·AC ·sin ∠BAC ≤12AB ·AC =12a ,当且仅当∠BAC =π2时,△ABC 的面积最大,且最大值为12 a.从而g(x)=x (a -x 2+1-x 2)|a -1|=2|a -1|S △ABC ≤a |a -1|,所以a |a -1|=23,解得a =4或a =14.解法2(导数法,理科) 由题意得函数f(x)为奇函数. 因为函数f(x)=x a -x 2-1-x2,所以f ′(x)=(a -x 2-1-x 2)-x ⎝ ⎛⎭⎪⎫-2x 2a -x 2--2x 21-x 2(a -x 2-1-x 2)2=a -x21-x 2-x2(a -x 2-1-x 2)a -x 21-x2,a ≠1.令f ′(x)=0,得x 2=a -x21-x 2,则x 2=a a +1.因为函数f(x)的最小值为-23,且a>0.由a -x21-x 2-x 2>0,得a -(a +1)x 2>0.①当0<a<1时,a -x 2-1-x 2<0,函数f(x)的定义域为[-a ,a],由f ′(x)>0得-a ≤x<-aa +1或aa +1<x ≤a ;由f ′(x)<0得-aa +1<x<a a +1,函数f(x)在[-a ,-a a +1),⎝ ⎛⎦⎥⎤a a +1,a 上为增函数,在(-a a +1,aa +1)上为减函数. 因为f(-a)=a 1-a >f ⎝⎛⎭⎪⎫a a +1=a a -1,所以f(x)min =f ⎝⎛⎭⎪⎫a a +1=a a -1=-23,解得a =14. ②当a>1时,a -x 2-1-x 2>0,函数f(x)的定义域为[-1,1],由f ′(x)>0得-aa +1<x<a a +1;由f ′(x)<0得-1≤x<-aa +1或a a +1<x ≤1,函数f(x)在⎝⎛⎭⎪⎫-aa +1,a a +1上为增函数,在⎣⎢⎡⎭⎪⎫-1,-a a +1,⎝ ⎛⎦⎥⎤a a +1,1上为减函数. 因为f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1<f(1)=1a -1,所以f(x)min =f ⎝ ⎛⎭⎪⎫-a a +1=-a a -1=-23,解得a =4. 综上所述,a =4或a =14.解法3(构造向量) f(x)=xa -x 2-1-x 2=x (a -x 2+1-x 2)a -1,因为f(x)为奇函数,令g(x)=x (a -x 2+1-x 2)|a -1|(x>0),则g(x)的最大值为23,设向量a =(a -x 2,x 2),b =(x 2,1-x 2),a 与b的夹角为θ,则有a ·b =|a |·|b |cos θ≤|a |·|b |,即(a -x 2,x 2)·(x 2,1-x 2)≤(a -x 2)+x 2·x 2+(1-x 2), 亦即a -x 2·x 2+x 2·1-x 2≤a ,亦即x (a -x 2+1-x 2)≤a , 当且仅当a 与b 同向时等号成立,即a -x 2·1-x 2-x 2·x 2=0,亦即x 2=aa +1时,取等号.即x (a -x 2+1-x 2)的最大值为a ,从而g (x )的最大值为a |a -1|,即有a |a -1|=23,解得a =4或a =14.解后反思 1. 最值的求法通常有如下的方法:(2)解法1(根的分布) 当x 0>1时,则f(x 0)>0,又b =3-a ,设t =f(x 0),则题意可转化为方程ax +3-ax -c =t(t >0) 在(0,+∞)上有相异两实根x 1,x 2, (6分)即关于x 的方程ax 2-(c +t)x +(3-a)=0(t >0)在(0,+∞)上有相异两实根x 1,x 2. 则x 1,2=c +t ±(c +t )2-4a (3-a )2a,所以⎩⎪⎨⎪⎧0<a <3,Δ=(c +t )2-4a (3-a )>0,x 1+x 2=c +ta >0,x 1x 2=3-a a >0,得⎩⎪⎨⎪⎧0<a <3,(c +t )2>4a (3-a ),c +t >0.所以c >2a (3-a )-t 对任意t ∈(0,+∞)恒成立. 因为0<a <3,所以2a (3-a )≤2×a +3-a 2=3(当且仅当a =32时取等号). 又-t <0,所以2a (3-a )-t 的取值范围是(-∞,3),所以c ≥3. 故c 的最小值为3.(10分)解法2(图像法) 由b =3-a ,且0 <a <3,得g ′(x)=a -3-a x 2=ax 2-(3-a )x 2=0,得 x =3-aa或x =-3-a a (舍),则函数g(x)在⎝⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增. 又对任意x 0>1,f(x 0)为(0,+∞)上的任意一个值,若存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0),则g(x)的最小值小于或等于0. 即g ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c ≤0,(6分) 即c ≥2a (3-a )对任意 a ∈(0,3)恒成立. 又2a (3-a )≤a +(3-a)=3,所以c ≥3.当c =3时,对任意a ∈(0,3),x 0∈(1,+∞),方程g(x)-f(x 0)=0化为ax +3-a x -3-f(x 0)=0,即ax2-[3+f(x 0)]x +(3-a)=0 (*).关于x 的方程(*)的Δ=[3+f(x 0)]2-4a(3-a)≥[3+f(x 0)]2-4⎝ ⎛⎭⎪⎫a +3-a 22=[3+f(x 0)]2-9,因为x 0>1,所以f(x 0)=ln x 0>0,所以Δ>0,所以方程(*)有两个不相等的实数解x 1,x 2,又x 1+x 2=f (x 0)+3a >0,x 1x 2=3-aa >0,所以x 1,x 2为两个相异正实数解,符合题意.所以c 的最小值为3. 解法3(图像法) 当x 0>1时,可知f(x 0)>0,又b =3-a ,设t =f(x 0),则t >0. 令h(x)=ax +3-a x -c -t(x >0,t >0),同解法2可知h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减;在⎝⎛⎭⎪⎫3-a a ,+∞上单调递增.当c <2a (3-a )时,若0<t <2a (3-a )-c ,则x >0时,h(x)=ax +3-ax-c -t ≥2a (3-a )-c-t >0,所以h(x)在(0,+∞)上没有零点,不符合题意. 当c ≥2a (3-a )时,h ⎝⎛⎭⎪⎫3-a a =2a (3-a )-c -t ≤-t <0. 因为a (3-a )<2a (3-a )≤c ,a (3-a )<c +t ,所以0<3-ac +t <3-a a ,所以当0<m <3-ac +t时,3-a m >c +t ,所以h(m)=am +3-a m -c -t >3-am -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫0,3-a a 上单调递减,并且连续,则h(x)在(m ,3-aa)上恰有一个零点,所以存在x 1∈(0,3-aa),使得h(x 1)=0,即g(x 1)=t. 因为c +t >c >a (3-a ),所以c +ta >3-a a ,所以当n >c +t a 时,h(n)=an +3-an-c -t >an -c -t >0, 又h(x)在⎝ ⎛⎭⎪⎫3-a a ,+∞上单调递增,并且连续,则h(x)在⎝ ⎛⎭⎪⎫3-a a ,n 上恰有一个零点,所以存在x 2∈⎝⎛⎭⎪⎫3-a a ,+∞,使得h(x 2)=0,即g(x 2)=t. 所以当c ≥2a (3-a )时,对任意x 0∈(1,+∞)和任意a ∈(0,3),总存在不相等的正实数x 1,x 2,使得g(x 1)=g(x 2)=f(x 0).即c ≥2a (3-a )对任意 a ∈(0,3)恒成立.又2a (3-a )≤a +(3-a)=3,当且仅当a =32时取等号,所以c ≥3.故c 的最小值为3.(3)当a =1时,因为函数f(x)与g(x)的图像交于A ,B 两点,所以⎩⎪⎨⎪⎧ln x 1=x 1+bx 1-c ,ln x 2=x 2+bx2-c ,两式相减,得b =x 1x 2(1-ln x 2-ln x 1x 2-x 1).要证明x 1x 2-x 2<b<x 1x 2-x 1,即证x 1x 2-x 2<x 1x 2⎝⎛⎭⎪⎫1-ln x 2-ln x 1x 2-x 1<x 1x 2-x 1,即证1x 2<ln x 2-ln x 1x 2-x 1<1x 1,即证1-x 1x 2<ln x 2x 1<x 2x 1-1.令x 2x 1=t ,则t>1,此时即证1-1t<ln t<t -1. 令φ(t)=ln t +1t -1,所以φ′(t)=1t -1t 2=t -1t 2>0,所以当t>1时,函数φ(t)单调递增.又φ(1)=0,所以φ(t)=ln t +1t -1>0,即1-1t<ln t 成立;再令m(t)=ln t -t +1,所以m ′(t)=1t -1=1-tt <0,所以当t>1时,函数m(t)单调递减.又m(1)=0,所以m(t)=ln t -t +1<0,即ln t<t -1也成立. 综上所述, 实数x 1,x 2满足x 1x 2-x 2<b<x 1x 2-x 1.【变式2】、.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a =2时,求函数f (x )的单调区间;(2) 若方程f (-x )+f (x )=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m -n |≥1,使得f (m )=f (n ),求证:1≤ae -1≤e.思路分析(1) 先分段讨论,再整体说明单调区间是否可合并(关键是图像在x =0处怎样跳跃). (2) 转化为a =x 2+x +3x 在(0,+∞)上有实数解,即求函数g(x)=x 2+x +3x 在(0,+∞)上的值域.(3) 首先缩小a 的范围为1<a<e 2,在此基础上考察f(x)在0,1,2,m ,n 处的函数值的大小关系.【解析】:(1) 当a =2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-2x ,x ≥0.①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分)②当x ≥0时,f ′(x)=e x-2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分) (2) 当x>0时,f(x)=e x-ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2. 所以可化为a =x 2+x +3x在区间(0,+∞)上有实数解.(6分)记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x2.(7分) 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分) 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(10分) (3) 当x ∈[0,2]时,f(x)=e x-ax ,有f ′(x)=e x-a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.(11分) 所以1<a<e 2,此时可得f(x)在[0,ln a]上递减,在[ln a ,2]上递增.不妨设0≤m<ln a<n ≤2,则f(0)≥f(m)>f(ln a),且f(ln a)<f(n)≤f(2).由m ,n ∈[0,2],n -m ≥1,可得0≤m ≤1≤n ≤2.(12分) 因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,(14分)即e -1≤a ≤e 2-e ,所以1≤ae -1≤e .(16分) 解后反思 第(1)题中,若函数f(x)改为f(x)=⎩⎪⎨⎪⎧-x 3+x 2+2,x<0,e x -2x ,x ≥0.则函数f(x)的“两个”递减区间(-∞,0)和[0,ln 2]应合并为一个递减区间(-∞,ln 2],因为函数图像在x =0处(从左往右)向下跳跃.而原题中函数图像在x =0处(从左往右)向上跳跃,所以不能合并.【关联1】、.已知函数f(x)=e x(3x -2),g(x)=a(x -2),其中a ,x ∈R . (1) 求过点(2,0)和函数y =f (x )图像相切的直线方程; (2) 若对任意x ∈R ,有f (x )≥g (x )恒成立,求a 的取值范围; (3) 若存在唯一的整数x 0,使得f (x 0)<g (x 0),求a 的取值范围.思路分析 (1)利用导数的几何意义求切线的方程,根据斜率建立方程即可.(2)不等式恒成立问题处理的方法有两种:一种是分离参变,转化为相应函数的值域(最值)问题解决;另一种是转化为含参函数的值域问题,通过分类讨论解决.这里可以采取第一种方法,只是分离参变时要注意对x -2的符号进行分类讨论.(3)在第(2)小问的基础上,分离参变,转化为存在有限整数自变量满足条件的问题.利用导数研究函数F(x)=e x (3x -2)x -2的性质,找到相关的整数自变量,求得对应的函数值是解决本问题的关键.【解析】(1) 设切点为(x 0,y 0),f ′(x)=e x(3x +1),则切线斜率为e x 0(3x 0+1),所以切线方程为y -y 0=e x 0(3x 0+1)(x -x 0),因为切线过点(2,0), 所以-e x 0(3x 0-2)=e x 0(3x 0+1)(2-x 0), 化简得3x 20-8x 0=0,解得x 0=0或x 0=83,当x 0=0时,切线方程为y =x -2, 当x 0=83时,切线方程为y =9e 83x -18e 83.(2) 由题意,对任意x ∈R ,有e x(3x -2)≥a (x -2)恒成立, ①当x ∈(-∞,2)时,a ≥e x(3x -2)x -2,即a ≥⎣⎢⎡⎦⎥⎤e x(3x -2)x -2max.令F (x )=e x (3x -2)x -2,则F ′(x )=e x (3x 2-8x )(x -2)2, 令F ′(x )=0,得x =0,列表如下:F (x )max =F (0)=1,故此时a ≥1. ②当x =2时,恒成立,故此时a ∈R .③当x ∈(2,+∞)时,a ≤e x(3x -2)x -2,即a ≤⎣⎢⎡⎦⎥⎤e x(3x -2)x -2min,令F ′(x )=0,得x =83,列表如下:F (x )min =F ⎝ ⎛⎭⎪⎫83=9e 83, 故此时a ≤9e 83,综上,1≤a ≤9e 83.(3) 由f (x )<g (x ),得e x(3x -2)<a (x -2), 由(2)知a ∈(-∞,1)∪(9e 83,+∞),令F (x )=e x(3x -2)x -2,列表如下:(12分)当x ∈(-∞,2)时,存在唯一的整数x 0使得f (x 0)<g (x 0), 等价于a <e x(3x -2)x -2存在的唯一整数x 0成立,因为F (0)=1最大,F (-1)=53e ,F (1)=-e ,所以当a <53e 时,至少有两个整数成立,所以a ∈⎣⎢⎡⎭⎪⎫53e ,1. 当x ∈(2,+∞)时,存在唯一的整数x 0使得f (x 0)<g (x 0),等价于a >e x(3x -2)x -2存在唯一的整数x 0成立,因为F ⎝ ⎛⎭⎪⎫83=9e 83最小,且F (3)=7e 3,F (4)=5e 4,所以当a >5e 4时,至少有两个整数成立,当a ≤7e 3时,没有整数成立,所以a ∈(7e 3,5e 4].综上,a ∈⎣⎢⎡⎭⎪⎫53e ,1∪(7e 3,5e 4].【关联2】、已知函数f(x)=ln x(x +a )2,其中a 为常数.(1) 若a =0,求函数f(x)的极值;(2) 若函数f(x)在(0,-a)上单调递增,求实数a 的取值范围; (3) 若a =-1,设函数f(x)在(0,1)上的极值点为x 0,求证:f(x 0)<-2.思路分析 第一小问,利用导函数求单调性、极值、值域的一般步骤,必须掌握!也是解决后面问题的基础;第二小问,由函数在(0,-a)上的单调性得出导函数在特定区间的符号,转化为含参数的恒成立问题;第三小问,关键是找到零点的大致范围,还是利用导数求最大值、最小值的方法. 【解析】:(1) 当a =0时,f(x)=ln xx 2,定义域为(0,+∞).f ′(x)=1-2ln xx3,令f ′(x)=0,得x =e . 当x 变化时,f ′(x),f(x)的变化情况如下表:x (0,e ) e(e ,+∞)f ′(x) + 0 - f(x)极大值12e所以当x =e 时,f(x)的极大值为12e,无极小值.①若0<-a ≤e -12,即0>a ≥-e -12,则g ′(x)=2ln x +1<0对x ∈(0,-a)恒成立,所以g(x)=2x ln x -x 在(0,-a)上单调递减,则a ≤2(-a)ln (-a)-(-a),所以ln (-a)≥0,所以a ≤-1与a ≥-e -12矛盾,舍去;②若-a>e -12,即a<-e -12,令g ′(x)=2ln x +1=0,得x =e -12,当0<x<e -12时,g ′(x)=2ln x +1<0,所以g(x)=2x ln x -x 单调递减,当e -12<x<-a 时,g ′(x)=2ln x +1>0,所以g(x)=2x ln x -x 单调递增,所以当x =e -12时,g(x)min =g(e -12)=2e -12·lne -12-e -12=-2e -12,所以a ≤-2e -12.综上,实数a 的取值范围是(-∞,-2e -12].(3) 当a =-1时,f(x)=ln x (x -1)2,f ′(x)=x -1-2x ln xx (x -1)3.令h(x)=x -1-2x ln x ,x ∈(0,1),则h ′(x)=1-2(ln x +1)=-2ln x -1,令h ′(x)=0,得x =e -12.①当e -12≤x<1时,h ′(x)≤0,所以h(x)=x -1-2x ln x 单调递减,h(x)∈(0,2e -12-1],x ∈(0,1),所以f ′(x)=x -1-2x ln x x (x -1)3<0恒成立,所以f(x)=ln x (x -1)2单调递减,且f(x)≤f(e -12).②当0<x ≤e -12时,h ′(x)≥0,所以h(x)=x -1-2x ln x 单调递增,其中h ⎝ ⎛⎭⎪⎫12=12-1-2·12·ln 12=ln4e>0,h(e -2)=e -2-1-2e -2·lne -2=5e2-1<0,所以存在唯一x 0∈⎝⎛⎭⎪⎫e -2,12,使得h(x 0)=0,所以f ′(x 0)=0,当0<x<x 0时,f ′(x)>0,所以f(x)=ln x(x -1)2单调递增;当x 0<x ≤e -12时,f ′(x)<0,所以f(x)=ln x (x -1)2单调递减,且f(x)≥f(e -12),由①和②可知,f(x)=ln x(x -1)2在(0,x 0)上单调递增,在(x 0,1)上单调递减,所以当x =x 0时,f(x)=ln x(x -1)2取极大值.因为h(x 0)=x 0-1-2x 0ln x 0=0,所以ln x 0=x 0-12x 0,所以f(x 0)=ln x 0(x 0-1)2=12x 0(x 0-1)=12⎝⎛⎭⎪⎫x 0-122-12.又x 0∈⎝ ⎛⎭⎪⎫e -2,12⊆⎝ ⎛⎭⎪⎫0,12,所以2⎝ ⎛⎭⎪⎫x 0-122-12∈⎝ ⎛⎭⎪⎫-12,0,所以f(x 0)=12⎝⎛⎭⎪⎫x 0-122-12<-2.解后反思 本题三个小题梯度明显,有较好的区分度.其中第(1)小题简单;第(2)小题难度中等,但要完成讨论也需要不错的基础;第三小题“隐零点”问题.不是一般的考生能讨论出范围的,建议一般的考生果断放弃.各个小问题中都利用了导数研究函数的单调性、极值、值域. 【关联3】、已知函数f (x )=x-1-a lnx (其中a 为参数). (1) 求函数f (x )的单调区间;(2) 若对任意x ∈(0,+∞)都有f (x )≥0成立,求实数a 的取值集合;(3) 证明:⎝⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).【解析】:(1) f ′(x )=1-a x =x -ax(x >0),当a ≤0时,f ′(x )=1-a x =x -ax>0,所以f (x )在(0,+∞)上是增函数;当a >0时,x (0,a ) a(a ,+∞)f ′(x ) -0 + f (x )极小值所以f (x )的增区间是(a 综上所述, 当a ≤0时,f (x )的单调递增区间是(0,+∞);当a >0时,f (x )的单调递增区间是(a ,+∞),单调递减区间是(0,a ). (2) 由题意得f (x )min ≥0.当a ≤0时,由(1)知f (x )在(0,+∞)上是增函数, 当x →0时,f (x )→-∞,故不合题意;(6分)当a >0时,由(1)知f (x )min =f (a )=a -1-a ln a ≥0.令g (a )=a -1-a ln a ,则由g ′(a )=-ln a =0,得a =1,a (0,1) 1 (1,+∞)g ′(a ) +0 - g (a )极大值所以g (a )=a -1-a ln a min =0, 所以a =1,即实数a 的取值集合是{1}.(10分) (3) 要证不等式1+1n n <e<1+1nn +1,两边取对数后,只要证n ln1+1n <1<(n +1)ln1+1n,即只要证1n +1<ln1+1n <1n, 令x =1+1n ,则只要证1-1x<ln x <x -1(1<x ≤2).由(1)知当a =1时,f (x )=x -1-ln x 在(1,2]上递增, 因此f (x )>f (1),即x -1-ln x >0,所以ln x <x -1(1<x ≤2) 令φ(x )=ln x +1x -1(1<x ≤2),则φ′(x )=x -1x2>0,所以φ(x )在(1,2]上递增,故φ(x )>φ(1),即ln x +1x -1>0,所以1-1x<ln x (1<x ≤2).综上,原命题得证.【关联4】、已知函数f (x )=e x,g (x )=x -b ,b ∈R . (1) 若函数f (x )的图像与函数g (x )的图像相切,求b 的值; (2) 设函数T (x )=f (x )+ag (x ),a ∈R ,求T (x )的单调递增区间;(3) 设函数h (x )=|g (x )|·f (x ),b <1.若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,求b 的取值范围.【思路分析】 (1) 对于直线与曲线相切问题,只要切点不知道的,都要先设切点坐标,然后运用好切点的双重身份,即切点既是切线上的点,又是曲线上的点,它的坐标既适合切线方程,又适合曲线方程,再由方程(组)思想,求出未知量;(2) 要求函数T (x )的单调递增区间,只要求T ′(x )>0的解区间就行,不过需对a 进行分类讨论;(3) 首先要把“若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立”运用等价转化的思想转化为“h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1”,接下来的问题就是求h (x )在[0,1]上的最大值和最小值.对于含绝对值的函数一般首先要去掉绝对值,这里要运用好分类讨论思想.(3) 若存在x 1,x 2∈[0,1],使|h (x 1)-h (x 2)|>1成立,则等价转化为h (x )在[0,1]上的最大值h (x )max 和最小值h (x )min 满足h (x )max -h (x )min >1.解法1 h (x )=|g (x )|·f (x )=⎩⎪⎨⎪⎧x -b e x, x ≥b ,-x -b e x, x <b .当x ≥b 时,有h ′(x )=(x -b +1)e x>0; 当x <b -1时,有h ′(x )=-(x -b +1)e x>0; 当b -1<x <b 时,有h ′(x )=-(x -b +1)e x <0,所以h (x )在(-∞,b -1)上是增函数,在(b -1,b )上是减函数,在(b ,+∞)上是增函数.(10分) 因为b <1,则①当b ≤0时,h (x )在[0,1]上为增函数.所以h (x )max =h (1)=(1-b )e ,h (x )min =h (0)=-b .则由h (x )max -h (x )min >1,得(1-b )e +b >1,解得b <1,所以b ≤0.(12分)②当0<b <1时,h (x )在(0,b )上是减函数,在(b,1)上是增函数,所以h (x )min =h (b )=0,h (x )max =max{h (0),h (1)}.若h (0)-h (1)=b -(1-b )e =b (e +1)-e>0,即b >ee +1,此时h (0)>h (1);若b <e e +1,此时h (0)<h (1).(ⅰ) 当0<b <ee +1时,有h (x )max =h (1)=(1-b )e ,h (x )min =h (b )=0. 则由h (x )max -h (x )min >1,得(1-b )e>1,解得b <e -1e .(ⅱ) 当ee +1≤b <1时,有h (x )max =h (0)=b ,h (x )min =h (b )=0. 因为b <1,所以h (x )max -h (x )min =b >1不成立. 综上,b 的取值范围为-∞,e -1e.解法2 h (x )=|g (x )|·f (x )=|x -b |·e x=|(x -b )e x|,令φ(x )=(x -b )e x,则h (x )=|φ(x )|. 先研究函数φ(x )=(x -b )e x,φ′(x )=(x -b +1)e x.因为b <1,所以在[0,1]上有φ′(x )=(x -b +1)e x>0,因此φ(x )在[0,1]上是增函数.所以φ(x )min =φ(0)=-b ,φ(x )max =φ(1)=(1-b )e>0.①若φ(0)=-b ≥0,即b ≤0时,h (x )min =φ(0)=-b ,h (x )max =φ(1)=(1-b )e , 则由h (x )max -h (x )min >1,即(1-b )e +b >1,解得b <1,所以b ≤0.②若φ(0)=-b <0,即0<b <1时,h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}, 令-φ(0)-φ(1)=b -(1-b )e =b (e +1)-e =0,则b =ee +1.(ⅰ) 当0<b <ee +1时,-φ(0)-φ(1)<0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=φ(1)=(1-b )e , 由h (x )max -h (x )min >1,即(1-b )e>1,解得b <e -1e ,所以0<b <e -1e .(14分)(ⅱ) 当ee +1≤b <1时,-φ(0)-φ(1)≥0,所以h (x )min =φ(b )=0,h (x )max =max{-φ(0),φ(1)}=-φ(0)=b , 由h (x )max -h (x )min >1,得b >1,与b <1矛盾,故h (x )max -h (x )min >1不成立. 综上,b 的取值范围为-∞,e -1e .。

高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值 理(含解析)新人教A版-新人教A版高三全

高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值 理(含解析)新人教A版-新人教A版高三全

2016年高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值理(含解析)新人教A 版【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”). 【答案】 (1)C(2)减函数 【解析】【提分秘籍】(1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→判断f′x正、负→单调性区间(4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)【答案】A【解析】题型二求函数的单调区间例2、求下列函数的单调区间:(1)y=-x2+2|x|+1;(2)y=log1(x2-3x+2).2解析(1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的X 围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=e x+sin x ,则( )A .f (1)<f (2)<f (3)B .f (2)<f (3)<f (1)C .f (3)<f (2)<f (1)D .f (3)<f (1)<f (2) 【答案】D【解析】由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝ ⎛⎭⎪⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫12=1,如果对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2.则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值X 围是( ) A .(1,+∞) B .(1,3) C.⎣⎢⎡⎭⎪⎫32,3D.⎝ ⎛⎭⎪⎫1,32【答案】⎣⎢⎡⎭⎪⎫32,3 【解析】【高考风向标】【2015高考某某,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.【2015高考某某,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤ 【解析】(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D【解析】由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).(2014·某某卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.【答案】1【解析】由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1. (2014·某某卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R,∃a ∈D ,f (a )=b ”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=a ln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】(2014·某某卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值X围.【解析】(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2, 则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值X 围是(e -2,1).(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围. 【解析】所以,函数f(x)的图像在点A,B处的切线互相垂直时,x2-x1的最小值为1.(2013·某某卷)设函数f(x)=e x+x-a(a∈R,e为自然对数的底数).若曲线y=sinx上存在(x0,y0)使得f(f(y0))=y0,则a的取值X围是( )A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]【答案】A【解析】因为y0=sin x0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x+x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x+x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x+x -a =x 2,故a =e x-x 2+x.记g(x)=e x-x 2+x ,则g′(x)=e x-2x +1.当x∈⎣⎢⎡⎦⎥⎤0,12时,e x>0,-2x +1≥0,故g′(x)>0,当x∈⎝ ⎛⎦⎥⎤12,1时,e x>e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值X 围是[1,e].(2013·某某卷)函数y =x33x -1的图像大致是( )【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A ;当x<0时,x 3<0,3x-1<0,故y>0,排除选项B ;当x→+∞时,y>0且y→0,故为选项C 中的图像.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 【答案】C【解析】【高考押题】1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A. k >12 B. k <12C. k >-12D. k <-12【答案】D【解析】使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A. y =x 3B. y =|x |+1C. y =-x 2+1 D. y =2-|x |【答案】B 【解析】3.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A. f (4)>f (-6)B. f (-4)<f (-6)C. f (-4)>f (-6)D. f (4)<f (-6) 【答案】C【解析】由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,∴f (4)<f (6)⇔f (-4)>f (-6).4. 函数y =(12)2x 2-3x +1的递减区间为( )A. (1,+∞)B. (-∞,34)C. (12,+∞)D. [34,+∞)【答案】D【解析】设t =2x 2-3x +1,其递增区间为[34,+∞),∴复合函数递减区间为[34,+∞),选D 项.5. 函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A. (-∞,0)∪(12,2] B. (-∞,2]C. (-∞,12)∪[2,+∞) D. (0,+∞)【答案】A【解析】∵x ∈(-∞,1)∪[2,5),y =2x -1在(-∞,1)上为减函数,在[2,5)上也为减函数,则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪(12,2]. 6. 设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x .则f (x )的值域是( )A. [-94,0]∪(1,+∞)B. [0,+∞)C. [-94,+∞)D. [-94,0]∪(2,+∞)【答案】D 【解析】7. 函数f (x )=x 2-2x -3的单调增区间为________. 【答案】[3,+∞)【解析】定义域x 2-2x -3≥0,∴x ≤-1或x ≥3,函数的递增区间为[3,+∞). 8. 函数y =xx +a在(-2,+∞)上为增函数,则a 的取值X 围是________.【答案】a ≥2 【解析】y =xx +a=1-ax +a,依题意,得函数的单调增区间为(-∞,-a )、(-a ,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a ,即a ≥2.9.设函数f (x )的图象关于y 轴对称,又已知f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f -x +f xx<0的解集为________.【答案】(-1,0)∪(1,+∞) 【解析】10.已知函数f (x )是定义在(0,+∞)上的减函数,且满足f (xy )=f (x )+f (y ),f (13)=1.(1)求f (1);(2)若f (x )+f (2-x )<2,求x 的取值X 围.解:(1)令x =y =1,则f (1)=f (1)+f (1),∴f (1)=0. (2)∵2=1+1=f (13)+f (13)=f (19),∴原不等式等价于f [x (2-x )]<f (19),由f (x )为(0,+∞)上的减函数,得⎩⎪⎨⎪⎧x >0,2-x >0,x 2-x >19,⇒⎩⎪⎨⎪⎧x >0,2-x >0,1-223<x <1+223,⇒1-223<x <1+223,即x 的取值X 围为(1-223,1+223).11. 已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值X 围.12.已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ],(a >0). (2)函数f (x )的定义域为[0,14],令x +1=t ,则x =(t -1)2,t ∈[1,32],f (x )=F (t )=tt 2-2t +4=1t +4t-2, ∵t =4t 时,t =±2∉[1,32],又t ∈[1,32]时,t +4t 单调递减,F (t )单调递增,F (t )∈[13,613]. 即函数f (x )的值域为[13,613].。

新高考高中数学核心知识点全透视:函数(精讲精析篇)(附答案及解析)

新高考高中数学核心知识点全透视:函数(精讲精析篇)(附答案及解析)

专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.2.已知函数的具体解析式求定义域的方法(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.3.抽象函数的定义域的求法(1)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a≤g(x)≤b求出.(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.【典例1】(2019·江苏高考真题)函数2=+-_____.76y x x【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2B.1[1]3,C.[-15],D.无法确定【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______ 【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥; ②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞B.[1,)+∞C.[2,)+∞D.(,2]-∞【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法. (3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决.*(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式. (2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ).A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50-B.0C.2D.50【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<<D.{}10x x -剟2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x -D.34x -3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞UD.R5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .16.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1-B.1C.3-D.07.(2019·浙江学军中学高一期中)函数()f x = )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+f (2)= .10.(2019·上海闵行中学高一期中)已知21(1)()(1)(1)x x f x f x x -<⎧=⎨-≥⎩,则(3)f =________11.(2019·上海市第二中学高二期末)若函数()3f x x a =+为奇函数,则()1f =______.12.(2018·上海上外浦东附中高一月考)函数()21y k x b =++在R 上是增函数,则实数k 的取值范围是_________.13.(2018·上海上外浦东附中高一月考)已知函数2y x =,[]0,3x ∈,则函数的值域为__________.14.(2015·浙江高考真题(文))已知函数()2,1{ 66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦ , ()f x 的最小值是 .15.(2019·上海市高桥中学高一期末)已知偶函数()f x 在[)0,+∞单调递减,()20f =,若()10f x -<,则x 的取值范围是_________.16.(2018·上海曹杨二中高一期末)设函数()1f x x =-,若0a b <<且()()f a f b =,则ab 的取值范围是_________;专题3.1函数(精讲精析篇)提纲挈领点点突破热门考点01 求函数的定义域1.(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 2.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集. (2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 3.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【典例1】(2019·江苏高考真题)函数276y x x =+-_____. 【答案】[1,7]-. 【解析】由已知得2760x x +-≥,即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.【典例2】(2019·邵阳市第十一中学高一期中)已知函数(31)f x -的定义域是[]0,2,则函数()f x 的定义域是( ) A.[]0,2 B.1[1]3,C.[-15],D.无法确定【答案】C 【解析】由已知02x ≤≤,1315x ∴-≤-≤,即函数()f x 的定义域是[-15],, 故选:C .【典例3】(2018·上海上外浦东附中高一月考)已知()f x 的定义域为[]3,3-,则()21f x -的定义域为_______________.【答案】[]22-,【解析】由于函数()y f x =的定义域为[]3,3-,对于函数()21y f x =-,有2313x -≤-≤,即224x -≤≤,即24x ≤,解得22x -≤≤.因此,函数()21y f x =-的定义域为[]22-,. 故答案为:[]22-,. 【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.热门考点02 求函数的解析式1. 求函数解析式的四种方法【典例4】(2016·浙江高考真题(文))设函数f(x)=x 3+3x 2+1.已知a≠0,且f(x)–f(a)=(x –b)(x –a)2,x R ∈,则实数a=_____,b=______.【答案】-2,1【解析】()()32323232313133f x f a x x a a x x a a -=++---=+--,()()()()2322222x b x a x a b x a ab x a b --=-+++-,所以223223{20 3a b a ab a b a a --=+=-=--,解得2{ 1a b =-=. 【典例5】(2019·邵阳市第十一中学高一期中)若()22144f x x x +=+,则()f x 的解析式为__________.【答案】2()1f x x =- 【解析】 令21x t +=,12t x -∴=,代入()22144f x x x +=+, ()22114()4122t t f t t --∴=+⋅=-,故答案为:2()1f x x =-.【典例6】(2018·上海市金山中学高一期末)设()f x 是定义在R 上的函数,且满足对任意,x y 等式()()()22343f y x f x y x y -=-+-+恒成立,则()f x 的解析式为_____________.【答案】()()31f x x x =+ 【解析】Q ()f x 是定义在R 上的函数,且对任意,x y ,()()()22343f y x f x y x y -=-+-+恒成立,∴令y x =,得()()()22343f x x f x x x x -=-+-+, 即()()()2333f x f x x x =-++,()()3333f x x x ∴=+, ()()31f x x x ∴=+.故答案为:()()31f x x x =+ 【特别提醒】谨防求函数解析式的两种失误:(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围. (2)利用换元法求解析式时要注意新元的取值范围.如已知f )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).热门考点03 分段函数及其应用1.(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.3.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围. 提醒:当分段函数的自变量范围不确定时,应分类讨论. 【典例7】(山东省2018年普通高校招生(春季))已知函数,则的值等于__________. 【答案】【解析】 因为,所以.【典例8】(2018·上海市金山中学高一期末)已知()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误的是( )A.(1)f x -的图象B.()f x -的图象C.(||)f x 的图象D.|()|f x 的图象【答案】D 【解析】作出()[)[]21,1,01,0,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,如下图(1)f x -的图象,由()f x 的图象向右平移一个单位,故A 正确;()f x -的图象,由()f x 的图象y 轴右侧的翻折到左侧,左侧翻折到右侧,故B 正确; (||)f x 的图象,由()f x 的图象右侧的保留不变,且把右边的翻折到左边,故C 正确;|()|f x 的图象,把x 轴下方的翻折到上方,图象与()f x 一样,故D 错误;故选:D【典例9】(上海高考真题(理))设若,则a 的取值范围为_____________.【答案】(,2]-∞ 【解析】由题意,若2a >,则(2)2f =不合题意,因此2a ≤,此时[,)x a ∈+∞时,2()f x x =,满足(2)4f =.【典例10】(2018届河北省唐山市三模)设函数则使得成立的得取值范围是__________. 【答案】.【解析】 由,得或,得或,即得取值范围是,故答案为.【典例11】(2014浙江高考理第15题)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______【答案】a ≤【解析】由题意()()()202f a f a f a <⎧⎪⎨+≤⎪⎩或()()202f a f a ≥⎧⎪⎨-≤⎪⎩,解得()2f a ≥-,当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得,0a <或a ≤≤,故a ≤【总结提升】关于分段函数的命题角度主要有:一是分段函数求值,二是分段函数与方程、不等式结合.由于分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值、解方程(不等式)时,一定要注意自变量的值所在子集,再代入相应的解析式求值.热门考点04 函数的单调性与最值(值域)1.增函数、减函数(1)增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.函数的最值(1)最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: ①对于任意的x I ∈,都有()f x M ≤; ②存在0x I ∈,使得()0f x M =.那么,我们称M 是函数()y f x =的最大值.(2)最小值:一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: ①对于任意的x I ∈,都有()f x m ≥;②存在0x I ∈,使得()0f x m =.那么,我们称m 是函数()y f x =的最小值.【典例12】函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞-时是减函数,则(1)f 等于( )A .-3B .13 C. 7 D . 5 【答案】B【解析】由题意知函数()f x 的对称轴224b mx a =-==-,所以8m =-,所以(1)28313f =++=,故选B .【典例13】(2019·山西省长治市第二中学校高一期中)若函数2()21f x x mx =-+在[2,)+∞上是增函数,则实数m 的取值范围是( ) A.(,1]-∞ B.[1,)+∞ C.[2,)+∞ D.(,2]-∞【答案】D 【解析】由题意,函数2()21f x x mx =-+,开口向上,其对称轴x m =,∵在[2,)+∞上是增函数,∴2m ≤,即实数m 的取值范围为(,2]-∞, 故选D.【典例14】函数()21,12,1x f x x x x ⎧≥⎪=⎨⎪-+<⎩的最大值为( )A.1B.2C.12D.13【答案】B 【解析】当1x ≥时,函数()1f x x=在()1,+∞单调递减,此时()f x 在1x =处取得最大值,最大值为()11f =; 当1x <时,函数()22f x x =-+在0x =处取得最大值,最大值为()02f =. 综上可得,()f x 的最大值为2.故选:B . 【总结提升】1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).3.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).*4.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较.5.函数单调性的应用(1)比较函数值大小(随着基本初等函数的学习,逐步体会)比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )). (3)利用单调性求参数的范围(或值)的方法①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. 6.函数值域的常见求法: (1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法. (2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法.(3)基本不等式法:要注意条件“一正,二定,三相等”.(可见上一专题) (4)利用函数的单调性①单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即若y =f (x )在[a ,b ]上单调递增,则y 最小=f (a ),y 最大=f (b ); 若y =f (x )在[a ,b ]上单调递减,则y 最小=f (b ),y 最大=f (a ).②形如y =ax +b +dx +c 的函数,若ad >0,则用单调性求值域;若ad <0,则用换元法.③形如y =x +kx(k >0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x >0时,函数y =x +k x (k >0)的单调减区间为(0,k ],单调增区间为[k ,+∞).一般地,把函数y =x +kx(k >0,x >0)叫做对勾函数,其图象的转折点为(k ,2k ),至于x <0的情况,可根据函数的奇偶性解决. *(5)导数法利用导函数求出最值,从而确定值域.热门考点05 函数的奇偶性、周期性与单调性1.判断函数的奇偶性的两种方法 (1)定义法:(2)图象法:2.函数奇偶性的应用 (1)求函数解析式①将所求解析式自变量的范围转化为已知解析式中自变量的范围;②将转化后的自变量代入已知解析式;③利用函数的奇偶性求出解析式.(2)求参数值在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法. *3.函数周期性的判定及应用(1)只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T .(2)根据函数的周期性,可以由函数局部的性质得到函数整体的性质,函数的周期性常与函数的其他性质综合考查.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. 【典例15】(2017·全国高考真题(理))函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【典例16】(2018·全国高考真题(理))已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( ) A.50- B.0C.2D.50【答案】C 【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.【典例17】(2017·山东高考真题(文))已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【答案】6 【解析】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+= ()16f =-=. 【典例18】(2013·上海高考真题(理))设a 为实常数,()y f x =是定义在R 上的奇函数,且当0x <时,2()97a f x x x=++.若()1f x a ≥+对一切0x ≥成立,则a 的取值范围是 .【答案】87a ≤- 【解析】∵()y f x =是定义在R 上的奇函数,∴当0x >时,2()()97a f x f x x x=--=+-,而229729767a a x x a x x+-≥⋅-=-,当些仅当3x a =时,“=”成立,∴当0x >时,要使()1f x a ≥+恒成立,只需86717a a a -≥+⇒≤-或85a ≥,又∵0x =时,(0)01f a =≥+,∴1a ≤-,综上,故实数a 的取值范围是8(,]7-∞-.【总结提升】 拓展:1.函数奇偶性的判断(1)复合函数奇偶性的判断:若复合函数由若干个函数复合而成,则复合函数的奇偶性可根据若干个函数的奇偶性而定,概括为“同奇为奇,一偶则偶”.(2)抽象函数奇偶性的判断:应充分利用定义,巧妙赋值,通过合理、灵活地变形配凑来判断. 2.熟记4种常见抽象函数的周期 (1)若f (x +a )=-f (x ),则T =2|a |; (2)若f (x +a )=1f x,则T =2|a |; (3)若f (x +a )=-1f x,则T =2|a |;(4)若f (x +a )=f (x -a ),则T =2|a |.3.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期.巩固提升1.有意义的实数x 的取值范围是( )A.{|0x x >或}1x <-B.{|0x x …或}1x -„ C.{}10x x -<< D.{}10x x -剟【答案】C 【解析】依题有,2x x ⎧--≥⎪≠,解得10x -<<.故选:C .2.(2019·重庆高一)若()335f x x +=+,则()f x 等于( ). A.32x + B.38x + C.31x - D.34x -【答案】D 【解析】令3x t +=,所以3x t =-,所以()()33534f t t t =-+=-,所以()34f x x =-, 故选:D.3.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .4.(2019·江苏高一月考)函数()()02f x x =-+ ) A.()2,+∞ B.()1,-+∞ C.()()1,22,-+∞U D.R【答案】C 【解析】幂函数的零次方底数不为0,即20x -≠ ,2x ≠;偶次方根被开方数大于等于零,分式分母不为零,即10x +>,1x >- 所以()()1,22,x ∈-+∞U . 故选:C5.(2014·全国高考真题(文))奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .2-B .1-C .0D .1【答案】D 【解析】(2)f x +是偶函数,则()f x 的图象关于直线2x =对称,又()f x 是奇函数,则(0)0f =,且()f x 是周期函数,且周期为4,所以(8)(9)(0)(1)1f f f f +=+=.故选D .6.(2019·山西省长治市第二中学校高一期中)已知函数2()3f x ax bx =++是定义在[3,2]a a -上的偶函数,则+a b 的值是( ) A.1- B.1C.3-D.0【答案】B 【解析】∵函数2()3f x ax bx =++是定义在[3,2]a a -的偶函数, ∴320a a -+=,解得1a =,由()()f x f x =-得0b =,即1a b +=, 故选:B.7.(2019·浙江学军中学高一期中)函数()249x x f x x+-=-的奇偶性为( )A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【答案】B 【解析】 函数()249x x f x x +-=-,所以有290->x ,解得33x -<<, 所以()f x 定义域为()3,3- 此时40x -<恒成立, 所以()2224999x x f x x x x +-===---,()()()2299f x f x xx -===---,所以()f x 是偶函数, 故选:B8.(2017·全国高考真题(文))已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________. 【答案】12 【解析】函数()f x 是定义在上的奇函数,()()f x f x -=-,则()()f x f x =--,()()()()322222212f f ⎡⎤=--=-⨯-+-=⎣⎦.9.(2016·四川高考真题(文))若函数f (x )是定义在R 上的周期为2的奇函数,当0<x<1时,f (x )=,则f ()+。

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

导数与函数的极值、最值-重难点题型精讲 高考数学(新高考地区专用)(解析版)

专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。

高考数学命题热点名师解密:专题(02)函数问题的解题规律(文)(含答案)

高考数学命题热点名师解密:专题(02)函数问题的解题规律(文)(含答案)

专题02 函数问题的解题规律一、函数问题的解题规律解题技巧及注意事项1.定义域陷阱2.抽象函数的隐含条件陷阱3.定义域和值域为全体实数陷阱4.还原后新参数范围陷阱5.参数范围漏解陷阱6.函数求和中的倒序求和问题7.分段函数问题8.函数的解析式求法9.恒成立问题求参数范围问题10.任意存在问题二.知识点【学习目标】1.了解映射的概念,了解构成函数的要素,会求一些简单函数的定义域、值域及函数解析式;2.在实际情境中,会根据不同的需要选择适当的方法(图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单应用;4.掌握求函数定义域及解析式的基本方法.【知识要点】1.函数的概念设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:,其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然{f(x)|x∈A}⊆B.2.映射的概念设A,B是两个集合,如果按照某种对应关系f,对于集合A中的任意一个元素,在集合B中都有唯一确定的元素和它对应,那么这样的对应(包括集合A,B,以及集合A到集合B的对应关系f)叫做集合A 到集合B的映射.3.函数的特点①函数是一种特殊的映射,它是由一个集合到另一个集合的映射;②函数包括定义域A、值域B和对应法则f,简称函数的三要素;③关键是对应法则.4.函数的表示法函数的表示法:图示法、解析法.5.判断两个函数为同一个函数的方法两个函数的定义域和对应法则完全相同(当值域未指明时),则这两个函数相等.6.分段函数若函数在定义域的不同子集上对应法则不同,可用几个式子表示函数,这种形式的函数叫分段函数.注意:不要把分段函数误认为是多个函数,它是一个整体,分段处理后,最后写成一个函数表达式.三.典例分析及变式训练(一)定义域陷阱例1. 【曲靖一中2019模拟】已知,若函数在(﹣3,﹣2)上为减函数,且函数=在上有最大值,则的取值范围为()A. B. C. D.【答案】A【分析】由在上为减函数,可得;由在上有最大值,可得,综上可得结果,.【解析】在上为减函数,,且在上恒成立,,,又在上有最大值,且在上单调递增,在上单调递减,且,,解得,综上所述,,故选A.【点评】本题主要考查对数函数的单调性、复合函数的单调性、分段函数的单调性,以及利用单调性求函数最值,意在考查对基础知识掌握的熟练程度,考查综合应用所学知识解答问题的能力,属于难题. 判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增增,减减增,增减减,减增减).故答案为:D.练习2.已知函数则__________.【答案】1008【解析】分析:由关系,可类比等差数列一次类推求值即可.详解:函数,则,故答案为:1008.点睛:可类比“等差数列”或函数周期性来处理.(七)分段函数问题例7.【河北省廊坊市2019届高三上学期第三次联考】若函数在上是单调函数,且存在负的零点,则的取值范围是()A. B. C. D.【答案】B【解析】通过函数的单调性及存在负的零点,列出不等式,化简即可.【详解】当时,,所以函数在上只能是单调递增函数,又存在负的零点,而当时,f(0)=1+a,当时,f(0)=3a-2,0<3a-21+a,解得.故选B.【点评】本题考查分段函数的应用,考查分类讨论思想,转化思想以及计算能力.练习1.已知函数,则f(1)- f(9)=()A.﹣1 B.﹣2 C. 6 D. 7【答案】A【解析】利用分段函数,分别求出和的值,然后作差得到结果.【详解】依题意得,,所以,故选.【点评】本小题主要考查利用分段函数求函数值,只需要将自变量代入对应的函数段,来求得相应的函数值.属于基础题.练习2.已知,那么等于( )A. 2 B. 3 C. 4 D. 5【答案】A【解析】将逐步化为,再利用分段函数第一段求解.【详解】由分段函数第二段解析式可知,,继而,由分段函数第一段解析式,,故选A.【点睛】本题考查分段函数求函数值,要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念.(八)函数的解析式求法例8. (1)已f ()=,求f(x)的解析式.(2).已知y =f(x)是一次函数,且有f [f(x)]=9x+8,求此一次函数的解析式【答案】(1);(2).【解析】(1)利用换元法即可求解;(2)已知函数是一次函数,可设函数解析式为f(x)=ax+b,再利用待定系数法列出关于a、b的方程组即可求解出a、b的值.【详解】(1)设(x≠0且x≠1)(2)设f(x)=ax+b,则f[f(x)]=af(x)+b=a(ax+b)+b=a2x+ab+b=9x+8或所以函数的解析式为.【点睛】本题考查函数解析式的求解,解题中应用了换元法和待定系数法,待定系数法的主要思想是构造方程(组),对运算能力要求相对较高,属于中档题.练习1.(1) 已知是一次函数,且满足求 ;(2) 判断函数的奇偶性.【答案】(1);(2)见解析.【解析】(1)用待定系数法求一次函数解析式.(2)结合分段函数的性质,分别判断各定义域区间内, f(-x)与f(x)的关系,即可判断函数奇偶性.【点评】本题考查了待定系数法求一次函数,考查了函数的奇偶性的判断,定义域关于原点对称是函数具有奇偶性的前提.再结合分段函数的分段区间,以及对应的解析式,判断关系式f(-x)=f(x)或f(-x)=-f(x)是否成立.练习2.已知函数对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.(1)求f(0)的值;(2)求f(x)的解析式;(3)已知a,b∈R,当时,求不等式f(x)+3<2x+a恒成立的a的集合A.【答案】(1)f(0)=﹣2(2)f(x)=x2+x﹣2(3)【解析】(1)令,可得,再根据可得;(2)在条件中的等式中,令,可得,再根据可得所求的解析式;(3)由条件可得当时不等式x2﹣x+1<a恒成立,根据二次函数的知识求出函数上的值域即可得到的范围.【详解】(1)根据题意,在f(x+y)﹣f(y)=x(x+2y+1)中,令x=﹣1,y=1,可得,又,∴.(2)在f(x+y)﹣f(y)=x(x+2y+1)中,令y=0,则f(x)﹣f(0)=x(x+1)又,∴.(3)不等式f(x)+3<2x+a等价于x2+x﹣2+3<2x+a,即x2﹣x+1<a.由当时不等式f(x)+3<2x+a恒成立,可得当时不等式x2﹣x+1<a恒成立.设,则在上单调递减,∴,∴.∴.【点评】(1)解决抽象函数(解析式未知的函数)问题的原则有两个:一是合理运用赋值的方法;二是解题时要运用条件中所给的函数的性质.(2)解答恒成立问题时,一般采用分离参数的方法,将问题转化为求具体函数最值的方法求解,若函数的最值不存在,则可用函数值域的端点值来代替.练习3.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. (A)B. (B)C. (C)D. (D)【答案】B【解析】当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2-x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2-x,∴EM=x-(2-x)=2x-2,∴S△ENM=(2x-2)2=2(x-1)2,∴y=x2-2(x-1)2=-x2+4x-2=-(x-2)2+2,∴y=.故选B.练习4.如图,李老师早晨出门锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()A. B. C. D.【答案】D【解析】由题意,得从M到A距离在增加,由A经B到C与M的距离都是半径,由B到M距离逐渐减少,故选D.(九)恒成立问题求参数范围问题例9. 【湖北省武汉市第六中学2018-2019学年调研数学试题】若函数的定义域为,值域为,则的取值范围A. B. C. D.【答案】C【解析】由函数的定义域、值域结合函数单调性求出的取值范围【详解】由函数的对称轴为且函数图像开口向上则函数在上单调递减,在上单调递增,当且仅当处取得最小值由值域可知,故在上函数单调递增,在处取得最大值故,解得综上所述,故选【点睛】本题在知道函数的定义域与值域后求参量的取值范围,在解答题目时结合函数的单调性判定取值域的情况。

【高中教育】最新高考数学考点解读+命题热点突破专题05函数﹑基本初等函数的图像与性质理

【高中教育】最新高考数学考点解读+命题热点突破专题05函数﹑基本初等函数的图像与性质理

——教学资料参考参考范本——【高中教育】最新高考数学考点解读+命题热点突破专题05函数﹑基本初等函数的图像与性质理______年______月______日____________________部门【考向解读】1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.2.对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题.3.对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以选择题、填空题的形式出现,且常与新定义问题相结合,难度较大.【命题热点突破一】函数的性质及应用1.单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.2.奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.3.周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a +x)=f(x)(a 不等于0),则其一个周期T =|a|.例1、.【20xx 年高考四川理数】已知函数是定义在R 上的周期为2的奇函数,当0<x <1时,,则= .()f x ()4xf x =5()(1)2f f -+【答案】-2【解析】因为函数是定义在R上的周期为2的奇函数,所以()f x(1)(1),(1)(12)(1)f f f f f-=--=-+=,所以,即,,所以.(1)(1)f f-=(1)0 f=125111()(2)()()422222f f f f-=--=-=-=-=-5()(1)22f f-+=-【感悟提升】(1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的单调性解不等式的关键是化成f(x1)<f(x2)的形式.【变式探究】(1)若函数f(x)=xln(x+)为偶函数,则a=________.(2)已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是( )A.>B.ln(x2+1)>ln(y2+1)C.sin x>sin yD.x3>y3(3)设f(x)=(a∈R)的图象关于直线x=1对称,则a的值为( )A.-1B.1C.2D.3【答案】(1)1 (2)D (3)C【命题热点突破二】函数图象及应用1.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.例2、【20xx 高考新课标1卷】函数在的图像大致为22xy x e =-[]2,2-(A )(B )(C )(D )【答案】D【解析】函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图像关于轴对称,因为,所以排除A 、B 选项;当时,有一零点,设为,当时,为减函数,当时,为增函数.故选D 。

高考数学总复习专题函数的概念以及表示试题含解析

高考数学总复习专题函数的概念以及表示试题含解析

专题2.1 函数的概念及其表示【三年高考】1.12016江苏高考6】函数丫=43- 2x- x2的定义域是▲.【答案】3,1【解析】试题分析:要使函数式有意义,必有3 2x x2 0,即x2 2x 3 0,解得3 x 1.故答案应填:3,1【考点】函数定义域【名师点睛】函数定义域的考查,一般是多知识点综合考查,先“列”后“解”是常规思路.列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等出发,而解则与一元二次不等式、指(对)数不等式、三角不等式等联系在一起^2.12016江苏高考17】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P A1B1C1D1,下部分的形状是正四棱柱ABCD AB1G D1 (如图所示),并要求正四棱柱的高OO1是正四棱锥的高PO1的4倍.(1)若AB 6 m, PO1 2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当PO1为多少时,仓库的容积最大?A B【答案】(1) 312 (2) PO1 273【解析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,VV 锥V 柱 ±6 36h h 30 h 6,然后利用导数求其最值.3试题解析:解:(1)由尸5=2知 因为月1产以8=&>所以正四棱锥尸一话1C 山1的体积/= ; ,,声:,尸&二g 乂 6, x 2 = 24(n?);正四棱柱 ABCD-AiBiCiDi 的体积 %=加,001 =62xB = 2£S (m ) 所以仓库的各积片厂计歹广24+282=312 (m 曾.从而 V′2636 3h 226 12 h 2.3令V' 0,得h 26或h2褥(舍).当0 h 2d 3时,V' 0 , V 是单调增函数; 当2百 h 6时,V' 0, V 是单调减函数. 故h 28时,V 取得极大值,也是最大值. 因此,当PO 1 2J 3 m 时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积 【名师点睛】对应用题的训练,一般从读题、审题、剖•析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值方法是一项基本要 求,需熟练掌握.(2)设 AB=a(m) , PO=h(m),则 0Vh<6,因为在 Rt^ PO 1B 1 中,OB2PO 12一 2即 a 2 36于是仓库的容积V V 柱一 2・V 锥 a 4h OO=4h.连ZO OB.PBi ;h 2 .-a 2 h —a 2h — 36h h 3 0 h 6 , 3 3 3则a 的值为。

高考数学基础突破导数与积分第5讲导数与函数的极值、最值

高考数学基础突破导数与积分第5讲导数与函数的极值、最值

2017年高考数学基础突破——导数与积分第5讲 导数与函数的极值、最值【知识梳理】1.函数的极值一般地,当函数()f x 在点x 0处连续时,(1)如果在x 0附近的左侧()0f x '>,右侧()0f x '<,那么f (x 0)是极大值;(2)如果在x 0附近的左侧()0f x '<,右侧()0f x '>,那么f (x 0)是极小值.2.函数的最值(1)在闭区间[a ,b ]上连续的函数()f x 在[a ,b ]上必有最大值与最小值.(2)若函数()f x 在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数()f x 在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【基础考点突破】考点1.用导数解决函数极值问题命题点1.求不含参数函数的极值【例1】求函数()31443f x x x =-+的极值.【归纳总结】求函数()f x 极值的步骤:①确定函数的定义域; ②求导数()f x '; ③解方程()0f x '=,求出函数定义域内的所有根;④列表检验()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x 在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.变式训练1.函数y =2x -1x 2的极大值是________. 命题点2.求含参数函数的极值【例2】已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.变式训练2. 已知函数f (x )=ax 3-3x 2+1-3a(a ∈R 且a ≠0),求函数f (x )的极大值与极小值.变式训练3.若函数()ln a f x x x x=++,试讨论函数()f x 的极值存在情况.命题点3.已知极值求参数【例3】(1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.(2)若函数f (x )=x 33-a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( )A .(2,52)B .[2,52)C .(2,103)D .[2,103) 变式训练4.设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________.考点2.用导数解决函数最值问题【例4】已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线l 的方程为3x-y +1=0,在点x =23处y =f (x )取得极值.【归纳总结】求函数()f x 在[,]a b 上的最大值和最小值的步骤(1)求函数在(,)a b 内的极值;(2)求函数在区间端点的函数值()f a ,()f b ;(3)将函数()f x 的极值与()f a ,()f b 比较,其中最大的一个为最大值,最小的一个为最小值.【例5 】设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值.变式训练5.已知函数h (x )=x 3+3x 2-9x +1在区间[k ,2]上的最大值为28,求k 的取值范围.变式训练6.已知a ∈R ,函数f (x )=a x+ln x -1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)求f (x )在区间(0,e]上的最小值.题型三 函数极值和最值的综合问题【例6】已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16.(1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在区间[-3,3]上的最小值.变式训练7.(2016年天津高考)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,(I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=;(Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.【基础练习巩固】1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .42.当函数y =x ·2x 取极小值时,x 等于( ) A.1ln 2 B .-1ln 2C .-ln 2D .ln 2 3.已知a ,b 是实数,x =1和x =-1是函数f (x )=x 3+ax 2+bx 的两个极值点,则f (-1)的值为( )A .-2B .2C .0D .14.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)5.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )6.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________.7.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________. 8.设a ∈R ,若函数y =e x+ax 有大于零的极值点,则实数a 的取值范围是________.9.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.10.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________.11.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.12.已知函数f (x )=(x -k )e x.(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.13.设f (x )=e x 1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.14.已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性;(3)若f (x )有极值,求c 的取值范围.15.(2016年四川高考)设函数f(x)=a x 2-a -lnx ,g(x)=1x -e e x ,其中a ∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.2017年高考数学基础突破——导数与积分 第1讲 导数与函数的极值、最值(教师版)【知识梳理】 1.函数的极值一般地,当函数()f x 在点x 0处连续时,(1)如果在x 0附近的左侧()0f x '>,右侧()0f x '<,那么f (x 0)是极大值; (2)如果在x 0附近的左侧()0f x '<,右侧()0f x '>,那么f (x 0)是极小值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数()f x 在[a ,b ]上必有最大值与最小值.(2)若函数()f x 在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数()f x 在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【基础考点突破】考点1.用导数解决函数极值问题 命题点1.求不含参数函数的极值【例1】求函数()31443f x x x =-+的极值. 解析:因为()31443f x x x =-+,所以()()()2422f x x x x '=-=-+,令()0f x '=,解得2x =,或2x =-.下面分两种情况讨论: (1)当()0f x '>,即2x >或2x <-时;(2)当()0f x '<,即22x -<<时.当x 变化时,()f x 、()f x '的变化情况如下表:∴当2x =-时, f(x)的极大值为28(2)3f -=;当2x =时, f(x)的极小值为()423f =-.【归纳总结】求函数()f x 极值的步骤:①确定函数的定义域; ②求导数()f x ';③解方程()0f x '=,求出函数定义域内的所有根;④列表检验()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.变式训练1.函数y =2x -1x2的极大值是________.答案 -3解析 (1)y ′=2+2x3,令y ′=0,得x =-1.当x <-1时,y ′>0;当x >-1时,y ′<0.∴当x =-1时,y 取极大值-3.命题点2.求含参数函数的极值【例2】已知函数f (x )=x -a ln x (a ∈R).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解析:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax.(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.变式训练2. 已知函数f (x )=ax 3-3x 2+1-3a(a ∈R 且a ≠0),求函数f (x )的极大值与极小值.解析:由题设知a ≠0,f ′(x )=3ax 2-6x =3ax ⎝ ⎛⎭⎪⎫x -2a .令f ′(x )=0得x =0或2a.当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↗↘↗∴f (x )极大值=f (0)=1-a,f (x )极小值=f ⎝ ⎛⎭⎪⎫a =-a 2-a+1.当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↘↗↘∴f (x )极大值=f (0)=1-a,f (x )极小值=f ⎝ ⎛⎭⎪⎫a =-a 2-a+1.综上,f (x )极大值=f (0)=1-3a,f (x )极小值=f ⎝ ⎛⎭⎪⎫2a =-4a 2-3a+1.变式训练3.若函数()ln af x x x x=++,试讨论函数()f x 的极值存在情况. 解析:2221()1(0)a x x af x x x x x +-'=-+=>令()0f x '=,即20x x a +-=,14a ∆=+(注意这里方程根的个数需要讨论).(1)当0∆≤ ,即14a ≤-时,()0f x '≥,()f x 在()0,+∞上单调递增,无极值.(2)当0∆>,即14a >-时,解20x x a +-=得10x =<,2x =①若0a >,则20x >. 列表如下:由上表知,2x x =时函数()f x 取到极小值,即0a >函数()f x 存在极小值.②若104a -<≤,则120x x <≤,所以()f x 在()0,+∞上单调递减,函数不存在极值. 综上所述,当0a >时,函数()f x 存在极值;当0a ≤时,函数()f x 不存在极值.命题点3.已知极值求参数【例3】(1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.( )答案 (1)-7 (2)C解析:(1)由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.(2)若函数f (x )在区间(12,3)上无极值,则当x ∈(12,3)时,f ′(x )=x 2-ax +1≥0恒成立或当x ∈(12,3)时,f ′(x )=x 2-ax +1≤0恒成立.当x ∈(12,3)时,y =x +1x 的值域是[2,103);当x ∈(12,3)时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x 恒成立,a ≤2;当x ∈(12,3)时,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在(12,3)上有极值点,实数a 的取值范围是(2,103).变式训练4.设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________.答案 -14解析 由题意知,f (x )的定义域为(-1,+∞),且f ′(x )=11+x-2ax -1=-2ax 2-2a +1x1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x x -11+x,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0,所以f (1)是函数f (x )的极小值,所以a =-14.考点2.用导数解决函数最值问题【例4】已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线l 的方程为3x -y +1=0,在点x =23处y =f (x )取得极值.(1)求a ,b ,c 的值;(2)求y =f (x )在区间[-3,1]上的最大值和最小值. 解析:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .由f ′(1)=3,可得2a +b =0.① 由f ′(23)=0,可得4a +3b +4=0.②由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4,即1+a +b +c =4,所以c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,则f ′(x )=3x 2+4x -4.令f ′(x )=0,得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的变化情况如下表所示:所以y =f (x )在区间[-3,1]上的最大值为13,最小值为9527.【归纳总结】求函数()f x 在[,]a b 上的最大值和最小值的步骤(1)求函数在(,)a b 内的极值;(2)求函数在区间端点的函数值()f a ,()f b ; (3)将函数()f x 的极值与()f a ,()f b 比较,其中最大的一个为最大值,最小的一个为最小值.【例5 】[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时 ,求f (x )取得最大值和最小值时的x 的值.解析:(1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a 3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x-x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,-1-4+3a 3)和(-1+4+3a3,+∞)内单调递减,在(-1-4+3a 3,-1+4+3a3)内单调递增.(2)因为a >0,所以x 1<0,x 2>0. ①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值; 当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.变式训练5.已知函数h (x )=x 3+3x 2-9x +1在区间[k ,2]上的最大值为28,求k 的取值范围.解:h ′(x )=3x 2+6x -9,令h ′(x )=0,得x 1=-3,x 2=1,所以当x 变化时,h ′(x ),h (x )在区间(-∞,2]上的变化情况如下表所示:由表可知,当k ≤-3时,函数h (x )在区间[k ,2]上的最大值为28,因此,k 的取值范围是(-∞,-3]. 变式训练6.已知a ∈R ,函数f (x )=ax+ln x -1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解析:(1)当a =1时,f (x )=1x +ln x -1,x ∈(0,+∞),所以f ′(x )=-1x 2+1x =x -1x2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14.又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2-12)=14(x -2),即x -4y +4ln 2-4=0.(2)因为f (x )=a x+ln x -1,所以f ′(x )=-a x2+1x=x -ax2.令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,当x ∈(0,a )时,f ′(x )<0,函数f (x )在区间(0,a )上单调递减,当x ∈(a ,e]时,f ′(x )>0,函数f (x )在区间(a ,e]上单调递增,所以当x =a 时,函数f (x )取得最小值ln a .③若a ≥e,则当x ∈(0,e]时,f ′(x )≤0,函数f (x )在区间(0,e]上单调递减, 所以当x =e 时,函数f (x )取得最小值ae.综上可知,当a ≤0时,函数f (x )在区间(0,e]上无最小值; 当0<a <e 时,函数f (x )在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f (x )在区间(0,e]上的最小值为ae .题型三 函数极值和最值的综合问题【例6】已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16.(1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在区间[-3,3]上的最小值.解:(1)因为f (x )=ax 3+bx +c ,所以f ′(x )=3ax 2+b .由于f (x )在点x =2处取得极值c -16,所以有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧12a +b =0,4a +b =-8,解得⎩⎪⎨⎪⎧a =1,b =-12. (2)由(1)知f (x )=x 3-12x +c ,所以f ′(x )=3x 2-12=3(x -2)(x +2).令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在区间(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0,故f (x )在区间(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0,故f (x )在区间(2,+∞)上为增函数. 由此可知f (x )在x =-2处取得极大值f (-2)=16+c ,f (x )在x =2处取得极小值f (2)=c -16.由题设条件知16+c =28,解得c =12.此时f (-3)=9+c =21,f (3)=-9+c =3,f (2)=-16+c =-4, 因此f (x )在区间[-3,3]上的最小值为-4.变式训练7.(2016年天津高考)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,(I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41. 【解析】(1)()()31f x x ax b=---,()()2'31f x x a =--① 0a ≤,单调递增;②0a >,()f x 在,1⎛-∞- ⎝单调递增,在11⎛+ ⎝单调递减,在1⎛⎫+∞ ⎪ ⎪⎝⎭单调递增 (2)由()0'0f x =得()2031x a -=∴()()()320000131f x x x x b =----()()200121x x b =----()()()()32000032223132f x x x x b -=-----()[]200018896x x x b =---+- ()()200=121x x b ----()()()00132=f x f x f x ∴-=1023x x ∴+=(3)欲证()g x 在区间[02],上的最大值不小于14,只需证在区间[02],上存在12,x x ,使得121()()2g x g x -≥即可①当3a ≥时,()f x 在[]02,上单调递减(2)12f a b =-- (0)1f b =--1(0)(2)2242f f a -=->≥递减,成立当03a <<时,311f a b ⎛⎛⎛=--- ⎝⎝⎝a b =+23a b =--11f a b ⎛⎛=- ⎝⎝23a b =-- ∵(2)12f a b =-- (0)1f b =-- ∴(2)(0)22f f a -=-若304a <≤时,()()102222f f a -=-≥,成立当34a >时,411132f f ⎛⎛-=> ⎝⎝, 所以,()g x 在区间[02],上的最大值不小于14成立【基础练习巩固】1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4 答案 A解析 由题意知在x =-1处f′(-1)=0,且其左右两侧导数符号为左负右正.2.当函数y =x ·2x取极小值时,x 等于( )A.1ln 2 B .-1ln 2C .-ln 2D .ln 2 答案 B解析 令y ′=2x +x ·2xln 2=0,∴x =-1ln 2. 经验证,-1ln 2为函数y =x ·2x的极小值点.3.已知a ,b 是实数,x =1和x =-1是函数f (x )=x 3+ax 2+bx 的两个极值点,则f (-1)的值为( )A .-2B .2C .0D .1解:f ′(x )=3x 2+2ax +b .∵x =1和x =-1是函数f (x )的两个极值点,∴⎩⎪⎨⎪⎧f ′(1)=3+2a +b =0,f ′(-1)=3-2a +b =0,解得⎩⎪⎨⎪⎧a =0,b =-3. 所以f (x )=x 3-3 x ,所以f (-1)=2,选B.4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6),由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.5.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0. 所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A ,B ,D.6.函数y =2x 3-2x 2在区间[-1,2]上的最大值是________.答案 8解析 y ′=6x 2-4x ,令y ′=0,得x =0或x =23.∵f (-1)=-4,f (0)=0,f ⎝ ⎛⎭⎪⎫23=-827,f (2)=8,所以最大值为8. 7.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,f ′(x )=0,x ∈[0,2],得x =1. 比较f (0)=-4,f (1)=-173,f (2)=-103,可知最小值为-173. 8.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________. 答案 (-∞,-1)解析 ∵y =e x +ax ,∴y ′=e x+a .∵函数y =e x +ax 有大于零的极值点,则方程y ′=e x+a =0有大于零的解,∵x >0时,-e x<-1, ∴a =-e x<-1.9.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.答案 (22,+∞) 解析 f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数递减;当x >a 或x <-a 时,f ′(x )>0,函数递增.∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0,解得a >22,∴a 的取值范围是(22,+∞).10.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________.答案 (-1,1)解析 令f ′(x )=3x 2-3a =0,得x =±a ,则f (x ),f ′(x )随x 的变化情况如下表:x (-∞,-a )-a (-a ,a )a(a ,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗从而⎩⎨⎧-a 3-3a -a +b =6,a 3-3a a +b =2,解得⎩⎪⎨⎪⎧a =1,b =4.所以f (x )的单调递减区间是(-1,1).11.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解 (1)因为f (x )=a (x -5)2+6ln x ,所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上,可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =x -2x -3x .令f ′(x )=0,解得x =2或3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.综上,f (x )的单调增区间为(0,2),(3,+∞),单调减区间为(2,3),f (x )的极大值为92+6ln 2,极小值为2+6ln 3.12.已知函数f (x )=(x -k )e x.(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解 (1)由题意知f ′(x )=(x -k +1)e x. 令f ′(x )=0,得x =k -1.f (x )与f ′(x )随x 的变化情况如下表:x (-∞,k -1)k -1(k -1,+∞)f ′(x ) - 0 +f (x )↘-ek -1↗所以,f (2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,f (x )在[0,k -1]上单调递减,在[k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-ek -1;当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e.综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为f (k -1)=-ek -1;当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e. 13.设f (x )=ex1+ax2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.解 对f (x )求导得f ′(x )=e x·1+ax 2-2ax1+ax22.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知x⎝ ⎛⎭⎪⎫-∞,1212⎝ ⎛⎭⎪⎫12,32 32⎝ ⎛⎭⎪⎫32,+∞↗↘↗所以x 1=2是极小值点,x 2=2是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.14.已知函数f (x )=a e 2x-b e-2x-cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性;(3)若f (x )有极值,求c 的取值范围.解 (1)对f (x )求导,得f ′(x )=2a e 2x+2b e -2x-c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x )恒成立,即2(a -b )(e 2x-e-2x)=0,所以a =b .又f ′(0)=2a +2b -c =4-c ,故a =1,b =1. (2)当c =3时,f (x )=e 2x-e -2x-3x ,那么f ′(x )=2e 2x +2e-2x-3≥22e 2x ·2e-2x-3=1>0,当且仅当2e 2x=2e-2x,即x =0时,“=”成立.故f (x )在R 上为增函数. (3)由(1)知f ′(x )=2e 2x+2e -2x-c ,而2e 2x +2e-2x≥22e 2x ·2e-2x=4,当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x+2e-2x-c >0,此时f (x )无极值; 当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e-2x-4>0,此时f (x )无极值;当c >4时,令e 2x=t ,注意到方程2t +2t-c =0有两根t 1=c -c 2-164>0,t 2=c +c 2-164>0,即f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;又当x >x 2时,f ′(x )>0,当x <x 1时,f ′(x )>0,从而f (x )在x =x 1处取得极大值,在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).15.(2016年四川高考)设函数f(x)=a x 2-a -lnx ,g(x)=1x -e e x ,其中a ∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.(I )2121'()20).ax f x ax x x x-=-=>(0a ≤当时, '()f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由'()f x =0,有x =当x ∈(时,'()f x <0,()f x 单调递减; 当x ∈+)∞时,'()f x >0,()f x 单调递增. (II )令()s x =1ex x --,则'()s x =1e 1x --.当1x >时,'()s x >0,所以1ex x ->,从而()g x =111ex x -->0.(iii )由(II ),当1x >时,()g x >0. 当0a ≤,1x >时,()f x =2(1)ln 0a x x --<. 故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当102a <<>1. 由(I )有(1)0f f <=,从而0g >, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ≥时,令()h x =()f x -()g x (1x ≥). 当1x >时,'()h x =122111112e xax x x x x x x --+->-+-=322221210x x x x x x -+-+>>. 因此()h x 在区间1+)∞(,单调递增. 又因为(1)h =0,所以当1x >时,()h x =()f x -()g x >0,即()f x >()g x 恒成立. 综上,a ∈1+)2∞[,.。

高考数学复习历年考点题型专题讲解28--- 函数的零点的问题(解析版)

高考数学复习历年考点题型专题讲解28--- 函数的零点的问题(解析版)

高考数学复习历年考点题型专题讲解28函数的零点的问题一、题型精讲 解题方法与技巧题型一、函数零点个数判断与证明可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x+4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为【答案】: 5【解析】:因为f(x +4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R 上的图像,由y =f (x )-log 5| x |=0,得f (x )=log 5| x |,分别画出y =f (x )和y =log 5|x |的图像,如下图,由f (5)=f (1)=1,而log 55=1,f (-3)=f (1)=1,log 5|-3|<1,而f (-7)=f (1)=1,而log 5|-7|=log 57>1,可以得到两个图像有5个交点,所以零点的个数为5.变式1、【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点; 【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点.变式2、【2020年高考浙江】已知12a <≤,函数()e x f x x a =--,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点;【解析】(Ⅰ)因为(0)10f a =-<,22(2)e 2e 40f a =--≥->,所以()y f x =在(0,)+∞上存在零点.因为()e 1x f x '=-,所以当0x >时,()0f x '>,故函数()f x 在[0,)+∞上单调递增,所以函数以()y f x =在(0,)+∞上有唯一零点.题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例2、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0.故选C .变式1、【2018年高考全国Ⅱ卷理数】已知函数2()e x f x ax =-.若()f x 在(0,)+∞只有一个零点,求a .【解析】设函数2()1e x h x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,()(2)e x h'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故24(2)1e ah =-是()h x 在[0,)+∞的最小值. ①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当0x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->. 故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =. 变式2、(2020届山东省潍坊市高三上学期统考)函数若()()1,1,ln 1,1,x e x f x x x -⎧≤⎪=⎨->⎪⎩函数只有一个零点,则可能取的值有()A .2B .C .0D .1【答案】ABC【解析】∵只有一个零点,∴函数与函数有一个交点,作函数函数与函数的图象如下,结合图象可知,当时;函数与函数有一个交点;当时,,可得,令可得,所以函数在时,直线与相切,可得.综合得:或.故选:ABC.变式3、(2020届山东省滨州市三校高三上学期联考)已知函数(e 为自然对数的底),若且有四个零点,则实数m 的取值可以为()A .1B .eC .2eD .3e()()g x f x x a =-+a 2-()()g x f x x a =-+()y f x =y x a =-()()1,1,ln 1,1,x e x f x x x -⎧≤⎪=⎨->⎪⎩y x a =-0a ≤()y f x =y x a =-0a >ln(1)y x =-11y x '=-111x =-2x =2x =ln(1)y x =-2a =0a ≤2a =2,0()(1),0x x e mx m x f x e x x -⎧++<=⎨-≥⎩()()()F x f x f x ()F x【答案】CD【解析】因为,可得,即为偶函数, 由题意可得时,有两个零点,当时,,即时,, 由,可得,由相切,设切点为,的导数为,可得切线的斜率为,可得切线的方程为,由切线经过点,可得, ()()()F x f x f x ()()F x F x =-()F x 0x >()F x 0x >0x -<()2x f x e mx m -=-+0x >()22x x x x F x xe e e mx m xe mx m =-+-+=-+()0F x =20x xe mx m -+=(),21xy xe y m x ==-(),t tte x y xe =(1)x y x e '=+(1)t t e +(1)()t t y te t e x t -=+-1,02⎛⎫ ⎪⎝⎭1(1)2t t te t e t ⎛⎫-=+- ⎪⎝⎭解得:或(舍去),即有切线的斜率为, 故,故选:CD.二、达标训练1、(2020·山东省淄博实验中学高三上期末)已知函数.若函数在上无零点,则的最小值为________. 【答案】【解析】因为在区间上恒成立不可能,故要使函数在上无零点,只要对任意的,恒成立,即对任意的,恒成立. 令,,则, 再令,,则, 1t =12-2e 22,m e m e >∴>()()()212ln f x a x x =---()f x 10,2⎛⎫⎪⎝⎭a 24ln 2-()0f x <10,2⎛⎫ ⎪⎝⎭()f x 10,2⎛⎫ ⎪⎝⎭10,2x ⎛⎫∈ ⎪⎝⎭()0f x >10,2x ⎛⎫∈ ⎪⎝⎭2ln 21xa x >--()2ln 21x l x x =--10,2x ⎛⎫∈ ⎪⎝⎭()()222ln 2'1x x l x x +-=-()22ln 2m x x x =+-10,2x ⎛⎫∈ ⎪⎝⎭()()22212'20x x x x m x ---==+<故在上为减函数,于是, 从而,于是在上为增函数,所以, 故要使恒成立,只要, 综上,若函数在上无零点,则的最小值为.故答案为:2、(2020届浙江省台州市温岭中学3月模拟)已知函数()2,()f x x ax b a b R =++∈在区间[]2,3上有零点,则2a ab +的取值范围是()A .(],4-∞B .81,8⎛⎤-∞ ⎥⎝⎦C .814,8⎡⎤⎢⎥⎣⎦D .81,8⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】不妨设1x ,2x 为函数()f x 的两个零点,其中[]12,3x ∈,2x R ∈, 则12x x a +=-,12x x b =.则()()()()2222212121212112112a ab x x x x x x x x x x x x +=+-+⋅=-+-+,由110x -<,2x R ∈,所以()()()()()222111122212112114121241x x x x x x x x x x x ----+≤-+-()m x 10,2⎛⎫ ⎪⎝⎭()122ln 202m x m ⎛⎫>=-> ⎪⎝⎭()'0l x >()l x 10,2⎛⎫ ⎪⎝⎭()124ln 22l x l ⎛⎫<=- ⎪⎝⎭2ln 21xa x >--[)24ln 2,a ∈-+∞()f x 10,2⎛⎫⎪⎝⎭a 24ln 2-24ln 2-()41141x x =-, 可令()()411141x g x x =-,()()()311113441x x g x x -'=-, 当[]12,3x ∈,()10g x '>恒成立,所以()()()1812,34,8g x g g ⎡⎤∈=⎡⎤⎣⎦⎢⎥⎣⎦. 则()1g x 的最大值为818,此时13x =, 还应满足()2112123214x x x x -=-=--,显然13x =,234x =-时,94a b ==-,2818a ab +=. 故选:B.3、(2020届浙江省嘉兴市3月模拟)已知函数()2ln 1f x x =-,()g x a x m =-,若存在实数0a >使()()y f x g x =-在1e e ⎛⎫ ⎪⎝⎭,上有2个零点,则m 的取值范围为________. 【答案】,2ee ⎛⎫ ⎪⎝⎭. 【解析】已知实数0a >使()()y f x g x =-在1e e ⎛⎫ ⎪⎝⎭,上有2个零点,等价于()y f x =与()y g x =的函数图象在1e e⎛⎫ ⎪⎝⎭,上有2个交点, 显然()2ln 1f x x =-与x轴的交点为),()g x a x m =-的图象关于x m =对称,当m ≥时,若要有2个交点,由数形结合知m 一定小于e ,即)m e ∈;当m <时,若要有2个交点,须存在a 使得()2ln 1x a x m -=-在)e 有两解,所以()f e a f ''<<,因为()2f x x '=,即()2,0f e f a e ''==>,显然存在这样的a 使上述不等式成立; 由数形结合知m 须大于()f x 在x e =处的切线21y x e=-与x 轴交点的横坐标2e ,即2e m ⎛∈ ⎝ 综上所述,m 的范围为,2e e ⎛⎫ ⎪⎝⎭.故答案为:,2e e ⎛⎫ ⎪⎝⎭4、(2020届山东省德州市高三上期末)已知函数(为常,若为正整数,函数恰好有两个零点,求的值.【解析】因为为正整数,若,则,,由(2)知在和单调递增,在单调递减, 又,所以在区间内仅有实根,, 又,所以在区间内仅有实根. 此时,在区间内恰有实根;若,在单调递增,至多有实根.若,, 令,则,,, 所以. ()()2ln 22f x x ax a x =+-++aa ()f x a a 02a <<1a =()2ln 32f x x x x =+-+()y f x =10,2⎛⎫ ⎪⎝⎭()1,+∞1,12⎛⎫ ⎪⎝⎭()10f =()y f x =1,2⎛⎫+∞ ⎪⎝⎭1()1102f f ⎛⎫>> ⎪⎝⎭()()24222330f e e e e e -----=-=-<()y f x =10,2⎛⎫ ⎪⎝⎭1()y f x =()0,∞+22a =()y f x =()0,∞+12a >()2111111ln 22ln 1f a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=+-++=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1t a =102t <<ln 1y t t =-+110y t'=->111ln1ln 20222y <-+=-<由(2)知在单调递减,在和单调递增, 所以,所以在至多有实根. 综上,.()y f x =11,2a ⎛⎫ ⎪⎝⎭10,a ⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭1102f f a ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭()y f x =()0,∞+11a =。

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减【1.3.2】奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x) ax =→直线y=f(2a -x); ④y=f(x) xy =→直线y=f -1(x);⑤y=f(x) 原点→y= -f(-x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a ->,则()m f q = ①若02b x a -≤,则()M f q = ②02bx a ->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2bp a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2bq a ->,则()M f q =①若02bx a -≤,则()m f q = ②02bx a ->,则()m f =.>O -=f (p) f (q) ()2b f a -x>O -=f (p) f (q) ()2b f a -x >O -=f(p)f (q) ()2bf a -x>O -=f(p)f (q) ()2bf a -0x x >O -=f (p) f (q) ()2b f a -0x x <O -=f (p) f (q) ()2b f a -x <O -=f (p) f(q) ()2bf a -x <O -=f (p) f (q) ()2b f a -0xx <O -=f(p) f (q)()2bf a -x<O-=f(p) f (q)()2bfa -0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。

函数高考真题及答案及解析

函数高考真题及答案及解析

函数高考真题及答案及解析高考是每个学生都会经历的一场重要考试,而函数作为数学考试的重要一部分,往往也是考生们头疼的问题之一。

本文将带领大家回顾一些函数相关的高考真题,并附上详细的解析,帮助大家更好地掌握函数的知识。

问题一:已知函数f(x) = x^2 + 3x + 2,求f(2)的值。

解析:要求f(2)的值,就是将x替换为2,带入函数进行计算。

f(2) = 2^2 + 3(2) + 2 = 4 + 6 + 2 = 12所以f(2)的值为12。

问题二:已知函数g(x) = |x-1|,求g(-2)的值。

解析:g(x) = |x-1|表示的是x-1的绝对值。

要求g(-2)的值,就是将x替换为-2,带入函数进行计算。

g(-2) = |-2-1| = |-3| = 3所以g(-2)的值为3。

问题三:已知函数h(x) = 2x^2 + 5x - 3,求h(3)的值。

解析:同样,要求h(3)的值,就是将x替换为3,带入函数进行计算。

h(3) = 2(3)^2 + 5(3) - 3 = 2(9) + 15 - 3 = 18 + 15 - 3 = 30所以h(3)的值为30。

通过以上三个问题的解析,我们可以看出,高考函数题往往涉及到对函数表达式的替换和计算。

这种题型相对简单,只需要将给定的值代入函数进行计算即可。

下面我们再来看一些更加复杂的函数题。

问题四:已知函数P(x)满足P(x) = 2P(x-1) + 1,且P(0) = 1,求P(3)的值。

解析:根据题目所给条件,P(x)等于2P(x-1)加1。

初始条件是P(0)等于1。

要求P(3)的值,就需要使用递推的方式来解决这个问题。

首先,计算P(1)的值:P(1) = 2P(0) + 1 = 2(1) + 1 = 3接下来,计算P(2)的值:P(2) = 2P(1) + 1 = 2(3) + 1 = 7最后,计算P(3)的值:P(3) = 2P(2) + 1 = 2(7) + 1 = 15所以P(3)的值为15。

2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题1 微重点1 函数的新定义问题

2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题1 微重点1 函数的新定义问题

对于新运算“★”的性质③,令c=0,
则(a★b)★0=0★(ab)+(a★0)+(0★b)=ab+a+b,
即a★b=ab+a+b.
∴f(x)=x★1x=1+x+1x, 当 x>0 时,f(x)=1+x+1x≥1+2
x·1x=3,
当且仅当 x=1x,即 x=1 时取等号,
∴函数f(x)在(0,+∞)上的最小值为3,故A正确;
考向3 黎曼函数
例3 (2022·新乡模拟)黎曼函数是一个特殊的函数,由德国数学家波恩哈
德·黎曼发现并提出,在高等数学中有着广泛的应用.黎曼函数定义在[0,1]
上,其解析式如下:R(x)=1p,x=pqp,q都是正整数,pq是既约真分数, 0,x=0,1或[0,1]上的无理数.
若函数f(x)是定义在R上的奇函数,且对任意x都有f(2+x)+f(2-x)=0,
e2x-e-2x 所以 f(-x)=- 4 =-f(x), 故f(x)为奇函数,所以A错误,B正确; 因为y=e2x在(0,+∞)上单调递增,y=e-2x在(0,+∞)上单调递减,
e2x-e-2x 所以 f(x)= 4 在(0,+∞)上单调递增, 所以C正确,D错误.
考点二
“新定义”函数的性质、运算法则等
f
-2
0522=-f
2
0522=-f
4×101+25
=-f 25=-R25=-15,
∴f(2
022)+f
-2
0522=-15.
考向4 欧拉函数
例4 (多选)(2022·重庆八中调研)若正整数m,n只有1为公约数,则称m,
n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,
数g(x)在[a,b]上为凹函数,若用导数的在给定区间内恒为正,即g″(x)>0.下列函数

高考数学热点难点突破技巧精讲第09讲三角函数的零点问题的处理

高考数学热点难点突破技巧精讲第09讲三角函数的零点问题的处理

第09讲三角函数零点问题的处理【知识要点】三角函数的零点问题,是考试经常考察的重点、热点和难点.三角函数的零点问题的处理一般有以下三种方法:1、单调性+数形结合 .2、分离参数+数形结合. 3、方程+数形结合. 三种方法也不是绝对的,要注意灵活使用.【方法讲评】【例1】已知向量,,设函数.(1)若函数的图象关于直线对称,且时,求函数的单调增区间;(2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.(1)∵函数图象关于直线对称,∴,解得:,∵,∴,∴,由,解得:,所以函数的单调增区间为.∴当或时函数有且只有一个零点.即或,所以满足条件的.【点评】(1)本题第2小问是在第1问的前提下进行的,第1问求出了函数的单调增区间,所以第2小问对零点问题的研究,可以利用单调性+数形结合方法分析解答.第2问首先求复合函数在上的单调性,再数形结合分析函数零点的个数. (2)在解答数学问题时,只要写不等式,一定要注意取等问题,本题第2问,左边可以取等,右边不能取等.【反馈检测1】设P是⊙O:上的一点,以轴的非负半轴为始边、OP为终边的角记为,又向量。

且.(1)求的单调减区间;(2)若关于的方程在内有两个不同的解,求的取值范围.【例2】已知函数的最大值为.(1)求函数的单调递增区间;(2)将的图象向左平移个单位,得到函数的图象,若方程-=0在∈上有解,求实数的取值范围.【解析】(1),由,解得,所以函数的单调递增区间当时,,取最小值-3.方程在∈上有解,即 -3≤≤【点评】(1)本题就是先分离参数,再分别画方程左右两边的函数的图像数形结合分析.(2)本题也可以单调性+数形结合的方法分析解答.它们之间不是绝对的,要注意灵活使用. 【反馈检测2】已知函数的周期为.(1)若,求它的振幅、初相;(2)在给定的平面直角坐标系中作出该函数在的图像;(3)当时,根据实数的不同取值,讨论函数的零点个数.【例3】已知函数.(Ⅰ)当时,求值;(Ⅱ)若存在区间(且),使得在上至少含有6个零点,在满足上述条件的中,求的最小值.【点评】(1)本题就是先解方程,再数形结合分析解答.本题如果用前面的两种方法,也可以解答,不过比较复杂. (2)如果,所以它不是最小值.【反馈检测3】已知函数,其中常数;(1)若在上单调递增,求的取值范围;(2)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像,区间(且)满足:在上至少含有30个零点,在所有满足上述条件的中,求的最小值.高中数学热点难点突破技巧第09讲:三角函数零点问题的处理参考答案【反馈检测1答案】(1)的单调减区间是:、;(2),且.【反馈检测1详细解析】(2)因,则.设,所以有两个不同的解,由题得. 借助函数图象可知:,即所以得:,且【反馈检测2答案】(1),;(2)详见解析;(3)当或时,函数无零点;当时,函数仅有一个零点;当或时,函数有两个零点;当时,函数有三个零点.【反馈检测2详细解析】(1)化为,由得,即.(1)函数的振幅是,初相为(2)列表【反馈检测3答案】(1)(2)【反馈检测3详细解析】(1)因为,根据题意有(2) ,或,即的零点相离间隔依次为和,故若在上至少含有30个零点,则的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20xx 高三数学知识点汇总二、函数一、映射与函数:(1)映射的概念: B A ,是两个集合,如果按照某种对应法则f ,对于集合A 中的 一个元素,在集合B 中都有 的元素与它对应;记作: ;(2)一一映射:B A ,是两个集合,B A f →:是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的 ;在集合B 中有 ;而且B中 ;(3)函数的概念:如果B A ,都是 ,那么A 到B 的映射B A f →:就叫做A 到B的函数,记作 ;如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。

函数)(x y ϕ=的图象与直线a x =交点的个数为 个。

对 应 映 射 函 数 常用函数 不等式方 程性 质解析式单调性奇偶性周期性性对称性性图 象 图象变换平移变换伸缩变换翻转变换一一映射反函数函数的三要素定义域值域解析式定义域值域反 解图象定 义图 象性 质方 程一元一次函数一元二次函数反比例函数指数函数对数函数三角函数型如:bx ac y -+= 型如:)0(>+=k xkx y 最 值关于y=x 对称二、函数的三要素: , , 。

相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法:①定义法(拼凑):如:已知221)1(xx xx f +=+,求:)(x f ; ②换元法:如:已知34)13(+=+x x f ,求)(x f ;③待定系数法:如:已知x x f f f 21)]}([{+=,求一次函数)(x f ; ④赋值法:如:已知)0(1)1()(2≠+=-x x xf x f ,求)(x f ;(2)函数定义域的求法:①)()(x g x f y =,则 ; ②)()(*2N n x f y n ∈=则 ; ③0)]([x f y =,则 ; ④如:)(l o g )(x g y x f =,则 ;⑤含参问题的定义域要分类讨论;如:已知函数)(x f y =的定义域是]1,0[,求)()()(a x f a x f x -++=ϕ的定义域。

⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

如:已知扇形的周长为20,半径为r ,扇形面积为S ,则==)(r f S ;定义域为 。

(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=;③判别式法:转化一个关于x 的一元二次方程(其中y 为参数),利用存在x 使得方程成立,找方程有解的充要条件;适用题型:b a fex dx cbx ax y ,(22++++=不全为)0;有两种情况:(1)x 无具体范围:直接套用0≥∆;(2)x 有具体范围:要用实根分布来其有根的充要条件;注意:(1)若得到的一元二次方程,二次项系数是含有y 的多项式,此时要分类讨论。

(2)若定义域中有不连续的点,要验证,方法为:令x 取不连续点的值,求出y ,再由这个y 求出与它对应的x ,如果还有定义域内有定义的'x 与它对应,则此y 为值域中的一个值,否则,此y 不在值域中。

④换元法:通过变量代换转化为能求值域的函数,化归思想;适用题型c bx ax y ++=;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

求下列函数的值域:①])1,1[,,0,0(-∈>>>-+=x b a b a bxa bxa y (2种方法); ②)0,(,32-∞∈+-=x x x x y (2种方法);③)0,(,132-∞∈-+-=x x x x y (2种方法);④)0,(,1322-∞∈+++-=x x x x x y ;⑤)0,(,322-∞∈+-=x xx x y (2种方法); ⑥x x y -+-=432;⑦2432x x y -+-=;⑧xx y 442--=;三、函数的性质:(1)函数的单调性:对于给定区间上的函数)(x f ,如果对于 定义域内任意的21,x x ;若 ,都有 ,则称)(x f 为增函数; 都有 ,则称)(x f 为减函数;注意:(1)函数单调性的定义是证明函数单调性的基本方法。

若函数是一个关于x 的多项式,还可以通过求导证明:当 时为增函数,当 时为减函数。

(2)单调性一般用区间表示,不能用集合表示。

(2)函数的奇偶性:对于函数)(x f , 如果定义域内任意的1x , 都有 ,则称)(x f 为奇函数; 都有 ,则称)(x f 为偶函数; 奇函数的图象关于 ,偶函数的图象关于 ; 注意:(1)研究函数的奇偶性,首先要研究函数的定义域 ; (2)若函数)(x f y =,D x ∈是奇函数,且D ∈0,则 ;如:判断xxx y +-+=11)1(的奇偶性。

关于函数的单调性和奇偶性的的结论:1、若奇函数)(x f 在区间],[b a 上单调递增(减),则)(x f 在区间],[a b --上是单调递 ;2、若偶函数)(x f 在区间],[b a 上单调递增(减),则)(x f 在区间],[a b --上是单调递 ;3、既是奇函数又是偶函数的函数的解析式为 ;这样的函数有个。

4、任意定义在R 上的函数)(x f 都可唯一地表示成一个奇函数与一个偶函数的和:)()()(x h x g x f +=;其中=)(x g 是偶函数,=)(x h 是奇函数;(3)函数对称性的结论:1、设函数)(x f y =的定义域为R ,且满足条件:)()(x b f x a f -=+,则函数)(x f y = 的图象关于直线 对称;如:由)1()1(x f x f +=-成立,则)(x f 关于 对称; 注意:)(x a f y +=与)(x b f y -=关于 对称;2、定义在R 上的函数)(x f y =对定义域内任意x 满足条件)2(2)(x a f b x f --=,则)(x f y =关于点),(b a 成中心对称,如:)02(02)()()(x f x f x f x f -⨯-⨯=⇒--=,则)(x f 关于原点对称;(4)函数的周期性:对于函数)(x f ,如果存在不为零的常数T ,对于定义域内的每一个值,都有 则函数)(x f y =为周期函数, 叫周期;关于函数周期性的结论:①定义在R 上的函数)(x f y =对定义域内任意x ,都满足条件)()()(b x f a x f x f -=+=成立,则)(x f y =是以=T 为周期的周期函数;②若函数)(x f y =既关于直线a x =对称,又关于)(b a b x ≠=对称,则)(x f y =一定是周期函数,且=T 是它的一个周期;③若)(x f y =既关于直线a x =成轴对称,又关于点),(c b 成中心对称,则)(x f y =一定是周期函数,且=T 是它的一个周期。

四、图形变换: (1)平移变换:①形如:)(a x f y +=:把函数)(x f y =的图象沿 方向向 或 平移个单位,就得到)(a x f y +=的图象。

②形如:a x f y +=)(:把函数)(x f y =的图象沿 方向向 或 平移个单位,就得到a x f y +=)(的图象。

(2)对称翻转变换:①形如:)(x f y -=:其函数图象与函数)(x f y =的图象关于 对称。

②形如:)(x f y -=:其函数图象与函数)(x f y =的图象关于 对称。

③形如:)(1x fy -=:其函数图象与函数)(x f y =的图象关于 对称。

④形如:)(x f y --=:其函数图象与函数)(x f y =的图象关于 对称。

⑤形如|)(|x f y =:这是偶函数。

其图象是关于y 轴对称的,所以只要先 ;再 ;就得到了|)(|x f y =的图象。

⑥形如:|)(|x f y =:将函数)(x f y =的图象;就得到函数|)(|x f y =的图象。

(3)伸缩变换:①形如:)0)((>=ωωx f y :将函数)(x f y =的图象横坐标(纵坐标不变)缩小(1>ω)或伸长(10<<ω)到原来的ω1倍得到。

②形如:)0)((>=A x Af y :将函数)(x f y =的图象纵坐标(横坐标不变)伸长(1>A )或压缩(10<<A )到原来的A 倍得到。

如:)(x f y =的图象如图,作出下列函数图象:(1))(x f y -=;(2))(x f y -=;(3)|)(|x f y =;(4)|)(|x f y =;(5))2(x f y =; (6))1(+=x f y ;(7)1)(+=x f y ; (8))(x f y --=;(9))(1x fy -=。

xO yy=f(x)(2,0)(0,-1)五、反函数:(1)定义:设)(x f y =表示y 是自变量x 的函数,它的定义域为A ,值域为C ,由式子)(x f y =解出x ,得到式子)(y x ϕ=,如果对于y 在C 中的任何一个值,通过式子)(y x ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子)(y x ϕ=就表示x 是自变量y 的函数,这样的函数)(y x ϕ=,叫做)(x f y =的反函数,记为)(1y fx -=,即)()(1y fy x -==ϕ,习惯上仍用x 表示自变量,y 表示函数,把它改写成)(1x f y -=。

(2)函数存在反函数的条件: ;(3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将)(x f y =看成关于x 的方程,解出)(1y fx -=,若有两解,要注意解的选择;②将y x ,互换,得)(1x f y -=;③写出反函数的定义域(即)(x f y =的值域)。

(5)互为反函数的图象间的关系: ;(6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

如:求下列函数的反函数:)0(32)(2≤+-=x x x x f ;122)(-=x xx f ;)0(21log )(2>-+=x x xx f 六、复合函数:(1)定义:如果y 是u 的函数,记为)(u f y =,u 又是x 的函数,记为)(x g u =,且)(x g的值域与)(u f 的定义域的交集不空,则确定了一个y 关于x 的函数)]([x g f y =,这时y 做x 的复合函数,其中u 叫做中间变量,)(u f y =叫做外层函数,)(x g u =叫做内层函数。

相关文档
最新文档